1
|
Dong R, Ji Z, Wang M, Ma G. Role of macrophages in vascular calcification: From the perspective of homeostasis. Int Immunopharmacol 2025; 144:113635. [PMID: 39566391 DOI: 10.1016/j.intimp.2024.113635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Vascular calcification (VC) is a crucial risk factor for the high morbidity and mortality associated with cardiovascular and cerebrovascular diseases. With the global population aging, the incidence of VC is escalating annually. However, due to its silent clinical process, VC often results in irreversible clinical outcomes. Inflammation is a core element in the VC process, and macrophages are the major inflammatory cells. Due to their diverse origins, microenvironments, and polarization states, macrophages exhibit significant heterogeneity, exerting strong effects on the occurrence, development, and even the regression of VC. In this review, we summarize the origin, distribution, classification, and surface markers of macrophages. Simultaneously, we explore the mechanisms by which macrophages maintain homeostasis or regulate inflammation, including the macrophage-mediated regulation of VC through the release of inflammatory factors, osteogenic genes, extracellular vesicles, and alterations in efferocytosis. Finally, we discuss research targeting inflammation and macrophages to develop novel therapeutic regimens for preventing and treating VC.
Collapse
Affiliation(s)
- Rong Dong
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China; Department of Cardiology, Yancheng No. 1 People's Hospital, No. 66 South Renmin Road, Yancheng 224000, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| | - Mi Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China.
| |
Collapse
|
2
|
Liu WW, Liu ML. Vascular Calcification: Where is the Cure? CHINESE MEDICAL SCIENCES JOURNAL = CHUNG-KUO I HSUEH K'O HSUEH TSA CHIH 2024; 39:198-210. [PMID: 39229794 DOI: 10.24920/004367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
With the progress of aging, the incidence of vascular calcification (VC) gradually increases, which is correlated with cardiovascular events and all-cause death, aggravating global clinical burden. Over the past several decades, accumulating approaches targeting the underlying pathogenesis of VC have provided some possibilities for the treatment of VC. Unfortunately, none of the current interventions have achieved clinical effectiveness on reversing or curing VC. The purpose of this review is to make a summary of novel perspectives on the interventions of VC and provide reference for clinical decision-making.
Collapse
Affiliation(s)
- Wen-Wen Liu
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, China
| | - Mei-Lin Liu
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, China. ,
| |
Collapse
|
3
|
Dusso A, Bauerle KT, Zhang RM, Bernal-Mizrachi C. Vitamin D and renal disease. FELDMAN AND PIKE'S VITAMIN D 2024:587-618. [DOI: 10.1016/b978-0-323-91338-6.00029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
|
5
|
Emralino FL, Satoh S, Sakai N, Takami M, Takeuchi F, Yan N, Rutsch F, Fujita T, Kato H. Double-Stranded RNA Induces Mortality in an MDA5-Mediated Type I Interferonopathy Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2093-2103. [PMID: 36426976 DOI: 10.4049/jimmunol.2200367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/22/2022] [Indexed: 01/04/2023]
Abstract
Gain-of-function mutations in the viral dsRNA sensor melanoma differentiation-associated protein 5 (MDA5) lead to autoimmune IFNopathies, including Singleton-Merten syndrome (SMS) and Aicardi-Goutières syndrome. However, much remains unclear regarding the mechanism of disease progression and how external factors such as infection or immune stimulation with vaccination can affect the immune response. With this aim, we generated mice with human MDA5 bearing the SMS-associated mutation R822Q (hM-R822Q). hM-R822Q transgenic (Tg) mice developed SMS-like heart fibrosis, aortic valve enlargement, and aortic calcification with a systemic IFN-stimulated gene signature resulting in the activation of the adaptive immune response. Although administration of the viral dsRNA mimic polyinosinic-polycytidylic acid [poly(I:C)] did not have remarkable effects on the cardiac phenotype, dramatic inflammation was observed in the intestines where IFN production was most elevated. Poly(I:C)-injected hM-R822Q Tg mice also developed lethal hypercytokinemia marked by massive IL-6 levels in the serum. Interrupting the IFN signaling through mitochondrial antiviral signaling protein or IFN-α/β receptor alleviated hM-R822Q-induced inflammation. Furthermore, inhibition of JAK signaling with tofacitinib reduced cytokine production and ameliorated mucosal damage, enabling the survival of poly(I:C)-injected hM-R822Q Tg mice. These findings demonstrate that the MDA5 R822Q mutant introduces a critical risk factor for uncontrollable inflammation on viral infection or vaccination.
Collapse
Affiliation(s)
- Francine Lianne Emralino
- Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan
| | - Saya Satoh
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Nobuhiro Sakai
- Department of Pharmacology, School of Dentistry, Showa University, Tokyo, Japan
| | - Masamichi Takami
- Department of Pharmacology, School of Dentistry, Showa University, Tokyo, Japan
| | - Fumihiko Takeuchi
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern, Medical Center, Dallas, TX.,Department of Microbiology, University of Texas Southwestern, Medical Center, Dallas, TX; and
| | - Frank Rutsch
- Department of General Pediatrics, Muenster University Children's Hospital, Albert-Schweitzer Campus 1, Muenster, Germany
| | - Takashi Fujita
- Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan.,Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Hiroki Kato
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan.,Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Scott KM, Cohen DJ, Boyan BD, Schwartz Z. miR-122 and the WNT/β-catenin pathway inhibit effects of both interleukin-1β and tumor necrosis factor-α in articular chondrocytes in vitro. J Cell Biochem 2022; 123:1053-1063. [PMID: 35362116 PMCID: PMC9320820 DOI: 10.1002/jcb.30244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 01/06/2023]
Abstract
Interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and WNT/β-catenin signaling cause dysregulation of rat primary articular chondrocytes (rArCs), resulting in cartilage extracellular matrix destruction and osteoarthritis (OA) progression. microRNA (miR) miR-122 represses these effects whereas miR-451 exacerbates IL-1β-stimulated matrix metalloproteinase-13 (MMP-13) and prostaglandin E2 (PGE2) production. The goals of this study were to evaluate crosstalk between these signaling pathways and determine if miR-122 and miR-451 exert their protective/destructive effects through these pathways in an in vitro model of OA. Primary rArCs were treated with IL-1β or TNF-α for 24 h and total DNA, MMP-13, and PGE2, as well as expression levels of miR-122 and miR-451 were measured. After 24-h transfection with miR-122, miR-451, miR-122-inhibitor, or miR-451-inhibitor, rArCs were treated with or without TNF-α for 24 h; total DNA, MMP-13, and PGE2 were measured. Similarly, cells were treated with WNT-agonist lithium chloride (LiCl), WNT-antagonist XAV-939 (XAV), or PKF-118-310 (PKF) with and without IL-1β or TNF-α stimulation. Both IL-1β and TNF-α-stimulation increased MMP-13 and PGE2 production. Transfection with miR-122 prevented TNF-α-stimulated increases in MMP-13 and PGE2 whereas transfection with miR-451 did not change these levels. No differences were found in MMP-13 or PGE2 production with miR-122 or miR-451 inhibitors. LiCl treatment decreased PGE2 production in cultures treated with TNF-α, but not MMP-13. XAV increased TNF-α-stimulated increases in PGE2 but not MMP-13. LiCl reduced IL-1β-stimulated increases in MMP-13 and PGE2. XAV and PKF increased IL-1β-stimulated increases in MMP-13 and PGE2. In this in vitro OA model, miR-122 protects against both IL-1β and TNF-α stimulated increases in MMP-13 and PGE2 production. miR-451 does not act through the TNF-α pathway. The WNT/β-catenin pathway regulates the effects of IL-1β and TNF-α stimulation. This study suggests that miR-122 can be used as a treatment or prevention for OA.
Collapse
Affiliation(s)
- Kayla M Scott
- College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - D Joshua Cohen
- College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Barbara D Boyan
- College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Zvi Schwartz
- College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
7
|
Radwan E, Belmadani S, Matrougui K. Disrupting Interleukin 12 Improves Microvascular Endothelial Function in Type 2 Diabetes Through ER Stress CHOP and Oxidative Stress Mechanisms. Diabetes Metab Syndr Obes 2022; 15:2633-2642. [PMID: 36065460 PMCID: PMC9440700 DOI: 10.2147/dmso.s369488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Vascular endothelial dysfunction is well established in type 2 diabetes. Interleukin-12 (IL-12) and endoplasmic reticulum (ER) stress are up-regulated in type 2 diabetic patients and animal models of type 2 diabetes. However, the role and underlying mechanisms of IL-12 and the ER stress CHOP in endothelial dysfunction are not fully understood. METHODS We generated double knockout mice between db-/db- and p40IL-12-/- mice (db-/db-p40-IL-12-/-) and endoplasmic (ER) stress-CHOP-/- mice (db-/db-CHOP-/-). We performed a glucose tolerance test (GTT) to determine the effect of IL-12 and ER stress CHOP on glucose metabolism. We assessed the endothelial function and determined the phosphorylation level of eNOS, Akt, AMPK, and the expression of ER stress (CHOP, BIP), and oxidative stress (Nox2 and Nox4 and NADPH oxidase activity). RESULTS The results showed that GTT was improved in db-/db-p40-IL-12-/- and db-/db-CHOP-/- suggesting IL-12 and CHOP as parts of a mechanism involved in the development of type 2 diabetes. The microvascular endothelial dysfunction in db-/db- mouse is associated with decreased phosphorylated eNOS, Akt, AMPK, and increased CHOP, BIP, Nox2, and Nox4 expressions. Interestingly, disrupting IL-12 and ER stress CHOP in db-/db- mice significantly improved endothelial function, increased survival markers expression and decreased ER and oxidative stress. CONCLUSION Using a genetic approach, these findings provide evidence that IL-12 and ER stress CHOP play a significant role in microvascular endothelial dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Eman Radwan
- Department of Physiological Sciences, EVMS, Norfolk, VA, 23501, USA
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Souad Belmadani
- Department of Physiological Sciences, EVMS, Norfolk, VA, 23501, USA
| | - Khalid Matrougui
- Department of Physiological Sciences, EVMS, Norfolk, VA, 23501, USA
- Correspondence: Khalid Matrougui, Department of Physiological Sciences, EVMS, Norfolk, VA, 23501, USA, Tel +1 757-446-5278, Email
| |
Collapse
|
8
|
Leifheit-Nestler M, Vogt I, Haffner D, Richter B. Phosphate Is a Cardiovascular Toxin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:107-134. [DOI: 10.1007/978-3-030-91623-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Boraldi F, Lofaro FD, Quaglino D. Apoptosis in the Extraosseous Calcification Process. Cells 2021; 10:cells10010131. [PMID: 33445441 PMCID: PMC7827519 DOI: 10.3390/cells10010131] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
Extraosseous calcification is a pathologic mineralization process occurring in soft connective tissues (e.g., skin, vessels, tendons, and cartilage). It can take place on a genetic basis or as a consequence of acquired chronic diseases. In this last case, the etiology is multifactorial, including both extra- and intracellular mechanisms, such as the formation of membrane vesicles (e.g., matrix vesicles and apoptotic bodies), mitochondrial alterations, and oxidative stress. This review is an overview of extraosseous calcification mechanisms focusing on the relationships between apoptosis and mineralization in cartilage and vascular tissues, as these are the two tissues mostly affected by a number of age-related diseases having a progressively increased impact in Western Countries.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
- Correspondence:
| | - Francesco Demetrio Lofaro
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
- Interuniversity Consortium for Biotechnologies (CIB), Italy
| |
Collapse
|
10
|
Chao CT, Lin SH. Uremic Vascular Calcification: The Pathogenic Roles and Gastrointestinal Decontamination of Uremic Toxins. Toxins (Basel) 2020; 12:toxins12120812. [PMID: 33371477 PMCID: PMC7767516 DOI: 10.3390/toxins12120812] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Uremic vascular calcification (VC) commonly occurs during advanced chronic kidney disease (CKD) and significantly increases cardiovascular morbidity and mortality. Uremic toxins are integral within VC pathogenesis, as they exhibit adverse vascular influences ranging from atherosclerosis, vascular inflammation, to VC. Experimental removal of these toxins, including small molecular (phosphate, trimethylamine-N-oxide), large molecular (fibroblast growth factor-23, cytokines), and protein-bound ones (indoxyl sulfate, p-cresyl sulfate), ameliorates VC. As most uremic toxins share a gut origin, interventions through gastrointestinal tract are expected to demonstrate particular efficacy. The “gastrointestinal decontamination” through the removal of toxin in situ or impediment of toxin absorption within the gastrointestinal tract is a practical and potential strategy to reduce uremic toxins. First and foremost, the modulation of gut microbiota through optimizing dietary composition, the use of prebiotics or probiotics, can be implemented. Other promising strategies such as reducing calcium load, minimizing intestinal phosphate absorption through the optimization of phosphate binders and the inhibition of gut luminal phosphate transporters, the administration of magnesium, and the use of oral toxin adsorbent for protein-bound uremic toxins may potentially counteract uremic VC. Novel agents such as tenapanor have been actively tested in clinical trials for their potential vascular benefits. Further advanced studies are still warranted to validate the beneficial effects of gastrointestinal decontamination in the retardation and treatment of uremic VC.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Nephrology Division, Department of Medicine, National Taiwan University Hospital BeiHu Branch, Taipei 10845, Taiwan;
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
- Nephrology Division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| | - Shih-Hua Lin
- Department of Internal Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Reinhold S, Blankesteijn WM, Foulquier S. The Interplay of WNT and PPARγ Signaling in Vascular Calcification. Cells 2020; 9:cells9122658. [PMID: 33322009 PMCID: PMC7763279 DOI: 10.3390/cells9122658] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
Vascular calcification (VC), the ectopic deposition of calcium phosphate crystals in the vessel wall, is one of the primary contributors to cardiovascular death. The pathology of VC is determined by vascular topography, pre-existing diseases, and our genetic heritage. VC evolves from inflammation, mediated by macrophages, and from the osteochondrogenic transition of vascular smooth muscle cells (VSMC) in the atherosclerotic plaque. This pathologic transition partly resembles endochondral ossification, involving the chronologically ordered activation of the β-catenin-independent and -dependent Wingless and Int-1 (WNT) pathways and the termination of peroxisome proliferator-activated receptor γ (PPARγ) signal transduction. Several atherosclerotic plaque studies confirmed the differential activity of PPARγ and the WNT signaling pathways in VC. Notably, the actively regulated β-catenin-dependent and -independent WNT signals increase the osteochondrogenic transformation of VSMC through the up-regulation of the osteochondrogenic transcription factors SRY-box transcription factor 9 (SOX9) and runt-related transcription factor 2 (RUNX2). In addition, we have reported studies showing that WNT signaling pathways may be antagonized by PPARγ activation via the expression of different families of WNT inhibitors and through its direct interaction with β-catenin. In this review, we summarize the existing knowledge on WNT and PPARγ signaling and their interplay during the osteochondrogenic differentiation of VSMC in VC. Finally, we discuss knowledge gaps on this interplay and its possible clinical impact.
Collapse
Affiliation(s)
- Stefan Reinhold
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.R.); (W.M.B.)
| | - W. Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.R.); (W.M.B.)
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.R.); (W.M.B.)
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-433881409
| |
Collapse
|
12
|
Huang H, Li Z, Ruan Y, Feng W, Chen J, Li X, Ouyang L, Huang H. Circadian rhythm disorder: a potential inducer of vascular calcification? J Physiol Biochem 2020; 76:513-524. [PMID: 32945991 DOI: 10.1007/s13105-020-00767-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022]
Abstract
Over the past decades, circadian rhythm has drawn a great attention in cardiovascular diseases. The expressions of rhythm genes fluctuate in accordance with the diurnal changes of vascular physiology, which highlights the pivotal effect of vascular clock. Recent researches show that the circadian clock can directly regulate the synthetic and secretory function of endothelial cells and phenotypic switch of vascular smooth muscle cells to adjust vascular relaxation and contraction. Importantly, dysfunction of vascular cells is involved in vascular calcification. Secretion of osteogenic cytokines and calcified vesicles in the vessel, osteogenic phenotype switch of vascular smooth muscle cells are all implicated in the calcification process. Moreover, circadian rhythm disorder can lead to abnormal hormone secretion, oxidative stress, inflammatory reaction, and autophagy, all of which should not be ignored in vascular calcification. Vascular senescence is another pathogenetic mechanism in vascular calcification. Accelerated vascular senescence may act as an important intermediate factor to promote vascular calcification in circadian rhythm disorders. In this review, we elaborate the potential effect of circadian rhythm disorder in vascular calcification and try to provide a new direction in the prevention of vascular calcification.
Collapse
Affiliation(s)
- Haoran Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518000, China
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaohuai Li
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518000, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuyi Ruan
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518000, China
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weijing Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxue Li
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518000, China
| | - Liu Ouyang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518000, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518000, China.
| |
Collapse
|
13
|
de las Fuentes L, Sung YJ, Sitlani CM, Avery CL, Bartz TM, Keyser CD, Evans DS, Li X, Musani SK, Ruiter R, Smith AV, Sun F, Trompet S, Xu H, Arnett DK, Bis JC, Broeckel U, Busch EL, Chen YDI, Correa A, Cummings SR, Floyd JS, Ford I, Guo X, Harris TB, Ikram MA, Lange L, Launer LJ, Reiner AP, Schwander K, Smith NL, Sotoodehnia N, Stewart JD, Stott DJ, Stürmer T, Taylor KD, Uitterlinden A, Vasan RS, Wiggins KL, Cupples LA, Gudnason V, Heckbert SR, Jukema JW, Liu Y, Psaty BM, Rao DC, Rotter JI, Stricker B, Wilson JG, Whitsel EA. Genome-wide meta-analysis of variant-by-diuretic interactions as modulators of lipid traits in persons of European and African ancestry. THE PHARMACOGENOMICS JOURNAL 2020; 20:482-493. [PMID: 31806883 PMCID: PMC7260079 DOI: 10.1038/s41397-019-0132-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 01/11/2023]
Abstract
Hypertension (HTN) is a significant risk factor for cardiovascular morbidity and mortality. Metabolic abnormalities, including adverse cholesterol and triglycerides (TG) profiles, are frequent comorbid findings with HTN and contribute to cardiovascular disease. Diuretics, which are used to treat HTN and heart failure, have been associated with worsening of fasting lipid concentrations. Genome-wide meta-analyses with 39,710 European-ancestry (EA) individuals and 9925 African-ancestry (AA) individuals were performed to identify genetic variants that modify the effect of loop or thiazide diuretic use on blood lipid concentrations. Both longitudinal and cross sectional data were used to compute cohort-specific interaction results, which were then combined through meta-analysis in each ancestry. These ancestry-specific results were further combined through trans-ancestry meta-analysis. Analysis of EA data identified two genome-wide significant (p < 5 × 10-8) loci with single nucleotide variant (SNV)-loop diuretic interaction on TG concentrations (including COL11A1). Analysis of AA data identified one genome-wide significant locus adjacent to BMP2 with SNV-loop diuretic interaction on TG concentrations. Trans-ancestry analysis strengthened evidence of association for SNV-loop diuretic interaction at two loci (KIAA1217 and BAALC). There were few significant SNV-thiazide diuretic interaction associations on TG concentrations and for either diuretic on cholesterol concentrations. Several promising loci were identified that may implicate biologic pathways that contribute to adverse metabolic side effects from diuretic therapy.
Collapse
Affiliation(s)
- Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, MO, USA.
| | - Y J Sung
- Division of Biostatistics, Washington University, St. Louis, MO, USA
| | - C M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - C L Avery
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - T M Bartz
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, USA
| | - C de Keyser
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - D S Evans
- Research Institute, California Pacific Medical Center, San Francisco, CA, USA
| | - X Li
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - S K Musani
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - R Ruiter
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - F Sun
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - S Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - H Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - D K Arnett
- Dean's Office, University of Kentucky College of Public Health, Lexington, KY, USA
| | - J C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - U Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - E L Busch
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Y-D I Chen
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - A Correa
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - S R Cummings
- Research Institute, California Pacific Medical Center, San Francisco, CA, USA
| | - J S Floyd
- Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, WA, USA
| | - I Ford
- Robertson Center for biostatistics, University of Glasgow, Glasgow, UK
| | - X Guo
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - T B Harris
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - M A Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L Lange
- Department of Genetics, University of Colorado, Denver, Denver, CO, USA
| | - L J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - A P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - K Schwander
- Division of Biostatistics, Washington University, St. Louis, MO, USA
| | - N L Smith
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center (ERIC), VA Cooperative Studies Program, VA Puget Sound Health Care System, Seattle, WA, USA
| | - N Sotoodehnia
- Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, WA, USA
- Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - J D Stewart
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - D J Stott
- Institute of cardiovascular and medical sciences, Faculty of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - T Stürmer
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Center for Pharmacoepidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - K D Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - A Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - R S Vasan
- The Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - K L Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - L A Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - V Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - S R Heckbert
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - J W Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Y Liu
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest University, Winston-, Salem, NC, USA
| | - B M Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Medicine, and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - D C Rao
- Division of Biostatistics, Washington University, St. Louis, MO, USA
| | - J I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - B Stricker
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J G Wilson
- Biophysics and Physiology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - E A Whitsel
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- School of Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Alique M, Bodega G, Corchete E, García-Menéndez E, de Sequera P, Luque R, Rodríguez-Padrón D, Marqués M, Portolés J, Carracedo J, Ramírez R. Microvesicles from indoxyl sulfate-treated endothelial cells induce vascular calcification in vitro. Comput Struct Biotechnol J 2020; 18:953-966. [PMID: 32368330 PMCID: PMC7184105 DOI: 10.1016/j.csbj.2020.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022] Open
Abstract
Vascular calcification (VC), an unpredictable pathophysiological process and critical event in patients with cardiovascular diseases (CVDs), is the leading cause of morbi-mortality and disability in chronic kidney disease (CKD) patients worldwide. Currently, no diagnostic method is available for identifying patients at risk of VC development; the pathology is detected when the process is irreversible. Extracellular vesicles (EVs) from endothelial cells might promote VC. Therefore, their evaluation and characterization could be useful for designing new diagnostic tools. The aim of the present study is to investigate whether microvesicles (MVs) from endothelial cells damaged by uremic toxin and indoxyl sulfate (IS) could induce calcification in human vascular smooth muscle cells (VMSCs). Besides, we have also analyzed the molecular mechanisms by which these endothelial MVs can promote VC development. Endothelial damage has been evaluated according to the percentage of senescence in endothelial cells, differential microRNAs in endothelial cells, and the amount of MVs released per cell. To identify the role of MVs in VC, VSMCs were treated with MVs from IS-treated endothelial cells. Calcium, inflammatory gene expression, and procalcification mediator levels in VSMCs were determined. IS-treated endothelial cells underwent senescence and exhibited modulated microRNA expression and an increase in the release of MVs. VSMCs exposed to these MVs modulated the expression of pro-inflammatory genes and some mediators involved in calcification progression. MVs produced by IS-treated endothelial cells promoted calcification in VSMCs.
Collapse
Affiliation(s)
- Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares, Madrid, Spain
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Elena Corchete
- Sección de Nefrología, Hospital Universitario Infanta Leonor, Madrid, Spain
| | | | | | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Carretera Nacional IV-A, Km 396, Córdoba, Spain
| | - Daily Rodríguez-Padrón
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Carretera Nacional IV-A, Km 396, Córdoba, Spain
| | - María Marqués
- Servicio Nefrología, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - José Portolés
- Servicio Nefrología, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Julia Carracedo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid/ Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Rafael Ramírez
- Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares, Madrid, Spain
| |
Collapse
|
15
|
Nash M, McGrath JP, Cartland SP, Patel S, Kavurma MM. Tumour necrosis factor superfamily members in ischaemic vascular diseases. Cardiovasc Res 2020; 115:713-720. [PMID: 30816914 DOI: 10.1093/cvr/cvz042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/25/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
Current treatment of ischaemic vascular diseases such as coronary and peripheral artery disease includes angioplasty and bypass grafting, as well as lipid lowering therapies and control of other cardiovascular risk factors. Numerous members of the tumour necrosis factor superfamily (TNFSF) have recently shown emerging roles in both the protection and progression of such diseases. Understanding the role TNFSF members play in ischaemic vascular disease may provide insight into the development of novel therapeutics to prevent or treat diseases relating to atherosclerosis and ischaemia. This review summarizes the most recent findings relating to TNFSF members and the mechanisms that precede ischaemic vascular disease progression, particularly endothelial dysfunction, chronic inflammation, and atherosclerotic plaque development. This review also explores recent translational research on the role of TNFSF therapies in cardiovascular disease.
Collapse
Affiliation(s)
- Megan Nash
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney NSW, Australia.,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.,Department of Biochemistry, University of Bath, Bath, UK
| | - Jordan P McGrath
- Department of Cardiology, Royal Prince Alfred Hospital, Missenden Rd Camperdown, NSW, Australia
| | - Siân P Cartland
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney NSW, Australia.,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Sanjay Patel
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney NSW, Australia.,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Missenden Rd Camperdown, NSW, Australia
| | - Mary M Kavurma
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney NSW, Australia.,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
16
|
Kuipers AL, Miljkovic I, Barinas‐Mitchell E, Nestlerode CS, Cvejkus RK, Wheeler VW, Zhang Y, Zmuda JM. Wnt Pathway Gene Expression Is Associated With Arterial Stiffness. J Am Heart Assoc 2020; 9:e014170. [PMID: 32013702 PMCID: PMC7033870 DOI: 10.1161/jaha.119.014170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
Background Animal and in vitro experiments implicate the Wnt pathway in cardiac development, fibrosis, vascular calcification, and atherosclerosis, but research in humans is lacking. We examined peripheral blood Wnt pathway gene expression and arterial stiffness in 369 healthy African ancestry men (mean age, 64 years). Methods and Results Gene expression was assessed using a custom Nanostring nCounter gene expression panel (N=43 genes) and normalized to housekeeping genes and background signal. Arterial stiffness was assessed via brachial-ankle pulse-wave velocity. Fourteen Wnt genes showed detectable expression and were tested individually as predictors of pulse-wave velocity using linear regression, adjusting for age, height, weight, blood pressure, medication use, resting heart rate, current smoking, alcohol intake, and sedentary lifestyle. Adenomatous polyposis coli regulator of Wnt signaling pathway (APC), glycogen synthase kinase 3β (GSK3B), and transcription factor 4 (TCF4) were significantly associated with arterial stiffness (P<0.05 for all). When entered into a single model, APC and TCF4 expression remained independently associated with arterial stiffness (P=0.04 and 0.003, respectively), and each explained ≈3% of the variance in pulse-wave velocity. Conclusions The current study establishes a novel association between in vivo expression of the Wnt pathway genes, APC and TCF4, with arterial stiffness in African ancestry men, a population at high risk of hypertensive vascular disease.
Collapse
Affiliation(s)
| | - Iva Miljkovic
- Department of EpidemiologyUniversity of PittsburghPittsburghPA
| | | | | | - Ryan K. Cvejkus
- Department of EpidemiologyUniversity of PittsburghPittsburghPA
| | | | - Yingze Zhang
- Department of MedicineUniversity of PittsburghPittsburghPA
| | - Joseph M. Zmuda
- Department of EpidemiologyUniversity of PittsburghPittsburghPA
| |
Collapse
|
17
|
Hill E, Sapa H, Negrea L, Bame K, Hostetter T, Barkoukis H, Dusso A, Dobre M. Effect of Oat β-Glucan Supplementation on Chronic Kidney Disease: A Feasibility Study. J Ren Nutr 2019; 30:208-215. [PMID: 31668649 DOI: 10.1053/j.jrn.2019.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/20/2019] [Accepted: 06/29/2019] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Dietary supplementation with grains containing high β-glucan fiber has been shown to attenuate the progression of chronic kidney disease (CKD) and vascular calcification in animal models. The aim of this study was to investigate the feasibility of consuming an oat β-glucan supplement and to assess its effects on certain uremic toxins and markers of mineral metabolism in patients with CKD. DESIGN This is a 20-week, nonrandomized, single-center, pretest-posttest study. Twenty-eight subjects with CKD stages 3-4 were enrolled. The mean age was 67.6 ± 8.9 years, and the mean estimated glomerular filtration rate was 35 ± 14 mL/min/1.73 m2. Subjects received a dietary supplement containing 3 g of oat β-glucan per day for 12 weeks. The 4-week period before the start of the intervention was used as a baseline comparison for each subject. The primary outcome was pre-post supplement changes in plasma levels of two uremic toxins: trimethylamine N-oxide (TMAO) and asymmetric dimethylarginine. Secondary outcomes were pre-post supplement changes in serum calcium, phosphorus, and Klotho levels. Repeated-measures analysis of variance was used to test the differences in outcomes over the three-month-long intervention. RESULTS Serum levels of TMAO decreased by a median of -17% (interquartile range: -46%, 7%) at the end of the intervention. A nonstatistically significant change was observed for asymmetric dimethylarginine (median -0.6% [-12%, 20%]) and serum Klotho (median -3% [-8%, 7%]). There were no changes in serum levels of calcium and phosphorus. One month after discontinuation of β-glucan therapy, TMAO levels increased by a median of 16% (-12%, 36%) but remained slightly below the pretreatment levels. Eight subjects experienced side effects and discontinued the treatment. CONCLUSION A diet supplemented with β-glucan is safe and potentially efficacious in lowering serum concentrations of TMAO in patients with CKD. Larger trials with longer follow-up times are needed to determine whether such reductions translate into clinical benefits.
Collapse
Affiliation(s)
- Eddie Hill
- School of Medicine, Case Western Reserve University, Cleveland, Ohio.
| | - Hima Sapa
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Lavinia Negrea
- School of Medicine, Case Western Reserve University, Cleveland, Ohio; Division of Nephrology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Kristin Bame
- Clinical Nutrition Services Department, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Thomas Hostetter
- School of Medicine, Case Western Reserve University, Cleveland, Ohio; Division of Nephrology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Hope Barkoukis
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Adriana Dusso
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Mirela Dobre
- School of Medicine, Case Western Reserve University, Cleveland, Ohio; Division of Nephrology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
18
|
Czaya B, Faul C. The Role of Fibroblast Growth Factor 23 in Inflammation and Anemia. Int J Mol Sci 2019; 20:E4195. [PMID: 31461904 PMCID: PMC6747522 DOI: 10.3390/ijms20174195] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
In patients with chronic kidney disease (CKD), adverse outcomes such as systemic inflammation and anemia are contributing pathologies which increase the risks for cardiovascular mortality. Amongst these complications, abnormalities in mineral metabolism and the metabolic milieu are associated with chronic inflammation and iron dysregulation, and fibroblast growth factor 23 (FGF23) is a risk factor in this context. FGF23 is a bone-derived hormone that is essential for regulating vitamin D and phosphate homeostasis. In the early stages of CKD, serum FGF23 levels rise 1000-fold above normal values in an attempt to maintain normal phosphate levels. Despite this compensatory action, clinical CKD studies have demonstrated powerful and dose-dependent associations between FGF23 levels and higher risks for mortality. A prospective pathomechanism coupling elevated serum FGF23 levels with CKD-associated anemia and cardiovascular injury is its strong association with chronic inflammation. In this review, we will examine the current experimental and clinical evidence regarding the role of FGF23 in renal physiology as well as in the pathophysiology of CKD with an emphasis on chronic inflammation and anemia.
Collapse
Affiliation(s)
- Brian Czaya
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
19
|
Elseweidy MM, Mohamed HE, Elrashidy RA, Atteia HH, Elnagar GM, Ali AEM. Potential therapeutic roles of 10-dehydrogingerdione and/or pentoxifylline against calcium deposition in aortic tissues of high dietary cholesterol-fed rabbits. Mol Cell Biochem 2019; 453:131-142. [PMID: 30173373 DOI: 10.1007/s11010-018-3438-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/24/2018] [Indexed: 02/08/2023]
Abstract
The present study aimed to investigate the inhibitory effects of 10-dehydrogingerdione (10-DHGD) and pentoxifylline (PTX) either individually or in combined form on calcium deposition in high cholesterol diet (HCD)-fed rabbits as compared to atorvastatin (ATOR), and to clarify the underlying mechanisms. Three-months-old male New Zealand white rabbits received either normal chow or HCD for 12 weeks. The latter group was subdivided into five groups and concurrently treated either with vehicle (dyslipidemic control), ATOR, 10-DHGD, PTX or combined 10-DHGD and PTX. Blood samples and aortic tissue were collected for biochemical and histological analyses. HCD-fed rabbits displayed dyslipidemia, inflammation, atherosclerotic lesions, and calcium deposition in aortas as compared to normal group. This was associated with up-regulation of bone morphogenetic protein-2 (BMP-2), wingless-type MMTV integration site family 3A (Wnt3a) mRNA levels and osteopontin expression in their aortic tissue, along with higher serum alkaline phosphatase and osteocalcin levels. Furthermore, a marked decrease in osteoprotegerin, along with a significant increase in receptor activator of NF-κB(RANK) levels, was found in aortic tissue of dyslipidemic rabbits. 10-DHGD and PTX monotherapy significantly modulated the afore-mentioned calcification markers and attenuated aortic calcification to greater extent than ATOR. Combination of 10-DHGD and PTX exerted more anti-calcifying effect than either individual drug. Our findings suggested therapeutic roles of 10-DHGD and PTX against aortic calcium deposition in dyslipidemic rabbits, likely mediated by HDL-raising effect and attenuation of associated inflammation. Combination of 10-DHGD and PTX may represent a promising therapeutic strategy for aortic calcification associated with atherosclerosis.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Hoda E Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Rania A Elrashidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Hebatallah H Atteia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Gehad M Elnagar
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Abd El-Monem Ali
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
20
|
Lipid Metabolism Disorder and Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:525-541. [PMID: 31399983 DOI: 10.1007/978-981-13-8871-2_26] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the lipid nephrotoxicity hypothesis was proposed in 1982, increasing evidence has supported the hypothesis that lipid abnormalities contributed to the progression of glomerulosclerosis. In this chapter, we will discuss the general promises of the original hypothesis, focusing especially on the role of lipids and metabolic inflammation accompanying CKD in renal fibrosis and potential new strategies of prevention.
Collapse
|
21
|
Zhang B, Miller VM, Miller JD. Influences of Sex and Estrogen in Arterial and Valvular Calcification. Front Endocrinol (Lausanne) 2019; 10:622. [PMID: 31620082 PMCID: PMC6763561 DOI: 10.3389/fendo.2019.00622] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/27/2019] [Indexed: 01/14/2023] Open
Abstract
Vascular and cardiac valvular calcification was once considered to be a degenerative and end stage product in aging cardiovascular tissues. Over the past two decades, however, a critical mass of data has shown that cardiovascular calcification can be an active and highly regulated process. While the incidence of calcification in the coronary arteries and cardiac valves is higher in men than in age-matched women, a high index of calcification associates with increased morbidity, and mortality in both sexes. Despite the ubiquitous portending of poor outcomes in both sexes, our understanding of mechanisms of calcification under the dramatically different biological contexts of sex and hormonal milieu remains rudimentary. Understanding how the critical context of these variables inform our understanding of mechanisms of calcification-as well as innovative strategies to target it therapeutically-is essential to advancing the fields of both cardiovascular disease and fundamental mechanisms of aging. This review will explore potential sex and sex-steroid differences in the basic biological pathways associated with vascular and cardiac valvular tissue calcification, and potential strategies of pharmacological therapy to reduce or slow these processes.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Virginia M. Miller
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Jordan D. Miller
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Jordan D. Miller
| |
Collapse
|
22
|
Elseweidy MM, Mohamed HE, Elrashidy RA, Atteia HH, Elnagar GM. Inhibition of Aortic Calcification by Policosanol in Dyslipidemic Rabbits Is Enhanced by Pentoxifylline: Potential Role of PCSK9. J Cardiovasc Pharmacol Ther 2018; 23:551-560. [PMID: 29742924 DOI: 10.1177/1074248418775377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Policosanol (POL) is a hypocholesterolemic drug of natural origin and has been shown to reduce circulating levels of proprotein convertase subtilisin/kexin type 9 (PCSK9) in healthy participants. Recently, we have reported that POL can attenuate aortic calcification in diabetic dyslipidemic rats; however, the underlying mechanism is not fully elucidated. We aimed to investigate the effect of POL on aortic calcification and whether PCSK9 has a contributory role and also to examine whether the combination of POL with pentoxifylline (PTX) as anti-tumor necrosis factor α would offer additional benefits. Thirty adult male New Zealand rabbits weighing 1.5 to 2 kg were randomly assigned to 5 groups. One group received standard chow diet and served as normal control group (NC). The other 4 groups received 0.5% wt/wt cholesterol-rich diet for 12 weeks and concurrently treated with placebo, POL, PTX, or a combination of POL and PTX. Sera samples and aortic tissue were collected for biochemical measurements and histological assessment. Rabbits fed a cholesterol-rich diet demonstrated dyslipidemia, increased inflammatory state, and elevated serum levels of PCSK9, compared to the NC group. Aortic calcification was evident in dyslipidemic rabbits, represented by increased calcium deposition and osteopontin expression in aortic tissue, along with elevated serum levels of alkaline phosphatase and osteocalcin. Dyslipidemic rabbits showed a significant upregulation of wingless-type MMTV integration site family 3A and bone morphogenetic protein 2 genes in their aortic tissue. Policosanol significantly reduced circulating PCSK9 levels, suppressed calcification markers, and attenuated aortic calcification. Combination of POL with PTX alleviated aortic calcification to a greater extent than either monotherapy, which may be attributed to further suppression of PCSK9 and calcification markers. These findings suggested that POL exerted anticalcifying effect partly via inhibition of PCSK9. Combination of POL and PTX offered additional benefits and might represent a promising therapeutic option for aortic calcification.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- 1 Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hoda E Mohamed
- 1 Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rania A Elrashidy
- 1 Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hebatallah H Atteia
- 1 Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Gehad M Elnagar
- 1 Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
23
|
Interplay between the renin-angiotensin system, the canonical WNT/β-catenin pathway and PPARγ in hypertension. Curr Hypertens Rep 2018; 20:62. [PMID: 29884931 DOI: 10.1007/s11906-018-0860-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Heterogeneous causes can determinate hypertension. RECENT FINDINGS The renin-angiotensin system (RAS) has a major role in the pathophysiology of blood pressure. Angiotensin II and aldosterone are overexpressed during hypertension and lead to hypertension development and its cardiovascular complications. In several tissues, the overactivation of the canonical WNT/β-catenin pathway leads to inactivation of peroxisome proliferator-activated receptor gamma (PPARγ), while PPARγ stimulation induces a decrease of the canonical WNT/β-catenin pathway. In hypertension, the WNT/β-catenin pathway is upregulated, whereas PPARγ is decreased. The WNT/β-catenin pathway and RAS regulate positively each other during hypertension, whereas PPARγ agonists can decrease the expression of both the WNT/β-catenin pathway and RAS. We focus this review on the hypothesis of an opposite interplay between PPARγ and both the canonical WNT/β-catenin pathway and RAS in regulating the molecular mechanism underlying hypertension. The interactions between PPARγ and the canonical WNT/β-catenin pathway through the regulation of the renin-angiotensin system in hypertension may be an interesting way to better understand the actions and the effects of PPARγ agonists as antihypertensive drugs.
Collapse
|
24
|
Willy K, Girndt M, Voelkl J, Fiedler R, Martus P, Storr M, Schindler R, Zickler D. Expanded Haemodialysis Therapy of Chronic Haemodialysis Patients Prevents Calcification and Apoptosis of Vascular Smooth Muscle Cells in vitro. Blood Purif 2017; 45:131-138. [PMID: 29402827 DOI: 10.1159/000484925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/02/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Vascular calcification is a common phenomenon in patients with chronic kidney disease and strongly associated with increased cardiovascular mortality. Vascular calcification is an active process mediated in part by inflammatory processes in vascular smooth muscle cells (VSMC). These could be modified by the insufficient removal of proinflammatory cytokines through conventional high-flux (HF) membranes. Recent trials demonstrated a reduction of inflammation in VSMC by use of dialysis membranes with a higher and steeper cut-off. These membranes caused significant albumin loss. Therefore, the effect of high retention Onset (HRO) dialysis membranes on vascular calcification and its implications in vitro was evaluated. METHODS In the PERCI II trial, 48 chronic dialysis patients were dialyzed using HF and HRO dialyzers and serum samples were collected. Calcifying VSMC were incubated with the serum samples. Calcification was determined using alizarin red staining (AZR) and determination of alkaline phosphatase (ALP) activity. Furthermore, apoptosis was evaluated, and release of matrix Gla protein (MGP), osteopontin (OPN) and growth differentiation factor 15 (GDF-15) were measured in cell supernatants. RESULTS Vascular calcification in vitro was significantly reduced by 24% (ALP) and 36% (AZR) after 4 weeks of HRO dialysis and by 33% (ALP) and 48% (AZR) after 12 weeks of dialysis using HRO membranes compared to HF dialysis. Apoptosis was significantly lower in the HRO group. The concentrations of MGP and OPN were significantly elevated after incubation with HF serum compared to HRO serum and healthy controls. Similarly, GDF-15 release in the supernatant was elevated after incubation with HF serum, an effect significantly ameliorated after treatment with HRO medium. CONCLUSIONS Expanded haemodialysis therapy reduces the pro-calcific potential of serum from dialysis patients in vitro. With a markedly reduced albumin filtration compared to high cut-off dialysis, use of the HRO dialyzers may possibly provide a treatment option for chronic dialysis patients to reduce the progression of vascular calcification.
Collapse
Affiliation(s)
- Kevin Willy
- Charité University Medicine Berlin, Campus Virchow Clinic, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Matthias Girndt
- Department of Internal Medicine II, Martin-Luther-University Halle, Halle, Germany
| | - Jakob Voelkl
- Department of Internal Medicine and Cardiology, Charité Campus Virchow, Charité Center for Cardiovascular Research (CCR), Berlin, Germany
| | - Roman Fiedler
- Department of Internal Medicine II, Martin-Luther-University Halle, Halle, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Markus Storr
- Department of Research and Development, Gambro Dialysatoren GmbH, Hechingen, Germany
| | - Ralf Schindler
- Charité University Medicine Berlin, Campus Virchow Clinic, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Daniel Zickler
- Charité University Medicine Berlin, Campus Virchow Clinic, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| |
Collapse
|
25
|
Molina P, Carrero JJ, Bover J, Chauveau P, Mazzaferro S, Torres PU, for the European Renal Nutrition (ERN) and Chronic Kidney Disease‐Mineral and Bone Disorder (CKD‐MBD) Working Groups of the European Renal Association–European Dialysis Transplant Association (ERA‐EDTA). Vitamin D, a modulator of musculoskeletal health in chronic kidney disease. J Cachexia Sarcopenia Muscle 2017; 8:686-701. [PMID: 28675610 PMCID: PMC5659055 DOI: 10.1002/jcsm.12218] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/04/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023] Open
Abstract
The spectrum of activity of vitamin D goes beyond calcium and bone homeostasis, and growing evidence suggests that vitamin D contributes to maintain musculoskeletal health in healthy subjects as well as in patients with chronic kidney disease (CKD), who display the combination of bone metabolism disorder, muscle wasting, and weakness. Here, we review how vitamin D represents a pathway in which bone and muscle may interact. In vitro studies have confirmed that the vitamin D receptor is present on muscle, describing the mechanisms whereby vitamin D directly affects skeletal muscle. These include genomic and non-genomic (rapid) effects, regulating cellular differentiation and proliferation. Observational studies have shown that circulating 25-hydroxyvitamin D levels correlate with the clinical symptoms and muscle morphological changes observed in CKD patients. Vitamin D deficiency has been linked to low bone formation rate and bone mineral density, with an increased risk of skeletal fractures. The impact of low vitamin D status on skeletal muscle may also affect muscle metabolic pathways, including its sensitivity to insulin. Although some interventional studies have shown that vitamin D may improve physical performance and protect against the development of histological and radiological signs of hyperparathyroidism, evidence is still insufficient to draw definitive conclusions.
Collapse
Affiliation(s)
- Pablo Molina
- Department of NephrologyHospital Universitario Doctor PesetValenciaSpain
- REDinRENMadridSpain
- Department of MedicineUniversitat de ValènciaValenciaSpain
| | - Juan J. Carrero
- Division of Renal MedicineCLINTEC, Karolinska InstitutetStockholmSweden
| | - Jordi Bover
- REDinRENMadridSpain
- Department of NephrologyFundació PuigvertBarcelonaSpain
- IIB Sant PauBarcelonaSpain
| | - Philippe Chauveau
- Service de Néphrologie Transplantation DialyseCentre Hospitalier Universitaire de Bordeaux et Aurad‐AquitaineBordeauxFrance
| | - Sandro Mazzaferro
- Department of Cardiovascular, Respiratory, Nephrologic and Geriatric SciencesSapienza University of RomeRomeItaly
| | - Pablo Ureña Torres
- Department of Nephrology and DialysisClinique du Landy, Ramsay‐Générale de SantéSaint OuenParisFrance
- Department of Renal PhysiologyNecker Hospital, University of Paris DescartesParisFrance
| | | |
Collapse
|
26
|
Abou Ziki MD, Mani A. Wnt signaling, a novel pathway regulating blood pressure? State of the art review. Atherosclerosis 2017; 262:171-178. [PMID: 28522145 PMCID: PMC5508596 DOI: 10.1016/j.atherosclerosis.2017.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/06/2017] [Accepted: 05/03/2017] [Indexed: 12/18/2022]
Abstract
Recent antihypertensive trials show conflicting results on blood pressure (BP) targets in patient populations with different metabolic profiles, with lowest benefit from tight BP control observed in patients with type 2 diabetes mellitus. This paradox could arise from the heterogeneity of study populations and underscores the importance of precision medicine initiatives towards understanding and treating hypertension. Wnt signaling pathways and genetic variations in its signaling peptides have been recently associated with metabolic syndrome, hypertension and diabetes, generating a breakthrough for advancement of precision medicine in the field of hypertension. We performed a review of PubMed for publications addressing the contributions of Wnt to BP regulation and hypertension. In addition, we performed a manual search of the reference lists for relevant articles, and included unpublished observations from our laboratory. There is emerging evidence for Wnt's role in BP regulation and its involvement in the pathogenesis of hypertension. Wnt signaling has pleiotropic effects on distinct pathways that involve vascular smooth muscle plasticity, and cardiac, renal, and neural physiology. Hypertension is a heterogeneous disease with unique molecular pathways regulating its response to therapy. Recognition of these pathways is a prerequisite to identify novel targets for drug development and personalizing medicine. A review of Wnt signaling reveals its emerging role in BP regulation and as a target for novel drug development that has the potential to transform the therapy of hypertension in specific populations.
Collapse
Affiliation(s)
- Maen D Abou Ziki
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Arya Mani
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
27
|
Inflammatory Cytokines as Uremic Toxins: "Ni Son Todos Los Que Estan, Ni Estan Todos Los Que Son". Toxins (Basel) 2017; 9:toxins9040114. [PMID: 28333114 PMCID: PMC5408188 DOI: 10.3390/toxins9040114] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 01/03/2023] Open
Abstract
Chronic kidney disease is among the fastest growing causes of death worldwide. An increased risk of all-cause and cardiovascular death is thought to depend on the accumulation of uremic toxins when glomerular filtration rate falls. In addition, the circulating levels of several markers of inflammation predict mortality in patients with chronic kidney disease. Indeed, a number of cytokines are listed in databases of uremic toxins and uremic retention solutes. They include inflammatory cytokines (IL-1β, IL-18, IL-6, TNFα), chemokines (IL-8), and adipokines (adiponectin, leptin and resistin), as well as anti-inflammatory cytokines (IL-10). We now critically review the cytokines that may be considered uremic toxins. We discuss the rationale to consider them uremic toxins (mechanisms underlying the increased serum levels and evidence supporting their contribution to CKD manifestations), identify gaps in knowledge, discuss potential therapeutic implications to be tested in clinical trials in order to make this knowledge useful for the practicing physician, and identify additional cytokines, cytokine receptors and chemokines that may fulfill the criteria to be considered uremic toxins, such as sIL-6R, sTNFR1, sTNFR2, IL-2, CXCL12, CX3CL1 and others. In addition, we suggest that IL-10, leptin, adiponectin and resistin should not be considered uremic toxins toxins based on insufficient or contradictory evidence of an association with adverse outcomes in humans or preclinical data not consistent with a causal association.
Collapse
|
28
|
Medium Cut-Off (MCO) Membranes Reduce Inflammation in Chronic Dialysis Patients-A Randomized Controlled Clinical Trial. PLoS One 2017; 12:e0169024. [PMID: 28085888 PMCID: PMC5234772 DOI: 10.1371/journal.pone.0169024] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/08/2016] [Indexed: 11/26/2022] Open
Abstract
Background To increase the removal of middle-sized uremic toxins a new membrane with enhanced permeability and selectivity, called Medium Cut-Off membrane (MCO-Ci) has been developed that at the same time ensures the retention of albumin. Because many middle-sized substances may contribute to micro-inflammation we hypothesized that the use of MCO-Ci influences the inflammatory state in hemodialysis patients. Methods The randomized crossover trial in 48 patients compared MCO-Ci dialysis to High-flux dialysis of 4 weeks duration each plus 8 weeks extension phase. Primary endpoint was the gene expression of TNF-α and IL-6 in peripheral blood mononuclear cells (PBMCs), secondary endpoints were plasma levels of specified inflammatory mediators and cytokines. Results After four weeks of MCO-Ci the expression of TNF-α mRNA (Relative quantification (RQ) from 0.92 ± 0.34 to 0.75 ± 0.31, -18.5%, p<0.001)-α and IL-6 mRNA (RQ from 0.78 ± 0.80 to 0.60 ± 0.43, -23.1%, p<0.01) was reduced to a significantly greater extent than with High-flux dialyzers (TNF mRNA-RQ: -14.3%; IL-6 mRNA-RQ: -3.5%). After retransformation of logarithmically transformed data, measurements after MCO were reduced to 82% of those after HF (95% CI 74%–91%). 4 weeks use of MCO-Ci resulted in long-lasting change in plasma levels of several cytokines and other substances with a significant decrease for sTNFR1, kappa and lambda free light chains, urea and an increase for Lp-PLA2 (PLA2G7) compared to High-flux. Albumin levels dropped significantly after 4 weeks of MCO dialysis but increased after additional 8 weeks of MCO dialysis. Twelve weeks treatment with MCO-Ci was well tolerated regarding the number of (S)AEs. In the extension period levels of CRP, TNF-α-mRNA and IL-6 mRNA remained stable in High-flux as well as in MCO-Ci. Conclusions MCO-Ci dialyzers modulate inflammation in chronic HD patients to a greater extent compared to High-flux dialyzers. Transcription of pro-inflammatory cytokines in peripheral leukocytes is markedly reduced and removal of soluble mediators is enhanced with MCO dialysis. Serum albumin concentrations stabilize after an initial drop. These results encourage further trials with longer treatment periods and clinical endpoints.
Collapse
|
29
|
Immunomodulatory effects of adipose tissue-derived stem cells on elastin scaffold remodeling in diabetes. Tissue Eng Regen Med 2016; 13:701-712. [PMID: 30603451 DOI: 10.1007/s13770-016-0018-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 01/11/2023] Open
Abstract
Diabetes is a major risk factor for the progression of vascular disease, contributing to elevated levels of glycoxidation, chronic inflammation and calcification. Tissue engineering emerges as a potential solution for the treatment of vascular diseases however there is a considerable gap in the understanding of how scaffolds and stem cells will perform in patients with diabetes. We hypothesized that adipose tissue-derived stem cells (ASCs) by virtue of their immunosuppressive potential would moderate the diabetes-intensified inflammatory reactions and induce positive construct remodeling. To test this hypothesis, we prepared arterial elastin scaffolds seeded with autologous ASCs and implanted them subdermally in diabetic rats and compared inflammatory markers, macrophage polarization, matrix remodeling, calcification and bone protein expression to control scaffolds implanted with and without cells in nondiabetic rats. ASC-seeded scaffolds exhibited lower levels of CD8+ T-cells and CD68+ pan-macrophages and higher numbers of M2 macrophages, smooth muscle cell-like and fibroblast-like cells. Calcification and osteogenic markers were reduced in ASCseeded scaffolds implanted in non-diabetic rats but remained unchanged in diabetes, unless the scaffolds were first pre-treated with penta-galloyl glucose (PGG), a known anti-oxidative elastin-binding polyphenol. In conclusion, autologous ASC seeding in elastin scaffolds is effective in combating diabetes-related complications. To prevent calcification, the oxidative milieu needs to be reduced by elastin-binding antioxidants such as PGG.
Collapse
|
30
|
Zickler D, Willy K, Girndt M, Fiedler R, Martus P, Storr M, Schindler R. High cut-off dialysis in chronic haemodialysis patients reduces serum procalcific activity. Nephrol Dial Transplant 2016; 31:1706-12. [PMID: 27445317 DOI: 10.1093/ndt/gfw293] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/03/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Vascular calcification is enhanced in chronic dialysis patients, possibly due to the insufficient removal of various intermediate molecular weight uraemic toxins such as interleukins with conventional membranes. In this study, we assessed the modulation of in vitro vascular calcification with the use of high cut-off (HCO) membranes in chronic dialysis patients. METHODS In a PERCI trial, 43 chronic dialysis patients were treated with conventional high-flux and HCO filters for 3 weeks in a randomized order following a 2-period crossover design. After each phase, serum predialysis samples were drawn. Calcifying human coronary vascular smooth muscle cells (VSMCs) were incubated with the patient's serum samples. Calcification was assessed with alkaline phosphatase (ALP) and alizarin red staining. In the clinical trial, HCO dialysis reduced the serum levels of the soluble tumour necrosis factor receptor (sTNFR) 1 and 2, vascular cell adhesion molecule 1 (VCAM-1) and soluble interleukin-2 receptor (sIL2R). We therefore investigated the in vitro effects of these mediators on vascular calcification. RESULTS VSMCs incubated with HCO dialysis serum showed a 26% reduction of ALP with HCO serum compared with high-flux serum. Alizarin was 43% lower after incubation with the HCO serum compared with the high-flux serum. While sIL2R and sTNFR 1 and 2 showed no effects on VSMC calcification, VCAM-1 caused a dose-dependent enhancement of calcification. CONCLUSIONS The use of HCO dialysis membranes in chronic dialysis patients reduces the procalcific effects of serum on VSMC in vitro. The mechanisms of the strong effect of HCO on in vitro calcification are not completely understood. One factor may be lower levels of VCAM-1 in HCO serum samples, since VCAM-1 was able to induce vascular calcification in our experiments. Neither sTNFR 1, sTNFR 2 nor sIL2R enhance vascular calcification in vitro. Regardless of the mechanisms, our results encourage further studies of highly permeable filters in chronic dialysis patients.
Collapse
Affiliation(s)
- Daniel Zickler
- Department of Nephrology and Internal Intensive Care Medicine, Charité-Universitaetsmedizin Berlin, Campus Virchow Clinic, Berlin, Germany
| | - Kevin Willy
- Department of Nephrology and Internal Intensive Care Medicine, Charité-Universitaetsmedizin Berlin, Campus Virchow Clinic, Berlin, Germany
| | - Matthias Girndt
- Department of Internal Medicine II, Martin-Luther-University Halle, Halle, Germany
| | - Roman Fiedler
- Department of Internal Medicine II, Martin-Luther-University Halle, Halle, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Markus Storr
- Department of Research and Development, Gambro Dialysatoren GmbH, Hechingen, Germany
| | - Ralf Schindler
- Department of Nephrology and Internal Intensive Care Medicine, Charité-Universitaetsmedizin Berlin, Campus Virchow Clinic, Berlin, Germany
| |
Collapse
|
31
|
Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical Update: Cardiovascular Disease in Diabetes Mellitus: Atherosclerotic Cardiovascular Disease and Heart Failure in Type 2 Diabetes Mellitus - Mechanisms, Management, and Clinical Considerations. Circulation 2016; 133:2459-502. [PMID: 27297342 PMCID: PMC4910510 DOI: 10.1161/circulationaha.116.022194] [Citation(s) in RCA: 737] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease remains the principal cause of death and disability among patients with diabetes mellitus. Diabetes mellitus exacerbates mechanisms underlying atherosclerosis and heart failure. Unfortunately, these mechanisms are not adequately modulated by therapeutic strategies focusing solely on optimal glycemic control with currently available drugs or approaches. In the setting of multifactorial risk reduction with statins and other lipid-lowering agents, antihypertensive therapies, and antihyperglycemic treatment strategies, cardiovascular complication rates are falling, yet remain higher for patients with diabetes mellitus than for those without. This review considers the mechanisms, history, controversies, new pharmacological agents, and recent evidence for current guidelines for cardiovascular management in the patient with diabetes mellitus to support evidence-based care in the patient with diabetes mellitus and heart disease outside of the acute care setting.
Collapse
Affiliation(s)
- Cecilia C Low Wang
- From Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado School of Medicine, Aurora (C.C.L.); CPC Clinical Research, Aurora, CO (C.C.L., C.N.H., W.R.H.); Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora (C.N.H., W.R.H.); Joslin Diabetes Center, and Harvard Medical School, Boston, MA (A.B.G.)
| | - Connie N Hess
- From Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado School of Medicine, Aurora (C.C.L.); CPC Clinical Research, Aurora, CO (C.C.L., C.N.H., W.R.H.); Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora (C.N.H., W.R.H.); Joslin Diabetes Center, and Harvard Medical School, Boston, MA (A.B.G.)
| | - William R Hiatt
- From Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado School of Medicine, Aurora (C.C.L.); CPC Clinical Research, Aurora, CO (C.C.L., C.N.H., W.R.H.); Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora (C.N.H., W.R.H.); Joslin Diabetes Center, and Harvard Medical School, Boston, MA (A.B.G.)
| | - Allison B Goldfine
- From Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado School of Medicine, Aurora (C.C.L.); CPC Clinical Research, Aurora, CO (C.C.L., C.N.H., W.R.H.); Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora (C.N.H., W.R.H.); Joslin Diabetes Center, and Harvard Medical School, Boston, MA (A.B.G.).
| |
Collapse
|
32
|
Bowe B, Xie Y, Xian H, Balasubramanian S, Al-Aly Z. Low levels of high-density lipoprotein cholesterol increase the risk of incident kidney disease and its progression. Kidney Int 2016; 89:886-96. [PMID: 26924057 DOI: 10.1016/j.kint.2015.12.034] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/14/2015] [Accepted: 12/03/2015] [Indexed: 01/11/2023]
Abstract
Available experimental evidence suggests a role for high-density lipoprotein cholesterol (HDL-C) in incident chronic kidney disease (CKD) and its progression. However, clinical studies are inconsistent. We therefore built a cohort of 1,943,682 male US veterans and used survival models to examine the association between HDL-C and risks of incident CKD or CKD progression (doubling of serum creatinine, eGFR decline of 30% or more), or a composite outcome of ESRD, dialysis, or renal transplantation. Models were adjusted for demographics, comorbid conditions, eGFR, body mass index, lipid parameters, and statin use over a median follow-up of 9 years. Compared to those with HDL-C of 40 mg/dl or more, low HDL-C (under 30 mg/dl) was associated with increased risk of incident eGFR under 60 ml/min/1.73 m(2) (hazard ratio: 1.18; confidence interval: 1.17-1.19) and risk of incident CKD (1.20; 1.18-1.22). Adjusted models demonstrate an association between low HDL-C and doubling of serum creatinine (1.14; 1.12-1.15), eGFR decline of 30% or more (1.13; 1.12-1.14), and the composite renal end point (1.08; 1.06-1.11). Cubic spline analyses of the relationship between HDL-C levels and renal outcomes showed a U-shaped relationship, where risk was increased in lowest and highest deciles of HDL-C. Thus, a significant association exists between low HDL-C levels and risks of incident CKD and CKD progression. Further studies are needed to explain the increased risk of adverse renal outcomes in patients with high HDL-C.
Collapse
Affiliation(s)
- Benjamin Bowe
- Clinical Epidemiology Center, VA Saint Louis Health Care System, St. Louis, Missouri, USA
| | - Yan Xie
- Clinical Epidemiology Center, VA Saint Louis Health Care System, St. Louis, Missouri, USA
| | - Hong Xian
- Clinical Epidemiology Center, VA Saint Louis Health Care System, St. Louis, Missouri, USA; Department of Biostatistics, College for Public Health and Social Justice, Saint Louis University, St. Louis, Missouri, USA
| | | | - Ziyad Al-Aly
- Clinical Epidemiology Center, VA Saint Louis Health Care System, St. Louis, Missouri, USA; Department of Medicine, Division of Nephrology, VA Saint Louis Health Care System, St. Louis, Missouri, USA; Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
33
|
McCarty MF, DiNicolantonio JJ. The Molecular Biology and Pathophysiology of Vascular Calcification. Postgrad Med 2015; 126:54-64. [DOI: 10.3810/pgm.2014.03.2740] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Barahona MJ, Resmini E, Viladés D, Fernández-Real JM, Ricart W, Moreno-Navarrete JM, Pons-Lladó G, Leta R, Webb SM. Soluble TNFα-receptor 1 as a predictor of coronary calcifications in patients after long-term cure of Cushing's syndrome. Pituitary 2015; 18:135-41. [PMID: 24728972 DOI: 10.1007/s11102-014-0566-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE Increased cardiovascular (CV) risk persists in Cushing's syndrome (CS), despite remission of hypercortisolism. The aim of this study was to evaluate prevalence of coronary artery disease in CS patients and its correlation with classical CV risk factors and inflammatory markers. METHODS Cardiac multidetector computed tomography (MDCT) was performed in 41 patients (7 men, 31 of pituitary origin, 29 cured, mean age: 48.6 ± 13 years), using 64-slice Toshiba Aquilion systems. Coronary atherosclerotic plaques were detected and coronary calcifications quantified by the Agatston score (AS). Clinical and biochemical parameters were correlated with the AS to identify possible surrogate markers of coronary disease. Normal values for clinical and biochemical parameters were obtained from a gender- and age-matched normal reference population (n = 82). RESULTS CS patients with calcifications (AS > 0) (N = 13, 32%) had higher levels of sTNF-R1, homocysteine, triglycerides, blood pressure and body mass index than patients without calcifications (AS = 0) and those of normal reference population. Both groups of CS patients (AS > 0 and AS = 0) had elevated trunk fat mass and IL-6 compared to reference values. Patients with AS > 0 had less adiponectin and higher insulin, HOMA and fibrinogen than those found in normal reference population. sTNF-R1 correlated positively with AS and remained significant after adjusting for confounding factors. The same result was observed when we considered only cured CS patients. CONCLUSION In our cohort of CS patients sTNF-R1 was a predictor of coronary calcifications. Since MDCT is an expensive technique not readily available in daily clinical practice, increased sTNF-R1 could be a marker of CV risk even in cured CS.
Collapse
Affiliation(s)
- María-José Barahona
- Department of Endocrinology, Hospital Universitari Mútua de Terrassa, Pl Dr Robert 5, 08221, Terrassa, Barcelona, Spain,
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kuipers AL, Miljkovic I, Carr JJ, Terry JG, Nestlerode CS, Ge Y, Bunker CH, Patrick AL, Zmuda JM. Association of circulating sclerostin with vascular calcification in Afro-Caribbean men. Atherosclerosis 2015; 239:218-23. [PMID: 25618029 DOI: 10.1016/j.atherosclerosis.2015.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/02/2015] [Accepted: 01/10/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Sclerostin, a Wingless (Wnt) pathway antagonist, is an established regulator of bone mineralization in humans but its potential importance in the regulation of vascular calcification is less clear. Therefore, our objective was to assess the relationship of serum sclerostin levels with coronary and aortic artery calcification (CAC and AAC, respectively) in Afro-Caribbean men on the island of Tobago. METHODS Serum sclerostin levels and computed tomography of CAC and AAC were measured in 191 men (age mean(SD): 62.9(8.0)years) recruited without regard to health status. Multivariable logistic regression models were used to assess the cross-sectional association of sclerostin with prevalent arterial calcification. RESULTS Mean(SD) sclerostin was 45.2 pmol/L (15.6 pmol/L). After adjusting for risk factors including age, physical and lifestyle characteristics, comorbidities, lipoproteins and kidney function, 1 SD greater sclerostin level was associated with a 1.61-times (95%CI 1.02-2.53) greater odds of having CAC. Sclerostin was not associated with AAC in any model. CONCLUSIONS This is the first study to show that, among Afro-Caribbean men, greater serum sclerostin concentrations were associated with prevalence and extent of CAC. Further studies are needed to better define the role of the Wnt signaling pathway in arterial calcification in humans.
Collapse
Affiliation(s)
- Allison L Kuipers
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Iva Miljkovic
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Jeffery Carr
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James G Terry
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cara S Nestlerode
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yaorong Ge
- Department of Software and Information Sciences, University of North Carolina, Charlotte, NC, USA
| | - Clareann H Bunker
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alan L Patrick
- Tobago Health Studies Office, Scarborough, Tobago, Trinidad and Tobago
| | - Joseph M Zmuda
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
36
|
Buendía P, Montes de Oca A, Madueño JA, Merino A, Martín-Malo A, Aljama P, Ramírez R, Rodríguez M, Carracedo J. Endothelial microparticles mediate inflammation-induced vascular calcification. FASEB J 2014; 29:173-81. [PMID: 25342130 DOI: 10.1096/fj.14-249706] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Stimulation of endothelial cells (ECs) with TNF-α causes an increase in the expression of bone morphogenetic protein-2 (BMP-2) and the production of endothelial microparticles (EMPs). BMP-2 is known to produce osteogenic differentiation of vascular smooth muscle cells (VSMCs). It was found that EMPs from TNF-α-stimulated endothelial cells (HUVECs) contained a significant amount of BMP-2 and were able to enhance VSMC osteogenesis and calcification. Calcium content was greater in VSMCs exposed to EMPs from TNF-α-treated HUVECs than EMPs from nontreated HUVECs (3.56 ± 0.57 vs. 1.48 ± 0.56 µg/mg protein; P < 0.05). The increase in calcification was accompanied by up-regulation of Cbfa1 (osteogenic transcription factor) and down-regulation of SM22α (VSMC lineage marker). Inhibition of BMP-2 by small interfering RNA reduced the VSMC calcification induced by EMPs from TNF-α-treated HUVECs. Similar osteogenic capability was observed in EMPs from both patients with chronic kidney disease and senescent cells, which also presented a high level of BMP-2 expression. Labeling of EMPs with CellTracker shows that EMPs are phagocytized by VSMCs under all conditions (with or without high phosphate, control, and EMPs from TNF-α-treated HUVECs). Our data suggest that EC damage results in the release of EMPs with a high content of calcium and BMP-2 that are able to induce calcification and osteogenic differentiation of VSMCs.
Collapse
Affiliation(s)
- Paula Buendía
- Instituto Maimónides de Investigación Biomédica de Córdoba/Fundación de Investigaciones Biomédicas de Córdoba, Reina Sofía University Hospital, Córdoba, Spain; Redes Temáticas de Investigación Cooperativa en Salud Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Addy Montes de Oca
- Instituto Maimónides de Investigación Biomédica de Córdoba/Fundación de Investigaciones Biomédicas de Córdoba, Reina Sofía University Hospital, Córdoba, Spain; Redes Temáticas de Investigación Cooperativa en Salud Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Antonio Madueño
- Instituto Maimónides de Investigación Biomédica de Córdoba/Fundación de Investigaciones Biomédicas de Córdoba, Reina Sofía University Hospital, Córdoba, Spain
| | - Ana Merino
- Redes Temáticas de Investigación Cooperativa en Salud Renal, Instituto de Salud Carlos III, Madrid, Spain Laboratory of Experimental Nephrology, IDIBELL, Hospital Universitari de Bellvitge, L'Hospitalet, Barcelona, Spain
| | - Alejandro Martín-Malo
- Instituto Maimónides de Investigación Biomédica de Córdoba/Fundación de Investigaciones Biomédicas de Córdoba, Reina Sofía University Hospital, Córdoba, Spain; Redes Temáticas de Investigación Cooperativa en Salud Renal, Instituto de Salud Carlos III, Madrid, Spain Nephrology Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Pedro Aljama
- Instituto Maimónides de Investigación Biomédica de Córdoba/Fundación de Investigaciones Biomédicas de Córdoba, Reina Sofía University Hospital, Córdoba, Spain; Redes Temáticas de Investigación Cooperativa en Salud Renal, Instituto de Salud Carlos III, Madrid, Spain Nephrology Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Rafael Ramírez
- Nephrology Unit, Reina Sofía University Hospital, Córdoba, Spain; Redes Temáticas de Investigación Cooperativa en Salud Renal, Instituto de Salud Carlos III, Madrid, Spain Physiology Department, Alcalá de Henares University, Madrid, Spain; and
| | - Mariano Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba/Fundación de Investigaciones Biomédicas de Córdoba, Reina Sofía University Hospital, Córdoba, Spain; Redes Temáticas de Investigación Cooperativa en Salud Renal, Instituto de Salud Carlos III, Madrid, Spain Nephrology Unit, Reina Sofía University Hospital, Córdoba, Spain;
| | - Julia Carracedo
- Instituto Maimónides de Investigación Biomédica de Córdoba/Fundación de Investigaciones Biomédicas de Córdoba, Reina Sofía University Hospital, Córdoba, Spain; Redes Temáticas de Investigación Cooperativa en Salud Renal, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Kim HB, Lee YJ, Shim JY, Lee HR. The association between coronary calcification and adenomatous polyps of colon in Korean adults. Clin Res Hepatol Gastroenterol 2014; 38:649-54. [PMID: 24969685 DOI: 10.1016/j.clinre.2014.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/18/2013] [Accepted: 01/07/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Adenomatous polyps of colon is a precancerous lesion. Many studies have shown that the adenomatous polyps of colon and cardiovascular disease share several common risk factors. This cross-sectional study aimed to investigate whether coronary calcification is associated with the adenomatous polyps of colon. METHODS Among 1637 Korean adults, we examined the association between coronary calcium score (CCS) as a measurement of coronary calcification and the presence of adenomatous polyps of colon via multi-detected row computed tomography (MDCT) and colonoscopy, respectively. CCS values were categorized as follows: 0, 1-17, 18-105, or≥106. The odds ratios (ORs) and 95% confidence intervals (CIs) for the presence of adenomatous polyps of colon were calculated across CCS groups. RESULTS AND CONCLUSIONS After adjusting for confounding variables, the adjusted ORs (95% CIs) for the presence of adenomatous polyps of colon in each of the four CCS groups were 1.00 (reference), 1.44 (0.91-2.33), 1.88 (1.15-3.01) and 3.61 (2.23-5.74). And higher CCS values were associated with multiple polyps (P≤0.001), villous histologic features or high-grade dysplasia (P=0.02), and advanced adenomatous polyps (P≤0.001). A higher level of CCS was found to be strongly and independently associated with the presence of adenomatous polyps of colon in Korean adults. This finding suggests that people at high risk for coronary atherosclerosis through MDCT should be considered for further evaluation of adenomatous polyps.
Collapse
Affiliation(s)
- Hong-Bae Kim
- Myongji Hospital, GyungGi-Do Goyang City, Republic of Korea
| | - Yong-Jae Lee
- Yongin Severance Hospital, GyungGi-Do Yongin City, Republic of Korea
| | - Jae-Yong Shim
- GangNam Severance Hospital, Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye-Ree Lee
- GangNam Severance Hospital, Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Salamon A, Adam S, Rychly J, Peters K. Long-term tumor necrosis factor treatment induces NFκB activation and proliferation, but not osteoblastic differentiation of adipose tissue-derived mesenchymal stem cells in vitro. Int J Biochem Cell Biol 2014; 54:149-62. [PMID: 25066315 DOI: 10.1016/j.biocel.2014.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 01/08/2023]
Abstract
The pro-inflammatory cytokine tumor necrosis factor (TNF) is well known to induce differentiation of bone matrix-resorbing osteoclasts from hematopoietic stem cells. However, the impact of TNF on differentiation of bone matrix-forming osteoblasts from mesenchymal stem cells (MSC) was only fragmentarily studied so far. Therefore, we investigated what impact long-term TNF treatment has on osteoblastic differentiation of MSC isolated from the adipose tissue (ASC) in vitro. In summary, we found continuous TNF exposure to induce the nuclear factor of kappa B pathway in ASC as well as secretion of the pro-inflammatory chemokine interleukin 8, but not the mitogen-activated protein kinase and the apoptosis pathway in ASC. Moreover, TNF neither induced nor inhibited osteoblastic differentiation of ASC, but strongly increased their proliferation rate. In that manner, pro-inflammatory conditions in vivo may generate significantly increased numbers of progenitor cells, and ASC especially, in conjunction with external stimuli, may contribute to the events of ectopic ossification observed in chronic inflammatory diseases. The substantiation of the translation of our in vitro findings to the disease context encourages further in vivo studies.
Collapse
Affiliation(s)
- Achim Salamon
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock, Germany.
| | - Stefanie Adam
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock, Germany
| | - Joachim Rychly
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock, Germany
| | - Kirsten Peters
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock, Germany
| |
Collapse
|
39
|
Szulc P, Schoppet M, Rachner TD, Chapurlat R, Hofbauer LC. Severe abdominal aortic calcification in older men is negatively associated with DKK1 serum levels: the STRAMBO study. J Clin Endocrinol Metab 2014; 99:617-24. [PMID: 24276456 DOI: 10.1210/jc.2013-3201] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CONTEXT Experimental data show that dickkopf-1 (DKK1) may be involved in the regulation of arterial calcification. However, clinical data on the association between serum DKK1 levels and severity of abdominal aortic calcification (AAC) are scarce. OBJECTIVE Our aim was to determine the association between serum DKK1 concentration and AAC severity in men. DESIGN This is a cross-sectional analysis in the STRAMBO cohort. SETTING The cohort was recruited from the general population. PARTICIPANTS We examined 1139 male volunteers aged 20 to 87 years. No specific exclusion criteria were used. INTERVENTIONS We collected blood samples and assessed AAC severity on the lateral spine scans obtained by a Discovery A Hologic device using the semiquantitative Kauppila score. MAIN OUTCOME MEASURES We tested the hypothesis that low DKK1 levels are associated with AAC severity in men. RESULTS In men aged 20 to 60 years, serum DKK1 levels were not associated with other variables. In men aged 60 years and older, lower DKK1 levels were associated with higher odds of severe AAC (AAC score >5). After adjustment for confounders, odds of severe AAC increased with decreasing DKK1 levels (odds ratio = 1.42, 95% confidence interval = 1.13-1.79, P < .005) and was higher below vs above the median DKK1 level (odds ratio = 2.19, 95% confidence interval = 1.37-3.49, P < .005). Heavy smoking, hypertension, ischemic heart disease, and elevated levels of fibroblast growth factor 23 were associated with severe AAC significantly, independently of DKK1 and additively with low DKK1 levels. CONCLUSION In older men, lower serum DKK1 levels are associated with severe AAC regardless of age and other potential confounders.
Collapse
Affiliation(s)
- P Szulc
- Inserm Unité Mixte de Recherche 1033 (P.S., R.C.), University of Lyon, Hospices Civils de Lyon, F-69437 Lyon, France; Department of Internal Medicine and Cardiology (M.S.), Philipps-University, D-35043 Marburg, Germany; Division of Endocrinology, Diabetes, and Bone Diseases (T.D.R., L.C.H.), Dresden University Medical Center, Dresden, Germany; and Center for Regenerative Therapies (L.C.H.), D-01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
40
|
ZHOU SHAOQIONG, FANG XIN, XIN HUAPING, GUAN SIMING. Effects of alendronate on the Notch1-RBP-Jκ signaling pathway in the osteogenic differentiation and mineralization of vascular smooth muscle cells. Mol Med Rep 2013; 8:89-94. [DOI: 10.3892/mmr.2013.1489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/09/2013] [Indexed: 11/06/2022] Open
|
41
|
Navarro-González JF, Donate-Correa J, Méndez ML, de Fuentes MM, García-Pérez J, Mora-Fernández C. Anti-inflammatory profile of paricalcitol in hemodialysis patients: a prospective, open-label, pilot study. J Clin Pharmacol 2013; 53:421-426. [PMID: 23426718 DOI: 10.1002/jcph.19] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/17/2012] [Indexed: 11/07/2022]
Abstract
Inflammation is a strong predictor of increased morbidity and mortality in hemodialysis (HD) patients. Paricalcitol, a selective vitamin D receptor activator used for prevention and treatment of secondary hyperparathyroidism, has shown anti-inflammatory properties in experimental studies, although clinical data are scarce. In an open-label, prospective, single center, pilot study, 25 stable HD patients, previously receiving calcitriol, completed 12 weeks of therapy with oral paricalcitol. Serum and peripheral blood mononuclear cell (PBMC) expression profiles of inflammatory cytokines were analyzed. Serum interleukin (IL)-1, IL-10, and IL-18 did not change, unlike high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α), and IL-6, which experienced a significant mean percent decrease of 14.3%, 4.7%, and 5%, respectively. There was a significant reduction in the TNF-α/IL-10 and the IL-6/IL-10 ratios (P < .05). Serum intact parathyroid hormone concentration experienced a mild but significant reduction. In addition, expression levels of TNF-α and IL-6 decreased by 19.1% (P < .01) and 17.5% (P < .001), respectively, whereas expression of IL-10 increased by 17.7% (P < .01) after treatment. In conclusion, paricalcitol administration to HD patients is associated with a beneficial effect on the inflammatory cytokine serum and gene expression profile of PBMC. This effect may contribute to the survival benefits of paricalcitol observed in clinical studies.
Collapse
Affiliation(s)
- Juan F Navarro-González
- Nephrology Service, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
| | | | | | | | | | | |
Collapse
|
42
|
Szulc P, Hofbauer LC, Rauner M, Goettsch C, Chapurlat R, Schoppet M. Serum myostatin levels are negatively associated with abdominal aortic calcification in older men: the STRAMBO study. Eur J Endocrinol 2012; 167:873-80. [PMID: 22968486 DOI: 10.1530/eje-12-0512] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To assess the association between abdominal aortic calcification (AAC) and serum levels of myostatin, a negative regulator of skeletal muscle mass, which has been implicated in the development of atherosclerotic lesions in mice. DESIGN AND PATIENTS We assessed AAC semiquantitatively from the lateral spine scans obtained using dual energy X-ray absorptiometry in 1071 men aged 20-87 years. Serum myostatin levels were measured by an immunoassay that detects all myostatin forms. RESULTS Total myostatin serum levels did not differ between men with or without self-reported ischemic heart disease, hypertension, or diabetes mellitus. Total serum myostatin levels were higher in men with higher serum calcium levels and lower in men with higher serum concentrations of highly sensitive C-reactive protein. Men with AAC had lower myostatin levels compared with men without AAC. Prevalence of AAC (AAC score > 0) was lower in the highest myostatin quartile compared with the three lower quartiles (P < 0.05). After adjustment for confounders, odds of AAC (AAC score > 0) were lower (OR=0.62; 95% confidence interval (95% CI), 0.45-0.85; P< 0.005) for the fourth myostatin quartile vs the three lower quartiles combined. In the sub-analysis of 745 men aged 60 years, the results were similar: AAC prevalence was lower in the highest myostatin quartile compared with the three lower quartiles combined (OR=0.54; 95% CI, 0.38-0.78; P<0.001). CONCLUSIONS In older men, total myostatin serum levels are inversely correlated with AAC. Further studies are needed to investigate mechanisms underlying this association and to assess utility of myostatin as a cardiovascular marker.
Collapse
Affiliation(s)
- P Szulc
- INSERM UMR 1033, University of Lyon, F-69437 Lyon, France
| | | | | | | | | | | |
Collapse
|
43
|
Guerrero F, Montes de Oca A, Aguilera-Tejero E, Zafra R, Rodriguez M, Lopez I. The effect of vitamin D derivatives on vascular calcification associated with inflammation. Nephrol Dial Transplant 2011; 27:2206-12. [DOI: 10.1093/ndt/gfr555] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
44
|
Abstract
PURPOSE OF REVIEW We aim to highlight the emerging evidence for the role of the Wnt signalling pathways in vascular disease and indicate how our current understanding is supported by observations of Wnt signalling in vascular development. RECENT FINDINGS There is mounting direct and indirect evidence for an involvement of the Wnt pathways in multiple processes involved in atherogenesis. Although a systematic analysis of Wnt pathway in atherosclerosis has not been performed, it is apparent that altered expression of a handful of Wnt pathway proteins occurs in or regulates atherogenesis. Wnt pathways regulate endothelial dysfunction and vascular smooth muscle cell (VSMC) proliferation and migration and thereby intimal thickening. Furthermore, the Wnt pathways have the capacity to regulate inflammation and foam cell formation, pathological angiogenesis and calcification, which are crucial processes in plaque formation and stability. SUMMARY A wealth of evidence has been presented for the involvement of the Wnt pathways in vascular development. Although less evidence exists for the regulation of vascular disease by the Wnt pathways, sufficient evidence exists to propose these pathways act as an important regulator of vascular disease. A greater understanding of Wnt pathways may reveal new therapeutic targets for vascular disease.
Collapse
Affiliation(s)
- Aikaterini Tsaousi
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Bristol, UK
| | | | | |
Collapse
|
45
|
Kidney disease and vitamin D levels: 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and VDR activation. Kidney Int Suppl (2011) 2011; 1:136-141. [PMID: 25018912 PMCID: PMC4089671 DOI: 10.1038/kisup.2011.30] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A normal vitamin D status is essential for human health. Vitamin D deficiency is a recognized risk factor for all-cause mortality in normal individuals and in chronic kidney disease (CKD) patients. The link between vitamin D deficiency and death is a defective activation of the vitamin D receptor (VDR) by 1,25-dihydroxyvitamin D (calcitriol, the vitamin D hormone) to induce/repress genes that maintain mineral homeostasis and skeletal integrity, and prevent secondary hyperparathyroidism, hypertension, immune disorders, and renal and cardiovascular (CV) damage. The kidney is the main site for the conversion of 25-hydroxyvitamin D (25D) to circulating calcitriol, and therefore essential for the health benefits of endocrine VDR activation. The kidney is also essential for the uptake of 25D from the glomerular ultrafiltrate for its recycling to the circulation to maintain serum 25D levels, extrarenal calcitriol synthesis, and the prosurvival benefits of autocrine/paracrine VDR activation. Indeed, both calcitriol and vitamin D deficiency increase progressively in the course of CKD, and associate directly with accelerated disease progression and death. Therefore, the safe correction of calcitriol and vitamin D deficiency/insufficiency is becoming a high priority among nephrologists. This review updates the pathophysiology behind 25D and calcitriol deficiency and impaired VDR activation in CKD, the adequacy of current recommendations for vitamin D supplementation, and potential markers of the efficacy of therapy to prevent or slow the development of renal and CV lesions unrelated to parathyroid hormone suppression, a knowledge required for the design of trials to obtain evidence-based recommendations for vitamin D and calcitriol replacement at all stages of CKD.
Collapse
|
46
|
Al-Aly Z. Phosphate, oxidative stress, and nuclear factor-κB activation in vascular calcification. Kidney Int 2011; 79:1044-7. [PMID: 21527943 DOI: 10.1038/ki.2010.548] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphate-induced vascular calcification, characterized by induction of osteogenic programs, mineral vesicle release, and apoptosis, is prevalent in patients with kidney disease. Zhao et al. provide a mechanistic link between phosphate-induced calcification and increased mitochondrial membrane potential, increased mitochondrial reactive oxygen species, activation of the nuclear factor-κB pathway, and subsequent expression of osteogenic genes and vascular mineralization. This link clarifies the intracellular mechanism of vascular calcification and may allow exploration of antioxidants as therapeutic agents for vascular calcification.
Collapse
Affiliation(s)
- Ziyad Al-Aly
- Division of Nephrology, Saint Louis Veterans Affairs Medical Center, Saint Louis, Missouri 63106, USA.
| |
Collapse
|
47
|
Abstract
In chronic kidney disease (CKD), abnormalities in vitamin D metabolism contribute to the development of mineral and skeletal disorders, elevations in parathyroid hormone (PTH), hypertension, systemic inflammation, renal and cardiovascular damage. CKD induces a progressive loss of the capacity of the kidney not only to convert 25-hydroxyvitamin D [25(OH)D] to circulating calcitriol, the vitamin D hormone, but also to maintain serum 25(OH)D levels for non-renal calcitriol synthesis. The resulting calcitriol and 25(OH)D deficiency associates directly with accelerated disease progression and death. This chapter presents our understanding of the pathophysiology behind 25(OH)D and calcitriol deficiency in CKD, of the adequacy of current recommendations for vitamin D supplementation and PTH suppression, and of potential markers of renal and cardiovascular lesions unrelated to PTH suppression, a knowledge required for the design of trials to obtain evidence-based recommendations for vitamin D and calcitriol replacement that improve outcomes at all stages of CKD.
Collapse
Affiliation(s)
- Adriana Dusso
- Division of Experimental Nephrology, IRBLleida (Lleida Institute for Biomedical Research), Avda Rovira Roure 80, Lleida, Spain.
| | | | | |
Collapse
|
48
|
Al-Aly Z, Cepeda O. Rate of change in kidney function and the risk of death: the case for incorporating the rate of kidney function decline into the CKD staging system. Nephron Clin Pract 2011; 119:c179-85; discussion c186. [PMID: 21811079 DOI: 10.1159/000324768] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with increased risk of death. A wave of recent studies used longitudinal data to examine the effect of the rate of decline of kidney function on the risk of death. The results from these studies show that there is an independent and graded association between the rate of kidney function decline and the risk of death. There is a need to incorporate the rate of decline in the definition of CKD. This redefinition of CKD will transform a static definition into a dynamic one that more accurately describes the disease state in an individual patient.
Collapse
Affiliation(s)
- Ziyad Al-Aly
- Division of Nephrology, Saint Louis Veterans Affairs Medical Center, Saint Louis, Mo. 63106, USA. zalaly @ gmail.com
| | | |
Collapse
|
49
|
Kim HB, Lee HR, Shim JY, Na HY, Park BJ, Jung DH, Lee YJ. The Association Between Arterial Stiffness and Colorectal Adenomatous Polyp in Women. J Womens Health (Larchmt) 2011; 20:765-9. [DOI: 10.1089/jwh.2010.2538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hong-Bae Kim
- Department of Family Medicine, Yonsei University College of Medicine, Yongin-city, Gyeonggi-do, Korea
| | - Hye-Ree Lee
- Department of Family Medicine, Yonsei University College of Medicine, Yongin-city, Gyeonggi-do, Korea
| | - Jae-Yong Shim
- Department of Family Medicine, Yonsei University College of Medicine, Yongin-city, Gyeonggi-do, Korea
| | - Ha-young Na
- Department of Family Medicine, Yonsei University College of Medicine, Yongin-city, Gyeonggi-do, Korea
| | - Byoung-Jin Park
- Department of Family Medicine, Yonsei University College of Medicine, Yongin-city, Gyeonggi-do, Korea
| | - Dong-Hyuk Jung
- Department of Family Medicine, Yonsei University College of Medicine, Yongin-city, Gyeonggi-do, Korea
| | - Yong-Jae Lee
- Department of Family Medicine, Yonsei University College of Medicine, Yongin-city, Gyeonggi-do, Korea
| |
Collapse
|
50
|
Morita M, Yano S, Yamaguchi T, Yamauchi M, Sugimoto T. Phenylacetic acid stimulates reactive oxygen species generation and tumor necrosis factor-α secretion in vascular endothelial cells. Ther Apher Dial 2011; 15:147-50. [PMID: 21426506 DOI: 10.1111/j.1744-9987.2010.00887.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tumor necrosis factor (TNF)-α and oxidative stress are considered to play crucial roles in atherosclerosis and vascular calcification. "Uremic toxins" detected in patients with chronic kidney disease (CKD) could cause impaired signal transduction and dysfunction in many organs. Since phenylacetic acid (PAA), identified as one of the uremic toxins, has an inhibiting property of monocytes as well as osteoblastic cells, we examined the effects of PAA on TNF-α secretion and oxidative stress in vascular endothelial cells. In human aortic endothelial cells, TNF-α secretion was assessed after treatment with PAA using an ELISA kit and following the manufacturer's instructions. For determination of reactive oxygen species (ROS), 8-hydroxydeoxyguanosine (8-OHdG) in the culture medium was measured in the presence or absence of PAA. Treatment with PAA in aortic endothelial cells for 24 h significantly stimulated TNF-α secretion in a dose-dependent manner ranging between 0.5 and 5 mM. On the other hand, the 8-OHdG level in the culture medium was significantly increased in the cells incubated with 1 mM PAA for 12 h. To determine if PAA-induced TNF-α secretion is mediated by ROS production, the effect of free radical scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) was examined. It was found that PAA-induced TNF-α secretion was significantly inhibited by TEMPOL. Our findings indicate that PAA stimulates TNF-α secretion at least in part through ROS production in aortic endothelial cells. The plasma PAA level was reported to be approximately 3.5 mM in end-stage CKD patients, whereas it was <5 µM in healthy subjects; thus, PAA could be involved in the pathological changes of the vasculature in CKD.
Collapse
Affiliation(s)
- Miwa Morita
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Izumo, Japan
| | | | | | | | | |
Collapse
|