1
|
Pavan E, Pavón JAR, Nunes MRT, Carrasco MM, Dos Santos MAM, Slhessarenko RD. Anellovirus species in the serum of acute febrile patients from Mato Grosso, central Western Brazil, 2019. Braz J Microbiol 2025:10.1007/s42770-025-01658-1. [PMID: 40131631 DOI: 10.1007/s42770-025-01658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
The Anelloviridae family is one of the most diverse group of viruses within human virome, comprising 155 species distributed across 30 genera, four of which infect humans. Using a metagenomic approach to examine the frequency and diversity of viruses in the serum of patients with acute febrile illness in Mato Grosso during 2019, we identified and characterized two complete, three nearly complete and nine partial anellovirus genomes, including eleven putatively new species. Alphatorquevirus was the most prevalent genus (50%; n = 7), followed by Gammatorquevirus (35.7%; n = 5) and Betatorquevirus (14.3%; n = 2), consistent with global reports showing its dominance within Anelloviridae. Additionally, 65% of genomes were recovered from children, supporting higher anellovirus diversity and load in younger individuals.
Collapse
Affiliation(s)
- Eduarda Pavan
- Laboratório de Virologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Janeth Aracely Ramirez Pavón
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Márcio Roberto Teixeira Nunes
- Laboratório de Tecnologia Biomolecular, Centro de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, CEP 66075-110, Brazil
| | - Millena Moreira Carrasco
- Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
- Faculdade de Medicina, Universidade do Estado de Mato Grosso, Cáceres, MT, Brazil
| | - Marcelo Adriano Mendes Dos Santos
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
- Laboratório de Tecnologia Biomolecular, Centro de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, CEP 66075-110, Brazil
| | - Renata Dezengrini Slhessarenko
- Laboratório de Virologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| |
Collapse
|
2
|
Brani P, Manzoor HZ, Spezia PG, Vigezzi A, Ietto G, Dalla Gasperina D, Minosse C, Bosi A, Giaroni C, Carcano G, Maggi F, Baj A. Torque Teno Virus: Lights and Shades. Viruses 2025; 17:334. [PMID: 40143262 PMCID: PMC11945719 DOI: 10.3390/v17030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Torque Teno Virus (TTV) is a highly prevalent non-pathogenic DNA virus whose plasma levels may be related to the host's immune status. TTV gained attention about 25 years ago, but its replication is not fully understood, nor is its relationship with the host's immune system. Despite this lack of knowledge, TTV is currently being investigated as a functional biomarker of the immune system in patients with immunological damage and inflammatory diseases. Monitoring TTV viral load over time may help clinicians in making therapeutic decisions regarding immunosuppression as well as the likelihood of infectious complications. This review summarizes what we do and do not know about this enigmatic virus.
Collapse
Affiliation(s)
- Paola Brani
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
- Laboratory of Microbiology, ASST Sette Laghi, 21100 Varese, Italy
| | - Hafza Zahira Manzoor
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Pietro Giorgio Spezia
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, 00149 Rome, Italy
| | - Andrea Vigezzi
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Giuseppe Ietto
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Daniela Dalla Gasperina
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Claudia Minosse
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, 00149 Rome, Italy
| | - Annalisa Bosi
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Giulio Carcano
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Fabrizio Maggi
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, 00149 Rome, Italy
| | - Andreina Baj
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
- Laboratory of Microbiology, ASST Sette Laghi, 21100 Varese, Italy
| |
Collapse
|
3
|
Pociupany M, Tarabella C, Snoeck R, Dierickx D, Andrei G. Viral Infections in HSCT Recipients with Post-Transplant Lymphoproliferative Disorder: The Role of Torque Teno Virus as a Marker of Immune Functions. Microorganisms 2025; 13:326. [PMID: 40005692 PMCID: PMC11857982 DOI: 10.3390/microorganisms13020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Monitoring immune function in post-transplant patients is crucial to reduce the risk of viral infections (e.g., cytomegalovirus [CMV] or Epstein-Barr virus [EBV]), which can lead to serious complications such as post-transplant lymphoproliferative disorder (PTLD). Recently, Torque Teno virus (TTV) has attracted interest as a marker of immune function. Thus, we studied the kinetics of common post-transplant viral infections (TTV, EBV, CMV, human herpesvirus-6 [HHV-6], and adenovirus [AdV]) and their association with clinical parameters in 23 HSCT recipients who developed PTLD (PTLD-HSCT) and 25 post-HSCT patients without PTLD (Non-PTLD-HSCT) at three different timepoints: at the time of the transplant (T0), 3 months (T1), and 6 months (T2) post-HSCT. Additionally, 25 healthy donors (HD) were used as the control. EBV, CMV, HHV-6, or AdV infections were found in a few samples, while TTV was found in all of our samples. The highest TTV levels (4.61 [T0], 6.24 [T1] and 6.70 [T2] log10 copies/mL) were seen in PTLD-HSCT patients compared to Non-PTLD-HSCT (3.39 [T0], 4.86 [T1], and 3.75 [T2] log10 copies/mL) and HD (2.25 log10 copies/mL) at all timepoints. Higher TTV levels were also seen in patients with a destructive type of PTLD and in surviving PTLD-HSCT patients compared to deceased ones. TTV kinetics in PTLD patients post-HSCT showed that TTV levels increase with the fall in the host immunocompetence and that by monitoring TTV kinetics, the immune status of the patient can be monitored.
Collapse
Affiliation(s)
- Martyna Pociupany
- Molecular Structural and Translational Virology Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (M.P.); (R.S.)
| | - Carolina Tarabella
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium;
| | - Robert Snoeck
- Molecular Structural and Translational Virology Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (M.P.); (R.S.)
| | - Daan Dierickx
- Department of Hematology, University Hospitals Leuven, 3000 Leuven, Belgium;
- Laboratory of Experimental Hematology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Graciela Andrei
- Molecular Structural and Translational Virology Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (M.P.); (R.S.)
| |
Collapse
|
4
|
Cinti L, Spezia PG, Roberto P, Russo G, Lai Q, Carillo C, Frasca F, Antonelli G, Maggi F. Assessment of Torquetenominivirus (TTMV) and Torquetenomidivirus (TTMDV) as Complementary Biomarkers to Torquetenovirus (TTV). Int J Mol Sci 2025; 26:1022. [PMID: 39940791 PMCID: PMC11817373 DOI: 10.3390/ijms26031022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Recent studies have identified Torquetenovirus (TTV) as a promising biomarker of immune competence, particularly in assessing the vaccine response of solid organ transplant (SOT) recipients. However, given the individual variability of viral load, it is not yet possible to define "normal levels". Nevertheless, TTV is just one component of the broader Anelloviridae family, which also includes Torquetenominivirus (TTMV) and Torquetenomidivirus (TTMDV). This study explores whether the viremia of TTMV and TTMDV offers a stronger predictive marker for vaccine efficacy in SOT recipients. A cohort of 168 SOT patients (142 kidney and 26 lung transplant recipients) who received the BNT162B2 mRNA vaccine was examined, with viral loads quantified through virus-specific real-time PCR. While TTV remains a potentially useful biomarker for evaluating immune response, the combined analysis of all anelloviruses viremia provides deeper insights, particularly in cases where TTV is undetectable. Notably, only TTMV exhibited a pattern similar to TTV, suggesting its potential as an alternative biomarker when TTV is absent from the patient's virome.
Collapse
Affiliation(s)
- Lilia Cinti
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Roma, Italy; (L.C.); (F.F.); (G.A.)
- PhD National Interest in Innovation in the Diagnosis, Prevention and Treatment of Infections at Epidemic-Pandemic Risk, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- University Hospital “Policlinico Umberto I”, 00161 Rome, Italy; (G.R.); (Q.L.); (C.C.)
| | - Pietro Giorgio Spezia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (P.G.S.); (F.M.)
| | - Piergiorgio Roberto
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Roma, Italy; (L.C.); (F.F.); (G.A.)
- University Hospital “Policlinico Umberto I”, 00161 Rome, Italy; (G.R.); (Q.L.); (C.C.)
- PhD National Programme in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Gianluca Russo
- University Hospital “Policlinico Umberto I”, 00161 Rome, Italy; (G.R.); (Q.L.); (C.C.)
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00161 Rome, Italy
| | - Quirino Lai
- University Hospital “Policlinico Umberto I”, 00161 Rome, Italy; (G.R.); (Q.L.); (C.C.)
- Department of General and Specialistic Surgery, Sapienza University of Rome, 00161 Rome, Italy
| | - Carolina Carillo
- University Hospital “Policlinico Umberto I”, 00161 Rome, Italy; (G.R.); (Q.L.); (C.C.)
- Department of General and Specialistic Surgery “Paride Stefanini”, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Frasca
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Roma, Italy; (L.C.); (F.F.); (G.A.)
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00161 Rome, Italy
| | - Guido Antonelli
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Roma, Italy; (L.C.); (F.F.); (G.A.)
- University Hospital “Policlinico Umberto I”, 00161 Rome, Italy; (G.R.); (Q.L.); (C.C.)
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (P.G.S.); (F.M.)
| |
Collapse
|
5
|
de Campos GM, de Mello Costa TC, Silveira RM, Valença IN, Bezerra RDS, Darrigo Junior LG, Vieira ACDJ, Mesquita CC, Laurindo PDS, Cunha RG, Kashima S, Covas DT, Simões BP, Sampaio SC, Elias MC, Giovanetti M, Slavov SN. Viral Metagenomics in Patients Who Underwent Allogeneic Hematopoietic Stem Cell Transplantation (HSCT): A Brazilian Experience. Microorganisms 2024; 12:2557. [PMID: 39770761 PMCID: PMC11677183 DOI: 10.3390/microorganisms12122557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Viral infections are one of the most important causes of morbidity and mortality among patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT). Immunosuppression may lead to the reactivation of latent viruses or the acquisition of new infections, resulting in severe clinical outcomes. The early detection of viral reactivations is crucial for effective patient management and post-transplant care. In this study, we employed next-generation metagenomics to assess changes in viral abundance and detect clinically significant viruses in allogeneic HSCT patients. A total of 20 patients from the Transplant Unit of the University Hospital of the Faculty of Medicine of Ribeirão Preto, University of São Paulo were included, with plasma samples collected at three time points: D + 0 (pre-transplantation), D + 30 (30 days post-transplantation), and D + 100 (~100 days post-transplantation). A higher presence of clinically relevant viruses, such as the cytomegalovirus (CMV), the Epstein-Barr virus (EBV) and adenoviruses, were predominantly detected at D + 30. The diversity of commensal viruses, primarily anelloviruses, increased gradually, with the highest abundance and variability detected at D + 100. Viruses with clinical importance for HSCT, including CMV, adenovirus and EBV, were confirmed and characterized at the molecular level, showing generally high cycle threshold values. Our findings demonstrate a rise in anellovirus abundance following allogeneic HSCT, with the highest levels observed at D + 100. Notably, D + 30 was identified as a critical time point for the reactivation of clinically significant viruses. This study underscores the potential of metagenomics in the identification of clinically relevant viruses and highlights the importance of monitoring latent viruses in immunocompromised populations, including allogeneic HSCT patients.
Collapse
Affiliation(s)
- Gabriel Montenegro de Campos
- Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 05508-220, SP, Brazil; (G.M.d.C.); (R.M.S.); (I.N.V.); (R.d.S.B.); (S.K.)
| | - Thalita Cristina de Mello Costa
- Department of Medical Imaging, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil; (T.C.d.M.C.); (A.C.d.J.V.); (C.C.M.); (P.d.S.L.); (D.T.C.); (B.P.S.)
| | - Roberta Maraninchi Silveira
- Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 05508-220, SP, Brazil; (G.M.d.C.); (R.M.S.); (I.N.V.); (R.d.S.B.); (S.K.)
| | - Ian Nunes Valença
- Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 05508-220, SP, Brazil; (G.M.d.C.); (R.M.S.); (I.N.V.); (R.d.S.B.); (S.K.)
| | - Rafael dos Santos Bezerra
- Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 05508-220, SP, Brazil; (G.M.d.C.); (R.M.S.); (I.N.V.); (R.d.S.B.); (S.K.)
| | - Luiz Guilherme Darrigo Junior
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil;
| | - Ana Carolina de Jesus Vieira
- Department of Medical Imaging, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil; (T.C.d.M.C.); (A.C.d.J.V.); (C.C.M.); (P.d.S.L.); (D.T.C.); (B.P.S.)
| | - Camila Campos Mesquita
- Department of Medical Imaging, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil; (T.C.d.M.C.); (A.C.d.J.V.); (C.C.M.); (P.d.S.L.); (D.T.C.); (B.P.S.)
| | - Patrícia da Silva Laurindo
- Department of Medical Imaging, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil; (T.C.d.M.C.); (A.C.d.J.V.); (C.C.M.); (P.d.S.L.); (D.T.C.); (B.P.S.)
| | | | - Simone Kashima
- Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 05508-220, SP, Brazil; (G.M.d.C.); (R.M.S.); (I.N.V.); (R.d.S.B.); (S.K.)
| | - Dimas Tadeu Covas
- Department of Medical Imaging, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil; (T.C.d.M.C.); (A.C.d.J.V.); (C.C.M.); (P.d.S.L.); (D.T.C.); (B.P.S.)
| | - Belinda Pinto Simões
- Department of Medical Imaging, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil; (T.C.d.M.C.); (A.C.d.J.V.); (C.C.M.); (P.d.S.L.); (D.T.C.); (B.P.S.)
| | - Sandra Coccuzzo Sampaio
- Center for Viral Surveillance and Serological Evaluation (CeVIVAs), Butantan Institute, São Paulo 05585-000, SP, Brazil; (S.C.S.); (M.C.E.)
| | - Maria Carolina Elias
- Center for Viral Surveillance and Serological Evaluation (CeVIVAs), Butantan Institute, São Paulo 05585-000, SP, Brazil; (S.C.S.); (M.C.E.)
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Rene Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, MG, Brazil
| | - Svetoslav Nanev Slavov
- Center for Viral Surveillance and Serological Evaluation (CeVIVAs), Butantan Institute, São Paulo 05585-000, SP, Brazil; (S.C.S.); (M.C.E.)
| |
Collapse
|
6
|
Kelly E, Awan A, Sweeney C, Wildes D, De Gascun C, Hassan J, Riordan M. Torque Teno Virus Loads as a Marker of Immunosuppression in Pediatric Kidney Transplant Recipients. Pediatr Transplant 2024; 28:e14857. [PMID: 39318279 DOI: 10.1111/petr.14857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Long-term renal function and survival after kidney transplantation rely on appropriate immunosuppressive treatment to prevent the risk of rejection. New biomarkers are needed to accurately assess the degree of immunosuppression in renal transplant recipients in order to avoid organ rejection and the development of opportunistic infections. Highly prevalent in humans, torque teno virus (TTV), which belongs to the family Anelloviridae, is a small, nonenveloped, single-stranded DNA virus which has not been linked with any specific human illness, but which constitutes a major component of the human virome. Host antiviral responses allow TTV levels to be controlled; however, viral persistence remains, explaining the high prevalence in human populations, including healthy individuals. Important confounders of TTV load include time since transplantation, age, gender, obesity, and smoking status. AIMS TTV-based guidance of immunosuppressive drug dosing could help with risk stratification, reducing the risk of infection, graft rejection and oncologic disease on an individual level, enabling long-term patient and graft survival. METHODS Original studies were accessed by a systematic search from electronic databases including PubMed, ScienceDirect and Wiley Online Library. RESULTS The presented data mainly derive from adult transplant recipients showing an association between TTV plasma levels and the immune status of the host: High-TTV load and high immunosuppression are associated with a risk of infection, and low-TTV load and low immunosuppression indicate a risk of rejection. However, there is minimal information on pediatric transplant recipients with further research required in this cohort. To date, it has been demonstrated that longer posttransplant times are significantly associated with lower TTV levels in children with renal transplant. Meanwhile, an association between lower TTV loads and increased risk of graft reject during the first year of transplantation was also reported. More recently, Eibensteiner et al. revealed a robust, independent association between TTV plasma load and the onset of Cytomegalovirus and BK virus infections. CONCLUSION Data from randomized controlled trials are still missing, even in adults, but a multicenter randomized controlled trial for TTV-guided immunosuppression in adult kidney recipients (TTVguideIT) began in 2022. There is, therefore, great promise for TTV levels to be used as a biomarker that could potentially improve both graft and patient survival in transplantation.
Collapse
Affiliation(s)
- Ellen Kelly
- National Virus Reference Laboratory, University College Dublin, Dublin 4, Ireland
| | - Atif Awan
- Children's Health Ireland, Dublin 1, Ireland
| | | | | | - Cillian De Gascun
- National Virus Reference Laboratory, University College Dublin, Dublin 4, Ireland
| | - Jaythoon Hassan
- National Virus Reference Laboratory, University College Dublin, Dublin 4, Ireland
| | | |
Collapse
|
7
|
Moneke I, Ogutur ED, Kornyeva A, Fähndrich S, Schibilsky D, Bierbaum S, Czerny M, Stolz D, Passlick B, Jungraithmayr W, Frye BC. Donor age over 55 is associated with worse outcome in lung transplant recipients with idiopathic pulmonary fibrosis. BMC Pulm Med 2024; 24:499. [PMID: 39385110 PMCID: PMC11465681 DOI: 10.1186/s12890-024-03317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Lung transplantation (LTx) remains the only efficient treatment for selected patients with end-stage pulmonary disease. The age limit for the acceptance of donor organs in LTx is still a matter of debate. We here analyze the impact of donor organ age and the underlying pulmonary disease on short- and long-term outcome and survival after LTx. METHODS Donor and recipient characteristics of LTx recipients at our institution between 03/2003 and 12/2021 were analyzed. Statistical analysis was performed using SPSS and GraphPad software. RESULTS In 230 patients analyzed, donor age ≥ 55 years was associated with a higher incidence of severe primary graft dysfunction (PGD2/3) (46% vs. 31%, p = 0.03) and reduced long-term survival after LTx (1-, 5- and 10-year survival: 75%, 54%, 37% vs. 84%, 76%, 69%, p = 0.006). Notably, this was only significant in recipients with idiopathic pulmonary fibrosis (IPF) (PGD: 65%, vs. 37%, p = 0.016; 1-, 5-, and 10-year survival: 62%, 38%, 16% vs. 80%, 76%, 70%, p = 0.0002 respectively). In patients with chronic obstructive pulmonary disease (COPD), donor age had no impact on the incidence of PGD2/3 or survival (21% vs. 27%, p = 0.60 and 68% vs. 72%; p = 0.90 respectively). Moreover, we found higher Torque-teno virus (TTV)-DNA levels after LTx in patients with IPF compared to COPD (X2 = 4.57, p = 0.033). Donor age ≥ 55 is an independent risk factor for reduced survival in the whole cohort and patients with IPF specifically. CONCLUSIONS In recipients with IPF, donor organ age ≥ 55 years was associated with a higher incidence of PGD2/3 and reduced survival after LTx. The underlying pulmonary disease may thus be a relevant factor for postoperative graft function and survival. TRIAL REGISTRATION NUMBER DKRS DRKS00033312.
Collapse
Affiliation(s)
- Isabelle Moneke
- Faculty of Medicine, Department of Thoracic Surgery, Medical Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| | - Ecem Deniz Ogutur
- Faculty of Medicine, Department of Thoracic Surgery, Medical Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Anastasiya Kornyeva
- Faculty of Medicine, Department of Thoracic Surgery, Medical Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Sebastian Fähndrich
- Faculty of Medicine, Department of Pneumology Medical Center, University of Freiburg, Freiburg, Germany
| | - David Schibilsky
- Faculty of Medicine, Clinic for Cardiovascular Surgery, University Heart Centre Freiburg - Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Sibylle Bierbaum
- Faculty of Medicine, Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Martin Czerny
- Faculty of Medicine, Clinic for Cardiovascular Surgery, University Heart Centre Freiburg - Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Daiana Stolz
- Faculty of Medicine, Department of Pneumology Medical Center, University of Freiburg, Freiburg, Germany
| | - Bernward Passlick
- Faculty of Medicine, Department of Pneumology Medical Center, University of Freiburg, Freiburg, Germany
| | - Wolfgang Jungraithmayr
- Faculty of Medicine, Department of Thoracic Surgery, Medical Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Bjoern Christian Frye
- Faculty of Medicine, Department of Pneumology Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Giménez-Orenga K, Martín-Martínez E, Oltra E. Over-Representation of Torque Teno Mini Virus 9 in a Subgroup of Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Pilot Study. Pathogens 2024; 13:751. [PMID: 39338942 PMCID: PMC11435283 DOI: 10.3390/pathogens13090751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic disorder classified by the WHO as postviral fatigue syndrome (ICD-11 8E49 code). Diagnosing ME/CFS, often overlapping with fibromyalgia (FM), is challenging due to nonspecific symptoms and lack of biomarkers. The etiology of ME/CFS and FM is poorly understood, but evidence suggests viral infections play a critical role. This study employs microarray technology to quantitate viral RNA levels in immune cells from ME/CFS, FM, or co-diagnosed cases, and healthy controls. The results show significant overexpression of the Torque Teno Mini Virus 9 (TTMV9) in a subgroup of ME/CFS patients which correlate with abnormal HERV and immunological profiles. Increased levels of TTMV9 transcripts accurately discriminate this subgroup of ME/CFS patients from the other study groups, showcasing its potential as biomarker for patient stratification and the need for further research into its role in the disease. Validation of the findings seems granted in extended cohorts by continuation studies.
Collapse
Affiliation(s)
- Karen Giménez-Orenga
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | | | - Elisa Oltra
- Department of Pathology, School of Medicine and Health Sciences, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
9
|
Niccolai E, Pedone M, Martinelli I, Nannini G, Baldi S, Simonini C, Di Gloria L, Zucchi E, Ramazzotti M, Spezia PG, Maggi F, Quaranta G, Masucci L, Bartolucci G, Stingo FC, Mandrioli J, Amedei A. Amyotrophic lateral sclerosis stratification: unveiling patterns with virome, inflammation, and metabolism molecules. J Neurol 2024; 271:4310-4325. [PMID: 38644373 PMCID: PMC11233352 DOI: 10.1007/s00415-024-12348-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is an untreatable and clinically heterogeneous condition primarily affecting motor neurons. The ongoing quest for reliable biomarkers that mirror the disease status and progression has led to investigations that extend beyond motor neurons' pathology, encompassing broader systemic factors such as metabolism, immunity, and the microbiome. Our study contributes to this effort by examining the potential role of microbiome-related components, including viral elements, such as torque tenovirus (TTV), and various inflammatory factors, in ALS. In our analysis of serum samples from 100 ALS patients and 34 healthy controls (HC), we evaluated 14 cytokines, TTV DNA load, and 18 free fatty acids (FFA). We found that the evaluated variables are effective in differentiating ALS patients from healthy controls. In addition, our research identifies four unique patient clusters, each characterized by distinct biological profiles. Intriguingly, no correlations were found with site of onset, sex, progression rate, phenotype, or C9ORF72 expansion. A remarkable aspect of our findings is the discovery of a gender-specific relationship between levels of 2-ethylhexanoic acid and patient survival. In addition to contributing to the growing body of evidence suggesting altered peripheral immune responses in ALS, our exploratory research underscores metabolic diversity challenging conventional clinical classifications. If our exploratory findings are validated by further research, they could significantly impact disease understanding and patient care customization. Identifying groups based on biological profiles might aid in clustering patients with varying responses to treatments.
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Pedone
- Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, Florence, Italy
| | - Ilaria Martinelli
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero Universitaria Di Modena, Modena, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cecilia Simonini
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero Universitaria Di Modena, Modena, Italy
| | - Leandro Di Gloria
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisabetta Zucchi
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero Universitaria Di Modena, Modena, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Pietro Giorgio Spezia
- Department of Translational Research, Retrovirus Center - University of Pisa, Pisa, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani - IRCCS, Rome, Italy
| | - Gianluca Quaranta
- Department of Laboratory and Infectious Sciences, A. Gemelli University Hospital IRCCS, Rome, Italy
| | - Luca Masucci
- Department of Laboratory and Infectious Sciences, A. Gemelli University Hospital IRCCS, Rome, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Francesco Claudio Stingo
- Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, Florence, Italy
| | - Jessica Mandrioli
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero Universitaria Di Modena, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
10
|
Zou S, Chen Z, Tan Y, Tan M, Guo W, Wu S, Liu J, Song S, Peng Y, Wang M, Liang K. Microbiomes detected by cerebrospinal fluid metagenomic next-generation sequencing among patients with and without HIV with suspected central nervous system infection. HIV Med 2024; 25:794-804. [PMID: 38515324 DOI: 10.1111/hiv.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/02/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Opportunistic infections in the central nervous system (CNS) can be a serious threat to people living with HIV. Early aetiological diagnosis and targeted treatment are crucial but difficult. Metagenomic next-generation sequencing (mNGS) has significant advantages over traditional detection methods. However, differences in the cerebrospinal fluid (CSF) microbiome profiles of patients living with and without HIV with suspected CNS infections using mNGS and conventional testing methods have not yet been adequately evaluated. METHODS We conducted a retrospective cohort study in the first hospital of Changsha between January 2019 and June 2022 to investigate the microbiomes detected using mNGS of the CSF of patients living with and without HIV with suspected CNS infections. The pathogens causing CNS infections were concurrently identified using both mNGS and traditional detection methods. The spectrum of pathogens identified was compared between the two groups. RESULTS Overall, 173 patients (140 with and 33 without HIV) with suspected CNS infection were enrolled in our study. In total, 106 (75.7%) patients with and 16 (48.5%) patients without HIV tested positive with mNGS (p = 0.002). Among the enrolled patients, 71 (50.7%) with HIV and five (15.2%) without HIV tested positive for two or more pathogens (p < 0.001). Patients with HIV had significantly higher proportions of fungus (20.7% vs. 3.0%, p = 0.016) and DNA virus (59.3% vs. 21.2%, p < 0.001) than those without HIV. Epstein-Barr virus (33.6%) was the most commonly identified potential pathogen in the CSF of patients living with HIV using mNGS, followed by cytomegalovirus (20.7%) and torque teno virus (13.8%). The top three causative pathogens identified in patients without HIV were Streptococcus (18.2%), Epstein-Barr virus (12.1%), and Mycobacterium tuberculosis (9.1%). In total, 113 patients living with HIV were diagnosed as having CNS infections. The rate of pathogen detection in people living with HIV with a CNS infection was significantly higher with mNGS than with conventional methods (93.8% vs. 15.0%, p < 0.001). CONCLUSION CSF microbiome profiles differ between patients living with and without HIV with suspected CNS infection. mNGS is a powerful tool for the diagnosis of CNS infection among people living with HIV, especially in those with mixed infections.
Collapse
Affiliation(s)
- Shi Zou
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhong Chen
- The Institute of HIV/AIDS, The First Hospital of Changsha, Changsha, China
| | - Yuting Tan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Miao Tan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Guo
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Songjie Wu
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Liu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shihui Song
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongquan Peng
- Graduate Collaborative Training Base of the First Hospital of Changsha, Hengyang Medical School, Uni-versity of South China, Hengyang, China
| | - Min Wang
- The Institute of HIV/AIDS, The First Hospital of Changsha, Changsha, China
| | - Ke Liang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China
| |
Collapse
|
11
|
Spezia PG, Carletti F, Novazzi F, Specchiarello E, Genoni A, Drago Ferrante F, Minosse C, Matusali G, Mancini N, Focosi D, Antonelli G, Girardi E, Maggi F. Torquetenovirus Viremia Quantification Using Real-Time PCR Developed on a Fully Automated, Random-Access Platform. Viruses 2024; 16:963. [PMID: 38932255 PMCID: PMC11209079 DOI: 10.3390/v16060963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Quantification of Torquetenovirus (TTV) viremia is becoming important for evaluating the status of the immune system in solid organ transplant recipients, monitoring the appearance of post-transplant complications, and controlling the efficacy of maintenance immunosuppressive therapy. Thus, diagnostic approaches able to scale up TTV quantification are needed. Here, we report on the development and validation of a real-time PCR assay for TTV quantification on the Hologic Panther Fusion® System by utilizing its open-access channel. The manual real-time PCR previously developed in our laboratories was optimized to detect TTV DNA on the Hologic Panther Fusion® System. The assay was validated using clinical samples. The automated TTV assay has a limit of detection of 1.6 log copies per ml of serum. Using 112 samples previously tested via manual real-time PCR, the concordance in TTV detection was 93% between the assays. When the TTV levels were compared, the overall agreement between the methods, as assessed using Passing-Bablok linear regression and Bland-Altman analyses, was excellent. In summary, we validated a highly sensitive and accurate method for the diagnostic use of TTV quantification on a fully automated Hologic Panther Fusion® System. This will greatly improve the turnaround time for TTV testing and better support the laboratory diagnosis of this new viral biomarker.
Collapse
Affiliation(s)
- Pietro Giorgio Spezia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy; (P.G.S.); (E.S.); (C.M.); (G.M.); (F.M.)
| | - Fabrizio Carletti
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy; (P.G.S.); (E.S.); (C.M.); (G.M.); (F.M.)
| | - Federica Novazzi
- Laboratory of Medical Microbiology and Virology, Department of Medicine and Technological Innovation, Italy; Ospedale di Circolo e Fondazione Macchi, University of Insubria, 21100 Varese, Italy; (F.N.); (A.G.); (F.D.F.); (N.M.)
| | - Eliana Specchiarello
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy; (P.G.S.); (E.S.); (C.M.); (G.M.); (F.M.)
| | - Angelo Genoni
- Laboratory of Medical Microbiology and Virology, Department of Medicine and Technological Innovation, Italy; Ospedale di Circolo e Fondazione Macchi, University of Insubria, 21100 Varese, Italy; (F.N.); (A.G.); (F.D.F.); (N.M.)
| | - Francesca Drago Ferrante
- Laboratory of Medical Microbiology and Virology, Department of Medicine and Technological Innovation, Italy; Ospedale di Circolo e Fondazione Macchi, University of Insubria, 21100 Varese, Italy; (F.N.); (A.G.); (F.D.F.); (N.M.)
| | - Claudia Minosse
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy; (P.G.S.); (E.S.); (C.M.); (G.M.); (F.M.)
| | - Giulia Matusali
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy; (P.G.S.); (E.S.); (C.M.); (G.M.); (F.M.)
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, Department of Medicine and Technological Innovation, Italy; Ospedale di Circolo e Fondazione Macchi, University of Insubria, 21100 Varese, Italy; (F.N.); (A.G.); (F.D.F.); (N.M.)
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Guido Antonelli
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy; (P.G.S.); (E.S.); (C.M.); (G.M.); (F.M.)
| |
Collapse
|
12
|
Gu Y, Wang Z, Xia X, Zhao G. Nocardia farcinica brain abscess with torque teno virus co-infection: A case report. Heliyon 2024; 10:e28632. [PMID: 38590894 PMCID: PMC11000006 DOI: 10.1016/j.heliyon.2024.e28632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Background Brain abscesses caused by Nocardia are rare and difficult to diagnose. Nocardia farcinica is among the most common species; however, the conventional diagnosis of N. farcinica infection consists of cerebrospinal fluid (CSF) and blood culture and Gram staining. These procedures prolong the time to diagnosis and initiating treatment. Case presentation A 69-year-old woman with diabetes mellitus presented with headaches and dizziness persisting for 2 weeks, which was initially diagnosed as a brain abscess. Due to the unusual presentation and rapid progression of symptoms, she underwent surgical resection of the brain abscess. No pathogens were detected in blood or CSF cultures. However, metagenomic next-generation sequencing (mNGS) identified N. farcinica and Torque teno virus in pus extracted from the abscesses. The patient received appropriate antibiotic therapy and recovered fully without any residual neurological deficits. Conclusion mNGS useful for prompt diagnosis and selection of antibiotic therapy for brain abscesses caused by Nocardia. Surgical intervention is necessary in some cases.
Collapse
Affiliation(s)
- Yuting Gu
- Department of Emergency Medicine, The First People's Hospital of Kunshan, Kunshan, 215300, Jiangsu, China
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zide Wang
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xiaohua Xia
- Department of Emergency Medicine, The First People's Hospital of Kunshan, Kunshan, 215300, Jiangsu, China
| | - Guang Zhao
- Department of Emergency Medicine, The First People's Hospital of Kunshan, Kunshan, 215300, Jiangsu, China
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
13
|
Fernando JJ, Biswas R, Biswas L. Non-invasive molecular biomarkers for monitoring solid organ transplantation: A comprehensive overview. Int J Immunogenet 2024; 51:47-62. [PMID: 38200592 DOI: 10.1111/iji.12654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Solid organ transplantation is a life-saving intervention for individuals with end-stage organ failure. Despite the effectiveness of immunosuppressive therapy, the risk of graft rejection persists in all viable transplants between individuals. The risk of rejection may vary depending on the degree of compatibility between the donor and recipient for both human leucocyte antigen (HLA) and non-HLA gene-encoded products. Monitoring the status of the allograft is a critical aspect of post-transplant management, with invasive biopsies being the standard of care for detecting rejection. Non-invasive biomarkers are increasingly being recognized as valuable tools for aiding in the detection of graft rejection, monitoring graft status and evaluating the efficacy of immunosuppressive therapy. Here, we focus on the importance of molecular biomarkers in solid organ transplantation and their potential role in clinical practice. Conventional molecular biomarkers used in transplantation include HLA typing, detection of anti-HLA antibodies, killer cell immunoglobulin-like receptor genotypes, and anti-MHC class 1-related chain A antibodies, which are important for assessing the compatibility of the donor and recipient. Emerging molecular biomarkers include the detection of donor-derived cell-free DNA, microRNAs (regulation of gene expression), exosomes (small vesicles secreted by cells), and kidney solid organ response test, in the recipient's blood for early signs of rejection. This review highlights the strengths and limitations of these molecular biomarkers and their potential role in improving transplant outcomes.
Collapse
Affiliation(s)
- Jeffy J Fernando
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Raja Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Lalitha Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
14
|
Reyes NS, Spezia PG, Jara R, Filippini F, Boccia N, García G, Hermida E, Poletta FA, Pistello M, Laham G, Maggi F, Echavarria M. Torque Teno Virus (TTV) in Renal Transplant Recipients: Species Diversity and Variability. Viruses 2024; 16:432. [PMID: 38543797 PMCID: PMC10974959 DOI: 10.3390/v16030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 05/23/2024] Open
Abstract
Torque Teno Virus (TTV) is a nonpathogenic and ubiquitous ssDNA virus, a member of the Anelloviridae family. TTV has been postulated as a biomarker in transplant patients. This study aimed to determine the TTV species diversity and variability in renal transplant recipients and to associate species diversity with the corresponding TTV viral load. From 27 recipients, 30 plasma samples were selected. Viral load was determined using two real-time PCR assays, followed by RCA-NGS and ORF1 phylogenetic analysis. The TTV diversity was determined in all samples. Variability was determined in three patients with two sequential samples (pre- and post-transplantation). Most of the samples presented multiple TTV species, up to 15 different species were detected. In the pre-transplant samples (n = 12), the most prevalent species were TTV3 (75%) and TTV13 (75%), and the median number of species per sample was 5 (IQR: 4-7.5). TTV3 was also the most prevalent (56%) in the post-transplant samples (n = 18), and the median number of species was 2 (IQR: 1.8-5.5). No significant correlation between the number of species and viral load was found. The number and type of TTV species showed total variability over time. We report high TTV species diversity in Argentinian recipients, especially in pre-transplant period, with total intra-host variability. However, we found no significant correlation between this high diversity and TTV viral load.
Collapse
Affiliation(s)
- Noelia Soledad Reyes
- Virology Unit, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Galván 4102, Buenos Aires C1631FWO, Argentina; (R.J.); (E.H.); (M.E.)
| | - Pietro Giorgio Spezia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Raquel Jara
- Virology Unit, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Galván 4102, Buenos Aires C1631FWO, Argentina; (R.J.); (E.H.); (M.E.)
| | - Fabio Filippini
- Department of Translational Research, University of Pisa, 56127 Pisa, Italy; (F.F.); (M.P.)
| | - Natalia Boccia
- Department of Nephrology, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Buenos Aires C1631FWO, Argentina; (N.B.); (G.G.); (G.L.)
| | - Gonzalo García
- Department of Nephrology, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Buenos Aires C1631FWO, Argentina; (N.B.); (G.G.); (G.L.)
| | - Eliana Hermida
- Virology Unit, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Galván 4102, Buenos Aires C1631FWO, Argentina; (R.J.); (E.H.); (M.E.)
| | - Fernando Adrian Poletta
- Genetic Epidemiology Laboratory, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1631FWO, Argentina;
| | - Mauro Pistello
- Department of Translational Research, University of Pisa, 56127 Pisa, Italy; (F.F.); (M.P.)
| | - Gustavo Laham
- Department of Nephrology, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Buenos Aires C1631FWO, Argentina; (N.B.); (G.G.); (G.L.)
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Marcela Echavarria
- Virology Unit, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Galván 4102, Buenos Aires C1631FWO, Argentina; (R.J.); (E.H.); (M.E.)
| |
Collapse
|
15
|
Srour M, Grenier C, Magro L, Hober D, Yakoub-Agha I, Engelmann I. High Torque teno virus load and outcome of patients undergoing allogeneic hematopoietic cell transplantation. J Med Virol 2024; 96:e29458. [PMID: 38483058 DOI: 10.1002/jmv.29458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 03/21/2024]
Abstract
Quantification of Torque teno virus (TTV) load emerged as a marker of immunosuppression. Associations of TTV load with complications and survival after allogeneic hematopoietic cell transplantation (allo-HCT) were controversial in published studies. In this prospective study, we aimed to identify factors influencing TTV load after allo-HCT and to determine whether the TTV load is associated with complications or outcomes. Seventy allo-HCT recipients were included. TTV DNA load was quantified in 469 plasma samples of 70 patients from Day (D) 15 before D120 after transplantation. The influence of transplant characteristics on TTV load and the associations of TTV load with viral infections, acute graft versus host disease, mortality, and relapse were analyzed. More than 80% of patients were TTV DNA positive from D30 after transplantation onwards. Median TTV load increased between D30 and D60 post-transplantation. Patients with lymphoid malignancies had higher TTV load than those with myeloid malignancies. Myeloablative conditioning was associated with higher TTV loads. Patients with no measurable residual disease at transplant had higher TTV loads. High TTV load at D90 post-transplantation was associated with lower overall survival and at D120 post-transplantation was associated with higher relapse rate. In conclusion, TTV load at time points later than D90 after allo-HCT may be useful to assess prognosis.
Collapse
Affiliation(s)
- Micha Srour
- CHU Lille, Department of Hematology, Univ de Lille, INSERM U1286, Lille, France
| | - Corentin Grenier
- Univ Lille, Faculté de Médecine, CHU Lille, Laboratoire de Virologie ULR3610, Lille, France
| | - Leonardo Magro
- CHU Lille, Department of Hematology, Univ de Lille, INSERM U1286, Lille, France
| | - Didier Hober
- Univ Lille, Faculté de Médecine, CHU Lille, Laboratoire de Virologie ULR3610, Lille, France
| | - Ibrahim Yakoub-Agha
- CHU Lille, Department of Hematology, Univ de Lille, INSERM U1286, Lille, France
| | - Ilka Engelmann
- Univ Lille, Faculté de Médecine, CHU Lille, Laboratoire de Virologie ULR3610, Lille, France
- PCCEI, Univ Montpellier, INSERM, EFS, CHU Montpellier, Montpellier, France
| |
Collapse
|
16
|
Goldberg JF, Mehta A, Bahniwal RK, Agbor-Enoh S, Shah P. A gentler approach to monitor for heart transplant rejection. Front Cardiovasc Med 2024; 11:1349376. [PMID: 38380175 PMCID: PMC10876874 DOI: 10.3389/fcvm.2024.1349376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
Despite developments in circulating biomarker and imaging technology in the assessment of cardiovascular disease, the surveillance and diagnosis of heart transplant rejection has continued to rely on histopathologic interpretation of the endomyocardial biopsy. Increasing evidence shows the utility of molecular evaluations, such as donor-specific antibodies and donor-derived cell-free DNA, as well as advanced imaging techniques, such as cardiac magnetic resonance imaging, in the assessment of rejection, resulting in the elimination of many surveillance endomyocardial biopsies. As non-invasive technologies in heart transplant rejection continue to evolve and are incorporated into practice, they may supplant endomyocardial biopsy even when rejection is suspected, allowing for more precise and expeditious rejection therapy. This review describes the current and near-future states for the evaluation of heart transplant rejection, both in the settings of rejection surveillance and rejection diagnosis. As biomarkers of rejection continue to evolve, rejection risk prediction may allow for a more personalized approach to immunosuppression.
Collapse
Affiliation(s)
- Jason F. Goldberg
- Department of Heart Failure and Transplantation, Inova Heart and Vascular Institute, Falls Church, VA, United States
- Department of Children's Cardiology, Inova L.J. Murphy Children’s Hospital, Falls Church, VA, United States
| | - Aditya Mehta
- Department of Heart Failure and Transplantation, Inova Heart and Vascular Institute, Falls Church, VA, United States
| | | | - Sean Agbor-Enoh
- National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, United States
| | - Palak Shah
- Department of Heart Failure and Transplantation, Inova Heart and Vascular Institute, Falls Church, VA, United States
| |
Collapse
|
17
|
Cabler SS, Storch GA, Weinberg JB, Walton AH, Brengel-Pesce K, Aldewereld Z, Banks RK, Cheynet V, Reeder R, Holubkov R, Berg RA, Wessel D, Pollack MM, Meert K, Hall M, Newth C, Lin JC, Cornell T, Harrison RE, Dean JM, Carcillo JA. Viral DNAemia and DNA Virus Seropositivity and Mortality in Pediatric Sepsis. JAMA Netw Open 2024; 7:e240383. [PMID: 38407904 PMCID: PMC10897747 DOI: 10.1001/jamanetworkopen.2024.0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/05/2024] [Indexed: 02/27/2024] Open
Abstract
Importance Sepsis is a leading cause of pediatric mortality. Little attention has been paid to the association between viral DNA and mortality in children and adolescents with sepsis. Objective To assess the association of the presence of viral DNA with sepsis-related mortality in a large multicenter study. Design, Setting, and Participants This cohort study compares pediatric patients with and without plasma cytomegalovirus (CMV), Epstein-Barr virus (EBV), herpes simplex virus 1 (HSV-1), human herpesvirus 6 (HHV-6), parvovirus B19 (B19V), BK polyomavirus (BKPyV), human adenovirus (HAdV), and torque teno virus (TTV) DNAemia detected by quantitative real-time polymerase chain reaction or plasma IgG antibodies to CMV, EBV, HSV-1, or HHV-6. A total of 401 patients younger than 18 years with severe sepsis were enrolled from 9 pediatric intensive care units (PICUs) in the Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network. Data were collected from 2015 to 2018. Samples were assayed from 2019 to 2022. Data were analyzed from 2022 to 2023. Main Outcomes and Measures Death while in the PICU. Results Among the 401 patients included in the analysis, the median age was 6 (IQR, 1-12) years, and 222 (55.4%) were male. One hundred fifty-four patients (38.4%) were previously healthy, 108 (26.9%) were immunocompromised, and 225 (56.1%) had documented infection(s) at enrollment. Forty-four patients (11.0%) died in the PICU. Viral DNAemia with at least 1 virus (excluding TTV) was detected in 191 patients (47.6%) overall, 63 of 108 patients (58.3%) who were immunocompromised, and 128 of 293 (43.7%) who were not immunocompromised at sepsis onset. After adjustment for age, Pediatric Risk of Mortality score, previously healthy status, and immunocompromised status at sepsis onset, CMV (adjusted odds ratio [AOR], 3.01 [95% CI, 1.36-6.45]; P = .007), HAdV (AOR, 3.50 [95% CI, 1.46-8.09]; P = .006), BKPyV (AOR. 3.02 [95% CI, 1.17-7.34]; P = .02), and HHV-6 (AOR, 2.62 [95% CI, 1.31-5.20]; P = .007) DNAemia were each associated with increased mortality. Two or more viruses were detected in 78 patients (19.5%), with mortality among 12 of 32 (37.5%) who were immunocompromised and 9 of 46 (19.6%) who were not immunocompromised at sepsis onset. Herpesvirus seropositivity was common (HSV-1, 82 of 246 [33.3%]; CMV, 107 of 254 [42.1%]; EBV, 152 of 251 [60.6%]; HHV-6, 253 if 257 [98.4%]). After additional adjustment for receipt of blood products in the PICU, EBV seropositivity was associated with increased mortality (AOR, 6.10 [95% CI, 1.00-118.61]; P = .049). Conclusions and Relevance The findings of this cohort study suggest that DNAemia for CMV, HAdV, BKPyV, and HHV-6 and EBV seropositivity were independently associated with increased sepsis mortality. Further investigation of the underlying biology of these viral DNA infections in children with sepsis is warranted to determine whether they only reflect mortality risk or contribute to mortality.
Collapse
Affiliation(s)
- Stephanie S. Cabler
- Department of Pediatrics, Washington University in St Louis, St Louis, Missouri
| | - Gregory A. Storch
- Department of Pediatrics, Washington University in St Louis, St Louis, Missouri
| | | | - Andrew H. Walton
- Department of Pediatrics, Washington University in St Louis, St Louis, Missouri
| | | | - Zachary Aldewereld
- Department of Pediatrics and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Ron Reeder
- Department of Pediatrics, University of Utah, Salt Lake City
| | | | - Robert A. Berg
- Department of Anesthesiology, Pediatrics, University of Pennsylvania, Philadelphia
| | - David Wessel
- Department of Pediatrics, George Washington University, Washington, DC
| | - Murray M. Pollack
- Department of Pediatrics, George Washington University, Washington, DC
| | - Kathleen Meert
- Department of Pediatrics, Central Michigan University, Detroit
| | - Mark Hall
- Department of Pediatrics, The Ohio State University, Columbus
| | - Christopher Newth
- Department of Anesthesiology, University of Southern California, Los Angeles
| | - John C. Lin
- Department of Pediatrics, Washington University in St Louis, St Louis, Missouri
| | - Tim Cornell
- Department of Pediatrics, University of Michigan, Ann Arbor
| | | | - J. Michael Dean
- Department of Pediatrics, University of Utah, Salt Lake City
| | - Joseph A. Carcillo
- Department of Pediatrics and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Sabbaghian M, Gheitasi H, Shekarchi AA, Tavakoli A, Poortahmasebi V. The mysterious anelloviruses: investigating its role in human diseases. BMC Microbiol 2024; 24:40. [PMID: 38281930 PMCID: PMC10823751 DOI: 10.1186/s12866-024-03187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
Anelloviruses (AVs) that infect the human population are members of the Anelloviridae family. They are widely distributed in human populations worldwide. Torque teno virus (TTV) was the first virus of this family to be identified and is estimated to be found in the serum of 80-90% of the human population. Sometime after the identification of TTV, Torque teno mini virus (TTMV) and Torque teno midi virus (TTMDV) were also identified and classified in this family. Since identifying these viruses, have been detected in various types of biological fluids of the human body, including blood and urine, as well as vital organs such as the liver and kidney. They can be transmitted from person to person through blood transfusions, fecal-oral contact, and possibly sexual intercourse. Recent studies on these newly introduced viruses show that although they are not directly related to human disease, they may be indirectly involved in initiating or exacerbating some human population-related diseases and viral infections. Among these diseases, we can mention various types of cancers, immune system diseases, viral infections, hepatitis, and AIDS. Also, they likely use the microRNAs (miRNAs) they encode to fulfill this cooperative role. Also, in recent years, the role of proliferation and their viral load, especially TTV, has been highlighted to indicate the immune system status of immunocompromised people or people who undergo organ transplants. Here, we review the possible role of these viruses in diseases that target humans and highlight them as important viruses that require further study. This review can provide new insights to researchers.
Collapse
Affiliation(s)
- Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Tavakoli
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Ssemadaali M, Islam MT, Fang W, Aboezz Z, Webb B, Ramamoorthy S. Trans-replicase helper activity of porcine circoviruses promotes the synergistic replication of torque teno virus. Front Microbiol 2024; 15:1326696. [PMID: 38322315 PMCID: PMC10844557 DOI: 10.3389/fmicb.2024.1326696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
While the primary pathogenic potential of torque teno viruses (TTVs) is yet to be defined, TTVs are often co-detected with other pathogens and are suspected of exacerbating clinical disease in coinfections. Swine TTVs (TTSuVs) enhance clinical signs of porcine circovirus type 2 (PCV2) in a gnotobiotic pig model. However, the mechanisms involved are unknown. In this study, we observed that co-culture of TTSuV1 and PCV1, and specifically supplementing TTSuV1 cultures with the PCV replicase protein in trans consistently resulted in higher levels of replication of TTSuV1 when compared to TTSuV1 cultured alone. Therefore, the hypothesis that the PCV replicase (rep) protein has trans-replicase helper activity for TTSuV1 was examined. Based on EMSA and reporter gene assays, it was determined that the PCV1 rep directly interacted with the TTSuV1 UTR. The TTSuV1 rep trans-complemented a PCV rep null mutant virus, indicating that the TTSuV1 and PCV1 replicase proteins supported the replication of both viruses. In mice, the administration of plasmids encoding the PCV1 rep and a TTSuV1 infectious clone resulted in the production of higher TTSuV1 genome copies in dually exposed mice when compared to singly exposed mice. Higher sero-conversion and lymphoid hyperplasia were also observed in the dually exposed experimental mice. Thus, this study provides evidence for trans-replicase activity of PCVs and TTVs as a novel mechanism of explaining enhanced viral replication in coinfections involving both viruses.
Collapse
Affiliation(s)
- Marvin Ssemadaali
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Md-Tariqul Islam
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
- Department of Microbiology and Immunology, Faculty of Veterinary, Animal, and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Wenjuan Fang
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Zeinab Aboezz
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Brett Webb
- Veterinary Diagnostic Laboratory, North Dakota State University, Fargo, ND, United States
| | - Sheela Ramamoorthy
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
20
|
Pradère P, Zajacova A, Bos S, Le Pavec J, Fisher A. Molecular monitoring of lung allograft health: is it ready for routine clinical use? Eur Respir Rev 2023; 32:230125. [PMID: 37993125 PMCID: PMC10663940 DOI: 10.1183/16000617.0125-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023] Open
Abstract
Maintenance of long-term lung allograft health in lung transplant recipients (LTRs) requires a fine balancing act between providing sufficient immunosuppression to reduce the risk of rejection whilst at the same time not over-immunosuppressing individuals and exposing them to the myriad of immunosuppressant drug side-effects that can cause morbidity and mortality. At present, lung transplant physicians only have limited and rather blunt tools available to assist them with this task. Although therapeutic drug monitoring provides clinically useful information about single time point and longitudinal exposure of LTRs to immunosuppressants, it lacks precision in determining the functional level of immunosuppression that an individual is experiencing. There is a significant gap in our ability to monitor lung allograft health and therefore tailor optimal personalised immunosuppression regimens. Molecular diagnostics performed on blood, bronchoalveolar lavage or lung tissue that can detect early signs of subclinical allograft injury, differentiate rejection from infection or distinguish cellular from humoral rejection could offer clinicians powerful tools in protecting lung allograft health. In this review, we look at the current evidence behind molecular monitoring in lung transplantation and ask if it is ready for routine clinical use. Although donor-derived cell-free DNA and tissue transcriptomics appear to be the techniques with the most immediate clinical potential, more robust data are required on their performance and additional clinical value beyond standard of care.
Collapse
Affiliation(s)
- Pauline Pradère
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Department of Respiratory Diseases, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Paris, France
| | - Andrea Zajacova
- Prague Lung Transplant Program, Department of Pneumology, Motol University Hospital and 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Jérôme Le Pavec
- Department of Respiratory Diseases, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Paris, France
| | - Andrew Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| |
Collapse
|
21
|
Kuczaj A, Przybyłowski P, Hrapkowicz T. Torque Teno Virus (TTV)-A Potential Marker of Immunocompetence in Solid Organ Recipients. Viruses 2023; 16:17. [PMID: 38275952 PMCID: PMC10818937 DOI: 10.3390/v16010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Torque Teno Virus (TTV), first discovered in 1997, is a non-pathogenic, highly prevalent virus with a notable presence in the human virome. TTV has garnered attention as a potential indicator of immunocompetence in recipients of solid organ transplants. In this review, we discuss the role of TTV as a potential marker for immunosuppression optimization, prediction of graft rejection, and as an indicator of opportunistic infections. We discuss TTV's behavior over the course of time after transplantation, TTV's implications in different immunosuppressive regimens, and potential utility in vaccinations. The review synthetizes findings from various studies depicting its potential clinical utility for future personalized patient care.
Collapse
Affiliation(s)
- Agnieszka Kuczaj
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (P.P.); (T.H.)
- Silesian Center for Heart Diseases, 41-800 Zabrze, Poland
| | - Piotr Przybyłowski
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (P.P.); (T.H.)
- Silesian Center for Heart Diseases, 41-800 Zabrze, Poland
| | - Tomasz Hrapkowicz
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (P.P.); (T.H.)
- Silesian Center for Heart Diseases, 41-800 Zabrze, Poland
| |
Collapse
|
22
|
Acharya S, Lama S, Kanigicherla DA. Anti-thymocyte globulin for treatment of T-cell-mediated allograft rejection. World J Transplant 2023; 13:299-308. [PMID: 38174145 PMCID: PMC10758678 DOI: 10.5500/wjt.v13.i6.299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 12/15/2023] Open
Abstract
Anti-thymocyte globulin (ATG) is a pivotal immunosuppressive therapy utilized in the management of T-cell-mediated rejection and steroid-resistant rejection among renal transplant recipients. Commercially available as Thymoglobulin (rabbit-derived, Sanofi, United States), ATG-Fresenius S (rabbit-derived), and ATGAM (equine-derived, Pfizer, United States), these formulations share a common mechanism of action centered on their interaction with cell surface markers of immune cells, imparting immunosuppressive effects. Although the prevailing mechanism predominantly involves T-cell depletion via the com plement-mediated pathway, alternate mechanisms have been elucidated. Optimal dosing and treatment duration of ATG have exhibited variance across ran domised trials and clinical reports, rendering the establishment of standardized guidelines a challenge. The spectrum of risks associated with ATG administration spans from transient adverse effects such as fever, chills, and skin rash in the acute phase to long-term concerns related to immunosuppression, including susceptibility to infections and malignancies. This comprehensive review aims to provide a thorough exploration of the current understanding of ATG, encom passing its mechanism of action, clinical utility in the treatment of acute renal graft rejections, specifically steroid-resistant cases, efficacy in rejection episode reversal, and a synthesis of findings from different eras of maintenance immunosuppression. Additionally, it delves into the adverse effects associated with ATG therapy and its impact on long-term graft function. Furthermore, the review underscores the existing gaps in evidence, particularly in the context of the Banff classification of rejections, and highlights the challenges faced by clinicians when navigating the available literature to strike the optimal balance between the risks and benefits of ATG utilization in renal transplantation.
Collapse
Affiliation(s)
- Sumit Acharya
- Department of Nephrology, Shahid Dharmabhakta National Transplant Center, Bhaktapur 44800, Nepal
| | - Suraj Lama
- Department of Nephrology, Shahid Dharmabhakta National Transplant Center, Bhaktapur 44800, Nepal
| | - Durga Anil Kanigicherla
- Department of Renal Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, United Kingdom
| |
Collapse
|
23
|
Doorenbos CSE, Jonker J, Hao J, Gore EJ, Kremer D, Knobbe TJ, de Joode AAE, Sanders JSF, Thaunat O, Niesters HGM, Van Leer-Buter CC, Bakker SJL. Smoking, Alcohol Intake and Torque Teno Virus in Stable Kidney Transplant Recipients. Viruses 2023; 15:2387. [PMID: 38140628 PMCID: PMC10748022 DOI: 10.3390/v15122387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Torque Teno Virus (TTV) is a non-pathogenic virus that is highly prevalent among kidney transplant recipients (KTRs). Its circulating load is associated with an immunological status in KTR and is considered a promising tool for guiding immunosuppression. To allow for optimal guidance, it is important to identify other determinants of TTV load. We aimed to investigate the potential association of smoking and alcohol intake with TTV load. For this cross-sectional study, serum TTV load was measured using PCR in stable kidney transplant recipients at ≥1 year after transplantation, and smoking status and alcohol intake were assessed through questionnaires and measurements of urinary cotinine and ethyl glucuronide. A total of 666 KTRs were included (57% male). A total of 549 KTR (82%) had a detectable TTV load (3.1 ± 1.5 log10 copies/mL). In KTR with a detectable TTV load, cyclosporin and tacrolimus use were positively associated with TTV load (St. β = 0.46, p < 0.001 and St. β = 0.66, p < 0.001, respectively), independently of adjustment for potential confounders. Current smoking and alcohol intake of >20 g/day were negatively associated with TTV load (St. β = -0.40, p = 0.004 and St. β = -0.33, p = 0.009, respectively), independently of each other and of adjustment for age, sex, kidney function, time since transplantation and calcineurin inhibitor use. This strong association of smoking and alcohol intake with TTV suggests a need to account for the smoking status and alcohol intake when applying TTV guided immunosuppression in KTR.
Collapse
Affiliation(s)
- Caecilia S. E. Doorenbos
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.J.)
| | - Jip Jonker
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.J.)
| | - Jiasi Hao
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Edmund J. Gore
- Department of Medical Microbiology, Division of Clinical Virology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Daan Kremer
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.J.)
| | - Tim J. Knobbe
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.J.)
| | - Anoek A. E. de Joode
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.J.)
| | - Jan Stephan F. Sanders
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.J.)
| | - Olivier Thaunat
- Department of Transplantation Nephrology and Clinical Immunology Hospices Civils de Lyon, Claude Bernard Lyon I University, INSERM Unit 1111, 69003 Lyon, France
| | - Hubert G. M. Niesters
- Department of Medical Microbiology, Division of Clinical Virology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Coretta C. Van Leer-Buter
- Department of Medical Microbiology, Division of Clinical Virology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Stephan J. L. Bakker
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.J.)
| |
Collapse
|
24
|
Wang H, Xu S, Li S, Su B, Sherrill-Mix S, Liang G. Virome in immunodeficiency: what we know currently. Chin Med J (Engl) 2023; 136:2647-2657. [PMID: 37914672 PMCID: PMC10684123 DOI: 10.1097/cm9.0000000000002899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 11/03/2023] Open
Abstract
ABSTRACT Over the past few years, the human virome and its complex interactions with microbial communities and the immune system have gained recognition as a crucial factor in human health. Individuals with compromised immune function encounter distinctive challenges due to their heightened vulnerability to a diverse range of infectious diseases. This review aims to comprehensively explore and analyze the growing evidence regarding the role of the virome in immunocompromised disease status. By surveying the latest literature, we present a detailed overview of virome alterations observed in various immunodeficiency conditions. We then delve into the influence and mechanisms of these virome changes on the pathogenesis of specific diseases in immunocompromised individuals. Furthermore, this review explores the clinical relevance of virome studies in the context of immunodeficiency, highlighting the potential diagnostic and therapeutic gains from a better understanding of virome contributions to disease manifestations.
Collapse
Affiliation(s)
- Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Siqi Xu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Scott Sherrill-Mix
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Guanxiang Liang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
25
|
Minosse C, Matusali G, Meschi S, Grassi G, Francalancia M, D’Offizi G, Spezia PG, Garbuglia AR, Montalbano M, Focosi D, Girardi E, Vaia F, Ettorre GM, Maggi F. Torquetenovirus Loads in Peripheral Blood Predict Both the Humoral and Cell-Mediated Responses to SARS-CoV-2 Elicited by the mRNA Vaccine in Liver Transplant Recipients. Vaccines (Basel) 2023; 11:1656. [PMID: 38005988 PMCID: PMC10674741 DOI: 10.3390/vaccines11111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Three years into the COVID-19 pandemic, mass vaccination campaigns have largely controlled the disease burden but have not prevented virus circulation. Unfortunately, many immunocompromised patients have failed to mount protective immune responses after repeated vaccinations, and liver transplant recipients are no exception. Across different solid organ transplant populations, the plasma levels of Torquetenovirus (TTV), an orphan and ubiquitous human virus under control of the immune system, have been shown to predict the antibody response after COVID-19 vaccinations. We show here a single-institution experience with TTV viremia in 134 liver transplant recipients at their first or third dose. We found that TTV viremia before the first and third vaccine doses predicts serum anti-SARS-CoV-2 Spike receptor-binding domain (RBD) IgG levels measured 2-4 weeks after the second or third dose. Pre-vaccine TTV loads were also associated with peripheral blood anti-SARS-CoV-2 cell-mediated immunity but not with serum SARS-CoV-2 neutralizing antibody titers.
Collapse
Affiliation(s)
- Claudia Minosse
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Via Portuense 292, 00149 Rome, Italy; (C.M.); (G.M.); (M.F.); (P.G.S.); (A.R.G.); (F.M.)
| | - Giulia Matusali
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Via Portuense 292, 00149 Rome, Italy; (C.M.); (G.M.); (M.F.); (P.G.S.); (A.R.G.); (F.M.)
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Via Portuense 292, 00149 Rome, Italy; (C.M.); (G.M.); (M.F.); (P.G.S.); (A.R.G.); (F.M.)
| | - Germana Grassi
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Via Portuense 292, 00149 Rome, Italy;
| | - Massimo Francalancia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Via Portuense 292, 00149 Rome, Italy; (C.M.); (G.M.); (M.F.); (P.G.S.); (A.R.G.); (F.M.)
| | - Gianpiero D’Offizi
- Department of Liver Transplantation POIT, Clinical and Research Department of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Via Portuense 292, 00149 Rome, Italy; (G.D.); (M.M.); (G.M.E.)
| | - Pietro Giorgio Spezia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Via Portuense 292, 00149 Rome, Italy; (C.M.); (G.M.); (M.F.); (P.G.S.); (A.R.G.); (F.M.)
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Via Portuense 292, 00149 Rome, Italy; (C.M.); (G.M.); (M.F.); (P.G.S.); (A.R.G.); (F.M.)
| | - Marzia Montalbano
- Department of Liver Transplantation POIT, Clinical and Research Department of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Via Portuense 292, 00149 Rome, Italy; (G.D.); (M.M.); (G.M.E.)
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Via Portuense 292, 00149 Rome, Italy;
| | - Francesco Vaia
- General Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Via Portuense 292, 00149 Rome, Italy;
| | - Giuseppe Maria Ettorre
- Department of Liver Transplantation POIT, Clinical and Research Department of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Via Portuense 292, 00149 Rome, Italy; (G.D.); (M.M.); (G.M.E.)
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Via Portuense 292, 00149 Rome, Italy; (C.M.); (G.M.); (M.F.); (P.G.S.); (A.R.G.); (F.M.)
| |
Collapse
|
26
|
Sajiki AF, Koyanagi Y, Ushida H, Kawano K, Fujita K, Okuda D, Kawabe M, Yamada K, Suzumura A, Kachi S, Kaneko H, Komatsu H, Usui Y, Goto H, Nishiguchi KM. Association Between Torque Teno Virus and Systemic Immunodeficiency in Patients With Uveitis With a Suspected Infectious Etiology. Am J Ophthalmol 2023; 254:80-86. [PMID: 37356647 DOI: 10.1016/j.ajo.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 06/03/2023] [Indexed: 06/27/2023]
Abstract
PURPOSE To determine the correlation between the presence of torque teno virus (TTV) in the aqueous humor of patients with uveitis and clinical information, including immunodeficiency history. DESIGN Multicenter, retrospective, cross-sectional study. METHODS Fifty-eight patients with uveitis with a suspected infectious etiology and 24 controls with cataract or age-related macular degeneration were included. We used quantitative polymerase chain reaction to test all subjects for TTV and multiplex polymerase chain reaction to test uveitis subjects for common ocular pathogens. When possible, both serum and aqueous humor samples were tested. Ocular TTV positivity was compared with age, sex, and a history of systemic immunodeficiency with logistic analysis. RESULTS Ocular TTV positivity was found in 23%, 11%, and 0% of patients with herpetic uveitis, nonherpetic uveitis, and controls, respectively. Among patients with herpes infection, positivity for ocular TTV was found in 43%, 8%, 14%, and 50% of patients with cytomegalovirus retinitis, iridocyclitis, acute retinal necrosis, and Epstein-Barr virus-positive uveitis, respectively. Patients with cytomegalovirus retinitis showed a significantly higher rate of ocular TTV infection than controls (P = .008). Serum analysis revealed TTV positivity in 90% of patients with uveitis and in 100% of controls. Age- and gender-adjusted logistic analysis revealed a correlation between ocular TTV positivity and systemic immunodeficiency (P = .01), but no correlations between ocular TTV and age, gender, or viral pathogenic type. CONCLUSIONS These findings suggest that positivity for ocular TTV was correlated with a clinical history of systemic immunodeficiency.
Collapse
Affiliation(s)
- Ai Fujita Sajiki
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.).
| | - Yoshito Koyanagi
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.)
| | - Hiroaki Ushida
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.).
| | - Kenichi Kawano
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.); Department of Ophthalmology, Yokkaichi Municipal Hospital, Yokkaichi, Japan (K.K.)
| | - Kosuke Fujita
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.)
| | - Daishi Okuda
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.)
| | - Mitsuki Kawabe
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.)
| | - Kazuhisa Yamada
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.)
| | - Ayana Suzumura
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.)
| | - Shu Kachi
- Shohzankai Medical Foundation, Miyake Eye Hospital, Nagoya, Japan (S.K.)
| | - Hiroki Kaneko
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.)
| | - Hiroyuki Komatsu
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan (H.K., Y.U., H.G.)
| | - Yoshihiko Usui
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan (H.K., Y.U., H.G.)
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan (H.K., Y.U., H.G.)
| | - Koji M Nishiguchi
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.)
| |
Collapse
|
27
|
Zhang X, Park WD, Thijssen M, Xu Y, Tse LPV, Pourkarim MR, Aurora R, Fan X. Expansion of Betatorquevirus and/or Gammatorquevirus in Patients with Severe Clinical Outcomes of the Liver Diseases. Viruses 2023; 15:1635. [PMID: 37631978 PMCID: PMC10457780 DOI: 10.3390/v15081635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Anellovirus (AV) is a ubiquitous virus in the human population. Individuals can be infected with multiple AV genera and species to form a heterogeneous repertoire, termed the anellome. Using advanced methods, we examined the anellomes from 12 paired serum and liver samples, as well as 2701 subjects with different clinical diagnoses. Overall, anellomes are remarkably individualized, with significant among-group differences (Kruskal-Wallis test p = 6.6 × 10-162 for richness and p = 7.48 × 10-162 for Shannon entropy). High dissimilarity scores (beta diversity) were observed between patient groups, except for paired serum and liver samples. At the population level, the relative abundance of combinational AV genus Betatorquevirus (torque teno mini viruses, TTMV), and Gammatorquevirus (torque teno midi viruses, TTMDV) exhibited an exponential distribution with a low bound point at 32%. Defined by this value, the AV TTMV/TTMDV-expanded anellome was significantly enriched among patients with acute liver failure (31.7%) and liver transplantation (40.7%), compared with other patient groups (χ2 test: p = 4.1 × 10-8-3.2 × 10-3). Therefore, anellome heterogeneity may be predictive of clinical outcomes in certain diseases, such as liver disease. The consistency of anellome between paired serum and liver samples indicates that a liquid biopsy approach would be suitable for longitudinal studies to clarify the causality of the AV TTMV/TTMDV-expanded anellome in the outcomes of liver disease.
Collapse
Affiliation(s)
- Xiaoan Zhang
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
- School of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - William D. Park
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Marijn Thijssen
- Laboratory for Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Yanjuan Xu
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Long Ping Victor Tse
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Mahmoud Reza Pourkarim
- Laboratory for Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Rajeev Aurora
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Xiaofeng Fan
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
- Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
28
|
Querido S, Martins C, Gomes P, Pessanha MA, Arroz MJ, Adragão T, Casqueiro A, Oliveira R, Costa I, Azinheira J, Paixão P, Weigert A. Kinetics of Torque Teno Virus Viral Load Is Associated with Infection and De Novo Donor Specific Antibodies in the First Year after Kidney Transplantation: A Prospective Cohort Study. Viruses 2023; 15:1464. [PMID: 37515152 PMCID: PMC10384556 DOI: 10.3390/v15071464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Torque teno virus (TTV) was recently identified as a potential biomarker for the degree of immunosuppression, and potentially as a predictor of rejection and infection in solid organ transplant patients. We evaluated TTV viral load in kidney transplant (KT) patients during the first year post-transplant to examine overall kinetics and their relationships with deleterious events, including episodes of infection and the formation of de novo donor-specific antibodies (DSAs). In a single-center, prospective observational cohort study, 81 KT patients were monitored at baseline, week 1, and month 1, 3, 6, 9 and 12, post-KT, and whenever required by clinical events. Kidney function, plasma TTV load, immunoglobulins and lymphocyte subpopulations were assessed at each time point. Twenty-six patients (32.1%) presented a total of 38 infection episodes post-KT. Induction immunosuppression with thymoglobulin, compared to basiliximab, was not associated with more infections (p = 0.8093). Patients with infectious events had lower T-cells (p = 0.0500), CD8+ T-cells (p = 0.0313) and B-cells (p = 0.0009) 1 month post-KT, compared to infection-free patients. Patients with infection also showed higher increases in TTV viral loads between week 1- month 1, post-KT, with TTV viral load variations >2.65 log10 cp/mL predicting the development of infectious events during the 12-month study period (p < 0.0001; sensitivity 99.73%; specificity 83.67%). Patients who developed de novo DSAs had lower TTV DNA viral loads at month 12 after KT, compared to patients who did not develop DSA (3.7 vs. 5.3 log10 cp/mL, p = 0.0023). Briefly, evaluating early TTV viremia is a promising strategy for defining infectious risk in the 1st year post-KT. The availability of standardized commercial real-time PCR assays is crucial to further validate this as an effective tool guiding immunosuppression prescription.
Collapse
Affiliation(s)
- Sara Querido
- Renal Transplantation Unit, Nephrology Department, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
- Infection, Sepsis & Antibiotics Resistance Research Group, CHRC-Comprehensive Health Research Center, NOVA Medical School, Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
| | - Catarina Martins
- Immune Dysregulation from Pregnancy to Adulthood Research Group, CHRC-Comprehensive Health Research Center, NOVA Medical School, Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
| | - Perpétua Gomes
- Laboratory of Clinical Microbiology and Molecular Biology, Department of Clinical Pathology, Centro Hospitalar de Lisboa Ocidental, 1349-019 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), IUEM, 2829-511 Almada, Portugal
| | - Maria Ana Pessanha
- Laboratory of Clinical Microbiology and Molecular Biology, Department of Clinical Pathology, Centro Hospitalar de Lisboa Ocidental, 1349-019 Lisboa, Portugal
| | - Maria Jorge Arroz
- Flow Cytometry Laboratory, Department of Clinical Pathology, Centro Hospitalar de Lisboa Ocidental, 1349-019 Lisboa, Portugal
| | - Teresa Adragão
- Renal Transplantation Unit, Nephrology Department, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
| | - Ana Casqueiro
- Renal Transplantation Unit, Nephrology Department, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
| | - Regina Oliveira
- Renal Transplantation Unit, Nephrology Department, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
| | - Inês Costa
- Laboratory of Clinical Microbiology and Molecular Biology, Department of Clinical Pathology, Centro Hospitalar de Lisboa Ocidental, 1349-019 Lisboa, Portugal
| | - Jorge Azinheira
- Laboratory of Biochemistry, Department of Clinical Pathology, Centro Hospitalar de Lisboa Ocidental, 1349-019 Lisboa, Portugal
| | - Paulo Paixão
- Infection, Sepsis & Antibiotics Resistance Research Group, CHRC-Comprehensive Health Research Center, NOVA Medical School, Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
| | - André Weigert
- Renal Transplantation Unit, Nephrology Department, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
- Pharmacology and Neurosciences Institute, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| |
Collapse
|
29
|
Falabello de Luca AC, Marinho GB, Franco JB, Tenório JDR, Andrade NS, Batista AM, Mamana AC, Tozetto-Mendoza TR, Pérez Sayáns M, Braz-Silva PH, Ortega KL. Quantification of Torque Teno Virus (TTV) in plasma and saliva of individuals with liver cirrhosis: a cross sectional study. Front Med (Lausanne) 2023; 10:1184353. [PMID: 37425326 PMCID: PMC10325656 DOI: 10.3389/fmed.2023.1184353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Torque teno virus (TTV) has been pointed as an endogenous marker of immune function, the objective of this study was to investigate the TTV viral load in plasma and saliva of cirrhotic individuals and correlate it with clinical characteristics. Methods Blood, saliva, clinical data from records and laboratory tests were collected from 72 cirrhotic patients. Plasma and saliva were submitted to real-time polymerase chain reaction for quantification of TTV viral load. Results The majority of the patients presented decompensated cirrhosis (59.7%) and 47.2% had alterations in the white blood series. TTV was identified in 28 specimens of plasma (38.8%) and in 67 specimens of saliva (93.0%), with median values of TTV copies/mL of 90.6 in plasma and 245.14 in saliva. All the patients who were positive for TTV in plasma were also positive in saliva, with both fluids having a moderately positive correlation for the presence of TTV. There was no correlation between TTV viral load, either in plasma or in saliva, and any of the variables studied. Conclusion TTV is more frequently found and in greater amount in the saliva than in the plasma of cirrhotic patients. There was no correlation between TTV viral load and clinical parameters.
Collapse
Affiliation(s)
| | - Gabriella Bueno Marinho
- Special Care Dentistry Centre (CAPE), Department of Stomatology, University of São Paulo, São Paulo, Brazil
| | - Juliana Bertoldi Franco
- Division of Dentistry, Clinics Hospital, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Jefferson da Rocha Tenório
- Special Care Dentistry Centre (CAPE), Department of Stomatology, University of São Paulo, São Paulo, Brazil
- Department of Pathology and Oral Diagnosis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália Silva Andrade
- Special Care Dentistry Centre (CAPE), Department of Stomatology, University of São Paulo, São Paulo, Brazil
- Department of Dentistry, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | - Alexandre Mendes Batista
- Laboratory of Virology, Institute of Tropical Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ana Carolina Mamana
- Laboratory of Virology, Institute of Tropical Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Tânia Regina Tozetto-Mendoza
- Laboratory of Virology, Institute of Tropical Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mário Pérez Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit, MedOralRes Group, University of Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Paulo Henrique Braz-Silva
- Laboratory of Virology, Institute of Tropical Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Karem L. Ortega
- Special Care Dentistry Centre (CAPE), Department of Stomatology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Reyes NS, Laham G, Boccia N, García G, Jara R, Hermida E, Ricarte C, Diaz C, Soler Pujol G, Poletta FA, Echavarria M. Prospective cohort study of Torque Teno Virus (TTV) viral load kinetics and the association with graft rejection in renal transplant patients. J Clin Virol 2023; 165:105501. [PMID: 37379781 DOI: 10.1016/j.jcv.2023.105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/13/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023]
Abstract
INTRODUCTION Graft survival is mainly determined by rejections and infectious complications in transplant recipients. Torque Teno Virus (TTV), a nonpathogenic and ubiquitous single-stranded DNA virus, has been proposed as a biomarker of the immune status in transplant patients. This study aimed to determine the correlation between a Home-Brew TTV PCR and R-GENE®PCR; the TTV viral load kinetics in renal transplant recipients and the association with graft rejection. MATERIALS AND METHODS Prospective cohort study on 107 adult renal transplant recipients. TTV viral load was determined in 746 plasma samples collected before and after renal transplantation by a Home-Brew PCR and a commercial PCR (R-GENE®PCR). Associations of TTV viral load with graft rejections were analyzed. RESULTS Agreement of both PCR assays was 93.2% and Pearson correlation coefficient was r: 0.902 (95%CI: 0.8881-0.9149, p < 0.0001). TTV viral load kinetics showed an initial gradual increase reaching a peak at 3 months. This highest value was followed by a slight decrease, reaching a plateau significantly higher than the initial baseline at 6 months (p < 0.0001). Between (181-270) days post-transplantation, TTV median viral load in patients with graft rejection was significantly lower, 3.59 Log10 copies/mL (by Home-Brew PCR) and 3.10 Log10 copies/mL (by R-GENE®PCR) compared to patients without graft rejection (6.14 and 5.96 Log10 copies/mL, respectively). CONCLUSIONS Significantly lower TTV viral load was observed in patients with renal rejection occurring at a median of 243 days post-transplantation. Given the dynamic behavior of TTV viral load post-transplantation, cut-off values for risk stratification to predict rejection might be determined in relation to the post-transplant period.
Collapse
Affiliation(s)
- N S Reyes
- Virology Unit (CEMIC-CONICET), Centro de Educación Médica e Investigaciones Clínicas University Hospital (CEMIC), Argentina.
| | - G Laham
- Nephrology section, CEMIC University Hospital, Argentina
| | - N Boccia
- Nephrology section, CEMIC University Hospital, Argentina
| | - G García
- Nephrology section, CEMIC University Hospital, Argentina
| | - R Jara
- Virology Unit (CEMIC-CONICET), Centro de Educación Médica e Investigaciones Clínicas University Hospital (CEMIC), Argentina
| | - E Hermida
- Virology Unit (CEMIC-CONICET), Centro de Educación Médica e Investigaciones Clínicas University Hospital (CEMIC), Argentina
| | - C Ricarte
- Virology Unit (CEMIC-CONICET), Centro de Educación Médica e Investigaciones Clínicas University Hospital (CEMIC), Argentina
| | - C Diaz
- Nephrology section, CEMIC University Hospital, Argentina
| | - G Soler Pujol
- Nephrology section, CEMIC University Hospital, Argentina
| | - F A Poletta
- Genetic Epidemiology Laboratory (CEMIC-CONICET), Argentina
| | - M Echavarria
- Virology Unit (CEMIC-CONICET), Centro de Educación Médica e Investigaciones Clínicas University Hospital (CEMIC), Argentina; Virology Laboratory, CEMIC, Argentina
| |
Collapse
|
31
|
del Rosal T, García-García ML, Casas I, Iglesias-Caballero M, Pozo F, Alcolea S, Bravo B, Rodrigo-Muñoz JM, del Pozo V, Calvo C. Torque Teno Virus in Nasopharyngeal Aspirate of Children With Viral Respiratory Infections. Pediatr Infect Dis J 2023; 42:184-188. [PMID: 36729788 PMCID: PMC9935559 DOI: 10.1097/inf.0000000000003796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Torque teno virus (TTV) is a ubiquitous anellovirus responsible for persistent infections and is considered a marker of immune function. The role of TTV as a facilitator of respiratory infections (RIs) is unknown. OBJECTIVES Our aim was to estimate, in a prospective study, the prevalence of TTV in the nasopharyngeal aspirate (NPA) of hospitalized children <5 years old, with RIs and correlate them with outcomes and immune response. PATIENTS AND METHODS NPA was taken for testing of 16 respiratory viruses by reverse transcription-polymerase chain reaction (PCR), TTV PCR, and immunologic study. RESULTS Sixty hospitalized children with an RI were included. A total of 51/60 patients had positive common respiratory viral (CRV) identification. A total of 23/60 (38.3%) children were TTV+ in NPA. TTV+ patients had other CRVs in 100% of cases versus 78.3% in TTV- ( P = 0.029). The TTV+ patients tended to be older, have fever, and to need pediatric intensive care unit admission more often than TTV- patients. Abnormal chest radiograph was more frequent in the TTV+ patients, odds ratios 2.6 (95% CI: 1.3-5.2). The genetic expression of filaggrin (involved in epithelial barrier integrity) was lower in TTV+ patients; however, the levels of filaggrin in the NPA were increased. CONCLUSIONS TTV infection is common in children with RI and could be associated with abnormal imaging in radiograph, greater severity and an alteration in filaggrin gene expression and protein release.
Collapse
Affiliation(s)
- Teresa del Rosal
- From the Paediatric Infectious Diseases Department, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
- CIBER de Enfermedades raras, CIBERER, ISCIII, Madrid, Spain
| | - Mª Luz García-García
- CIBER de Enfermedades raras, CIBERER, ISCIII, Madrid, Spain
- Pediatric Department, Severo Ochoa University Hospital, Leganés, Madrid, Spain
- CIBER de Enfermedades Infecciosas, CIBERINFEC, ISCIII, Madrid, Spain
| | - Inmaculada Casas
- Respiratory Viruses and Influenza Unit at the National Center for Microbiology (ISCIII), Madrid, Spain
| | - María Iglesias-Caballero
- Respiratory Viruses and Influenza Unit at the National Center for Microbiology (ISCIII), Madrid, Spain
| | - Francisco Pozo
- Respiratory Viruses and Influenza Unit at the National Center for Microbiology (ISCIII), Madrid, Spain
| | - Sonia Alcolea
- From the Paediatric Infectious Diseases Department, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Pediatric Department, Severo Ochoa University Hospital, Leganés, Madrid, Spain
- CIBER de Enfermedades Infecciosas, CIBERINFEC, ISCIII, Madrid, Spain
| | - Blanca Bravo
- From the Paediatric Infectious Diseases Department, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - José M. Rodrigo-Muñoz
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Victoria del Pozo
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Cristina Calvo
- From the Paediatric Infectious Diseases Department, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
- CIBER de Enfermedades Infecciosas, CIBERINFEC, ISCIII, Madrid, Spain
| |
Collapse
|
32
|
Roberto P, Cinti L, Napoli A, Paesani D, Riveros Cabral RJ, Maggi F, Garofalo M, Pretagostini R, Centofanti A, Carillo C, Venuta F, Gaeta A, Antonelli G. Torque teno virus (TTV): A gentle spy virus of immune status, predictive marker of seroconversion to COVID-19 vaccine in kidney and lung transplant recipients. J Med Virol 2023; 95:e28512. [PMID: 36661060 PMCID: PMC10108096 DOI: 10.1002/jmv.28512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
To date, no comprehensive marker to monitor the immune status of patients is available. Given that Torque teno virus (TTV), a known human virome component, has previously been identified as a marker of immunocompetence, it was retrospectively investigated whether TTV viral load may also represent a marker of ability to develop antibody in response to COVID-19-BNT162B2 vaccine in solid organ transplant recipients (SOT). Specifically, 273 samples from 146 kidney and 26 lung transplant recipients after successive doses of vaccine were analyzed. An inverse correlation was observed within the TTV copy number and anti-Spike IgG antibody titer with a progressive decrease in viremia the further away from the transplant date. Analyzing the data obtained after the second dose, a significant difference in TTV copy number between responsive and nonresponsive patients was observed, considering a 5 log10 TTV copies/mL threshold to discriminate between the two groups. Moreover, for 86 patients followed in their response to the second and third vaccination doses a 6 log10 TTV copies/mL threshold was used to predict responsivity to the booster dose. Although further investigation is necessary, possibly extending the analysis to other patient categories, this study suggests that TTV can be used as a good marker of vaccine response in transplant patients.
Collapse
Affiliation(s)
- Piergiorgio Roberto
- Department of Molecular Medicine, Laboratory of Microbiology and Virology, Sapienza University of Rome, Rome, Italy
| | - Lilia Cinti
- Department of Molecular Medicine, Laboratory of Microbiology and Virology, Sapienza University of Rome, Rome, Italy
| | - Anna Napoli
- Department of Molecular Medicine, Laboratory of Microbiology and Virology, Sapienza University of Rome, Rome, Italy
| | | | - Rodolfo J Riveros Cabral
- Department of Molecular Medicine, Laboratory of Microbiology and Virology, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Manuela Garofalo
- General Surgery and Organ Transplantation Unit, Sapienza University of Rome, Rome, Italy
| | - Renzo Pretagostini
- General Surgery and Organ Transplantation Unit, Sapienza University of Rome, Rome, Italy
| | - Anastasia Centofanti
- Department of General and Specialistic Surgery "Paride Stefanini", Sapienza University of Rome, Rome, Italy
| | - Carolina Carillo
- Department of General and Specialistic Surgery "Paride Stefanini", Sapienza University of Rome, Rome, Italy
| | - Federico Venuta
- Department of General and Specialistic Surgery "Paride Stefanini", Sapienza University of Rome, Rome, Italy
| | - Aurelia Gaeta
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Laboratory of Microbiology and Virology, Sapienza University of Rome, Rome, Italy.,Microbiology and Virology Unit, Sapienza University Hospital Policlinico Umberto I, Rome, Italy
| |
Collapse
|
33
|
Cancela F, Marandino A, Panzera Y, Betancour G, Mirazo S, Arbiza J, Ramos N. A combined approach of rolling-circle amplification-single site restriction endonuclease digestion followed by next generation sequencing to characterize the whole genome and intra-host variants of human Torque teno virus. Virus Res 2023; 323:198974. [PMID: 36272542 PMCID: PMC10194382 DOI: 10.1016/j.virusres.2022.198974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Torque Teno Virus (TTV) was initially associated with post-transfusion hepatitis, but growing evidence of its ubiquity in humans is compatible to no apparent clinical significance. TTV is a small non-enveloped virus with a circular single-negative-stranded DNA genome, belonging to the Anelloviridae family. Currently, TTVs are divided in seven phylogenetic groups and are further classified into 21 species. Studies about diversity of TTV in different conditions are receiving increasing interest and in this sense, sequencing of whole genomes for better genetic characterization becomes even more important. Since its discovery in 1997, few TTV complete genomes have been reported worldwide. This is probably due, among other reasons, to the great genetic heterogeneity among TTV strains that prevents its amplification and sequencing by conventional PCR and cloning methods. In addition, although metagenomics approach is useful in these cases, it remains a challenging tool for viromic analysis. With the aim of contributing to the expansion of the TTV whole genomes dataset and to study intra-host variants, we employed a methodology that combined a rolling-circle amplification approach followed by EcoRI digestion, generating a DNA fragment of ∼4Kb consistent with TTV genome length which was sequenced by Illumina next generation sequencing. A genogroup 3 full-length consensus TTV genome was obtained and co-infection with other species (at least those with a single EcoRI cleavage site) was not identified. Additionally, bioinformatics analysis allowed to identify the spectrum of TTV intra-host variants which provides evidence of a complex evolution dynamics of these DNA circular viruses, similarly to what occurs with RNA viruses.
Collapse
Affiliation(s)
- Florencia Cancela
- Sección Virología, Instituto de Biología e Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ana Marandino
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - Yanina Panzera
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - Gabriela Betancour
- Sección Virología, Instituto de Biología e Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Santiago Mirazo
- Sección Virología, Instituto de Biología e Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Juan Arbiza
- Sección Virología, Instituto de Biología e Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Ramos
- Sección Virología, Instituto de Biología e Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
34
|
van Rijn AL, Roos R, Dekker FW, Rotmans JI, Feltkamp M. Torque teno virus load as marker of rejection and infection in solid organ transplantation - A systematic review and meta-analysis. Rev Med Virol 2023; 33:e2393. [PMID: 36056751 PMCID: PMC10078304 DOI: 10.1002/rmv.2393] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 01/28/2023]
Abstract
Balancing immunosuppression to prevent rejection in solid organ transplant (SOT) recipients remains challenging. Torque teno virus (TTV), a commensal non-pathogenic virus, has been proposed as marker of functional immunity: higher loads correspond to over-immunosuppression, and lower loads to under-immunosuppression. This review offers an overview of the current evidence of the association between TTV-load and infection and rejection after SOT. A systematic literature search strategy, deposited in the PROSPERO registry, resulted in 548 records. After screening, 23 original and peer-reviewed articles were assessed investigating the association between TTV-load, infection and/or rejection in SOT. The Quality in Prognostic Studies (QUIPS)-tool was used to assess the risk of bias. Meta-analysis with random-effects was performed on results with similar outcomes and exposure measures. Most of the included studies involved retrospective cohorts in which the TTV-load was measured longitudinally, within the first 2 years post-transplantation. Infection outcomes differed between studies and included viral, bacterial, parasitic and fungal infections. Rejection was defined by biopsy confirmation or initiation of rejection treatment. Twelve out of 16 studies reported an association between high TTV-load and infections, whereas 13 out of 15 reported an association between low TTV-load and rejection. Meta-analysis showed an increased risk of infection (OR: 1.16, 95% CI: 1.03-1.32; HR: 1.05, 95% CI: 0.97-1.14) and a decreased risk of rejection (OR: 0.90, 95% CI: 0.87-0.94; HR: 0.74, 95% CI: 0.71-0.76) per 1 log TTV-load increase. The qualitative assessment showed varying risks of bias in the included studies. This systematic review and meta-analysis indicates that blood TTV-load measured within the first 2 years after SOT is associated with the risk of infection or allograft rejection, although substantial risk of bias in the studies included warrant cautious interpretation. The results in this review provide a rationale for larger, prospective, studies into TTV as marker of infection and rejection after SOT.
Collapse
Affiliation(s)
- A L van Rijn
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - R Roos
- Department of Internal Medicine, HagaZiekenhuis, The Hague, The Netherlands
| | - F W Dekker
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - J I Rotmans
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - McW Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
35
|
Genetic Analysis of Torque Teno Canis Virus Identified in Republic of Korea. Vet Sci 2022; 9:vetsci9120693. [PMID: 36548854 PMCID: PMC9782174 DOI: 10.3390/vetsci9120693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Torque teno canis virus (TTCaV) is an approximately 2.8 kb circular single-stranded DNA virus known to cause infections in dogs. However, its incidence in Republic of Korea remains unknown. In this study, 135 dog fecal samples were collected to determine TTCaV infection status in Republic of Korea. Based on polymerase chain reaction (PCR) analysis, 13 of 135 (9.6%) dogs tested positive for TTCaV. Three full-length genome sequences (GenBank IDs: MZ503910, MZ503911, and MZ503912) were obtained from the positive specimens. Phylogenetic tree construction and sequence identity, similarity plot, and recombination analyses were performed using these three full-length genomic sequences. Among the three full-length genomes, MZ503912 was determined to be a recombinant virus based on analysis with the reference TTCaV strains. This novel virus strain might have been generated by recombination between TTCaV strain KX827768 discovered in China and MZ503910 discovered in Republic of Korea. This is the first report to determine the incidence, genetic variation, and recombination of TTCaV in dogs in Republic of Korea. Further studies are needed to elucidate TTCaV pathogenesis in dogs.
Collapse
|
36
|
Querido S, Adragão T, Pinto I, Ormonde C, Papoila AL, Pessanha MA, Gomes P, Ferreira S, Figueira JM, Cardoso C, Viana JF, Weigert A. Torquetenovirus viral load is associated with anti-spike antibody response in SARS-CoV-2 mRNA BNT162b2 vaccinated kidney transplant patients. Clin Transplant 2022; 36:e14825. [PMID: 36301197 PMCID: PMC9874652 DOI: 10.1111/ctr.14825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Kidney transplant patients (KT) are at high risk for severe COVID-19 and presented attenuated antibody responses to vaccination when compared to immunocompetent individuals. Torquetenovirus (TTV) has recently gained attention as a potential surrogate marker of the net state of immunosuppression. We evaluated the association between pre-vaccination TTV viral load and anti-spike total antibody response to SARS-CoV-2 vaccination in KT. MATERIAL AND METHODS The 114 adult KT recipients enrolled in this prospective single-center cohort study received two doses of SARS-CoV-2 mRNA BNT162b2 vaccine. Serum samples were collected immediately before vaccination at the days when patients received both the first (T0) and the second dose (T1) and 16-45 days after the second dose (T2). Primary endpoint was the development of anti-spike total antibodies after vaccination. Demographic, clinical, and laboratorial parameters were compared between patients with and without detectable SARS-CoV-2 antibodies at T2. RESULTS Ninety-nine patients (86.8%) were naïve for SARS-CoV-2 before vaccination. Fifty-six (56.6%) patients developed anti-spike total antibodies at T2. The use of mTOR inhibitors was associated with a favorable response (p = .005); conversely, mycophenolic acid (MPA) was associated with a negative response (p = .006). In a multivariable model, the presence of TTV at T0 ≥ 3.36 log10 cp/ml was associated with unfavorable vaccine response (OR: 5.40; 95% CI: 1.47-19.80; p = .011), after adjusting for age and eGFR at T0. CONCLUSIONS Higher TTV viral loads before vaccination are associated with reduced anti-spike total antibody response in SARS-CoV-2 mRNA BNT162b2 vaccinated KT patients. The association between TTV viral load and vaccine response may be an added-value in the optimization of vaccination regimens in KT.
Collapse
Affiliation(s)
- Sara Querido
- Department of NephrologyUnit of Renal TransplantationHospital de Santa Cruz, Centro Hospitalar de Lisboa OcidentalCarnaxidePortugal
| | - Teresa Adragão
- Department of NephrologyUnit of Renal TransplantationHospital de Santa Cruz, Centro Hospitalar de Lisboa OcidentalCarnaxidePortugal
| | - Iola Pinto
- CMAFaculdade de Ciências e Tecnologia da Universidade Nova de LisboaLisboaPortugal,ISELInstituto Superior de Engenharia de LisboaLisboaPortugal
| | - Carolina Ormonde
- Department of NephrologyHospital do Divino Espírito SantoPonta DelgadaPortugal
| | - Ana Luísa Papoila
- CEAULCentro de Estatística e Aplicações da Universidade de LisboaLisboaPortugal,NOVAMedicalSchoolFaculdade de Ciências Médicas da Universidade Nova de LisboaLisboaPortugal
| | - Maria Ana Pessanha
- Department of Clinical PathologyLaboratory of Clinical Microbiology and Molecular BiologyCentro Hospitalar de Lisboa OcidentalLisboaPortugal
| | - Perpétua Gomes
- Department of Clinical PathologyLaboratory of Clinical Microbiology and Molecular BiologyCentro Hospitalar de Lisboa OcidentalLisboaPortugal,Centro de Investigação Interdisciplinar Egas Moniz (CiiEM)IUEMAlmadaPortugal
| | - Sílvia Ferreira
- Department of Clinical PathologyLaboratory of BiochemistryCentro Hospitalar de Lisboa OcidentalLisboaPortugal
| | - João Mário Figueira
- Department of Clinical PathologyLaboratory of BiochemistryCentro Hospitalar de Lisboa OcidentalLisboaPortugal
| | - Conceição Cardoso
- Department of Clinical PathologyLaboratory of BiochemistryCentro Hospitalar de Lisboa OcidentalLisboaPortugal
| | - João Faro Viana
- Department of Clinical PathologyCentro Hospitalar de Lisboa OcidentalLisboaPortugal
| | - André Weigert
- Department of NephrologyUnit of Renal TransplantationHospital de Santa Cruz, Centro Hospitalar de Lisboa OcidentalCarnaxidePortugal
| |
Collapse
|
37
|
Redondo N, Rodríguez-Goncer I, Parra P, Albert E, Giménez E, Ruiz-Merlo T, López-Medrano F, San Juan R, González E, Sevillano Á, Andrés A, Navarro D, Aguado JM, Fernández-Ruiz M. Impact of polymorphisms in genes orchestrating innate immune responses on replication kinetics of Torque teno virus after kidney transplantation. Front Genet 2022; 13:1069890. [DOI: 10.3389/fgene.2022.1069890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Torque teno virus (TTV) DNAemia has been proposed as a surrogate marker of immunosuppression after kidney transplantation (KT), under the assumption that the control of viral replication is mainly exerted by T-cell-mediated immunity. However, Tthe impact on post-transplant TTV kinetics of single genetic polymorphisms (SNPs) in genes orchestrating innate responses remains unknown. We aimed to characterize the potential association between 14 of these SNPs and TTV DNA levels in a single-center cohort of KT recipients.Methods: Plasma TTV DNAemia was quantified by real-time PCR in 221 KT recipients before transplantation (baseline) and regularly through the first 12 post-transplant months. We performed genotyping of the following SNPs: CTLA4 (rs5742909, rs231775), TLR3 (rs3775291), TLR9 (rs5743836, rs352139), CD209 (rs735240, rs4804803), IFNL3 (rs12979860, rs8099917), TNF (rs1800629), IL10 (rs1878672, rs1800872), IL12B (rs3212227) and IL17A (rs2275913).Results: The presence of the minor G allele of CD209 (rs4804803) in the homozygous state was associated with undetectable TTV DNAemia at the pre-transplant assessment (adjusted odds ratio: 36.96; 95% confidence interval: 4.72–289.67; p-value = 0.001). After applying correction for multiple comparisons, no significant differences across SNP genotypes were observed for any of the variables of post-transplant TTV DNAemia analyzed (mean and peak values, areas under the curve during discrete periods, or absolute increments from baseline to day 15 and months 1, 3, 6 and 12 after transplantation).Conclusion: The minor G allele of CD209 (rs4804803) seems to exert a recessive protective effect against TTV infection in non-immunocompromised patients. However, no associations were observed between the SNPs analyzed and post-transplant kinetics of TTV DNAemia. These negative results would suggest that post-transplant TTV replication is mainly influenced by immunosuppressive therapy rather than by underlying genetic predisposition, reinforcing its clinical application as a biomarker of adaptive immunity.
Collapse
|
38
|
Sun T, Liu Y, Cai Y, Zhai T, Zhou Y, Yang B, Wu X, Zhan Q. A Paired Comparison of Plasma and Bronchoalveolar Lavage Fluid for Metagenomic Next-Generation Sequencing in Critically Ill Patients with Suspected Severe Pneumonia. Infect Drug Resist 2022; 15:4369-4379. [PMID: 35971554 PMCID: PMC9375561 DOI: 10.2147/idr.s374906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Plasma metagenomic next-generation sequencing (mNGS) has emerged as an attractive and minimally invasive technique for pathogen detection. However, few studies have demonstrated the need for simultaneous plasma and bronchoalveolar lavage fluid (BALF) mNGS in patients with severe pneumonia. Patients and Methods This study retrospectively performed a paired comparison of BALF and plasma mNGS in critically ill patients with suspected severe pneumonia from April 2019 to December 2020. The diagnostic performance of BALF and plasma mNGS was compared using the clinical composite diagnosis as the reference standard. Results In total, 57 patients were included in this study. Patients with positive plasma mNGS had shorter hospital stay days at the time of specimen acquisition (4.5 vs 11, P = 0.028) and a higher positivity rate of BALF culture (50% vs 22.9%, P = 0.033) than patients with negative plasma mNGS. Fifty-three patients (93%) were finally diagnosed with severe pneumonia. Significant differences were observed in the sensitivity of BALF and plasma mNGS (100% vs 42%, P < 0.001), and the diagnostic accuracy was 96% and 46%, respectively. The proportion of virus in positive plasma mNGS results was higher than that in BALF mNGS (23% vs 11%, P = 0.173) without significant difference. Although plasma mNGS detected additional microorganisms in 11/53 patients, the beneficial effect was observed in only 5/53 (9%) patients. Conclusion In this study, the clinical effect of simultaneously conducting mNGS of BALF and plasma samples was found to be limited. For patients with the suspected virus infection, plasma mNGS may be a supplementary test. Further studies are needed to identify the optimal indications for plasma mNGS.
Collapse
Affiliation(s)
- Ting Sun
- Capital Medical University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China
| | - Yijie Liu
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ying Cai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Tianshu Zhai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Yun Zhou
- Laboratory Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Bin Yang
- Vision Medicals Center for Infection Diseases, Guangzhou, People's Republic of China
| | - Xiaojing Wu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Qingyuan Zhan
- Capital Medical University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China
| |
Collapse
|
39
|
Spandole-Dinu S, Cimponeriu D, Stoica I, Apircioaie O, Gogianu L, Berca LM, Nica S, Toma M, Nica R. Phylogenetic analysis of torque teno virus in Romania: possible evidence of distinct geographical distribution. Arch Virol 2022; 167:2311-2318. [PMID: 35962263 PMCID: PMC9374574 DOI: 10.1007/s00705-022-05559-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Torque teno virus (TTV) is highly prevalent, but little is known about its circulation in humans. Here, we investigated the geographical distribution and phylogeny of TTV in Romania. A fragment of TTV untranslated region B was sequenced in samples from volunteers across the country. Additional sequences from dialyzed patients were also included in the study. Phylogenetic analysis showed that more than 80% of Romanian sequences clustered with isolates assigned to the species Torque teno virus 1 and Torque teno virus 3 (former genogroup 1), and this analysis discriminated between isolates from the North-East and West regions. Further studies assessing the pathogenic potential of TTV isolates should employ analysis based on genomic regions with phylogenetic resolution below the species level.
Collapse
Affiliation(s)
- Sonia Spandole-Dinu
- Department of Genetics, University of Bucharest, Intrarea Portocalelor 1-3, 060101, Bucharest, Romania
- Earth, Environmental and Life Sciences Division, The Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
| | - Dănuţ Cimponeriu
- Department of Genetics, University of Bucharest, Intrarea Portocalelor 1-3, 060101, Bucharest, Romania.
| | - Ileana Stoica
- Department of Genetics, University of Bucharest, Intrarea Portocalelor 1-3, 060101, Bucharest, Romania
| | - Oana Apircioaie
- Department of Genetics, University of Bucharest, Intrarea Portocalelor 1-3, 060101, Bucharest, Romania
| | - Larisa Gogianu
- Department of Genetics, University of Bucharest, Intrarea Portocalelor 1-3, 060101, Bucharest, Romania
| | - Lavinia Mariana Berca
- Molecular Biology Laboratory, National R&D Institute for Food Bioresources, Bucharest, Romania
| | - Silvia Nica
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Emergency University Hospital, Bucharest, Romania
| | - Mihai Toma
- Emergency Department, Central Military Emergency Clinical Hospital, Bucharest, Romania
| | - Remus Nica
- Surgery Clinic II, Central Military Emergency Clinical Hospital, Bucharest, Romania
| |
Collapse
|
40
|
Taylo LJ, Keeler EL, Bushman FD, Collman RG. The enigmatic roles of Anelloviridae and Redondoviridae in humans. Curr Opin Virol 2022; 55:101248. [PMID: 35870315 DOI: 10.1016/j.coviro.2022.101248] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/26/2022]
Abstract
Anelloviridae and Redondoviridae are virus families with small, circular, single-stranded DNA genomes that are common components of the human virome. Despite their small genome size of less than 5000 bases, they are remarkably successful - anelloviruses colonize over 90% of adult humans, while the recently discovered redondoviruses have been found at up to 80% prevalence in some populations. Anelloviruses are present in blood and many organs, while redondoviruses are found mainly in the ororespiratory tract. Despite their high prevalence, little is known about their biology or pathogenic potential. In this review, we discuss anelloviruses and redondoviruses and explore their enigmatic roles in human health and disease.
Collapse
Affiliation(s)
- Louis J Taylo
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emma L Keeler
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald G Collman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Desingu PA, Nagarajan K, Dhama K. Can a Torque Teno Virus (TTV) Be a Naked DNA Particle Without a Virion Structure? FRONTIERS IN VIROLOGY 2022; 2. [DOI: 10.3389/fviro.2022.821298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
42
|
Linthorst J, Welkers MRA, Sistermans EA. Clinically relevant DNA viruses in pregnancy. Prenat Diagn 2022; 43:457-466. [PMID: 35170055 DOI: 10.1002/pd.6116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 11/10/2022]
Abstract
Infections by DNA viruses during pregnancy are associated with increased health risks to both mother and fetus. Although not all DNA viruses are related to an increased risk of complications during pregnancy, several can directly infect the fetus and/or cause placental dysfunction. During NIPT analysis, the presence of viral DNA can be detected, theoretically allowing screening early in pregnancy. Although treatment options are currently limited, this might rapidly change in the near future. It is therefore important to be aware of the potential impact of these viruses on feto-maternal health. In this manuscript we provide a brief introduction into the most commonly detected DNA viruses in human cell-free DNA sequencing experiments and their pathogenic potential during pregnancy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jasper Linthorst
- Dept of Human Genetics and Amsterdam Reproduction & Development research institute, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands, van der Boechorststraat 7, 1081, BT Amsterdam, The Netherlands
| | - Matthijs R A Welkers
- Dept of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam, The Netherlands
| | - Erik A Sistermans
- Dept of Human Genetics and Amsterdam Reproduction & Development research institute, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands, van der Boechorststraat 7, 1081, BT Amsterdam, The Netherlands
| |
Collapse
|
43
|
Carbo EC, Russcher A, Kraakman MEM, de Brouwer CS, Sidorov IA, Feltkamp MCW, Kroes ACM, Claas ECJ, de Vries JJC. Longitudinal Monitoring of DNA Viral Loads in Transplant Patients Using Quantitative Metagenomic Next-Generation Sequencing. Pathogens 2022; 11:pathogens11020236. [PMID: 35215180 PMCID: PMC8874692 DOI: 10.3390/pathogens11020236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: Immunocompromised patients are prone to reactivations and (re-)infections of multiple DNA viruses. Viral load monitoring by single-target quantitative PCRs (qPCR) is the current cornerstone for virus quantification. In this study, a metagenomic next-generation sequencing (mNGS) approach was used for the identification and load monitoring of transplantation-related DNA viruses. Methods: Longitudinal plasma samples from six patients that were qPCR-positive for cytomegalovirus (CMV), Epstein-Barr virus (EBV), BK polyomavirus (BKV), adenovirus (ADV), parvovirus B19 (B19V), and torque teno-virus (TTV) were sequenced using the quantitative metagenomic Galileo Viral Panel Solution (Arc Bio, LLC, Cambridge, MA, USA) reagents and bioinformatics pipeline combination. Qualitative and quantitative performance was analysed with a focus on viral load ranges relevant for clinical decision making. Results: All pathogens identified by qPCR were also identified by mNGS. BKV, CMV, and HHV6B were additionally detected by mNGS, and could be confirmed by qPCR or auxiliary bioinformatic analysis. Viral loads determined by mNGS correlated with the qPCR results, with inter-method differences in viral load per virus ranging from 0.19 log10 IU/mL for EBV to 0.90 log10 copies/mL for ADV. TTV, analysed by mNGS in a semi-quantitative way, demonstrated a mean difference of 3.0 log10 copies/mL. Trends over time in viral load determined by mNGS and qPCR were comparable, and clinical thresholds for initiation of treatment were equally identified by mNGS. Conclusions: The Galileo Viral Panel for quantitative mNGS performed comparably to qPCR concerning detection and viral load determination, within clinically relevant ranges of patient management algorithms.
Collapse
|
44
|
Peng P, Xu Y, Aurora R, Di Bisceglie AM, Fan X. Within-host quantitation of anellovirus genome complexity from clinical samples. J Virol Methods 2022; 302:114493. [PMID: 35176352 PMCID: PMC8900665 DOI: 10.1016/j.jviromet.2022.114493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
Abstract
Anellovirus (AV) is a ubiquitous and diverse virus in the human population. An individual can be infected with multiple AV genera and species that form a heterogeneous repertoire, called the anellome. Due to its exceptional genetic diversity, efficient evaluation of anellome complexity remains a methodological challenge. In the current study, AV genome was first enriched from patient serum samples through two-phase rolling circle amplification. Following Illumina sequencing, anellome was analyzed with an advanced bioinformatics pipeline, including read extraction at three similarity levels, de novo assembly, species assignment, and determination of relative abundance among AV variants. The method was validated in the mock sample and then applied to 21 hepatitis C virus (HCV) patients with and without hepatocellular carcinoma (HCC). Overall, there was a large variance regarding AV richness, ranging from 2 to 51 AV species. In contrast to HCV patients without HCC, HCC incidence was associated with reduced richness (12.6 ± 14.4 vs. 35.4 ± 13.6, p = 0.001) and Shannon entropy (0.4 ± 0.34 vs. 0.61 ± 0.12, p = 0.095) at the AV species level. Interestingly, AV genus beta and gamma expanded in the anellome in 7 of 10 HCC patients. These observations shed light on the potential association between anellome and HCC incidence in patients with chronic HCV infection. The method presented here represents a valuable tool to investigate the role of anellome in human health and disease.
Collapse
|
45
|
Cassidy H, Schuele L, Lizarazo-Forero E, Couto N, Rossen JWA, Friedrich AW, van Leer-Buter C, Niesters HGM. OUP accepted manuscript. Virus Evol 2022; 8:veab109. [PMID: 35317350 PMCID: PMC8932292 DOI: 10.1093/ve/veab109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 11/12/2022] Open
Abstract
Chronic enterovirus infections can cause significant morbidity, particularly in immunocompromised patients. This study describes a fatal case associated with a chronic untypeable enterovirus infection in an immunocompromised patient admitted to a Dutch university hospital over nine months. We aimed to identify the enterovirus genotype responsible for the infection and to determine potential evolutionary changes. Long-read sequencing was performed using viral targeted sequence capture on four respiratory and one faecal sample. Phylogenetic analysis was performed using a maximum likelihood method, along with a root-to-tip regression and time-scaled phylogenetic analysis to estimate evolutionary changes between sample dates. Intra-host variant detection, using a Fixed Ploidy algorithm, and selection pressure, using a Fixed Effect Likelihood and a Mixed Effects Model of Evolution, were also used to explore the patient samples. Near-complete genomes of enterovirus C104 (EV-C104) were recovered in all respiratory samples but not in the faecal sample. The recovered genomes clustered with a recently reported EV-C104 from Belgium in August 2018. Phylodynamic analysis including ten available EV-C104 genomes, along with the patient sequences, estimated the most recent common ancestor to occur in the middle of 2005 with an overall estimated evolution rate of 2.97 × 10−3 substitutions per year. Although positive selection pressure was identified in the EV-C104 reference sequences, the genomes recovered from the patient samples alone showed an overall negative selection pressure in multiple codon sites along the genome. A chronic infection resulting in respiratory failure from a relatively rare enterovirus was observed in a transplant recipient. We observed an increase in single-nucleotide variations between sample dates from a rapidly declining patient, suggesting mutations are weakly deleterious and have not been purged during selection. This is further supported by the persistence of EV-C104 in the patient, despite the clearance of other viral infections. Next-generation sequencing with viral enrichment could be used to detect and characterise challenging samples when conventional workflows are insufficient.
Collapse
Affiliation(s)
| | | | - Erley Lizarazo-Forero
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Natacha Couto
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112, USA
| | - Alex W Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Coretta van Leer-Buter
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | | |
Collapse
|
46
|
Redondo N, Navarro D, Aguado JM, Fernández-Ruiz M. Viruses, friends and foes: The case of Torque Teno virus and the net state of immunosuppression. Transpl Infect Dis 2021; 24:e13778. [PMID: 34933413 DOI: 10.1111/tid.13778] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 12/05/2021] [Indexed: 11/30/2022]
Abstract
New reliable biomarkers are needed to improve individual risk assessment for post-transplant infection, acute graft rejection and other immune-related complications after solid organ transplantation (SOT) and allogeneic hematopoietic stem cell transplantation (allo-HSCT). One promising strategy relies on the monitoring of replication kinetics of virome components as functional surrogate for the net state of immunosuppression. Torque Teno Virus (TTV) is a small, non-enveloped, circular, single-stranded DNA anellovirus with no attributable pathological effects. A major component of the human blood virome, TTV exhibits various features that facilitate its application as immune biomarker: high prevalence rates, nearly ubiquitous distribution, stable viral loads with little intra-individual variability, insensitivity to antiviral drugs, and availability of commercial PCR assays for DNA quantification. The present review summarizes the available studies supporting the use of post-transplant TTV viremia to predict patient and graft outcomes after SOT and allo-HSCT. Taken together, this evidence suggests that high or increasing TTV DNA levels precede the occurrence of infectious complications in the SOT setting, whereas low or decreasing viral loads are associated with the development of acute rejection. The interpretation in allo-HSCT recipients is further complicated by complex interplay with the underlying disease, conditioning regimen and timing of recovery of lymphocyte counts, although TTV kinetics may act as a marker of immunological reconstitution at the early post-transplant period. The standardization of PCR methods and reporting units for TTV DNAemia and the results from ongoing interventional trials evaluating a TTV load-guided strategy to adjust immunosuppressive therapy are achievements expected in the coming years. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Natalia Redondo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Spain
| | - David Navarro
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Spain.,Department of Microbiology, Hospital Clínico Universitario, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain.,Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
47
|
Fernández-Ruiz M, Forque L, Albert E, Redondo N, Giménez E, López-Medrano F, González E, Polanco N, Ruiz-Merlo T, Parra P, San Juan R, Andrés A, Aguado JM, Navarro D. Human pegivirus type 1 infection in kidney transplant recipients: Replication kinetics and clinical correlates. Transpl Infect Dis 2021; 24:e13771. [PMID: 34921747 DOI: 10.1111/tid.13771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Increasing evidence suggests that infection with the nonpathogenic human pegivirus type 1 (HPgV-1) exerts a clinical benefit in human immunodeficiency virus (HIV) patients, which could be attributable to immunomodulatory effects. Whether this impact can be extrapolated to kidney transplantation (KT) remains largely unknown. METHODS We measured plasma HPgV-1 RNA by real-time polymerase chain reaction targeting the 5' untranslated region at various points (pretransplantation, day 7, months 1, 3, 6, and 12) in 199 KT recipients. Study outcomes included posttransplant serious infection, immunosuppression-related adverse event (opportunistic infection and/or de novo cancer), and acute graft rejection. RESULTS HPgV-1 infection was demonstrated in 52 (26.1%) patients, with rates increasing from 14.7% at baseline to 19.1% by month 12 (p-value = .071). De novo infection occurred in 13.8% of patients with no detectable HPgV-1 RNA before transplantation. Double-organ (liver-kidney or kidney-pancreas) transplantation (odds ratio [OR]: 5.62; 95% confidence interval [CI]: 1.52-20.82) and donation after brain death (OR: 2.21; 95% CI: 1.00-4.88) were associated with posttransplant HPgV-1 infection, whereas pretransplant hypertension was protective (OR: 0.23; 95% CI: 0.09-0.55). There were no significant differences in the incidence of study outcomes according to HPgV-1 status. Plasma HPgV-1 RNA levels at different points did not significantly differ between patients that subsequently developed outcomes and those remaining free from these events. No correlation between HPgV-1 RNA and immune parameters or torque teno virus DNA load was observed either. CONCLUSION Unlike patients living with HIV, HPgV-1 infection does not seem to influence patient or graft outcomes after KT.
Collapse
Affiliation(s)
- Mario Fernández-Ruiz
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Lorena Forque
- Department of Microbiology, Hospital Clínico Universitario, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Eliseo Albert
- Department of Microbiology, Hospital Clínico Universitario, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Natalia Redondo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Estela Giménez
- Department of Microbiology, Hospital Clínico Universitario, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Esther González
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Natalia Polanco
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Tamara Ruiz-Merlo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Patricia Parra
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Rafael San Juan
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Amado Andrés
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain.,Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - David Navarro
- Department of Microbiology, Hospital Clínico Universitario, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain.,Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
48
|
Batista AM, Caetano MW, Stincarelli MA, Mamana AC, Zerbinati RM, Sarmento DJS, Gallottini M, Caixeta RAV, Medina-Pestana J, Hasséus B, Zanella L, Tozetto-Mendoza TR, Giannecchini S, Braz-Silva PH. Quantification of torque teno virus (TTV) DNA in saliva and plasma samples in patients at short time before and after kidney transplantation. J Oral Microbiol 2021; 14:2008140. [PMID: 34912500 PMCID: PMC8667915 DOI: 10.1080/20002297.2021.2008140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Several reports have proposed that the viral load of torque teno virus (TTV) in plasma is a biomarker of immune function in solid organ transplantation (SOT) and in allogeneic hematopoietic stem cell transplantation. Additionally, for the latter one, TTV-DNA quantification in saliva has also been suggested. AIM to investigate the correlation between the TTV viral load and immune function in paired saliva and plasma samples in patients on kidney transplantation. MATERIALS AND METHODS TTV-DNA viral load was quantified in paired samples of saliva and plasma from 71 patients before and a short-time after renal-transplantation by real-time PCR. RESULTS The data obtained from 213 paired samples showed a slight consistency in the comparison between saliva and plasma, with prevalence of TTV-DNA being 58%, 52% and 60% in saliva samples and 60%, 73% and 90% in plasma samples before and at 15-20 and 45-60 days after transplantation, respectively. Additionally, a high TTV viral load was observed in plasma at 15-20 and 45-60 days after transplantation compared to that observed in saliva at the same time. CONCLUSIONS Overall, monitoring TTV-DNA in saliva samples could be an additional fast non-invasive option to assess the immune functionality in SOT populations.
Collapse
Affiliation(s)
- Alexandre Mendes Batista
- Laboratory of Virology, Institute of Tropical Medicine of São Paulo, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Matheus W. Caetano
- Laboratory of Virology, Institute of Tropical Medicine of São Paulo, University of São Paulo School of Medicine, São Paulo, Brazil
- Department of Stomatology, University of São Paulo School of Dentistry, São Paulo, Brazil
| | - Maria A. Stincarelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ana C. Mamana
- Laboratory of Virology, Institute of Tropical Medicine of São Paulo, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Rodrigo Melim Zerbinati
- Laboratory of Virology, Institute of Tropical Medicine of São Paulo, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Dmitry J. S. Sarmento
- Department of Stomatology, University of São Paulo School of Dentistry, São Paulo, Brazil
- Department of Oral Medicine, State University of Paraiba, Araruna, Brazil
| | - Marina Gallottini
- Department of Stomatology, University of São Paulo School of Dentistry, São Paulo, Brazil
| | - Rafael A. V. Caixeta
- Department of Stomatology, University of São Paulo School of Dentistry, São Paulo, Brazil
| | - José Medina-Pestana
- Division of Renal Transplantation, Kidney and Hypertension Hospital, Federal University of São Paulo School of Medicine, São Paulo, Brazil
| | - Bengt Hasséus
- Department of Oral Medicine and Pathology, University of Gothenburg Institute of Odontology, Gothenburg, Sweden
| | - Louise Zanella
- Laboratory of Integrative Biology (LIBi), Scientific and Technological Bioresource Nucleus – Center for Excellence in Translational Medicine (BIOREN - CEMT), Universidad de La Frontera, Temuco, Chile
| | - Tania R. Tozetto-Mendoza
- Laboratory of Virology, Institute of Tropical Medicine of São Paulo, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paulo H. Braz-Silva
- Laboratory of Virology, Institute of Tropical Medicine of São Paulo, University of São Paulo School of Medicine, São Paulo, Brazil
- Department of Stomatology, University of São Paulo School of Dentistry, São Paulo, Brazil
| |
Collapse
|
49
|
Kyathanahalli C, Snedden M, Hirsch E. Human Anelloviruses: Prevalence and Clinical Significance During Pregnancy. FRONTIERS IN VIROLOGY 2021; 1. [DOI: 10.3389/fviro.2021.782886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Although the bacterial microbiota of various compartments (e.g. vagina, amniotic fluid, and placenta) have been studied in pregnancy, there has been far less emphasis on normal and pathological viral communities. Cumulative evidence shows the presence of a number of apathogenic viruses in various tissues of healthy people, including pregnant individuals. What role, if any, these viruses play in human physiology is unknown. Anelloviruses (family Anelloviridae) are circular, single-stranded DNA viruses commonly detected with high prevalence in vertebrate hosts, including primates. Humans are nearly always colonized with at least 1 of 3 anellovirus subtypes, namely Alphatorquevirus (torque teno virus, TTV), Betatorquevirus (torque teno midi virus, TTMDV), and Gammatorquevirus (torque teno mini virus, TTMV). In healthy pregnant people, the prototype anellovirus, TTV, has been found in maternal and (variably) fetal blood, amniotic fluid, cervical and vaginal secretions, breast milk, and saliva. Nonetheless, the relevance of human anelloviruses in pregnancy and labor is unclear. There is evidence suggesting a link between anellovirus colonization and preterm birth. In this review, we discuss what is known about this family of commensal viruses in health and disease, and specifically the roles they might play during pregnancy and in the timing of delivery.
Collapse
|
50
|
Iravani Saadi M, Ramzi M, Hesami Z, kheradmand N, Owjfard M, Nabi Abdolyousefi E, Karimi Z. MiR-181a and -b expression in acute lymphoblastic leukemia and its correlation with acute graft-versus-host disease after hematopoietic stem cell transplantation, COVID-19 and torque teno viruses. Virusdisease 2021; 32:727-736. [PMID: 34722832 PMCID: PMC8543773 DOI: 10.1007/s13337-021-00743-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL), a malignant transformation and proliferation of the lymphoid line of blood cells, is characterized by chromosomal abnormalities and genetic changes. The purpose of this research was the evaluation of expression level of miR-181a and -b in patients with ALL compared to the control group. Furthermore, we examined their expression level in hematopoietic stem-cell transplantation (HSCT) patients who developed acute graft-versus-host disease (aGVHD) in comparison with those without aGVHD and explore the relationship between their expression level and cytogenetic abnormalities. In this cross-sectional study, 76 newly diagnosed adult De novo ALL patients were enrolled who were admitted to our referral hospital. All patients received standard chemotherapy, consisting of daunorubicin. A total of 37 patients underwent HSCT from the related human leukocyte antigen-matched donors. ALL patients have been diagnosed with the coronavirus disease 2019 (COVID-19) and Torque teno viruses (TTVs). We assessed the expression levels of miR-181a and -b in the peripheral blood sample of ALL patients at the time of diagnosis prior to chemotherapy, and healthy matched individuals by RT–PCR. TTVs and COVID-19 load were also determined via RT–PCR. In conclusion, the expression level of miR-181a and -b were significantly higher in ALL patients than healthy controls and also increased in patients who developed aGVHD in comparison with those without aGVHD. MiR-181a and -b can be a useful biomarker in ALL and a useful indicator of aGVHD. The expression level of miR-181a in ALL patients with COVID-19 is significantly up-regulated, while it is reduced in these patients with TTV.
Collapse
Affiliation(s)
- Mahdiyar Iravani Saadi
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mani Ramzi
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Hematology, Medical Oncology and Stem Cell Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hesami
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nadiya kheradmand
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Nabi Abdolyousefi
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahed Karimi
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Hematology, Medical Oncology and Stem Cell Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|