1
|
Cucchiari D, Podestà MA, Ponticelli C. Pathophysiology of rejection in kidney transplantation. Expert Rev Clin Immunol 2024; 20:1471-1481. [PMID: 39467249 DOI: 10.1080/1744666x.2024.2421310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Rejection remains a major obstacle to successful kidney transplantation. The complex pathophysiology of rejection depends on a fine-tuned interplay between the innate and adaptive immune systems. AREAS COVERED This review provides a comprehensive analysis of the pathophysiology of rejection of kidney grafts, performed through careful selection of most relevant papers available on the topic in the PubMed database. The two types of rejection usually observed at the kidney biopsy, i.e. cellular and humoral rejection, are described with an accurate outline of the biological processes that lead to their development. EXPERT OPINION The incidence of T-cell-mediated rejection is decreasing, and most cases promptly respond to appropriate immunosuppression. However, late diagnosis or incomplete response to treatment may have deleterious consequences in the long term. The main issue is represented by antibody-mediated rejection, which unsatisfactorily responds to aggressive immunosuppression, especially when diagnosed late. Prevention of acute ABMR rests on HLA-specific antibody detection prior to transplantation, adequate immunosuppression, and optimal patients' compliance. Late diagnosis and poor response to treatment inevitably lead to chronic ABMR, for which no therapies are currently available.
Collapse
Affiliation(s)
- David Cucchiari
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
| | - Manuel Alfredo Podestà
- Transplantation Research Center, Renal Division, Brigham and Women's Hopsital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
2
|
Qin Q, Liu R, Li Z, Liu M, Wu X, Wang H, Yang S, Sun X, Yi X. Resolving candidate genes of duck ovarian tissue transplantation via RNA-Seq and expression network analyses. Poult Sci 2024; 103:103788. [PMID: 38692177 PMCID: PMC11070914 DOI: 10.1016/j.psj.2024.103788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
This study aims to identify candidate genes related to ovarian development after ovarian tissue transplantation through transcriptome sequencing (RNA-seq) and expression network analyses, as well as to provide a reference for determining the molecular mechanism of improving ovarian development following ovarian tissue transplantation. We collected ovarian tissues from 15 thirty-day-old ducks and split each ovary into 4 equal portions of comparable sizes before orthotopically transplanting them into 2-day-old ducks. Samples were collected on days 0 (untransplanted), 3, 6, and 9. The samples were paraffin sectioned and then subjected to Hematoxylin-Eosin (HE) staining and follicular counting. We extracted RNA from ovarian samples via the Trizol method to construct a transcriptome library, which was then sequenced by the Illumina Novaseq 6000 sequencing platform. The sequencing results were examined for differentially expressed genes (DEG) through gene ontology (GO) function and the Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses, gene set enrichment analysis (GSEA), weighted correlation network analysis (WGCNA), and protein-protein interaction (PPI) networks. Some of the candidate genes were selected for verification using real-time fluorescence quantitative PCR (qRT-PCR). Histological analysis revealed a significant reduction in the number of morphologically normal follicles at 3, 6, and 9 d after ovarian transplantation, along with significantly higher abnormality rates (P < 0.05). The transcriptome analysis results revealed 2,114, 2,224, and 2,257 upregulated DEGs and 2,647, 2,883, and 2,665 downregulated DEGs at 3, 6, and 9 d after ovarian transplantation, respectively. Enrichment analysis revealed the involvement multiple pathways in inflammatory signaling, signal transduction, and cellular processes. Furthermore, WGCNA yielded 13 modules, with 10, 4, and 6 candidate genes mined at 3, 6 and 9 d after ovarian transplantation, respectively. Transcription factor (TF) prediction showed that STAT1 was the most important TF. Finally, the qRT-PCR verification results revealed that 12 candidate genes exhibited an expression trend consistent with sequencing data. In summary, significant differences were observed in the number of follicles in duck ovaries following ovarian transplantation. Candidate genes involved in ovarian vascular remodeling and proliferation were screened using RNA-Seq and WGCNA.
Collapse
Affiliation(s)
- Qingming Qin
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Rongxu Liu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Midi Liu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Xian Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Huimin Wang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Shuailiang Yang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Xuyang Sun
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Xianguo Yi
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China.
| |
Collapse
|
3
|
The Role of Innate Immune Cells in the Prediction of Early Renal Allograft Injury Following Kidney Transplantation. J Clin Med 2022; 11:jcm11206148. [PMID: 36294469 PMCID: PMC9605224 DOI: 10.3390/jcm11206148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/24/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Despite recent advances and refinements in perioperative management of kidney transplantation (KT), early renal graft injury (eRGI) remains a critical problem with serious impairment of graft function as well as short- and long-term outcome. Serial monitoring of peripheral blood innate immune cells might be a useful tool in predicting post-transplant eRGI and graft outcome after KT. Methods: In this prospective study, medical data of 50 consecutive patients undergoing KT at the University Hospital of Leipzig were analyzed starting at the day of KT until day 10 after the transplantation. The main outcome parameter was the occurrence of eRGI and other outcome parameters associated with graft function/outcome. eRGI was defined as graft-related complications and clinical signs of renal IRI (ischemia reperfusion injury), such as acute tubular necrosis (ATN), delayed graft function (DGF), initial nonfunction (INF) and graft rejection within 3 months following KT. Typical innate immune cells including neutrophils, natural killer (NK) cells, monocytes, basophils and dendritic cells (myeloid, plasmacytoid) were measured in all patients in peripheral blood at day 0, 1, 3, 7 and 10 after the transplantation. Receiver operating characteristics (ROC) curves were performed to assess their predictive value for eRGI. Cutoff levels were calculated with the Youden index. Significant diagnostic immunological cutoffs and other prognostic clinical factors were tested in a multivariate logistic regression model. Results: Of the 50 included patients, 23 patients developed eRGI. Mean levels of neutrophils and monocytes were significantly higher on most days in the eRGI group compared to the non-eRGI group after transplantation, whereas a significant decrease in NK cell count, basophil levels and DC counts could be found between baseline and postoperative course. ROC analysis indicated that monocytes levels on POD 7 (AUC: 0.91) and NK cell levels on POD 7 (AUC: 0.92) were highly predictive for eRGI after KT. Multivariable analysis identified recipient age (OR 1.53 (95% CI: 1.003−2.350), p = 0.040), recipient body mass index > 25 kg/m2 (OR 5.6 (95% CI: 1.36−23.9), p = 0.015), recipient cardiovascular disease (OR 8.17 (95% CI: 1.28−52.16), p = 0.026), donor age (OR 1.068 (95% CI: 1.011−1.128), p = 0.027), <0.010), deceased-donor transplantation (OR 2.18 (95% CI: 1.091−4.112), p = 0.027) and cold ischemia time (CIT) of the renal graft (OR 1.005 (95% CI: 1.001−1.01), p = 0.019) as clinically relevant prognostic factors associated with increased eRGI following KT. Further, neutrophils > 9.4 × 103/μL on POD 7 (OR 16.1 (95% CI: 1.31−195.6), p = 0.031), monocytes > 1150 cells/ul on POD 7 (OR 7.81 (95% CI: 1.97−63.18), p = 0.048), NK cells < 125 cells/μL on POD 3 (OR 6.97 (95% CI: 3.81−12.7), p < 0.01), basophils < 18.1 cells/μL on POD 10 (OR 3.45 (95% CI: 1.37−12.3), p = 0.02) and mDC < 4.7 cells/μL on POD 7 (OR 11.68 (95% CI: 1.85−73.4), p < 0.01) were revealed as independent biochemical predictive variables for eRGI after KT. Conclusions: We show that the combined measurement of immunological innate variables (NK cells and monocytes on POD 7) and specific clinical factors such as prolonged CIT, increased donor and recipient age and morbidity together with deceased-donor transplantation were significant and specific predictors of eRGI following KT. We suggest that intensified monitoring of these parameters might be a helpful clinical tool in identifying patients at a higher risk of postoperative complication after KT and may therefore help to detect and—by diligent clinical management—even prevent deteriorated outcome due to IRI and eRGI after KT.
Collapse
|
4
|
Fu J, Lehmann CHK, Wang X, Wahlbuhl M, Allabauer I, Wilde B, Amon L, Dolff S, Cesnjevar R, Kribben A, Woelfle J, Rascher W, Hoyer PF, Dudziak D, Witzke O, Hoerning A. CXCR4 blockade reduces the severity of murine heart allograft rejection by plasmacytoid dendritic cell-mediated immune regulation. Sci Rep 2021; 11:23815. [PMID: 34893663 PMCID: PMC8664946 DOI: 10.1038/s41598-021-03115-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Allograft-specific regulatory T cells (Treg cells) are crucial for long-term graft acceptance after transplantation. Although adoptive Treg cell transfer has been proposed, major challenges include graft-specificity and stability. Thus, there is an unmet need for the direct induction of graft-specific Treg cells. We hypothesized a synergism of the immunotolerogenic effects of rapamycin (mTOR inhibition) and plerixafor (CXCR4 antagonist) for Treg cell induction. Thus, we performed fully-mismatched heart transplantations and found combination treatment to result in prolonged allograft survival. Moreover, fibrosis and myocyte lesions were reduced. Although less CD3+ T cell infiltrated, higher Treg cell numbers were observed. Noteworthy, this was accompanied by a plerixafor-dependent plasmacytoid dendritic cells-(pDCs)-mobilization. Furthermore, in vivo pDC-depletion abrogated the plerixafor-mediated Treg cell number increase and reduced allograft survival. Our pharmacological approach allowed to increase Treg cell numbers due to pDC-mediated immune regulation. Therefore pDCs can be an attractive immunotherapeutic target in addition to plerixafor treatment.
Collapse
Affiliation(s)
- Jian Fu
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany.,The Emergency and Trauma Center, The First Affiliated Hospital of Hai Nan Medical University, Haikou, China
| | - Christian H K Lehmann
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Research Module II, Hartmannstr. 14, 91052, Erlangen, Germany. .,Medical Immunology Campus and German Centre for Immuntherapy (Deutsches Zentrum für Immuntherapie-DZI) Erlangen, FAU Erlangen-Nürnberg, 91054, Erlangen, Germany.
| | - Xinning Wang
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Mandy Wahlbuhl
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Ida Allabauer
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lukas Amon
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Research Module II, Hartmannstr. 14, 91052, Erlangen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Essen, Germany
| | - Robert Cesnjevar
- Department of Pediatric Cardiac Surgery, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany.,Department of Cardiac Surgery, Universitäts-Kinderspital Zürich, Zurich, Switzerland
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Joachim Woelfle
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Wolfgang Rascher
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Peter F Hoyer
- Department of Pediatrics II, Pediatric Nephrology, Gastroenterology, Endocrinology and Transplant Medicine, Children's Hospital Essen, University Duisburg-Essen, Duisburg, Germany
| | - Diana Dudziak
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Research Module II, Hartmannstr. 14, 91052, Erlangen, Germany.,Medical Immunology Campus and German Centre for Immuntherapy (Deutsches Zentrum für Immuntherapie-DZI) Erlangen, FAU Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Essen, Germany
| | - André Hoerning
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany. .,Department of Pediatrics II, Pediatric Nephrology, Gastroenterology, Endocrinology and Transplant Medicine, Children's Hospital Essen, University Duisburg-Essen, Duisburg, Germany.
| |
Collapse
|
5
|
Ponticelli C, Campise MR. The inflammatory state is a risk factor for cardiovascular disease and graft fibrosis in kidney transplantation. Kidney Int 2021; 100:536-545. [PMID: 33932457 DOI: 10.1016/j.kint.2021.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
Several factors, such as donor brain death, ischemia-reperfusion injury, rejection, infection, and chronic allograft dysfunction, may induce an inflammatory state in kidney transplantation. Furthermore, inflammatory cells, cytokines, growth factors, complement and coagulation cascade create an unbalanced interaction with innate and adaptive immunity, which are both heavily involved in atherogenesis. The crosstalk between inflammation and thrombosis may lead to a prothrombotic state and impaired fibrinolysis in kidney transplant recipients increasing the risk of cardiovascular disease. Inflammation is also associated with elevated levels of fibroblast growth factor 23 and low levels of Klotho, which contribute to major adverse cardiovascular events. Hyperuricemia, glucose intolerance, arterial hypertension, dyslipidemia, and physical inactivity may create a condition called metaflammation that concurs in atherogenesis. Another major consequence of the inflammatory state is the development of chronic hypoxia that through the mediation of interleukins 1 and 6, angiotensin II, and transforming growth factor beta can result in excessive accumulation of extracellular matrix, which can disrupt and replace functional parenchyma, leading to interstitial fibrosis and chronic allograft dysfunction. Lifestyle and regular physical activity may reduce inflammation. Several drugs have been proposed to control the graft inflammatory state, including low-dose aspirin, statins, renin-angiotensin inhibitors, xanthine-oxidase inhibitors, vitamin D supplements, and interleukin-6 blockade. However, no prospective controlled trial with these measures has been conducted in kidney transplantation.
Collapse
Affiliation(s)
- Claudio Ponticelli
- Division of Nephrology, Ospedale Maggiore Policlinico, Milano, Italy (retired).
| | - Maria Rosaria Campise
- Division of Nephrology and Dialysis, Ca' Granda Foundation, Scientific Institute Ospedale Maggiore Policlinico di Milano, Milano, Italy
| |
Collapse
|
6
|
Gunata M, Parlakpinar H. A review of myocardial ischaemia/reperfusion injury: Pathophysiology, experimental models, biomarkers, genetics and pharmacological treatment. Cell Biochem Funct 2020; 39:190-217. [PMID: 32892450 DOI: 10.1002/cbf.3587] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases are known to be the most fatal diseases worldwide. Ischaemia/reperfusion (I/R) injury is at the centre of the pathology of the most common cardiovascular diseases. According to the World Health Organization estimates, ischaemic heart disease is the leading global cause of death, causing more than 9 million deaths in 2016. After cardiovascular events, thrombolysis, percutaneous transluminal coronary angioplasty or coronary bypass surgery are applied as treatment. However, after restoring coronary blood flow, myocardial I/R injury may occur. It is known that this damage occurs due to many pathophysiological mechanisms, especially increasing reactive oxygen types. Besides causing cardiomyocyte death through multiple mechanisms, it may be an important reason for affecting other cell types such as platelets, fibroblasts, endothelial and smooth muscle cells and immune cells. Also, polymorphonuclear leukocytes are associated with myocardial I/R damage during reperfusion. This damage may be insufficient in patients with co-morbidity, as it is demonstrated that it can be prevented by various endogenous antioxidant systems. In this context, the resulting data suggest that optimal cardioprotection may require a combination of additional or synergistic multi-target treatments. In this review, we discussed the pathophysiology, experimental models, biomarkers, treatment and its relationship with genetics in myocardial I/R injury. SIGNIFICANCE OF THE STUDY: This review summarized current information on myocardial ischaemia/reperfusion injury (pathophysiology, experimental models, biomarkers, genetics and pharmacological therapy) for researchers and reveals guiding data for researchers, especially in the field of cardiovascular system and pharmacology.
Collapse
Affiliation(s)
- Mehmet Gunata
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
7
|
Quaglia M, Dellepiane S, Guglielmetti G, Merlotti G, Castellano G, Cantaluppi V. Extracellular Vesicles as Mediators of Cellular Crosstalk Between Immune System and Kidney Graft. Front Immunol 2020; 11:74. [PMID: 32180768 PMCID: PMC7057849 DOI: 10.3389/fimmu.2020.00074] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are known immune-modulators exerting a critical role in kidney transplantation (KT). EV bioactive cargo includes graft antigens, costimulatory/inhibitory molecules, cytokines, growth factors, and functional microRNAs (miRNAs) that may modulate expression of recipient cell genes. As paracrine factors, neutrophil- and macrophage-derived EVs exert immunosuppressive and immune-stimulating effects on dendritic cells, respectively. Dendritic cell-derived EVs mediate alloantigen spreading and modulate antigen presentation to T lymphocytes. At systemic level, EVs exert pleiotropic effects on complement and coagulation. Depending on their biogenesis, they can amplify complement activation or shed complement inhibitors and prevent cell lysis. Likewise, endothelial- and platelet-derived EVs can exert procoagulant/prothrombotic effects and also promote endothelial survival and angiogenesis after ischemic injury. Kidney endothelial- and tubular-derived EVs play a key role in ischemia-reperfusion injury (IRI) and during the healing process; additionally, they can trigger rejection by inducing both alloimmune and autoimmune responses. Endothelial EVs have procoagulant/pro-inflammatory effects and can release sequestered self-antigens, generating a tissue-specific autoimmunity. Renal tubule-derived EVs shuttle pro-fibrotic mediators (TGF-β and miR-21) to interstitial fibroblasts and modulate neutrophil and T-lymphocyte influx. These processes can lead to peritubular capillary rarefaction and interstitial fibrosis-tubular atrophy. Different EVs, including those from mesenchymal stromal cells (MSCs), have been employed as a therapeutic tool in experimental models of rejection and IRI. These particles protect tubular and endothelial cells (by inhibition of apoptosis and inflammation-fibrogenesis or by inducing autophagy) and stimulate tissue regeneration (by triggering angiogenesis, cell proliferation, and migration). Finally, urinary and serum EVs represent potential biomarkers for delayed graft function (DGF) and acute rejection. In conclusion, EVs sustain an intricate crosstalk between graft tissue and innate/adaptive immune systems. EVs play a major role in allorecognition, IRI, autoimmunity, and alloimmunity and are promising as biomarkers and therapeutic tools in KT.
Collapse
Affiliation(s)
- Marco Quaglia
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Sergio Dellepiane
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- Division of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai Hospital, The Tisch Cancer Institute, New York, NY, United States
| | - Gabriele Guglielmetti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Giuseppe Castellano
- Nephrology Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- *Correspondence: Vincenzo Cantaluppi
| |
Collapse
|
8
|
Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and Consequences of Necroinflammation. Physiol Rev 2018; 98:727-780. [PMID: 29465288 DOI: 10.1152/physrev.00041.2016] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When cells undergo necrotic cell death in either physiological or pathophysiological settings in vivo, they release highly immunogenic intracellular molecules and organelles into the interstitium and thereby represent the strongest known trigger of the immune system. With our increasing understanding of necrosis as a regulated and genetically determined process (RN, regulated necrosis), necrosis and necroinflammation can be pharmacologically prevented. This review discusses our current knowledge about signaling pathways of necrotic cell death as the origin of necroinflammation. Multiple pathways of RN such as necroptosis, ferroptosis, and pyroptosis have been evolutionary conserved most likely because of their differences in immunogenicity. As the consequence of necrosis, however, all necrotic cells release damage associated molecular patterns (DAMPs) that have been extensively investigated over the last two decades. Analysis of necroinflammation allows characterizing specific signatures for each particular pathway of cell death. While all RN-pathways share the release of DAMPs in general, most of them actively regulate the immune system by the additional expression and/or maturation of either pro- or anti-inflammatory cytokines/chemokines. In addition, DAMPs have been demonstrated to modulate the process of regeneration. For the purpose of better understanding of necroinflammation, we introduce a novel classification of DAMPs in this review to help detect the relative contribution of each RN-pathway to certain physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Maysa Sarhan
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Walter G Land
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Wulf Tonnus
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Christian P Hugo
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Andreas Linkermann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
9
|
Uehara M, Solhjou Z, Banouni N, Kasinath V, Xiaqun Y, Dai L, Yilmam O, Yilmaz M, Ichimura T, Fiorina P, Martins PN, Ohori S, Guleria I, Maarouf OH, Tullius SG, McGrath MM, Abdi R. Ischemia augments alloimmune injury through IL-6-driven CD4 + alloreactivity. Sci Rep 2018; 8:2461. [PMID: 29410442 PMCID: PMC5802749 DOI: 10.1038/s41598-018-20858-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 01/25/2018] [Indexed: 02/06/2023] Open
Abstract
Ischemia reperfusion injuries (IRI) are unavoidable in solid organ transplantation. IRI augments alloimmunity but the mechanisms involved are poorly understood. Herein, we examined the effect of IRI on antigen specific alloimmunity. We demonstrate that ischemia promotes alloimmune activation, leading to more severe histological features of rejection, and increased CD4+ and CD8+ T cell graft infiltration, with a predominantly CD8+ IFNγ+ infiltrate. This process is dependent on the presence of alloreactive CD4+ T cells, where depletion prevented infiltration of ischemic grafts by CD8+ IFNγ+ T cells. IL-6 is a known driver of ischemia-induced rejection. Herein, depletion of donor antigen-presenting cells reduced ischemia-induced CD8+ IFNγ+ allograft infiltration, and improved allograft outcomes. Following prolonged ischemia, accelerated rejection was observed despite treatment with CTLA4Ig, indicating that T cell costimulatory blockade failed to overcome the immune activating effect of IRI. However, despite severe ischemic injury, treatment with anti-IL-6 and CTLA4Ig blocked IRI-induced alloimmune injury and markedly improved allograft survival. We describe a novel pathway where IRI activates innate immunity, leading to upregulation of antigen specific alloimmunity, resulting in chronic allograft injury. Based on these findings, we describe a clinically relevant treatment strategy to overcome the deleterious effect of IRI, and provide superior long-term allograft outcomes.
Collapse
Affiliation(s)
- Mayuko Uehara
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhabiz Solhjou
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Naima Banouni
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vivek Kasinath
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ye Xiaqun
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Li Dai
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Osman Yilmam
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mine Yilmaz
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Takaharu Ichimura
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paolo Fiorina
- Division of Nephrology, Boston Children Hospital, Harvard Medical School, Boston, MA, USA
| | - Paulo N Martins
- Division of Surgery, University of Massachusetts Medical School, Boston, MA, USA
| | - Shunsuke Ohori
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Indira Guleria
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Omar H Maarouf
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan G Tullius
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martina M McGrath
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Behnam Sani K, Sawitzki B. Immune monitoring as prerequisite for transplantation tolerance trials. Clin Exp Immunol 2017; 189:158-170. [PMID: 28518214 DOI: 10.1111/cei.12988] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2017] [Indexed: 02/06/2023] Open
Abstract
Ever since its first application in clinical medicine, scientists have been urged to induce tolerance towards foreign allogeneic transplants and thus avoid rejection by the recipient's immune system. This would circumvent chronic use of immunosuppressive drugs (IS) and thus avoid development of IS-induced side effects, which are contributing to the still unsatisfactory long-term graft and patient survival after solid organ transplantation. Although manifold strategies of tolerance induction have been described in preclinical models, only three therapeutic approaches have been utilized successfully in a still small number of patients. These approaches are based on (i) IS withdrawal in spontaneous operational tolerant (SOT) patients, (ii) induction of a mixed chimerism and (iii) adoptive transfer of regulatory cells. Results of clinical trials utilizing these approaches show that tolerance induction does not work in all patients. Thus, there is a need for reliable biomarkers, which can be used for patient selection and post-therapeutic immune monitoring of safety, success and failure. In this review, we summarize recent achievements in the identification and validation of such immunological assays and biomarkers, focusing mainly on kidney and liver transplantation. From the published findings so far, it has become clear that indicative biomarkers may vary between different therapeutic approaches applied and organs transplanted. Also, patient numbers studied so far are very small. This is the main reason why nearly all described parameters lack validation and reproducibility testing in large clinical trials, and are therefore not yet suitable for clinical practice.
Collapse
Affiliation(s)
- K Behnam Sani
- Institute of Medical Immunology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - B Sawitzki
- Institute of Medical Immunology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
12
|
Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. Transplantation and Damage-Associated Molecular Patterns (DAMPs). Am J Transplant 2016; 16:3338-3361. [PMID: 27421829 DOI: 10.1111/ajt.13963] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/24/2016] [Accepted: 07/10/2016] [Indexed: 01/25/2023]
Abstract
Upon solid organ transplantation and during cancer immunotherapy, cellular stress responses result in the release of damage-associated molecular patterns (DAMPs). The various cellular stresses have been characterized in detail over the last decades, but a unifying classification based on clinically important aspects is lacking. Here, we provide an in-depth review of the most recent literature along with a unifying concept of the danger/injury model, suggest a classification of DAMPs, and review the recently elaborated mechanisms that result in the emission of such factors. We further point out the differences in DAMP responses including the release following a heat shock pattern, endoplasmic reticulum stress, DNA damage-mediated DAMP release, and discuss the diverse pathways of regulated necrosis in this respect. The understanding of various forms of DAMPs and the consequences of their different release patterns are prerequisite to associate serum markers of cellular stresses with clinical outcomes.
Collapse
Affiliation(s)
- W G Land
- German Academy of Transplantation Medicine, Munich, Germany.,Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabexTRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - P Agostinis
- Cell Death Research and Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - S Gasser
- Immunology Programme and Department of Microbiology and Immunology, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - A D Garg
- Cell Death Research and Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - A Linkermann
- Cluster of Excellence EXC306, Inflammation at Interfaces, Schleswig-Holstein, Germany.,Clinic for Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
13
|
Orr S, Strominger I, Eremenko E, Vinogradov E, Ruvinov E, Monsonego A, Cohen S. TGF-β affinity-bound to a macroporous alginate scaffold generates local and peripheral immunotolerant responses and improves allocell transplantation. Acta Biomater 2016; 45:196-209. [PMID: 27523029 DOI: 10.1016/j.actbio.2016.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/26/2016] [Accepted: 08/10/2016] [Indexed: 01/16/2023]
Abstract
Enhancing vascularization of cell-transplantation devices is necessary for maintaining cell viability and integration within the host, but it also increases the risk of allograft rejection. Here, we investigated the feasibility of generating an immunoregulatory environment in a highly vascularized macroporous alginate scaffold by affinity-binding of the transforming growth factor-β (TGF-β) in a manner mimicking its binding to heparan sulfate. Using this device to transplant allofibroblasts under the kidney capsule resulted in the induction of local and peripheral TGF-β-dependent immunotolerance, characterized by higher frequency of immature dendritic cells and regulatory T cells within the device and by markedly reduced allofibroblast-specific T-cell response in the spleen, thereby increasing the viability of the transplanted cells. Culturing whole splenocytes in the TGF-β-bound scaffold indicated that the regulatory function of TGF-β is IL-10-dependent. We thus demonstrate a novel platform for transplantation devices, designed to promote an immunoregulatory microenvironment suitable for cell transplantation and autoimmune regulation. STATEMENT OF SIGNIFICANCE Allogeneic cell graft transplantation is a potentially optimal treatment for many clinical deficiencies. It is yet challenging to overcome chronic rejection without compromising host immunity to pathogens. We present the features and function of a cell transplantation device designed based on the principle of affinity binding of angiogenic and immunoregulatory factors to extracellular matrix in aim to achieve sustained release of these factors. We show that presentation of these factors in such manner generates the infrastructure for device vascularization and induces profound local allocell-specific tolerance, which then evokes peripheral T-cell tolerance. The tolerance is antigen specific, does not cause immune deficits and may thus serve to improve allocell survival as well as a platform to mitigate pathogenic autoimmunity.
Collapse
Affiliation(s)
- Shira Orr
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Itai Strominger
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, and The National Institute of Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ekatrina Eremenko
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, and The National Institute of Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ekaterine Vinogradov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, and The National Institute of Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Emil Ruvinov
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, and The National Institute of Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel; The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
14
|
Prolongation of kidney allograft survival regulated by indoleamine 2, 3-dioxygenase in immature dendritic cells generated from recipient type bone marrow progenitors. Mol Immunol 2016; 79:22-31. [PMID: 27689750 DOI: 10.1016/j.molimm.2016.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
Immature dendritic cells (iDCs) are bone marrow-derived professional antigen-presenting cells, exhibit very low levels of the co-stimulatory molecules CD80 (B7-1), CD86 (B7-2), and CD40 and major histocompatibility complex (MHC) class II and play a critical role in triggering antigen-specific immunotolerance. The enzyme indoleamine 2, 3-dioxygenase (IDO) is a cytosolic tryptophan catabolism rate-limiting step enzyme. IDO secreted by DCs shows an association with the suppression of T-cell responses and promotion of tolerance. In this study, BN rat recipients were pre-injected with donor renal alloantigen-treated recipient iDCs before kidney transplantation. The renal allograft exhibited a lighter renal rejection response, prolonged graft survival time, and an increasing content of CD4+CD25+Foxp3+ regulatory T cells (Tregs). Additionally, up-regulated secretion of Th2 cytokines were found in recipient sera post-transplantation. Transfection of si-IDO1 RNA into renal-antigen-treated recipient iDCs reversed these changes, which suggested that IDO channel signaling may be involved in iDC-induced allograft immunotolerance. These results suggested that iDC-induced and IDO-mediated allograft immunotolerance might be a potentially feasible tactic to prolong allograft survival, in addition to immunosuppressive drugs.
Collapse
|
15
|
Sá H, Leal R, Rosa MS. Renal transplant immunology in the last 20 years: A revolution towards graft and patient survival improvement. Int Rev Immunol 2016; 36:182-203. [PMID: 27682364 DOI: 10.1080/08830185.2016.1225300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To deride the hope of progress is the ultimate fatuity, the last word in poverty of spirit and meanness of mind. There is no need to be dismayed by the fact that we cannot yet envisage a definitive solution of our problems, a resting-place beyond which we need not try to go. -P.B. Medawar, 1969 * Thomas E. Starlz, also known as the Father of Clinical Transplantation, once said that organ transplantation was the supreme exception to the rule that most major advances in medicine spring from discoveries in basic science [Starzl T. The mystique of organ transplantation. J Am Coll Surg 2005 Aug;201(2):160-170]. In fact, the first successful identical-twin kidney transplantation performed by Murray's team in December 1954 (Murray J et al. Renal homotransplantations in identical twins. Surg Forum 1955;6:432-436) was the example of an upside down translation medicine: Human clinical transplantation began and researchers tried to understand the underlying immune response and how to control the powerful rejection pathways through experimental models. In the last 20 years, we have witnessed an amazing progress in the knowledge of immunological mechanisms regarding alloimmune response and an outstanding evolution on the identification and characterization of major and minor histocompatibility antigens. This review presents an historical and clinical perspective of those important advances in kidney transplantation immunology in the last 20 years, which contributed to the improvement in patients' quality of life and the survival of end-stage renal patients. In spite of these significant progresses, some areas still need substantial progress, such as the definition of non-invasive biomarkers for acute rejection; the continuous reduction of immunosuppression; the extension of graft survival, and finally the achievement of real graft tolerance extended to HLA mismatch donor: recipient pairs.
Collapse
Affiliation(s)
- Helena Sá
- a Department of Nephrology , Centro Hospitalar e Universitário de Coimbra , Coimbra , Portugal.,b Faculty of Medicine , University of Coimbra , Coimbra , Portugal.,c Immunology Center, Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| | - Rita Leal
- a Department of Nephrology , Centro Hospitalar e Universitário de Coimbra , Coimbra , Portugal
| | | |
Collapse
|
16
|
Lu J, Zhang X. Immunological characteristics of renal transplant tolerance in humans. Mol Immunol 2016; 77:71-8. [PMID: 27479171 DOI: 10.1016/j.molimm.2016.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
Abstract
Establishing allograft tolerance is a highly desirable therapeutic goal in kidney transplantation, from which recipients would greatly benefit by withdrawing or minimizing immunosuppression. Identifying biomarkers in predicting tolerance or early diagnosing rejection is essential to direct personalized management. Recent findings have revealed that multiple populations of immune cells have involved in promoting long-term graft function or inducing rejection in renal transplant recipients. Thus, roles of immune cells add another level to predict the renal tolerant state; tailoring their functional and/or phenotypic characteristics would provide insights into mechanism involved in transplant tolerance that may aid in designing new therapies. Here, we review these findings and discuss the current understanding immunological characteristics of renal transplant tolerance in humans, and their potential clinical translation to immune tolerance biomarkers.
Collapse
Affiliation(s)
- Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
17
|
Abstract
CD354, Triggering Receptor of Myeloid Cells-1 (TREM-1), is a potent amplifier of myeloid immune responses. Our goal was to determine the expression and function of TREM-1 in immune-mediated nephritis. An anti-glomerular basement membrane antibody (anti-GBM)-induced nephritis model was employed, where mice were sensitized with rabbit IgG followed by anti-GBM serum to induce disease. Anti-GBM-treated 129x1/svJ mice developed severe nephritis whereas C57BL/6 (B6) mice were resistant to disease. Anti-GBM disease resulted in elevated renal TREM-1 messenger RNA (mRNA) and protein levels and increased urine TREM-1 levels in 129x1/svJ. TREM-1 blockade with an inhibitory peptide, LP17, inhibited proteinuria and renal disease as measured by glomerulonephritis class, severity of tubulointerstitial disease, crescent formation, and inflammatory cell infiltrates. In sum, TREM-1 is upregulated in renal inflammation and plays a vital role in driving disease. Thus, TREM-1 blockade emerges as a potential therapeutic avenue for immune-mediated renal diseases such as lupus nephritis.
Collapse
Affiliation(s)
- Yong Du
- />Division of Rheumatology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Bldg Y, Flr 8, Room 206 (Y8.206), Dallas, TX 75390-8884 USA
- />Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Room 2027, Houston, TX 77204-5060 USA
| | - Tianfu Wu
- />Division of Rheumatology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Bldg Y, Flr 8, Room 206 (Y8.206), Dallas, TX 75390-8884 USA
- />Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Room 2027, Houston, TX 77204-5060 USA
| | - Xin J. Zhou
- />Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Laurie S. Davis
- />Division of Rheumatology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Bldg Y, Flr 8, Room 206 (Y8.206), Dallas, TX 75390-8884 USA
| | - Chandra Mohan
- />Division of Rheumatology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Bldg Y, Flr 8, Room 206 (Y8.206), Dallas, TX 75390-8884 USA
- />Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Room 2027, Houston, TX 77204-5060 USA
| |
Collapse
|