1
|
MILICA KONTIC, FILIP MARKOVIC. Use of DNA methylation patterns for early detection and management of lung cancer: Are we there yet? Oncol Res 2025; 33:781-793. [PMID: 40191732 PMCID: PMC11964873 DOI: 10.32604/or.2024.057231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/20/2024] [Indexed: 04/09/2025] Open
Abstract
Detecting lung cancer early is crucial for improving survival rates, yet it remains a significant challenge due to many cases being diagnosed at advanced stages. This review aims to provide advances in epigenetics which have highlighted DNA methylation patterns as promising biomarkers for early detection, prognosis, and treatment response in lung cancer. Techniques like bisulfite conversion followed by PCR, digital droplet polymerase chain reaction, and next-generation sequencing are commonly used for detecting these methylation patterns, which occur early in the cancer development process and can be detected in non-invasive samples like blood and sputum. Key genes such as SHOX2 and RASSF1A have demonstrated high sensitivity and specificity in clinical studies, making them crucial for diagnostic purposes. However, several challenges remain to be overcome before these biomarkers can be widely adopted for use in clinical practice. Standardizing the assays and validating their effectiveness are critical steps. Additionally, integrating methylation biomarkers with existing diagnostic tools could significantly enhance the accuracy of lung cancer detection, providing a more comprehensive diagnostic approach. Although progress has been made in understanding and utilizing DNA methylation patterns for lung cancer detection, more research and extensive clinical trials are necessary to fully harness their potential. These efforts will help establish the robustness of methylation patterns as biomarkers and therapeutic targets, ultimately leading to better prevention, diagnosis, and treatment strategies for lung cancer. In conclusion, DNA methylation states represent a promising avenue for advancing early detection, accurate diagnosis, and management of lung cancer.
Collapse
Affiliation(s)
- KONTIC MILICA
- Clinic for Pulmonology, University Clinical Center of Serbia, Belgrade, 11000, Serbia
- School of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - MARKOVIC FILIP
- Clinic for Pulmonology, University Clinical Center of Serbia, Belgrade, 11000, Serbia
| |
Collapse
|
2
|
Feng H, Ke C, Zou Q, Zhu Z, Liu T. Prediction of Potential miRNA-Disease Associations Based on a Masked Graph Autoencoder. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1874-1885. [PMID: 38954583 DOI: 10.1109/tcbb.2024.3421924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Biomedical evidence has demonstrated the relevance of microRNA (miRNA) dysregulation in complex human diseases, and determining the relationship between miRNAs and diseases can aid in the early detection and prevention of diseases. Traditional biological experimental methods have the disadvantages of high cost and low efficiency, which are well compensated by computational methods. However, many computational methods have the challenge of excessively focusing on the neighbor relationship, ignoring the structural information of the graph, and belittling the redundant information of the graph structure. This study proposed a computational model based on a graph-masking autoencoder named MGAEMDA. MGAEMDA is an asymmetric framework in which the encoder maps partially observed graphs into latent representations. The decoder reconstructs the masked structural information based on the edge and node levels and combines it with linear matrices to obtain the result. The empirical results on the two datasets reveal that the MGAEMDA model performs better than its counterparts. We also demonstrated the predictive performance of MGAEMDA using a case study of four diseases, and all the top 30 predicted miRNAs were validated in the database, providing further evidence of the excellent performance of the model.
Collapse
|
3
|
Reina C, Šabanović B, Lazzari C, Gregorc V, Heeschen C. Unlocking the future of cancer diagnosis - promises and challenges of ctDNA-based liquid biopsies in non-small cell lung cancer. Transl Res 2024; 272:41-53. [PMID: 38838851 DOI: 10.1016/j.trsl.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The advent of liquid biopsies has brought significant changes to the diagnosis and monitoring of non-small cell lung cancer (NSCLC), presenting both promise and challenges. Molecularly targeted drugs, capable of enhancing survival rates, are now available to around a quarter of NSCLC patients. However, to ensure their effectiveness, precision diagnosis is essential. Circulating tumor DNA (ctDNA) analysis as the most advanced liquid biopsy modality to date offers a non-invasive method for tracking genomic changes in NSCLC. The potential of ctDNA is particularly rooted in its ability to furnish comprehensive (epi-)genetic insights into the tumor, thereby aiding personalized treatment strategies. One of the key advantages of ctDNA-based liquid biopsies in NSCLC is their ability to capture tumor heterogeneity. This capability ensures a more precise depiction of the tumor's (epi-)genomic landscape compared to conventional tissue biopsies. Consequently, it facilitates the identification of (epi-)genetic alterations, enabling informed treatment decisions, disease progression monitoring, and early detection of resistance-causing mutations for timely therapeutic interventions. Here we review the current state-of-the-art in ctDNA-based liquid biopsy technologies for NSCLC, exploring their potential to revolutionize clinical practice. Key advancements in ctDNA detection methods, including PCR-based assays, next-generation sequencing (NGS), and digital PCR (dPCR), are discussed, along with their respective strengths and limitations. Additionally, the clinical utility of ctDNA analysis in guiding treatment decisions, monitoring treatment response, detecting minimal residual disease, and identifying emerging resistance mechanisms is examined. Liquid biopsy analysis bears the potential of transforming NSCLC management by enabling non-invasive monitoring of Minimal Residual Disease and providing early indicators for response to targeted treatments including immunotherapy. Furthermore, considerations regarding sample collection, processing, and data interpretation are highlighted as crucial factors influencing the reliability and reproducibility of ctDNA-based assays. Addressing these challenges will be essential for the widespread adoption of ctDNA-based liquid biopsies in routine clinical practice, ultimately paving the way toward personalized medicine and improved outcomes for patients with NSCLC.
Collapse
Affiliation(s)
- Chiara Reina
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Berina Šabanović
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Chiara Lazzari
- Department of Medical Oncology, Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Vanesa Gregorc
- Department of Medical Oncology, Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Christopher Heeschen
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy;.
| |
Collapse
|
4
|
Dahiya R, Sutariya VB, Gupta SV, Pant K, Ali H, Alhadrawi M, Kaur K, Sharma A, Rajput P, Gupta G, Almujri SS, Chinni SV. Harnessing pyroptosis for lung cancer therapy: The impact of NLRP3 inflammasome activation. Pathol Res Pract 2024; 260:155444. [PMID: 38986361 DOI: 10.1016/j.prp.2024.155444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Lung cancer is still a global health challenge in terms of high incidence, morbidity, and mortality. Recent scientific studies have determined that pyroptosis, a highly inflammatory form of programmed cell death, can be identified as a potential lung cancer therapeutic target. The NLRP3 inflammasome acts as a critical mediator in this process and, upon activation, activates multiprotein complex formation as well as caspase-1 activation. This process, triggered by a release of pro-inflammatory cytokines, results in pyroptotic cell death. Also, the relationship between the NLRP3 inflammasome and lung cancer was justified by its influence on tumour growth or metastasis. The molecular pathways produce progenitive mediators and remake the tissue. Finally, targeting NLRP3 inflammasome for pyroptosis induction and inhibition of its activation appears to be a promising lung cancer treatment approach. This technique makes cancer treatment more promising and personalized. This review explores the role of NLRP3 inflammasome activation and its possibilities in lung cancer treatment.
Collapse
Affiliation(s)
- Rajiv Dahiya
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago, West Indies
| | - Vijaykumar B Sutariya
- USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Sheeba Varghese Gupta
- USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Kumud Pant
- Graphic Era (Deemed to be University) Clement Town Dehradun, 248002, India; Graphic Era Hill University Clement Town Dehradun, 248002, India.
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Merwa Alhadrawi
- College of Technical Engineering, The Islamic University, Najaf, Iraq; College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| | - Kiranjeet Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Pranchal Rajput
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Asir 61421, Saudi Arabia
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| |
Collapse
|
5
|
Linowiecka K, Guz J, Dziaman T, Urbanowska-Domańska O, Zarakowska E, Szpila A, Szpotan J, Skalska-Bugała A, Mijewski P, Siomek-Górecka A, Różalski R, Gackowski D, Oliński R, Foksiński M. The level of active DNA demethylation compounds in leukocytes and urine samples as potential epigenetic biomarkers in breast cancer patients. Sci Rep 2024; 14:6481. [PMID: 38499584 PMCID: PMC10948817 DOI: 10.1038/s41598-024-56326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
The active DNA demethylation process, which involves TET proteins, can affect DNA methylation pattern. TET dependent demethylation results in DNA hypomethylation by oxidation 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) and its derivatives. Moreover, TETs' activity may be upregulated by ascorbate. Given that aberrant DNA methylation of genes implicated in breast carcinogenesis may be involved in tumor progression, we wanted to determine whether breast cancer patients exert changes in the active DNA demethylation process. The study included blood samples from breast cancer patients (n = 74) and healthy subjects (n = 71). We analyzed the expression of genes involved in the active demethylation process (qRT-PCR), and 5-mC and its derivatives level (2D-UPLC MS/MS). The ascorbate level was determined using UPLC-MS. Breast cancer patients had significantly higher TET3 expression level, lower 5-mC and 5-hmC DNA levels. TET3 was significantly increased in luminal B breast cancer patients with expression of hormone receptors. Moreover, the ascorbate level in the plasma of breast cancer patients was decreased with the accompanying increase of sodium-dependent vitamin C transporters (SLC23A1 and SLC23A2). The presented study indicates the role of TET3 in DNA demethylation in breast carcinogenesis.
Collapse
Affiliation(s)
- Kinga Linowiecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland.
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland.
| | - Jolanta Guz
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Tomasz Dziaman
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Olga Urbanowska-Domańska
- Department of Oncology, Professor Franciszek Lukaszczyk Oncology Centre, Romanowskiej 2, 85-796, Bydgoszcz, Poland
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Anna Szpila
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Justyna Szpotan
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Aleksandra Skalska-Bugała
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Paweł Mijewski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Agnieszka Siomek-Górecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Rafał Różalski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Ryszard Oliński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Marek Foksiński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland.
| |
Collapse
|
6
|
Shao J, Olsen RJ, Kasparian S, He C, Bernicker EH, Li Z. Cell-Free DNA 5-Hydroxymethylcytosine Signatures for Lung Cancer Prognosis. Cells 2024; 13:298. [PMID: 38391911 PMCID: PMC10886903 DOI: 10.3390/cells13040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Accurate prognostic markers are essential for guiding effective lung cancer treatment strategies. The level of 5-hydroxymethylcytosine (5hmC) in tissue is independently associated with overall survival (OS) in lung cancer patients. We explored the prognostic value of cell-free DNA (cfDNA) 5hmC through genome-wide analysis of 5hmC in plasma samples from 97 lung cancer patients. In both training and validation sets, we discovered a cfDNA 5hmC signature significantly associated with OS in lung cancer patients. We built a 5hmC prognostic model and calculated the weighted predictive scores (wp-score) for each sample. Low wp-scores were significantly associated with longer OS compared to high wp-scores in the training [median 22.9 versus 8.2 months; p = 1.30 × 10-10; hazard ratio (HR) 0.04; 95% confidence interval (CI), 0.00-0.16] and validation (median 18.8 versus 5.2 months; p = 0.00059; HR 0.22; 95% CI: 0.09-0.57) sets. The 5hmC signature independently predicted prognosis and outperformed age, sex, smoking, and TNM stage for predicting lung cancer outcomes. Our findings reveal critical genes and signaling pathways with aberrant 5hmC levels, enhancing our understanding of lung cancer pathophysiology. The study underscores the potential of cfDNA 5hmC as a superior prognostic tool for guiding more personalized therapeutic strategies for lung cancer patients.
Collapse
Affiliation(s)
- Jianming Shao
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Randall J. Olsen
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Saro Kasparian
- Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | | | - Zejuan Li
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
7
|
Park SJ, Kang D, Lee M, Lee SY, Park YG, Oh T, Jang S, Hwang WJ, Kwon SJ, An S, Son JW, Jeong IB. Combination Analysis of PCDHGA12 and CDO1 DNA Methylation in Bronchial Washing Fluid for Lung Cancer Diagnosis. J Korean Med Sci 2024; 39:e28. [PMID: 38225788 PMCID: PMC10789528 DOI: 10.3346/jkms.2024.39.e28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/25/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND When suspicious lesions are observed on computer-tomography (CT), invasive tests are needed to confirm lung cancer. Compared with other procedures, bronchoscopy has fewer complications. However, the sensitivity of peripheral lesion through bronchoscopy including washing cytology is low. A new test with higher sensitivity through bronchoscopy is needed. In our previous study, DNA methylation of PCDHGA12 in bronchial washing cytology has a diagnostic value for lung cancer. In this study, combination of PCDHGA12 and CDO1 methylation obtained through bronchial washing cytology was evaluated as a diagnostic tool for lung cancer. METHODS A total of 187 patients who had suspicious lesions in CT were enrolled. PCDHGA12 methylation test, CDO1 methylation test, and cytological examination were performed using 3-plex LTE-qMSP test. RESULTS Sixty-two patients were diagnosed with benign diseases and 125 patients were diagnosed with lung cancer. The sensitivity of PCDHGA12 was 74.4% and the specificity of PCDHGA12 was 91.9% respectively. CDO1 methylation test had a sensitivity of 57.6% and a specificity of 96.8%. The combination of both PCDHGA12 methylation test and CDO1 methylation test showed a sensitivity of 77.6% and a specificity of 90.3%. The sensitivity of lung cancer diagnosis was increased by combining both PCDHGA12 and CDO1 methylation tests. CONCLUSION Checking DNA methylation of both PCDHGA12 and CDO1 genes using bronchial washing fluid can reduce the invasive procedure to diagnose lung cancer.
Collapse
Affiliation(s)
- Se Jin Park
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Korea
| | - Daeun Kang
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Korea
| | - Minhyeok Lee
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Korea
| | - Su Yel Lee
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Korea
| | - Young Gyu Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | - Wan Jin Hwang
- Department of Thoracic and Cardiovascular Surgery, Konyang University Hospital, Daejeon, Korea
| | - Sun Jung Kwon
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Korea
| | | | - Ji Woong Son
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Korea.
| | - In Beom Jeong
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Korea.
| |
Collapse
|
8
|
Jachowski A, Marcinkowski M, Szydłowski J, Grabarczyk O, Nogaj Z, Marcin Ł, Pławski A, Jagodziński PP, Słowikowski BK. Modern therapies of nonsmall cell lung cancer. J Appl Genet 2023; 64:695-711. [PMID: 37698765 PMCID: PMC10632224 DOI: 10.1007/s13353-023-00786-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
Lung cancer (LC), particularly nonsmall cell lung cancer (NSCLC), is one of the most prevalent types of neoplasia worldwide, regardless of gender, with the highest mortality rates in oncology. Over the years, treatment for NSCLC has evolved from conventional surgery, chemotherapy, and radiotherapy to more tailored and minimally invasive approaches. The use of personalised therapies has increased the expected efficacy of treatment while simultaneously reducing the frequency of severe adverse effects (AEs). In this review, we discuss established modern approaches, including immunotherapy and targeted therapy, as well as experimental molecular methods like clustered regularly interspaced short palindromic repeat (CRISPR) and nanoparticles. These emerging methods offer promising outcomes and shorten the recovery time for various patients. Recent advances in the diagnostic field, including imaging and genetic profiling, have enabled the implementation of these methods. The versatility of these modern therapies allows for multiple treatment options, such as single-agent use, combination with existing conventional treatments, or incorporation into new regimens. As a result, patients can survive even in the advanced stages of NSCLC, leading to increased survival indicators such as overall survival (OS) and progression-free survival (PFS).
Collapse
Affiliation(s)
- Andrzej Jachowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Mikołaj Marcinkowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Jakub Szydłowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Oskar Grabarczyk
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Zuzanna Nogaj
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Łaz Marcin
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 Street, 60-479, Poznań, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Bartosz Kazimierz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland.
| |
Collapse
|
9
|
Munteanu R, Tomuleasa C, Iuga CA, Gulei D, Ciuleanu TE. Exploring Therapeutic Avenues in Lung Cancer: The Epigenetic Perspective. Cancers (Basel) 2023; 15:5394. [PMID: 38001653 PMCID: PMC10670535 DOI: 10.3390/cancers15225394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Lung cancer, primarily non-small cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC), is distinguished by its high prevalence and marked mortality rates. Traditional therapeutic approaches, encompassing chemotherapy, radiation, and targeted therapies, frequently show limited efficacy due to acquired resistance and notable side effects. The objective of this review is to introduce a fresh perspective on the therapeutic strategies for lung cancer, emphasizing interventions targeting the epigenetic alterations often seen in this malignancy. This review presents the most recent advancements in the field, focusing on both past and current clinical trials related to the modulation of methylation patterns using diverse molecular agents. Furthermore, an in-depth analysis of the challenges and advantages of these methylation-modifying drugs will be provided, assessing their efficacy as individual treatments and their potential for synergy when integrated with prevailing therapeutic regimens.
Collapse
Affiliation(s)
- Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (R.M.); (C.T.)
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (R.M.); (C.T.)
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124 Cluj-Napoca, Romania
| | - Cristina-Adela Iuga
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MEDFUTURE, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania;
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (R.M.); (C.T.)
| | - Tudor Eliade Ciuleanu
- Department of Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Oncology, Prof. Dr. Ion Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Frydrychowicz M, Kuszel Ł, Dworacki G, Budna-Tukan J. MicroRNA in lung cancer-a novel potential way for early diagnosis and therapy. J Appl Genet 2023; 64:459-477. [PMID: 36821071 PMCID: PMC10457410 DOI: 10.1007/s13353-023-00750-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Lung cancer is the most common cause of cancer-related deaths in the world. One of the reasons of poor prognosis and high mortality of lung cancer patients is the diagnosis of the disease in its advanced stage. Despite innovative diagnostic methods and multiple completed and ongoing clinical trials aiming at therapy improvement, no significant increase in patients' long-term survival has been noted over last decades. Patients would certainly benefit from early detection of lung cancer. Therefore, it is crucial to find new biomarkers that can help predict outcomes and tumor responses in order to maximize therapy effectiveness and avoid over- or under-treating patients with lung cancer. Nowadays, scientists' attention is mainly dedicated to so-called liquid biopsy, which is fully non-invasive and easily available method based on simple blood draw. Among common liquid biopsy elements, circulating tumor nucleic acids are worth mentioning. Epigenetic biomarkers, particularly miRNA expression, have several distinct features that make them promising prognostic markers. In this review, we described miRNA's involvement in tumorigenesis and present it as a predictor of cancer development and progression, potential indicator of treatment efficacy, and most importantly promising therapeutic target.
Collapse
Affiliation(s)
- Magdalena Frydrychowicz
- Department of Clinical Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Łukasz Kuszel
- Department of Medical Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Grzegorz Dworacki
- Department of Clinical Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-781 Poznan, Poland
| |
Collapse
|
11
|
Karabegović I, Maas SCE, Shuai Y, Ikram MA, Stricker B, Aerts J, Brusselle G, Lahousse L, Voortman T, Ghanbari M. Smoking-related dysregulation of plasma circulating microRNAs: the Rotterdam study. Hum Genomics 2023; 17:61. [PMID: 37430296 DOI: 10.1186/s40246-023-00504-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression. Differential miRNA expression, which is widely shown to be associated with the pathogenesis of various diseases, can be influenced by lifestyle factors, including smoking. This study aimed to investigate the plasma miRNA signature of smoking habits, the potential effect of smoking cessation on miRNA levels, and relate the findings with lung cancer incidence. RESULTS A targeted RNA-sequencing approach measured plasma miRNA levels in 2686 participants from the population-based Rotterdam study cohort. The association between cigarette smoking (current versus never) and 591 well-expressed miRNAs was assessed via adjusted linear regression models, identifying 41 smoking-associated miRNAs that passed the Bonferroni-corrected threshold (P < 0.05/591 = 8.46 × 10-5). Moreover, we found 42 miRNAs with a significant association (P < 8.46 × 10-5) between current (reference group) and former smokers. Then, we used adjusted linear regression models to explore the effect of smoking cessation time on miRNA expression levels. The expression levels of two miRNAs were significantly different within 5 years of cessation (P < 0.05/41 = 1.22 × 10-3) from current smokers, while for cessation time between 5 and 15 years we found 19 miRNAs to be significantly different from current smokers, and finally, 38 miRNAs were significantly different after more than 15 years of cessation time (P < 1.22 × 10-3). These results imply the reversibility of the smoking effect on plasma levels of at least 38 out of the 41 smoking-miRNAs following smoking cessation. Next, we found 8 out of the 41 smoking-related miRNAs to be nominally associated (P < 0.05) with the incidence of lung cancer. CONCLUSIONS This study demonstrates smoking-related dysregulation of plasma miRNAs, which might have a potential for reversibility when comparing different smoking cessation groups. The identified miRNAs are involved in several cancer-related pathways and include 8 miRNAs associated with lung cancer incidence. Our results may lay the groundwork for further investigation of miRNAs as potential mechanism linking smoking, gene expression and cancer.
Collapse
Affiliation(s)
- Irma Karabegović
- Department of Epidemiology, Erasmus MC University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Silvana C E Maas
- Department of Epidemiology, Erasmus MC University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - Yu Shuai
- Department of Epidemiology, Erasmus MC University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Bruno Stricker
- Department of Epidemiology, Erasmus MC University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Joachim Aerts
- Department of Pulmonary Medicine, Erasmus MC University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Guy Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, 9000, Ghent, Belgium
| | - Lies Lahousse
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Division of Human Nutrition and Health, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Sulewska A, Pilz L, Manegold C, Ramlau R, Charkiewicz R, Niklinski J. A Systematic Review of Progress toward Unlocking the Power of Epigenetics in NSCLC: Latest Updates and Perspectives. Cells 2023; 12:cells12060905. [PMID: 36980246 PMCID: PMC10047383 DOI: 10.3390/cells12060905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Epigenetic research has the potential to improve our understanding of the pathogenesis of cancer, specifically non-small-cell lung cancer, and support our efforts to personalize the management of the disease. Epigenetic alterations are expected to have relevance for early detection, diagnosis, outcome prediction, and tumor response to therapy. Additionally, epi-drugs as therapeutic modalities may lead to the recovery of genes delaying tumor growth, thus increasing survival rates, and may be effective against tumors without druggable mutations. Epigenetic changes involve DNA methylation, histone modifications, and the activity of non-coding RNAs, causing gene expression changes and their mutual interactions. This systematic review, based on 110 studies, gives a comprehensive overview of new perspectives on diagnostic (28 studies) and prognostic (25 studies) epigenetic biomarkers, as well as epigenetic treatment options (57 studies) for non-small-cell lung cancer. This paper outlines the crosstalk between epigenetic and genetic factors as well as elucidates clinical contexts including epigenetic treatments, such as dietary supplements and food additives, which serve as anti-carcinogenic compounds and regulators of cellular epigenetics and which are used to reduce toxicity. Furthermore, a future-oriented exploration of epigenetic studies in NSCLC is presented. The findings suggest that additional studies are necessary to comprehend the mechanisms of epigenetic changes and investigate biomarkers, response rates, and tailored combinations of treatments. In the future, epigenetics could have the potential to become an integral part of diagnostics, prognostics, and personalized treatment in NSCLC.
Collapse
Affiliation(s)
- Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence: (A.S.); (J.N.)
| | - Lothar Pilz
- Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christian Manegold
- Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, 60-569 Poznan, Poland
| | - Radoslaw Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence: (A.S.); (J.N.)
| |
Collapse
|
13
|
Fischer S, Spath N, Hamed M. Data-Driven Radiogenomic Approach for Deciphering Molecular Mechanisms Underlying Imaging Phenotypes in Lung Adenocarcinoma: A Pilot Study. Int J Mol Sci 2023; 24:4947. [PMID: 36902378 PMCID: PMC10003564 DOI: 10.3390/ijms24054947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
The heterogeneity of lung tumor nodules is reflected in their phenotypic characteristics in radiological images. The radiogenomics field employs quantitative image features combined with transcriptome expression levels to understand tumor heterogeneity molecularly. Due to the different data acquisition techniques for imaging traits and genomic data, establishing meaningful connections poses a challenge. We analyzed 86 image features describing tumor characteristics (such as shape and texture) with the underlying transcriptome and post-transcriptome profiles of 22 lung cancer patients (median age 67.5 years, from 42 to 80 years) to unravel the molecular mechanisms behind tumor phenotypes. As a result, we were able to construct a radiogenomic association map (RAM) linking tumor morphology, shape, texture, and size with gene and miRNA signatures, as well as biological correlates of GO terms and pathways. These indicated possible dependencies between gene and miRNA expression and the evaluated image phenotypes. In particular, the gene ontology processes "regulation of signaling" and "cellular response to organic substance" were shown to be reflected in CT image phenotypes, exhibiting a distinct radiomic signature. Moreover, the gene regulatory networks involving the TFs TAL1, EZH2, and TGFBR2 could reflect how the texture of lung tumors is potentially formed. The combined visualization of transcriptomic and image features suggests that radiogenomic approaches could identify potential image biomarkers for underlying genetic variation, allowing a broader view of the heterogeneity of the tumors. Finally, the proposed methodology could also be adapted to other cancer types to expand our knowledge of the mechanistic interpretability of tumor phenotypes.
Collapse
Affiliation(s)
- Sarah Fischer
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemannstr. 8, 18057 Rostock, Germany
- Department of Systems Biology and Bioinformatics, University of Rostock, Ulmenstr. 69, 18057 Rostock, Germany
| | - Nicolas Spath
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemannstr. 8, 18057 Rostock, Germany
- Department of Medicine II, Hematology and Oncology, University Hospital Schleswig-Holstein, Arnold-Hellerstr. 3, 24105 Kiel, Germany
| | - Mohamed Hamed
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemannstr. 8, 18057 Rostock, Germany
| |
Collapse
|
14
|
Lung microRNAs Expression in Lung Cancer and COPD: A Preliminary Study. Biomedicines 2023; 11:biomedicines11030736. [PMID: 36979715 PMCID: PMC10045129 DOI: 10.3390/biomedicines11030736] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the deadliest diseases worldwide and represents an impending burden on the healthcare system. Despite increasing attention, the mechanisms underlying tumorigenesis in cancer-related diseases such as COPD remain unclear, making novel biomarkers necessary to improve lung cancer early diagnosis. MicroRNAs (miRNAs) are short non-coding RNA that interfere with several pathways and can act as oncogenes or tumor suppressors. This study aimed to compare miRNA lung expression between subjects with NSCLC and COPD and healthy controls to obtain the miRNA expression profile by analyzing shared pathways. Lung specimens were collected from a prospective cohort of 21 sex-matched subjects to determine the tissue miRNA expression of hsa-miR-34a-5p, 33a-5p, 149-3p, 197-3p, 199-5p, and 320a-3p by RT-PCR. In addition, an in silico prediction of miRNA target genes linked to cancer was performed. We found a specific trend for has-miR-149-3p, 197-3p, and 34a-5p in NSCLC, suggesting their possible role as an index of the tumor microenvironment. Moreover, we identified novel miRNA targets, such as the Cyclin-Dependent Kinase (CDK) family, linked to carcinogenesis by in silico analysis. In conclusion. this study identified lung miRNA signatures related to the tumorigenic microenvironment, suggesting their possible role in improving the evaluation of lung cancer onset.
Collapse
|
15
|
Pourasghariazar M, Zarredar H, Asadi M, Caner A, Akhgari A, Valizadeh H, Bornehdeli S, Hashemzadeh S, Raeisi M. Comparative evaluation of ZMYND-8 and RARβ2 genes promoters’ methylation changes in tumor and tumor margin tissues of patients with lung cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-023-00399-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Abstract
Background
Lung cancer remains one of the most lethal carcinomas worldwide because of its late diagnosis. One of the DNA modifications is methylation, one of the primary alterations of tumor development, consisting of fascinating indicators for cancer diagnosis. This study investigated ZMYND-8 and RARβ2 gene methylation in NSCLC as a new epigenetic tool.
Methods
First, to find out the potential diagnostic capability of ZMYND-8 and RARβ2 genes methylation, we entirely surfed DNA methylation microarrays from the Cancer Genome Atlas (TCGA) data of NSCLC samples. Additionally, we took advantage of using q-MSP in several pieces comprising NSCLC tumors and neighboring normal tissues; ZMYND-8 and RARβ2 genes methylation grades were acquired.
Results
Our finding displayed significant hypomethylation of ZMYND-8 and hypermethylation of RARβ2 in NSCLC samples compared to neighboring standard specimens, which significantly correlated with the clinical stage of malignancy. In addition, the incredible precision of ZMYND-8 and RARβ2 methylations as reliable cancer diagnosis indicators in NSCLC was confirmed, drawing the ROC curve analysis with an AUC value of 0.751 and 0.8676, respectively, for ZMYND-8 and RARβ2. Additional studies of other dominant cancer entities in TCGA displayed that RARβ2’s higher methylation degree and ZMYND-8 lower methylation degree are prevalent changes in tumor evolution which could be possibly considered as a potential diagnostic biomarkers for lung cancer.
Conclusion
Based on this study, ZMYND-8 and RARβ2 methylation are reliable biomarkers for lung cancer.
Collapse
|
16
|
Lee YH, Do SK, Lee SY, Kang HG, Choi JE, Hong MJ, Lee JH, Lee S, Lee WK, Jeong JY, Shin KM, Park JE, Choi SH, Seo H, Yoo SS, Lee J, Cha SI, Kim CH, Park JY. Genetic Variants in Histone Modification Regions Predict Clinical Outcomes of Pemetrexed Chemotherapy in Lung Adenocarcinoma. Oncology 2023; 101:96-104. [PMID: 36257285 PMCID: PMC9932833 DOI: 10.1159/000527492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study was conducted to investigate the association between genetic variants in histone modification regions and clinical outcomes of PEM chemotherapy in patients with lung adenocarcinoma. METHODS Potentially functional SNPs were selected using integrated analysis of ChIP-seq and RNA-seq. The associations of 279 SNPs with chemotherapy response and overall survival (OS) were analyzed in 314 lung adenocarcinoma patients who underwent PEM chemotherapy. RESULTS Among the SNPs investigated, 18 were significantly associated with response to chemotherapy, while 28 with OS. Of these SNPs, rs549794A>G in an enhancer which is expected to regulate the expression of ribosomal protein S3 (RPS3) gene was significantly associated with both worse response to chemotherapy and worse OS (adjusted odds ratio = 0.59, 95% CI = 0.36-0.97, p = 0.04; adjusted hazard ratio = 1.44, 95% CI = 1.09-1.91, p = 0.01, respectively). Previous studies suggested that RPS3, a multi-functional protein with various extraribosomal activities, may play a role in chemotherapy resistance. Therefore, it is postulated that rs549794-induced change in the expression level of RPS3 may affect the response to PEM chemotherapy and consequently the survival outcomes in lung adenocarcinoma patients. CONCLUSION This study suggests that genetic variants in the histone modification regions may be useful for the prediction of clinical outcomes of PEM chemotherapy in advanced lung adenocarcinoma.
Collapse
Affiliation(s)
- Yong Hoon Lee
- Departments of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sook Kyung Do
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shin Yup Lee
- Departments of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea,*Shin Yup Lee,
| | - Hyo-Gyoung Kang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jin Eun Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Jeong Hong
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jang Hyuck Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sunwoong Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won Kee Lee
- Department of Medical Informatics, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Medical Research Collaboration Center in Kyungpook National University Hospital and School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung Min Shin
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Eun Park
- Departments of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sun Ha Choi
- Departments of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Hyewon Seo
- Departments of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Soo Yoo
- Departments of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Jaehee Lee
- Departments of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Ick Cha
- Departments of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chang Ho Kim
- Departments of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae Yong Park
- Departments of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea,**Jae Yong Park,
| |
Collapse
|
17
|
Feng H, Jin D, Li J, Li Y, Zou Q, Liu T. Matrix reconstruction with reliable neighbors for predicting potential MiRNA-disease associations. Brief Bioinform 2023; 24:6960615. [PMID: 36567252 DOI: 10.1093/bib/bbac571] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/16/2022] [Accepted: 11/23/2022] [Indexed: 12/27/2022] Open
Abstract
Numerous experimental studies have indicated that alteration and dysregulation in mircroRNAs (miRNAs) are associated with serious diseases. Identifying disease-related miRNAs is therefore an essential and challenging task in bioinformatics research. Computational methods are an efficient and economical alternative to conventional biomedical studies and can reveal underlying miRNA-disease associations for subsequent experimental confirmation with reasonable confidence. Despite the success of existing computational approaches, most of them only rely on the known miRNA-disease associations to predict associations without adding other data to increase the prediction accuracy, and they are affected by issues of data sparsity. In this paper, we present MRRN, a model that combines matrix reconstruction with node reliability to predict probable miRNA-disease associations. In MRRN, the most reliable neighbors of miRNA and disease are used to update the original miRNA-disease association matrix, which significantly reduces data sparsity. Unknown miRNA-disease associations are reconstructed by aggregating the most reliable first-order neighbors to increase prediction accuracy by representing the local and global structure of the heterogeneous network. Five-fold cross-validation of MRRN produced an area under the curve (AUC) of 0.9355 and area under the precision-recall curve (AUPR) of 0.2646, values that were greater than those produced by comparable models. Two different types of case studies using three diseases were conducted to demonstrate the accuracy of MRRN, and all top 30 predicted miRNAs were verified.
Collapse
Affiliation(s)
- Hailin Feng
- School of mathematics and computer science, Zhejiang A&F University, No.666 Wusu Street,Lin'an District, 311300, Hangzhou, China
| | - Dongdong Jin
- School of mathematics and computer science, Zhejiang A&F University, No.666 Wusu Street,Lin'an District, 311300, Hangzhou, China
| | - Jian Li
- School of mathematics and computer science, Zhejiang A&F University, No.666 Wusu Street,Lin'an District, 311300, Hangzhou, China
| | - Yane Li
- School of mathematics and computer science, Zhejiang A&F University, No.666 Wusu Street,Lin'an District, 311300, Hangzhou, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, West District, high tech Zone, 611731, Chengdu, China
| | - Tongcun Liu
- School of mathematics and computer science, Zhejiang A&F University, No.666 Wusu Street,Lin'an District, 311300, Hangzhou, China
| |
Collapse
|
18
|
Human Papillomavirus in Non-Small Cell Lung Carcinoma: Assessing Virus Presence in Tumor and Normal Tissues and Its Clinical Relevance. Microorganisms 2023; 11:microorganisms11010212. [PMID: 36677504 PMCID: PMC9865181 DOI: 10.3390/microorganisms11010212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The significance of the role of human papillomavirus (HPV) in the development of lung cancer remains an open question. The data from the literature do not provide conclusive evidence of HPV being involved in the pathogenesis of lung cancer. The aim of this work was to detect the presence of HPV infections with a high carcinogenic risk in patients with non-small cell lung cancer (NSCLC). MATERIALS AND METHODS the study involved 274 patients with stage IIA-IIIB non-small cell lung cancer. We analyzed normal and tumor tissues as well as blood from each patient. DNA was extracted from patients' specimens, and HPV detection and genotyping was carried out using commercially available kits by PCR. RESULTS HPV was detected in 12.7% of the patients (35/274 of all cases). We detected nine different types of human papillomavirus in the patients, namely, types 16, 18, 31, 35, 45, 51, 52, 56, and 59. The HPV-positive samples had a clinically insignificant viral load and were predominantly integrated. The relationship between the presence of HPV and its virological parameters and the clinical and pathological parameters of the patients was established. A metastatic-free survival analysis showed that all patients with HPV in the tumor tissue had a higher 5-year survival rate (94%) compared with the HPV-negative patients (78%). The result was not statistically significant (p = 0.08). CONCLUSIONS data showing a 12.7% human papillomavirus representation among patients with non-small cell lung cancer were obtained. The presence/absence of a viral component in patients with lung cancer was a clinically significant parameter. HPV types 16, 18, and 56, which are the most oncogenic, were most often detected.
Collapse
|
19
|
Smok-Kalwat J, Mertowska P, Mertowski S, Smolak K, Kozińska A, Koszałka F, Kwaśniewski W, Grywalska E, Góźdź S. The Importance of the Immune System and Molecular Cell Signaling Pathways in the Pathogenesis and Progression of Lung Cancer. Int J Mol Sci 2023; 24:1506. [PMID: 36675020 PMCID: PMC9861992 DOI: 10.3390/ijms24021506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Lung cancer is a disease that in recent years has become one of the greatest threats to modern society. Every year there are more and more new cases and the percentage of deaths caused by this type of cancer increases. Despite many studies, scientists are still looking for answers regarding the mechanisms of lung cancer development and progression, with particular emphasis on the role of the immune system. The aim of this literature review was to present the importance of disorders of the immune system and the accompanying changes at the level of cell signaling in the pathogenesis of lung cancer. The collected results showed that in the process of immunopathogenesis of almost all subtypes of lung cancer, changes in the tumor microenvironment, deregulation of immune checkpoints and abnormalities in cell signaling pathways are involved, which contribute to the multistage and multifaceted carcinogenesis of this type of cancer. We, therefore, suggest that in future studies, researchers should focus on a detailed analysis of tumor microenvironmental immune checkpoints, and to validate their validity, perform genetic polymorphism analyses in a wide range of patients and healthy individuals to determine the genetic susceptibility to lung cancer development. In addition, further research related to the analysis of the tumor microenvironment; immune system disorders, with a particular emphasis on immunological checkpoints and genetic differences may contribute to the development of new personalized therapies that improve the prognosis of patients.
Collapse
Affiliation(s)
- Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Aleksandra Kozińska
- Student Research Group of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Filip Koszałka
- Student Research Group of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| |
Collapse
|
20
|
ALREHAILI AMANIA, GHARIB AMALF, ALGHAMDI SALEHALI, ALHAZMI AYMAN, AL-SHEHRI SAADS, HAGAG HOWAIDAM, ALSAEEDI FOUZEYYAHALI, ALHUTHALI HAYAAM, RAAFAT NERMIN, ETEWA RASHAL, ELSAWY WAELH. Evaluation of TET Family Gene Expression and 5-Hydroxymethylcytosine as Potential Epigenetic Markers in Non-small Cell Lung Cancer. In Vivo 2023; 37:445-453. [PMID: 36593050 PMCID: PMC9843776 DOI: 10.21873/invivo.13098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIM DNA methylation is the most studied epigenetic modification in cancer. Ten-eleven translocation enzymes (TET) catalyze the oxidation of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) in the DNA. In the current research, we aimed to evaluate the role of 5-hmC and TET enzymes in non-small cell lung cancer (NSCLC) patients and their possible association with outcomes. PATIENTS AND METHODS ELISA was used to measure the 5-hmC levels in genomic DNA and qRT-PCR was used to evaluate TET1, TET2, and TET3 mRNAs expression levels in NSCLC tissues and their paired normal controls. RESULTS The levels of 5-hmC were significantly lower in NSCLC tissues than in normal tissues, with a mean ±SD of 0.28±0.37 vs. 1.84±0.58, respectively (t=22.77, p<0.0001), and this reduction was correlated with adverse clinical features. In addition, all TET genes were significantly down-regulated in NSCLC tissues in comparison to their matched normal tissues. The mean±SD level of TET1-mRNA was 38.48±16.38 in NSCLC vs. 80.65±11.25 in normal tissues (t=21.33, p<0.0001), TET2-mRNA level in NSCLC was 5.25±2.78 vs. 9.52±1.01 in normal tissues (t=14.48, p<0.0001), and TET3-mRNA level in NSCLC was 5.21±2.8 vs. 9.51±0.86 in normal tissues (t=14.75, p<0.0001). Downregulation of TET genes was correlated with poor clinical features. CONCLUSION 5-HmC levels as well as TET1, TET2, and TET3 mRNA levels were reduced in NSCLC tissues. The reduced levels of 5-hmC and TET mRNAs were associated with adverse clinical features, suggesting that the level of 5-hmC may serve as a valuable prognostic biomarker for NSCLC.
Collapse
Affiliation(s)
- AMANI A. ALREHAILI
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - AMAL F. GHARIB
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - SALEH ALI ALGHAMDI
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - AYMAN ALHAZMI
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - SAAD S. AL-SHEHRI
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - HOWAIDA M. HAGAG
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia,Department of Pathology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - FOUZEYYAH ALI ALSAEEDI
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - HAYAA M. ALHUTHALI
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - NERMIN RAAFAT
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - RASHA L. ETEWA
- Pathology Department, College of Medicine, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - WAEL H. ELSAWY
- Department of Clinical Oncology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
21
|
Histone deacetylase inhibitors as sanguine epitherapeutics against the deadliest lung cancer. Adv Cancer Res 2023; 158:163-198. [PMID: 36990532 DOI: 10.1016/bs.acr.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The back-breaking resistance mechanisms generated by lung cancer cells against epidermal growth factor receptor (EGFR), KRAS and Janus kinase 2 (JAK2) directed therapies strongly prioritizes the requirement of novel therapies which are perfectly tolerated, potentially cytotoxic and can reinstate the drug-sensitivity in lung cancer cells. Enzymatic proteins modifying the post-translational modifications of nucleosome-integrated histone substrates are appearing as current targets for defeating various malignancies. Histone deacetylases (HDACs) are hyperexpressed in diverse lung cancer types. Blocking the active pocket of these acetylation erasers through HDAC inhibitors (HDACi) has come out as an optimistic therapeutic recourse for annihilating lung cancer. This article in the beginning gives an overview about lung cancer statistics and predominant lung cancer types. Succeeding this, compendium about conventional therapies and their serious drawbacks has been provided. Then, connection of uncommon expression of classical HDACs in lung cancer onset and expansion has been detailed. Moreover, keeping the main theme in view this article deeply discusses HDACi in the context of aggressive lung cancer as single agents and spotlights various molecular targets suppressed or induced by these inhibitors for engendering cytotoxic effect. Most particularly, the raised pharmacological effects achieved on using these inhibitors in concerted form with other therapeutic molecules and the cancer-linked pathways altered by this procedure are described. The positive direction towards further heightening of efficacy and the pressing requirement of exhaustive clinical assessment has been proposed as a new focus point.
Collapse
|
22
|
Induction of apoptosis in lung carcinoma cells (A549) by hydromethanolic extract of Acorus calamus L. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Ji L, Xu S, Luo H, Zeng F. Insights from DOCK2 in cell function and pathophysiology. Front Mol Biosci 2022; 9:997659. [PMID: 36250020 PMCID: PMC9559381 DOI: 10.3389/fmolb.2022.997659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Dedicator of cytokinesis 2 (DOCK2) can activate the downstream small G protein Rac and regulate cytoskeletal reorganization. DOCK2 is essential for critical physiological processes such as migration, activation, proliferation, and effects of immune cells, including lymphocytes, neutrophils, macrophages, and dendritic cells. For example, DOCK2 is involved in the development and activation of T and B lymphocytes by affecting synapse formation and inhibiting the development of the Th2 lineage by downregulating IL-4Rα surface expression. Not only that, DOCK2 may be a molecular target for controlling cardiac transplant rejection and Alzheimer’s disease (AD). Patients with defects in the DOCK2 gene also exhibit a variety of impaired cellular functions, such as chemotactic responses of lymphocytes and reactive oxygen species (ROS) production by neutrophils. To date, DOCK2 has been shown to be involved in the development of various diseases, including AD, pneumonia, myocarditis, colitis, tumors, etc. DOCK2 plays different roles in these diseases and the degree of inflammatory response has a different impact on the progression of disease. In this paper, we present a review of recent advances in the function of DOCK2 in various immune cells and its role in various diseases.
Collapse
Affiliation(s)
- Lulin Ji
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| | - Shuquan Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Haiqing Luo
- Organoid Research Center, Xiamen Broad Creation Biotechnology Co., Ltd., Xiamen, China
- Research and Development Center, Xiamen Mogengel Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| | - Fanwei Zeng
- Organoid Research Center, Xiamen Broad Creation Biotechnology Co., Ltd., Xiamen, China
- Research and Development Center, Xiamen Mogengel Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| |
Collapse
|
24
|
Pogribna M, Word B, Lyn-Cook B, Hammons G. Effect of titanium dioxide nanoparticles on histone modifications and histone modifying enzymes expression in human cell lines. Nanotoxicology 2022; 16:409-424. [DOI: 10.1080/17435390.2022.2085206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Marta Pogribna
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - Beverly Word
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - George Hammons
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| |
Collapse
|
25
|
Saed L, Jeleń A, Mirowski M, Sałagacka-Kubiak A. Prognostic Significance of HMGA1 Expression in Lung Cancer Based on Bioinformatics Analysis. Int J Mol Sci 2022; 23:ijms23136933. [PMID: 35805937 PMCID: PMC9266824 DOI: 10.3390/ijms23136933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 12/15/2022] Open
Abstract
High-mobility group protein 1 (HMGA1) participates in the processes of DNA transcription, replication, recombination, and repair. The HMGA1 gene is expressed abundantly during embryogenesis and is reactivated during carcinogenesis. HMGA1 gene expression has been associated with a high degree of malignancy, metastatic tendency, and poor survival in breast, colon, ovary, and pancreatic cancers. However, its prognostic significance in lung cancer remains unclear. Using publicly available data, HMGA1 was shown to be overexpressed in both small and non-small lung tumors, with higher expression compared to both the adjacent non-malignant lung tissues and non-tumor lung tissues of healthy individuals. Elevated HMGA1 expression could result from lowered HMGA1 methylation and was connected with some clinicopathological features like sex, age, and stage of the disease. The high HMGA1 expression level was connected with shorter overall and first progression survival time among lung adenocarcinoma patients, but not lung squamous cell carcinoma patients. HMGA1 could interact with proteins involved in cellular senescence and cell cycle control (TP53, RB1, RPS6KB1, and CDK1), transcription regulation (EP400 and HMGA2), chromatin assembly and remodeling (LMNB1), and cholesterol and isoprene biosynthesis (HMGCR and INSIG1). Taken together, HMGA1 overexpression could be an essential element of lung carcinogenesis and a prognostic feature in lung cancer.
Collapse
|
26
|
Luo W, Wang Y, Zhang T. Win or loss? Combination therapy does improve the oncolytic virus therapy to pancreatic cancer. Cancer Cell Int 2022; 22:160. [PMID: 35443724 PMCID: PMC9022249 DOI: 10.1186/s12935-022-02583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
Pancreatic cancer (PC) is a growing global burden, remaining one of the most lethal cancers of the gastrointestinal tract. Moreover, PC is resistant to various treatments such as chemotherapy, radiotherapy, and immunotherapy. New therapies are urgently needed to improve the prognosis of PC. Oncolytic virus (OV) therapy is a promising new treatment option. OV is a genetically modified virus that selectively replicates in tumor cells. It can kill tumor cells without harming normal cells. The activation of tumor-specific T-cells is a unique feature of OV-mediated therapy. However, OV-mediated mono-therapeutic efficacy remains controversial, especially for metastatic or advanced patients who require systemically deliverable therapies. Hence, combination therapies will be critical to improve the therapeutic efficacy of OV-mediated therapy and prevent tumor recurrence. This review aims to investigate novel combinatorial treatments with OV therapy and explore the inner mechanism of those combined therapies, hopefully providing a new direction for a better prognosis of PC.
Collapse
Affiliation(s)
- Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Yawen Wang
- Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Endocrinology of National Health Commission of the People's Republic of China, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China. .,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
27
|
Abstract
This overview of the molecular pathology of lung cancer includes a review of the most salient molecular alterations of the genome, transcriptome, and the epigenome. The insights provided by the growing use of next-generation sequencing (NGS) in lung cancer will be discussed, and interrelated concepts such as intertumor heterogeneity, intratumor heterogeneity, tumor mutational burden, and the advent of liquid biopsy will be explored. Moreover, this work describes how the evolving field of molecular pathology refines the understanding of different histologic phenotypes of non-small-cell lung cancer (NSCLC) and the underlying biology of small-cell lung cancer. This review will provide an appreciation for how ongoing scientific findings and technologic advances in molecular pathology are crucial for development of biomarkers, therapeutic agents, clinical trials, and ultimately improved patient care.
Collapse
Affiliation(s)
- James J Saller
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Theresa A Boyle
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
28
|
Identification and Validation of 7-lncRNA Signature of Epigenetic Disorders by Comprehensive Epigenetic Analysis. DISEASE MARKERS 2022; 2022:5118444. [PMID: 35237359 PMCID: PMC8885251 DOI: 10.1155/2022/5118444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 12/30/2022]
Abstract
The survival rate of patients with lung adenocarcinoma (LUAD) is low. This study analyzed the correlation between the expression of long noncoding RNA (lncRNA) and epigenetic alterations along with the investigation of the prognostic value of these outcomes for LUAD. Differentially expressed lncRNAs were identified based on multiomic data and positively related genes using DESeq2 in R, differentially histone-modifying genes specific to LUAD based on histone modification data, gene enhancers from information collected from the FANTOM5 (Function Annotation Of The Mammalian Genome-5) (fantom.gsc.riken.jp/5) human enhancer database, gene promoters using the ChIPseeker and the human lincRNAs Transcripts database in R, and differentially methylated regions (DMRs) using Bumphunter in R. Overall survival was estimated by Kaplan-Meier, comparisons were performed among groups using log-rank tests to derive differences between sample subclasses, and epigenetic lncRNAs (epi-lncRNAs) potentially relevant to LUAD prognosis were identified. A total of seven dysregulated epi-lncRNAs in LUAD were identified by comparing histone modifications and alterations in histone methylation regions on lncRNA promoter and enhancer elements, including H3K4me2, H3K27me3, H3K4me1, H3K9me3, H4K20me1, H3K9ac, H3K79me2, H3K27ac, H3K4me3, and H3K36me3. Furthermore, 69 LUAD-specific dysregulated epi-lncRNAs were identified. Moreover, lncRNAs-based prognostic analysis of LUAD samples was performed and explored that seven of these lncRNAs, including A2M-AS1, AL161431.1, DDX11-AS1, FAM83A-AS1, MHENCR, MNX1-AS1, and NKILA (7-EpiLncRNA), showed the potential to serve as markers for LUAD prognosis. Additionally, patients having a high 7-EpiLncRNA score showed a generally more unfavorable prognosis compared with those which scored lower. Seven lncRNAs were identified as markers of prognosis in patients with LUAD. The outcomes of this research will help us understand epigenetically aberrant regulation of lncRNA expression in LUAD in a better way and have implications for research advances in the regulatory role of lncRNAs in LUAD.
Collapse
|
29
|
Hoang PH, Landi MT. DNA Methylation in Lung Cancer: Mechanisms and Associations with Histological Subtypes, Molecular Alterations, and Major Epidemiological Factors. Cancers (Basel) 2022; 14:cancers14040961. [PMID: 35205708 PMCID: PMC8870477 DOI: 10.3390/cancers14040961] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/14/2021] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer is the major leading cause of cancer-related mortality worldwide. Multiple epigenetic factors-in particular, DNA methylation-have been associated with the development of lung cancer. In this review, we summarize the current knowledge on DNA methylation alterations in lung tumorigenesis, as well as their associations with different histological subtypes, common cancer driver gene mutations (e.g., KRAS, EGFR, and TP53), and major epidemiological risk factors (e.g., sex, smoking status, race/ethnicity). Understanding the mechanisms of DNA methylation regulation and their associations with various risk factors can provide further insights into carcinogenesis, and create future avenues for prevention and personalized treatments. In addition, we also highlight outstanding questions regarding DNA methylation in lung cancer to be elucidated in future studies.
Collapse
|
30
|
Zeng RJ, Xie WJ, Zheng CW, Chen WX, Wang SM, Li Z, Cheng CB, Zou HY, Xu LY, Li EM. Role of Rho guanine nucleotide exchange factors in non-small cell lung cancer. Bioengineered 2021; 12:11169-11187. [PMID: 34783629 PMCID: PMC8810164 DOI: 10.1080/21655979.2021.2006519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/05/2023] Open
Abstract
Conventionally, Rho guanine nucleotide exchange factors (GEFs) are known activators of Rho guanosine triphosphatases (GTPases) that promote tumorigenesis. However, the role of Rho GEFs in non-small cell lung cancer (NSCLC) remains largely unknown. Through the screening of 81 Rho GEFs for their expression profiles and correlations with survival, four of them were identified with strong significance for predicting the prognosis of NSCLC patients. The four Rho GEFs, namely ABR, PREX1, DOCK2 and DOCK4, were downregulated in NSCLC tissues compared to normal tissues. The downregulation of ABR, PREX1, DOCK2 and DOCK4, which can be attributfed to promoter methylation, is correlated with poor prognosis. The underexpression of the four key Rho GEFs might be related to the upregulation of MYC signaling and DNA repair pathways, leading to carcinogenesis and poor prognosis. Moreover, overexpression of ABR was shown to have a tumor-suppressive effect in PC9 and H1703 cells. In conclusion, the data reveal the unprecedented role of ABR as tumor suppressor in NSCLC. The previously unnoticed functions of Rho GEFs in NSCLC will inspire researchers to investigate the distinct roles of Rho GEFs in cancers, in order to provide critical strategies in clinical practice.
Collapse
Affiliation(s)
- Rui-Jie Zeng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, ShantouChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, ShantouChina
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, GuangzhouChina
| | - Wei-Jie Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, ShantouChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, ShantouChina
| | - Chun-Wen Zheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, ShantouChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, ShantouChina
| | - Wan-Xian Chen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, ShantouChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, ShantouChina
| | - Si-Meng Wang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, ShantouChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, ShantouChina
| | - Zheng Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, ShantouChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, ShantouChina
| | - Chi-Bin Cheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, ShantouChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, ShantouChina
| | - Hai-Ying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, ShantouChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, ShantouChina
| | - Li-Yan Xu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, ShantouChina
- Institute of Oncologic Pathology, Shantou University Medical College, ShantouChina
- CONTACT Li-Yan Xu Institute of Oncologic Pathology, Shantou University Medical College, Shantou515041, China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, ShantouChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, ShantouChina
- En-Min Li The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area Shantou University Medical College, Shantou515041, China
| |
Collapse
|
31
|
Genetic variants in histone modification regions are associated with the prognosis of lung adenocarcinoma. Sci Rep 2021; 11:21520. [PMID: 34728688 PMCID: PMC8563968 DOI: 10.1038/s41598-021-00909-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022] Open
Abstract
We investigated the association between genetic variants in the histone modification regions and the prognosis of lung adenocarcinoma after curative surgery. Potentially functional SNPs were selected using integrated analysis of ChIP-seq and RNA-seq. The SNPs were analyzed in a discovery set (n = 166) and a validation set (n = 238). The associations of the SNPs with overall survival (OS) and disease-free survival (DFS) were analyzed. A total of 279 SNPs were selected for genotyping. Among these, CAPN1 rs17583C>T was significantly associated with better OS and DFS (P = 0.001 and P = 0.007, respectively), and LINC00959 rs4751162A>G was significantly associated with worse DFS (P = 0.008). Luciferase assays showed a significantly lower promoter activity of CAPN1 in the rs17583 T allele than C allele (P = 0.008), and consistently the CT + TT genotypes had significantly lower CAPN1 expression than CC genotype (P = 0.01) in clinical samples. The rs4751162 G allele had higher promoter activity of GLRX3 than A allele (P = 0.05). The motif analyses and ChIP-qPCR confirmed that the variants are located in the active promoter/enhancer regions where transcription factor binding occurs. This study showed that genetic variants in the histone modification regions could predict the prognosis of lung adenocarcinoma after surgery.
Collapse
|
32
|
Wang Z. Mechanisms of the synergistic lung tumorigenic effect of arsenic and benzo(a)pyrene combined- exposure. Semin Cancer Biol 2021; 76:156-162. [PMID: 33971262 PMCID: PMC9000133 DOI: 10.1016/j.semcancer.2021.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022]
Abstract
Humans are often exposed to mixtures of environmental pollutants especially environmental chemical carcinogens, representing a significant environmental health issue. However, our understanding on the carcinogenic effects and mechanisms of environmental carcinogen mixture exposures is limited and mostly relies on the findings from studying individual chemical carcinogens. Both arsenic and benzo(a)pyrene (BaP) are among the most common environmental carcinogens causing lung cancer and other types of cancer in humans. Millions of people are exposed to arsenic via consuming arsenic-contaminated drinking water and even more people are exposed to BaP via cigarette smoking and consuming BaP-contaminated food. Thus arsenic and BaP combined-exposure in humans is common. Previous epidemiology studies indicated that arsenic-exposed people who were cigarette smokers had significantly higher lung cancer risk than those who were non-smokers. Since BaP is one of the major carcinogens in cigarette smoke, it has been speculated that arsenic and BaP combined-exposure may play important roles in the increased lung cancer risk observed in arsenic-exposed cigarette smokers. In this review, we summarize important findings and inconsistencies about the co-carcinogenic effects and underlying mechanisms of arsenic and BaP combined-exposure and propose new areas for future studies. A clear understanding on the mechanism of co-carcinogenic effects of arsenic and BaP combined exposure may identify novel targets to more efficiently treat and prevent lung cancer resulting from arsenic and BaP combined-exposure.
Collapse
Affiliation(s)
- Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44109, USA.
| |
Collapse
|
33
|
Raos D, Ulamec M, Katusic Bojanac A, Bulic-Jakus F, Jezek D, Sincic N. Epigenetically inactivated RASSF1A as a tumor biomarker. Bosn J Basic Med Sci 2021; 21:386-397. [PMID: 33175673 PMCID: PMC8292865 DOI: 10.17305/bjbms.2020.5219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022] Open
Abstract
RASSF1A, one of the eight isoforms of the RASSF1 gene, is a tumor suppressor gene that influences tumor initiation and development. In cancer, RASSF1A is frequently inactivated by mutations, loss of heterozygosity, and, most commonly, by promoter hypermethylation. Epigenetic inactivation of RASSF1A was detected in various cancer types and led to significant interest; current research on RASSF1A promoter methylation focuses on its roles as an epigenetic tumor biomarker. Typically, researchers analyzed genomic DNA (gDNA) to measure the amount of RASSF1A promoter methylation. Cell-free DNA (cfDNA) from liquid biopsies is a recent development showing promise as an early cancer diagnostic tool using biomarkers, such as RASSF1A. This review discusses the evidence on aberrantly methylated RASSF1A in gDNA and cfDNA from different cancer types and its utility for early cancer diagnosis, prognosis, and surveillance. We compared methylation frequencies of RASSF1A in gDNA and cfDNA in various cancer types. The weaknesses and strengths of these analyses are discussed. In conclusion, although the importance of RASSSF1A methylation to cancer has been established and is included in several diagnostic panels, its diagnostic utility is still experimental.
Collapse
Affiliation(s)
- Dora Raos
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Group for Research on Epigenetic Biomarkers, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Monika Ulamec
- Scientific Group for Research on Epigenetic Biomarkers, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia; Department of Pathology, University of Zagreb School of Dental Medicine and School of Medicine, Zagreb, Croatia
| | - Ana Katusic Bojanac
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Floriana Bulic-Jakus
- University of Zagreb School of Medicine, Department of Medical Biology, Zagreb, Croatia
| | - Davor Jezek
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nino Sincic
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Group for Research on Epigenetic Biomarkers, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
34
|
Flausino CS, Daniel FI, Modolo F. DNA methylation in oral squamous cell carcinoma: from its role in carcinogenesis to potential inhibitor drugs. Crit Rev Oncol Hematol 2021; 164:103399. [PMID: 34147646 DOI: 10.1016/j.critrevonc.2021.103399] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is one of epigenetic changes most frequently studied nowadays, together with its relationship with oral carcinogenesis. A group of enzymes is responsible for methylation process, known as DNA methyltransferases (DNMT). Although essential during embryogenesis, DNA methylation pattern alterations, including global hypomethylation or gene promoter hypermethylation, can be respectively associated with chromosomal instability and tumor suppressor gene silencing. Higher expression of DNA methyltransferases is a common finding in oral cancer and may contribute to inactivation of important tumor suppressor genes, influencing development, progression, metastasis, and prognosis of the tumor. To control these alterations, inhibitor drugs have been developed as a way to regulate DNMT overexpression, and they are intended to be associated with ongoing chemo- and radiotherapy in oral cancer treatments. In this article, we aimed to highlight the current knowledge about DNA methylation in oral cancer, including main hyper/hypomethylated genes, DNMT expression and its inhibitor treatments.
Collapse
Affiliation(s)
| | - Filipe Ivan Daniel
- Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Filipe Modolo
- Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
35
|
Abstract
The epigenetic landscape, which in part includes DNA methylation, chromatin organization, histone modifications, and noncoding RNA regulation, greatly contributes to the heterogeneity that makes developing effective therapies for lung cancer challenging. This review will provide an overview of the epigenetic alterations that have been implicated in all aspects of cancer pathogenesis and progression as well as summarize clinical applications for targeting epigenetics in the treatment of lung cancer.
Collapse
Affiliation(s)
- Yvonne L Chao
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - Chad V Pecot
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| |
Collapse
|
36
|
Zhao N, Ruan M, Koestler DC, Lu J, Marsit CJ, Kelsey KT, Platz EA, Michaud DS. Epigenome-wide scan identifies differentially methylated regions for lung cancer using pre-diagnostic peripheral blood. Epigenetics 2021; 17:460-472. [PMID: 34008478 DOI: 10.1080/15592294.2021.1923615] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND DNA methylation markers have been associated with lung cancer risk and may identify aetiologically relevant genomic regions, or alternatively, be markers of disease risk factors or biological processes associated with disease development. METHODS In a nested case-control study, we measured blood leukocyte DNA methylation levels in pre-diagnostic samples collected from 430 participants (208 cases; 222 controls) in the 1989 CLUE II cohort. We compared DNA methylation levels with case/control status to identify novel genomic regions, both single CpG sites and differentially methylated regions (DMRs), while controlling for known DNA methylation changes associated with smoking using a previously described pack-years-based smoking methylation score. Stratification analyses were conducted over time from blood draw to diagnosis, histology, and smoking status. RESULTS We identified 16 single CpG sites and 40 DMRs significantly associated with lung cancer risk (q < 0.05). The identified genomic regions were associated with genes including H19, HOXA3/HOXA4, RUNX3, BRICD5, PLXNB2, and RP13. For the single CpG sites, the strongest association was noted for cg09736286 in the DIABLO gene (OR [for 1 SD] = 2.99, 95% CI: 1.95-4.59, P-value = 4.81 × 10-7). We found that CpG sites in the HOXA3/HOXA4 region were hypermethylated in cases compared to controls. CONCLUSION The single CpG sites and DMRs that we identified represented significant measurable differences in lung cancer risk, providing potential biomarkers for lung cancer risk stratification. Future studies will need to examine whether these regions are causally related to lung cancer.
Collapse
Affiliation(s)
- Naisi Zhao
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA, USA
| | - Mengyuan Ruan
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA, USA
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Carmen J Marsit
- Department of Environmental Health and Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dominique S Michaud
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA, USA.,Department of Epidemiology, Brown University, Providence, RI, USA
| |
Collapse
|
37
|
Immune Stroma in Lung Cancer and Idiopathic Pulmonary Fibrosis: A Common Biologic Landscape? Int J Mol Sci 2021; 22:ijms22062882. [PMID: 33809111 PMCID: PMC8000622 DOI: 10.3390/ijms22062882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) identifies a specific entity characterized by chronic, progressive fibrosing interstitial pneumonia of unknown cause, still lacking effective therapies. Growing evidence suggests that the biologic processes occurring in IPF recall those which orchestrate cancer onset and progression and these findings have already been exploited for therapeutic purposes. Notably, the incidence of lung cancer in patients already affected by IPF is significantly higher than expected. Recent advances in the knowledge of the cancer immune microenvironment have allowed a paradigm shift in cancer therapy. From this perspective, recent experimental reports suggest a rationale for immune checkpoint inhibition in IPF. Here, we recapitulate the most recent knowledge on lung cancer immune stroma and how it can be translated into the IPF context, with both diagnostic and therapeutic implications.
Collapse
|
38
|
In vivo synergistic anti-tumor effect of lumefantrine combined with pH responsive behavior of nano calcium phosphate based lipid nanoparticles on lung cancer. Eur J Pharm Sci 2021; 158:105657. [DOI: 10.1016/j.ejps.2020.105657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022]
|
39
|
Deng M, Zhang Z, Liu B, Lv Q, Hou K, Che X, Qu X, Liu Y, Zhang Y, Hu X. Low OCEL1 expression is associated with poor prognosis in human non-small cell lung cancer. Cancer Biomark 2020; 27:519-524. [PMID: 32083572 DOI: 10.3233/cbm-191268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Occludin/ELL domain containing 1 (OCEL1) is a novel discovered protein with its molecular functions remaining unknown and its role in lung cancer has not been directly explored. OBJECTIVES This study focused on the role of OCEL1 in the progression and prognosis of non-small cell lung cancer (NSCLC). METHODS A public database and tissue samples (80 NSCLC tissue samples and paired normal lung samples) were used to compare differences in OCEL1 expression and investigate its relationship with clinical characteristics and prognosis. RESULTS Compared to adjacent normal lung tissue samples, OCEL1 expression was significantly down-regulated in tumor tissues. In addition, there was a negative correlation between OCEL1 and Ki67 expression levels. Low OCEL1 expression was significantly associated with lymph node metastasis, higher TNM stage, and poor prognosis. Importantly, multivariate analysis identified OCEL1 expression as an independent predictor for unfavorable NSCLC prognosis. CONCLUSIONS These results indicated that OCEL1 protein may serve as a novel prognostic biomarker in NSCLC.
Collapse
Affiliation(s)
- Mingming Deng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,The Graduate School of Peking Union Medical College, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhe Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.,Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bofang Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qingjie Lv
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
40
|
Khan P, Siddiqui JA, Maurya SK, Lakshmanan I, Jain M, Ganti AK, Salgia R, Batra SK, Nasser MW. Epigenetic landscape of small cell lung cancer: small image of a giant recalcitrant disease. Semin Cancer Biol 2020; 83:57-76. [PMID: 33220460 PMCID: PMC8218609 DOI: 10.1016/j.semcancer.2020.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Small cell lung cancer (SCLC) is a particular subtype of lung cancer with high mortality. Recent advances in understanding SCLC genomics and breakthroughs of immunotherapy have substantially expanded existing knowledge and treatment modalities. However, challenges associated with SCLC remain enigmatic and elusive. Most of the conventional drug discovery approaches targeting altered signaling pathways in SCLC end up in the 'grave-yard of drug discovery', which mandates exploring novel approaches beyond inhibiting cell signaling pathways. Epigenetic modifications have long been documented as the key contributors to the tumorigenesis of almost all types of cancer, including SCLC. The last decade witnessed an exponential increase in our understanding of epigenetic modifications for SCLC. The present review highlights the central role of epigenetic regulations in acquiring neoplastic phenotype, metastasis, aggressiveness, resistance to chemotherapy, and immunotherapeutic approaches of SCLC. Different types of epigenetic modifications (DNA/histone methylation or acetylation) that can serve as predictive biomarkers for prognostication, treatment stratification, neuroendocrine lineage determination, and development of potential SCLC therapies are also discussed. We also review the utility of epigenetic targets/epidrugs in combination with first-line chemotherapy and immunotherapy that are currently under investigation in preclinical and clinical studies. Altogether, the information presents the inclusive landscape of SCLC epigenetics and epidrugs that will help to improve SCLC outcomes.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar Kishor Ganti
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA; Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte 91010, CA, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
41
|
Zhang H, Li Y, Guo S, Wang Y, Wang H, Lu D, Wang J, Jin L, Jiang G, Wu J, Han Y, Li J. Effect of ERCC2 rs13181 and rs1799793 polymorphisms and environmental factors on the prognosis of patients with lung cancer. Am J Transl Res 2020; 12:6941-6953. [PMID: 33194084 PMCID: PMC7653631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE The 5-year survival rate of patients with lung cancer in China is < 20%, and predicting their prognosis is difficult. Here, we investigated the association between two common non-synonymous single-nucleotide polymorphisms (SNPs) in the excision repair cross-complementing 2 (ERCC2) genes (rs13181 and rs1799793) and the prognosis of patients with lung cancer. METHODS Genomic DNA was extracted from the blood samples of 839 patients with lung cancer and genotyped using the SNPscan technique. The association between patient prognosis and the ERCC2 genotype was analyzed using a multivariate Cox proportional hazards model adjusted for multiple potential confounders. RESULTS The presence of ERCC2 rs13181 T>G significantly increased the risk of death (adjust hazard ratio (HR) = 1.29, 95% CI: 1.06-1.56, P = 0.009). Patients with the rs13181 TG genotype (adjust HR = 1.34, 95% CI: 1.08-1.65, P = 0.007) and rs13181 dominant mode TG+GG (adjust HR = 1.33, 95% CI: 1.08-1.63, P = 0.007) had significantly worse overall survival. Moreover, stratified analyses showed that patients with the TG and TG+GG rs13181 genotypes who were male, elderly (≥60 years), had a history of smoking, or without family history of malignant tumors had a significantly increased risk of death. In patients with adenocarcinoma lung cancer (ADC), the rs1799793 genotype CT (adjust HR = 1.49, 95% CI: 1.06-2.09, P = 0.023) and dominant model CT+TT (adjust HR = 1.45, 95% CI = 1.04-2.02, P = 0.027) were associated with an increased risk of death. CONCLUSION ERCC2 rs13181 and rs1799793 SNPs may be significant prognostic factors for the risk of death among patients with lung cancer.
Collapse
Affiliation(s)
- Haorui Zhang
- Company 6 of Basic Medical Science, Navy Military Medical UniversityShanghai, China
| | - Yutao Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan UniversityShanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-MadisonMadison, WI, USA
- Center for Precision Medicine Research, Marshfield Clinic Research InstituteMarshfield, WI, USA
| | - Yi Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan UniversityShanghai, China
| | - Haijian Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan UniversityShanghai, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan UniversityShanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan UniversityShanghai, China
- Human Phenome Institute, Fudan UniversityShanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan UniversityShanghai, China
- Human Phenome Institute, Fudan UniversityShanghai, China
| | - Gengxi Jiang
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai HospitalShanghai, China
| | - Junjie Wu
- Department of Respiratory and Critical Care Medicine, Navy Military Medical University Affiliated Changhai HospitalShanghai, China
| | - Yiping Han
- Department of Respiratory and Critical Care Medicine, Navy Military Medical University Affiliated Changhai HospitalShanghai, China
| | - Juhong Li
- Center of Physical Examination, Navy Military Medical University Affiliated Changhai HospitalShanghai, China
| |
Collapse
|
42
|
Chen X, Li TH, Zhao Y, Wang CC, Zhu CC. Deep-belief network for predicting potential miRNA-disease associations. Brief Bioinform 2020; 22:5898648. [PMID: 34020550 DOI: 10.1093/bib/bbaa186] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNA (miRNA) plays an important role in the occurrence, development, diagnosis and treatment of diseases. More and more researchers begin to pay attention to the relationship between miRNA and disease. Compared with traditional biological experiments, computational method of integrating heterogeneous biological data to predict potential associations can effectively save time and cost. Considering the limitations of the previous computational models, we developed the model of deep-belief network for miRNA-disease association prediction (DBNMDA). We constructed feature vectors to pre-train restricted Boltzmann machines for all miRNA-disease pairs and applied positive samples and the same number of selected negative samples to fine-tune DBN to obtain the final predicted scores. Compared with the previous supervised models that only use pairs with known label for training, DBNMDA innovatively utilizes the information of all miRNA-disease pairs during the pre-training process. This step could reduce the impact of too few known associations on prediction accuracy to some extent. DBNMDA achieves the AUC of 0.9104 based on global leave-one-out cross validation (LOOCV), the AUC of 0.8232 based on local LOOCV and the average AUC of 0.9048 ± 0.0026 based on 5-fold cross validation. These AUCs are better than other previous models. In addition, three different types of case studies for three diseases were implemented to demonstrate the accuracy of DBNMDA. As a result, 84% (breast neoplasms), 100% (lung neoplasms) and 88% (esophageal neoplasms) of the top 50 predicted miRNAs were verified by recent literature. Therefore, we could conclude that DBNMDA is an effective method to predict potential miRNA-disease associations.
Collapse
Affiliation(s)
- Xing Chen
- Artificial Intelligence Research Institute, China University of Mining and Technology
| | - Tian-Hao Li
- School of Information and Control Engineering, China University of Mining and Technology
| | - Yan Zhao
- School of Information and Control Engineering, China University of Mining and Technology
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology
| | - Chi-Chi Zhu
- School of Information and Control Engineering, China University of Mining and Technology
| |
Collapse
|
43
|
Epigenetic Silencing of LMX1A Contributes to Cancer Progression in Lung Cancer Cells. Int J Mol Sci 2020; 21:ijms21155425. [PMID: 32751497 PMCID: PMC7432919 DOI: 10.3390/ijms21155425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Epigenetic modification is considered a major mechanism of the inactivation of tumor suppressor genes that finally contributes to carcinogenesis. LIM homeobox transcription factor 1α (LMX1A) is one of the LIM-homeobox-containing genes that is a critical regulator of growth and differentiation. Recently, LMX1A was shown to be hypermethylated and functioned as a tumor suppressor in cervical cancer, ovarian cancer, and gastric cancer. However, its role in lung cancer has not yet been clarified. In this study, we used public databases, methylation-specific PCR (MSP), reverse transcription PCR (RT-PCR), and bisulfite genomic sequencing to show that LMX1A was downregulated or silenced due to promoter hypermethylation in lung cancers. Treatment of lung cancer cells with the demethylating agent 5-aza-2'-deoxycytidine restored LMX1A expression. In the lung cancer cell lines H23 and H1299, overexpression of LMX1A did not affect cell proliferation but suppressed colony formation and invasion. These suppressive effects were reversed after inhibition of LMX1A expression in an inducible expression system in H23 cells. The quantitative RT-PCR (qRT-PCR) data showed that LMX1A could modulate epithelial mesenchymal transition (EMT) through E-cadherin (CDH1) and fibronectin (FN1). NanoString gene expression analysis revealed that all aberrantly expressed genes were associated with processes related to cancer progression, including angiogenesis, extracellular matrix (ECM) remodeling, EMT, cancer metastasis, and hypoxia-related gene expression. Taken together, these data demonstrated that LMX1A is inactivated through promoter hypermethylation and functions as a tumor suppressor. Furthermore, LMX1A inhibits non-small cell lung cancer (NSCLC) cell invasion partly through modulation of EMT, angiogenesis, and ECM remodeling.
Collapse
|
44
|
Li M, Zhang C, Zhou L, Li S, Cao YJ, Wang L, Xiang R, Shi Y, Piao Y. Identification and validation of novel DNA methylation markers for early diagnosis of lung adenocarcinoma. Mol Oncol 2020; 14:2744-2758. [PMID: 32688456 PMCID: PMC7607165 DOI: 10.1002/1878-0261.12767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/07/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Lung cancer has the highest mortality of all cancers worldwide. Epigenetic alterations have emerged as potential biomarkers for early diagnosis of various cancer tissue types. To identify methylation markers for early diagnosis of lung adenocarcinoma, we aimed to integrate genome‐wide DNA methylation and gene expression data from The Cancer Genome Atlas. To this end, we first examined the global DNA methylation pattern of lung adenocarcinoma and investigated the relationship between DNA methylation subtypes and clinical features. We then extracted differentially methylated and expressed genes, and adopted feature selection techniques to determine the final methylation markers. The performance of the markers in predicting lung adenocarcinoma was evaluated on three independent datasets from Gene Expression Omnibus. Protein levels of marker genes were validated by immunohistochemistry, and their biological function was further verified in vivo. We identified three novel methylation markers in lung adenocarcinoma including cg08032924, cg14823851, and cg19161124, mapping to CMTM2, TBX4, and DPP6, respectively. Validating these results on three independent datasets indicated that the three markers can achieve extremely high sensitivity and specificity in distinguishing lung adenocarcinoma from normal samples. Immunohistochemistry quantification results confirmed that markers are weakly expressed in human lung adenocarcinoma, and CMTM2 decreased tumor growth of mouse Lewis lung carcinoma in vivo. Overall, our study identified three novel methylation markers in lung adenocarcinoma which may contribute toward an improved diagnosis potentially leading to a better outcome for patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Miao Li
- School of Medicine, Nankai University, Tianjin, China
| | - Chen Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Lijun Zhou
- School of Medicine, Nankai University, Tianjin, China
| | - Siyu Li
- School of Medicine, Nankai University, Tianjin, China
| | - Yuan Jie Cao
- Department of Radiation and Oncology, National Clinical Research Center for Cancer and Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Longlong Wang
- School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin, China
| | - Yi Shi
- School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Yongjun Piao
- School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China
| |
Collapse
|
45
|
Han Q, Zou D, Lv F, Wang S, Yang C, Song J, Wen Z, Zhang Y. High SYT7 expression is associated with poor prognosis in human non-small cell lung carcinoma. Pathol Res Pract 2020; 216:153101. [PMID: 32825966 DOI: 10.1016/j.prp.2020.153101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/20/2020] [Accepted: 07/05/2020] [Indexed: 12/24/2022]
Abstract
Synaptotagmin 7 (SYT7) can encode a single-pass 46-kDa transmembrane protein which located on human chromosome 11q12.2. It has been reported to be dysregulated in several cancers; however, there are few reports on the role of SYT7 in non-small cell lung carcinoma (NSCLC). The purpose of our study was to investigate the expression of SYT7 in NSCLC and its relationship with the prognosis of NSCLC. Differences in SYT7 expression were explored by using a public database and tissue samples. The prognostic value of SYT7 and its expression correlation with clinical parameters were evaluated by statistical analysis. Our current study found that elevated mRNA and protein levels of SYT7 in NSCLC tissues compared to adjacent normal tissues. The high expression of SYT7 in NSCLC patients was positively correlated with tumour differentiation (P = 0.031) and pT (P = 0.041). The higher SYT7 expression had a shorter survival time than those with lower SYT7 expression in NSCLC patients. Furthermore, multivariate analysis demonstrated that the expression of SYT7 was an unfavourable independent prognostic factor for NSCLC (P = 0.044). In conclusion, SYT7 was upregulated in NSCLC tissues and maybe a prognostic and diagnostic factor of NSCLC.
Collapse
Affiliation(s)
- Qiuyue Han
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Dan Zou
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Fei Lv
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Song Wang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Chunjiao Yang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Jincheng Song
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Zhenpeng Wen
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China.
| |
Collapse
|
46
|
Malyshev BS, Netesova NA, Smetannikova NA, Abdurashitov MA, Akishev AG, Dubinin EV, Azanov AZ, Vihlyanov IV, Nikitin MK, Karpov AB, Degtyarev SK. GLAD-PCR Assay of R(5mC)GY Sites in the Regulatory Region of Tumor-Suppressor Genes Associated with Gastric Cancer. Acta Naturae 2020; 12:124-133. [PMID: 33173602 PMCID: PMC7604892 DOI: 10.32607/actanaturae.11070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/22/2020] [Indexed: 11/23/2022] Open
Abstract
At early stages of carcinogenesis, the regulatory regions of some tumor suppressor genes become aberrantly methylated at RCGY sites, which are substrates of DNA methyltransferase Dnmt3. Identification of aberrantly methylated sites in tumor DNA is considered to be the first step in the development of epigenetic PCR test systems for early diagnosis of cancer. Recently, we have developed a GLAD-PCR assay, a method for detecting the R(5mC)GY site in the genome position of interest even at significant excess of DNA molecules with a non-methylated RCGY site in this location. The aim of the present work is to use the GLAD-PCR assay to detect the aberrantly methylated R(5mC)GY sites in the regulatory regions of tumor suppressor genes (brinp1, bves, cacna2d3, cdh11, cpeb1, epha7, fgf2, galr1, gata4, hopx, hs3st2, irx1, lrrc3b, pcdh10, rprm, runx3, sfrp2, sox17, tcf21, tfpi2, wnt5a, zfp82, and znf331) in DNA samples obtained from gastric cancer (GC) tissues. The study of the DNA samples derived from 29 tumor and 25 normal gastric tissue samples demonstrated a high diagnostic potential of the selected RCGY sites in the regulatory regions of the irx1, cacna2d3, and epha7 genes; the total indices of sensitivity and specificity for GC detection being 96.6% and 100%, respectively.
Collapse
Affiliation(s)
- B. S. Malyshev
- State Research Center of Virology and Biotechnology «Vector», Novosibirsk region, Koltsovo, 630559 Russia
| | - N. A. Netesova
- State Research Center of Virology and Biotechnology «Vector», Novosibirsk region, Koltsovo, 630559 Russia
| | - N. A. Smetannikova
- State Research Center of Virology and Biotechnology «Vector», Novosibirsk region, Koltsovo, 630559 Russia
| | | | | | | | - A. Z. Azanov
- Regional Clinical Oncology Center, Kemerovo, 650036 Russia
| | - I. V. Vihlyanov
- Altai Regional Oncology, CenterAltai region, Barnaul, 656049 Russia
| | - M. K. Nikitin
- Altai Regional Oncology, CenterAltai region, Barnaul, 656049 Russia
| | - A. B. Karpov
- Seversk Biophysical Research Centre, Tomsk region, Seversk, 636039 Russia
| | - S. Kh. Degtyarev
- State Research Center of Virology and Biotechnology «Vector», Novosibirsk region, Koltsovo, 630559 Russia
- EpiGene LLC, Novosibirsk, 630090 Russia
| |
Collapse
|
47
|
Roncarati R, Lupini L, Miotto E, Saccenti E, Mascetti S, Morandi L, Bassi C, Rasio D, Callegari E, Conti V, Rinaldi R, Lanza G, Gafà R, Papi A, Frassoldati A, Sabbioni S, Ravenna F, Casoni GL, Negrini M. Molecular testing on bronchial washings for the diagnosis and predictive assessment of lung cancer. Mol Oncol 2020; 14:2163-2175. [PMID: 32441866 PMCID: PMC7463327 DOI: 10.1002/1878-0261.12713] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Cytopathological analyses of bronchial washings (BWs) collected during fibre‐optic bronchoscopy are often inconclusive for lung cancer diagnosis. To address this issue, we assessed the suitability of conducting molecular analyses on BWs, with the aim to improve the diagnosis and outcome prediction of lung cancer. The methylation status of RASSF1A, CDH1, DLC1 and PRPH was analysed in BW samples from 91 lung cancer patients and 31 controls, using a novel two‐colour droplet digital methylation‐specific PCR (ddMSP) technique. Mutations in ALK, BRAF, EGFR, ERBB2, KRAS, MAP2K1, MET, NRAS, PIK3CA, ROS1 and TP53 and gene fusions of ALK, RET and ROS1 were also investigated, using next‐generation sequencing on 73 lung cancer patients and 14 tumour‐free individuals. Our four‐gene methylation panel had significant diagnostic power, with 97% sensitivity and 74% specificity (relative risk, 7.3; odds ratio, 6.1; 95% confidence interval, 12.7–127). In contrast, gene mutation analysis had a remarkable value for predictive, but not for diagnostic, purposes. Actionable mutations in EGFR, HER2 and ROS1 as well as in other cancer genes (KRAS, PIK3CA and TP53) were detected. Concordance with gene mutations uncovered in tumour biopsies was higher than 90%. In addition, bronchial‐washing analyses permitted complete patient coverage and the detection of additional actionable mutations. In conclusion, BWs are a useful material on which to perform molecular tests based on gene panels: aberrant gene methylation and mutation analyses could be performed as approaches accompanying current diagnostic and predictive assays during the initial workup phase. This study establishes the grounds for further prospective investigation.
Collapse
Affiliation(s)
- Roberta Roncarati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy.,CNR, Institute of Genetics and Biomedical Research, National Research Council of Italy, Milano, Italy
| | - Laura Lupini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Elena Miotto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Elena Saccenti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Susanna Mascetti
- Azienda Ospedaliero-Universitaria di Ferrara, Division of Respiratory Endoscopy, S. Anna Hospital, Cona, Italy
| | - Luca Morandi
- Azienda Ospedaliero-Universitaria di Ferrara, Division of Respiratory Endoscopy, S. Anna Hospital, Cona, Italy
| | - Cristian Bassi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy.,Laboratorio per le Tecnologie delle Terapie Avanzate, Tecnopolo, University of Ferrara, Italy
| | - Debora Rasio
- Department of Clinical and Molecular Medicine, Sant' Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Elisa Callegari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Valentina Conti
- Pneumology Division, State Hospital, San Marino, Republic of San Marino
| | - Rosa Rinaldi
- Division of Anatomic Pathology, Carlo Poma Hospital, Mantova, Italy
| | - Giovanni Lanza
- Azienda Ospedaliero-Universitaria di Ferrara, Division of Anatomic Pathology, S. Anna Hospital, Cona, Italy.,Department of Medical Sciences, University of Ferrara, Italy
| | - Roberta Gafà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy.,Azienda Ospedaliero-Universitaria di Ferrara, Division of Anatomic Pathology, S. Anna Hospital, Cona, Italy
| | - Alberto Papi
- Azienda Ospedaliero-Universitaria di Ferrara, Division of Respiratory Endoscopy, S. Anna Hospital, Cona, Italy.,Department of Medical Sciences, University of Ferrara, Italy
| | - Antonio Frassoldati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy.,Azienda Ospedaliero-Universitaria di Ferrara, Medical Oncology Unit, S. Anna Hospital, Cona, Italy
| | - Silvia Sabbioni
- Laboratorio per le Tecnologie delle Terapie Avanzate, Tecnopolo, University of Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - Franco Ravenna
- Division of Pneumology and Intensive Respiratory Unit, Carlo Poma Hospital, Mantova, Italy
| | - Gian L Casoni
- Azienda Ospedaliero-Universitaria di Ferrara, Division of Respiratory Endoscopy, S. Anna Hospital, Cona, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy.,Laboratorio per le Tecnologie delle Terapie Avanzate, Tecnopolo, University of Ferrara, Italy
| |
Collapse
|
48
|
Wang Z, Yang P, Xie J, Lin HP, Kumagai K, Harkema J, Yang C. Arsenic and benzo[a]pyrene co-exposure acts synergistically in inducing cancer stem cell-like property and tumorigenesis by epigenetically down-regulating SOCS3 expression. ENVIRONMENT INTERNATIONAL 2020; 137:105560. [PMID: 32062438 PMCID: PMC7099608 DOI: 10.1016/j.envint.2020.105560] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 05/23/2023]
Abstract
Arsenic and benzo[a]pyrene (BaP) are among the most common environmental carcinogens causing lung cancer. Millions of people are exposed to arsenic through consuming arsenic-contaminated drinking water. High levels of BaP are found in well-done barbecued meat and other food in addition to cigarette smoke. Hence, arsenic and BaP co-exposure in humans is common. However, the combined health effect and the underlying mechanism of arsenic and BaP co-exposure have not been well-understood. In this study we investigate the combined tumorigenic effect of arsenic and BaP co-exposure and the mechanism using both cell culture and mouse models. It was found that arsenic (sodium arsenite, 1.0 µM) and BaP (2.5 µM) co-exposure for 30 weeks synergizes in inducing malignant transformation of immortalized non-tumorigenic human bronchial epithelial cells and cancer stem cell (CSC)-like property to enhance their tumorigenicity. In animal studies, A/J mice were exposed to arsenic in drinking water (sodium arsenite, 20 ppm) starting from gestation day 18. After birth, the dams continuously received arsenic water throughout lactation. At weaning (3 weeks of age), male offspring were exposed to either arsenic alone via drinking the same arsenic water or exposed to arsenic plus BaP. BaP was administered via oral gavage (3 µmol per mouse per week) once a week starting from 3 weeks of age for 8 weeks. All mice were euthanized 34-weeks after the first BaP exposure. It was found that mice in control and arsenic exposure alone group did not develop lung tumors. All mice in BaP exposure alone group developed lung adenomas. However, arsenic and BaP co-exposure synergized in increasing lung tumor multiplicity and tumor burden. Furthermore, 30% of mice in arsenic and BaP co-exposure group also developed lung adenocarcinomas. Mechanistic studies revealed that arsenic and BaP co-exposure does not produce more BPDE-DNA adducts than BaP exposure alone; but acts synergistically in activating aryl hydrocarbon receptor (AhR) to up-regulate the expression of a histone H3 lysine 9 methyltransferase SUV39H1 and increase the level of suppressive H3 lysine 9 dimethylation (H3K9me2), which down-regulates the expression of tumor suppressive SOCS3 leading to enhanced activation of Akt and Erk1/2 to promote cell transformation, CSC-like property and tumorigenesis. Together, these findings suggest that arsenic and BaP co-exposure synergizes in causing epigenetic dysregulation to enhance cell transformation, CSC-like property and tumorigenesis.
Collapse
Affiliation(s)
- Zhishan Wang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, USA.
| | - Ping Yang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, USA; School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Jie Xie
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, USA; School of Health Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Hsuan-Pei Lin
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Kazuyoshi Kumagai
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Jack Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
49
|
Khalil AM, Li SG, Lin Y, Li HX, Ma SG. A new expert system in prediction of lung cancer disease based on fuzzy soft sets. Soft comput 2020. [DOI: 10.1007/s00500-020-04787-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
50
|
Ling X, Li Y, Qiu F, Lu X, Yang L, Chen J, Li T, Wu D, Xiong H, Su W, Huang D, Chen J, Yang B, Zhao H, Xie C, Zhou Y, Lu J. Down expression of lnc-BMP1-1 decreases that of Caveolin-1 is associated with the lung cancer susceptibility and cigarette smoking history. Aging (Albany NY) 2020; 12:462-480. [PMID: 31901898 PMCID: PMC6977698 DOI: 10.18632/aging.102633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Lnc-BMP1-1 is a lncRNA transcribed from SFTPC (surfactant associated protein C), a lung tissue specific gene encoding pulmonary-associated surfactant protein C (SPC) that is solely secreted by alveolar typeⅡ epithelial cells, among which the ones with SFTPC+ might be transformed into lung adenocarcinoma cells. Caveolin-1 (Cav-1) is a candidate tumor suppressor gene and is vital for coping with oxidative stress induced by cigarette smoke. When comparing lung cancer tissues with their adjacent normal tissues, the expression of lnc-BMP1-1 were decreased, especially in patients with cigarette smoking history (P=0.027), and positively associated with the expression of Cav-1 (P<0.001). When comparing to A549 cells transfected with empty vector (A549-NC cells), the expression level of Cav-1 in A549 cells with over-expressed lnc-BMP1-1 (A549-BMP cells) was increased along with the decreased level of HDAC2 protein. The drug sensitivity of A549-BMP cells to Doxorubicin hydrochloride (DOX) was increased; the growth and migration capability of A549-BMP cells were inhibited along with the decreased protein level of Bcl-2 and DNMT3a; the growth of tumor in nude mice injected with A549-BMP cells were inhibited, too. Furthermore, the lnc-BMP1-1 and Cav-1 expression was also down-regulated in the human bronchial epithelial (16HBE) cells treated with cigarette smoke extract (CSE).
Collapse
Affiliation(s)
- Xiaoxuan Ling
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China.,The School of Public Health, The Institute of Environmental and Health of Dongguan Key Laboratory, Guangdong Medical University, Dongguan, China
| | - Yinyan Li
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Xiaoxiao Lu
- Department of English and American Studies, Faculty of Languages and Literatures, Ludwig Maximilian University (LMU), Munich, Germany
| | - Lei Yang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Guangzhou, China
| | - Jinbin Chen
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Guangzhou, China
| | - Tiegang Li
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China.,Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Di Wu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China.,Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Huali Xiong
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Wenpeng Su
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Dongsheng Huang
- Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Jiansong Chen
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Binyao Yang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Hongjun Zhao
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Chenli Xie
- The Fifth People's Hospital of Dongguan, Dongguan, Guangdong, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|