1
|
Zhang L, Cai M, Zhang X, Wang S, Pang L, Chen X, Zheng C, Sun Y, Liang Y, Guo S, Wei F, Zhang Y. Integrated analysis of microbiome and host transcriptome unveils correlations between lung microbiota and host immunity in bronchoalveolar lavage fluid of pneumocystis pneumonia patients. Microbes Infect 2024; 26:105374. [PMID: 38849069 DOI: 10.1016/j.micinf.2024.105374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVE The lung microbiota of patients with pulmonary diseases is disrupted and impacts the immunity. The microbiological and immune landscape of the lungs in patients with pneumocystis pneumonia (PCP) remains poorly understood. METHODS Multi-omics analysis and machine learning were performed on bronchoalveolar lavage fluid to explore interaction between the lung microbiota and host immunity in PCP. Then we constructed a diagnostic model using differential genes with LASSO regression and validated by qPCR. The immune infiltration analysis was performed to explore the landscape of lung immunity in patients with PCP. RESULTS Patients with PCP showed a low alpha diversity of lung microbiota, accompanied by the elevated abundance of Firmicutes, and the differential expressed genes (DEGs) analysis displayed a downregulation of MAPK signaling. The MAPK10, TGFB1, and EFNA3 indicated a potential to predict PCP (AUC = 0.86). The lung immune landscape in PCP showed the lower levels of naïve CD4+ T cells and activated dendritic cells. The correlation analysis of the MAPK signaling pathway-related DEGs and the differential microorganisms at the level of phylum showed that the Firmicutes was negatively correlated with these DEGs. CONCLUSION We profiled the characteristics of lung microbiota and immune landscape in PCP, which may contribute to elucidating the mechanism of PCP.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Miaotian Cai
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Sitong Wang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Lijun Pang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xue Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing Key Laboratory for HIV/AIDS Research, Beijing, 100069, China
| | - Caopei Zheng
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Laboratory for Clinical Medicine, Capital Medical University, China
| | - Yuqing Sun
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Laboratory for Clinical Medicine, Capital Medical University, China
| | - Ying Liang
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing Key Laboratory for HIV/AIDS Research, Beijing, 100069, China; Laboratory for Clinical Medicine, Capital Medical University, China
| | - Shan Guo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Feili Wei
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing Key Laboratory for HIV/AIDS Research, Beijing, 100069, China; Laboratory for Clinical Medicine, Capital Medical University, China; Beijing Research Center for Respiratory Infectious Diseases, China.
| |
Collapse
|
2
|
Kreniske JS, Kaner RJ, Glesby MJ. Pathogenesis and management of emphysema in people with HIV. Expert Rev Respir Med 2023; 17:873-887. [PMID: 37848398 PMCID: PMC10872640 DOI: 10.1080/17476348.2023.2272702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Since early in the HIV epidemic, emphysema has been identified among people with HIV (PWH) and has been associated with increased mortality. Smoking cessation is key to risk reduction. Health maintenance for PWH and emphysema should ensure appropriate vaccination and lung cancer screening. Treatment should adhere to inhaler guidelines for the general population, but inhaled corticosteroid (ICS) should be used with caution. Frontiers in treatment include targeted therapeutics. Major knowledge gaps exist in the epidemiology of and optimal care for PWH and emphysema, particularly in low and middle-income countries (LMIC). AREAS COVERED Topics addressed include risk factors, pathogenesis, current treatment and prevention strategies, and frontiers in research. EXPERT OPINION There are limited data on the epidemiology of emphysema in LMIC, where more than 90% of deaths from COPD occur and where the morbidity of HIV is most heavily concentrated. The population of PWH is aging, and age-related co-morbidities such as emphysema will only increase in salience. Over the next 5 years, the authors anticipate novel trials of targeted therapy for emphysema specific to PWH, and we anticipate a growing body of evidence to inform optimal clinical care for lung health among PWH in LMIC.
Collapse
Affiliation(s)
- Jonah S. Kreniske
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, USA
| | - Robert J. Kaner
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, USA
- Department of Genetic Medicine, Weill Cornell Medical College, USA
| | - Marshall J. Glesby
- Division of Infectious Diseases, Weill Cornell Medical College, USA
- Department of Population Health Sciences, Weill Cornell Medical College, USA
| |
Collapse
|
3
|
Li S, Yang X, Moog C, Wu H, Su B, Zhang T. Neglected mycobiome in HIV infection: Alterations, common fungal diseases and antifungal immunity. Front Immunol 2022; 13:1015775. [PMID: 36439143 PMCID: PMC9684632 DOI: 10.3389/fimmu.2022.1015775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/26/2022] [Indexed: 09/16/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection might have effects on both the human bacteriome and mycobiome. Although many studies have focused on alteration of the bacteriome in HIV infection, only a handful of studies have also characterized the composition of the mycobiome in HIV-infected individuals. Studies have shown that compromised immunity in HIV infection might contribute to the development of opportunistic fungal infections. Despite effective antiretroviral therapy (ART), opportunistic fungal infections continue to be a major cause of HIV-related mortality. Human immune responses are known to play a critical role in controlling fungal infections. However, the effect of HIV infection on innate and adaptive antifungal immunity remains unclear. Here, we review recent advances in understanding of the fungal microbiota composition and common fungal diseases in the setting of HIV. Moreover, we discuss innate and adaptive antifungal immunity in HIV infection.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Yang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Christiane Moog
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
The Significance of Implementing Bilevel Positive Airway Pressure under Cluster Nursing in Improving the Survival Possibility of Patients with Severe Pulmonary Infection Complicated by Respiratory Failure. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2324797. [PMID: 36238471 PMCID: PMC9553364 DOI: 10.1155/2022/2324797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022]
Abstract
Objective. To explore the significance of bilevel positive airway pressure (BIPAP) under cluster nursing in improving the survival probability of patients with severe pulmonary infection (SPI) complicated by respiratory failure (RF). Methods. This research included 153 SPI patients complicated by RF (
) admitted between January 2020 and March 2022, including 55 cases in group A who were treated with BIPAP under cluster care during hospitalization, 47 cases in group B receiving invasive continuous mechanical ventilation during hospitalization, and 51 cases in group C treated with BIPAP under routine care during hospitalization. The three cohorts were compared regarding pre- and posttreatment serum inflammatory factors (IFs), blood gas (BG) parameters, heart rate (HR), and respiratory rate (RR). Besides, the cumulative time of ventilator use, successful ventilator weaning rate, mortality, and incidence of adverse events were counted. Finally, patients were scored for their psychological state using the Hamilton Anxiety/Depression Scale (HAMA/HAMD). Results. The posttreatment TNF-α, IL-6, PCT, WBC, and PaCO2 reduced statistically in all the three groups, with the lowest levels found in group A and the highest in group B (
); while PaO2 and SpO2 increased, with the highest values found in group A and the lowest in group B (
). Among the three groups, group A had the shortest duration of ventilator use, the highest successful weaning rate, and the lowest incidence of adverse events (
). Besides, HAMA and HAMD scores were the lowest in group A among the three groups, while those in group B were higher compared with group C (
). Conclusion. The implementation of BIPAP under cluster nursing can effectively reduce inflammatory responses of
patients, improve their vital signs, and enhance their psychological state, which has extremely high clinical application value.
Collapse
|
5
|
Chen Z, Tian Y, Wang Y, Zhao H, Chen C, Zhang F. Profile of the Lower Respiratory Tract Microbiome in Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome and Lung Disease. Front Microbiol 2022; 13:888996. [PMID: 35814692 PMCID: PMC9260662 DOI: 10.3389/fmicb.2022.888996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Once an human immunodeficiency virus (HIV)-infected individual enters the onset period, a variety of opportunistic infections may occur, affecting various systems and organs throughout the body, due to the considerable reduction in the body’s immune function. The objectives of this study were to explore the relationship between immune status and microbial communities in the lungs of individuals with HIV infection. A total of 88 patients with lung disease [80 (91%) HIV-positive and 8 (9%) HIV-negative] were enrolled in our study between January and July 2018, and 88 bronchoalveolar lavage fluid (BALF) samples were obtained during bronchoscopy. In this cross-sectional study, we investigated differences in the pulmonary microbiome of patients with HIV who had different immune statuses. The diversity of bacteria in the lungs of HIV-positive individuals was lower than that in HIV-negative individuals (p < 0.05). There was a significant difference in the composition and distribution of bacteria and fungi between the HIV-positive and HIV-negative groups (p < 0.01). The number of fungal species in the BALF of HIV-positive patients was higher than in HIV-negative patients. The diversity of bacteria and fungi in the BALF of HIV-positive patients increased with decreasing CD4 T-cell counts. Linear regression analysis showed that Pneumocystis (R2 = 6.4e−03, p < 0.05), Cryptosphaeria (R2 = 7.2e−01, p < 0.05), Candida (R2 = 3.9e−02, p < 0.05), and Trichosporon (R2 = 7.7e−01, p < 0.05) were negatively correlated with CD4 counts (F-test, p < 0.05). The samples collected from HIV-positive patients exhibited a different pattern relative to those from the HIV-negative group. Differences in host immune status cause differences in the diversity and structure of lower respiratory tract microorganisms.
Collapse
Affiliation(s)
- Zhen Chen
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ya Tian
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- Affiliated Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxin Zhao
- Affiliated Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chen Chen
- Affiliated Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chen Chen,
| | - Fujie Zhang
- Affiliated Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Fujie Zhang,
| |
Collapse
|
6
|
Oliveira SD. Insights on the Gut-Mesentery-Lung Axis in Pulmonary Arterial Hypertension: A Poorly Investigated Crossroad. Arterioscler Thromb Vasc Biol 2022; 42:516-526. [PMID: 35296152 PMCID: PMC9050827 DOI: 10.1161/atvbaha.121.316236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/28/2022] [Indexed: 11/16/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by the hyperproliferation of vascular cells, including smooth muscle and endothelial cells. Hyperproliferative cells eventually obstruct the lung vasculature, leading to irreversible lesions that collectively drive pulmonary pressure to life-threatening levels. Although the primary cause of PAH is not fully understood, several studies have indicated it results from chronic pulmonary inflammation, such as observed in response to pathogens' infection. Curiously, infection by the intravascular parasite Schistosoma mansoni recapitulates several aspects of the widespread pulmonary inflammation that leads to development of chronic PAH. Globally, >200 million people are currently infected by Schistosoma spp., with about 5% developing PAH (Sch-PAH) in response to the parasite egg-induced obliteration and remodeling of the lung vasculature. Before their settling into the lungs, Schistosoma eggs are released inside the mesenteric veins, where they either cross the intestinal wall and disturb the gut microbiome or migrate to other organs, including the lungs and liver, increasing pressure. Spontaneous or surgical liver bypass via collateral circulation alleviates the pressure in the portal system; however, it also allows the translocation of pathogens, toxins, and antigens into the lungs, ultimately causing PAH. This brief review provides an overview of the gut-mesentery-lung axis during PAH, with a particular focus on Sch-PAH, and attempts to delineate the mechanism by which pathogen translocation might contribute to the onset of chronic pulmonary vascular diseases.
Collapse
Affiliation(s)
- Suellen Darc Oliveira
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago
| |
Collapse
|
7
|
Chen XM, Sun L, Yang K, Chen JM, Zhang L, Han XY, Zhou X, Ma ZY, Li M, Zhao HX, Qi LM, Wang P. Cytopathological analysis of bronchoalveolar lavage fluid in patients with and without HIV infection. BMC Pulm Med 2022; 22:55. [PMID: 35130846 PMCID: PMC8822775 DOI: 10.1186/s12890-022-01851-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) infection can lead to a broad spectrum of lung diseases, including infectious diseases and tumors. Recently, with the wide application of bronchoscopes and cytopathology of bronchoalveolar lavage fluid (BALF), the diagnostic efficiency of lung diseases has improved. The present study focuses on analyzing the cytopathologic characteristics of BALF in the diagnosis of HIV/AIDS-related lung disease and comparing the lung disease spectrum between HIV and HIV-uninfected patients. METHODS BALF specimens were collected from 2211 patients. Using ThinPrep liquid-based technology, the cytologic smears were prepared by staining with Hematoxylin and Eosin (HE), Gomori's methenamine silver (GMS), and Periodic Acid Schiff (PAS), acid-fast and immunocytochemical (ICC) staining. Real-time PCR was used to detect cytomegalovirus (CMV) and Mycobacterium tuberculosis (M. tuberculosis) in the remaining BALF. PCR-reverse dot hybridization was used for mycobacterial species identification. RESULTS From the 2211 BALF specimens, 1768 (79.96%) were specimens from HIV-infected patients, and 443 (20.04%) were speciments from HIV-uninfected patients. The HIV-infected patients with a median age of 38.5 ± 11.3 years were markedly younger than the HIV-uninfected patients (52.9 ± 14.9 years) (p < 0.01). We found that 1635 (92.5%) HIV-infected patients were males, showing a prominently higher proportion than those without HIV infection (71.1%) (p < 0.01). Meanwhile, 1045 specific lesions were found in 1768 HIV-infected patients (59.1%), including 1034 cases of infectious diseases and 11 neoplastic lesions, also exhibiting a distinctly higher proportion compared to the HIV-uninfected patients (12.2%) (p < 0.001). For the HIV-infected group, a distinctly higher proportion of single infection lesions (724/1768, 41%) was noted than the HIV-uninfected group (14/443, 3.2%) (p < 0.001). Among single infection lesions, the most common was Cytomegalovirus(CMV) infection (20.9%) for the HIV-infected group, followed by Pneumocystis jiroveci(PJ) (13.0%), Fungal (3.5%), and Mycobacterial infections (3.4%), of which M. tuberculosis infection accounted for 3.1%. Double infections (300/1768, 17.0%) and Triple infections (10/1768, 0.6%) were found only among the patients with HIV. The malignancies among HIV-infected patients included adenocarcinomas (0.22%), small cell carcinomas (0.2%), squamous cell carcinomas (0.1%), and diffuse large B-cell lymphoma (0.1%). HIV-infected patients exhibited a significantly lower incidence of neoplastic lesions (0.6% vs. 9.0%) than the HIV-uninfected patients (p < 0.001). CONCLUSIONS There was a significant difference in the spectrum of lung diseases between HIV-infected and non-infected patients diagnosed by BALF cytopathology.
Collapse
Affiliation(s)
- Xiang-Mei Chen
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, People's Republic of China.
| | - Kun Yang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Jia-Min Chen
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Liang Zhang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Xiao-Yi Han
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Zhi-Yuan Ma
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Man Li
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Hong-Xin Zhao
- Center for Infectious Diseases, Beijing Ditan Hospital, Captial Medical University, Beijing, 100015, People's Republic of China
| | - Li-Ming Qi
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Peng Wang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, People's Republic of China.
| |
Collapse
|
8
|
Alexandrova Y, Costiniuk CT, Jenabian MA. Pulmonary Immune Dysregulation and Viral Persistence During HIV Infection. Front Immunol 2022; 12:808722. [PMID: 35058937 PMCID: PMC8764194 DOI: 10.3389/fimmu.2021.808722] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the success of antiretroviral therapy (ART), people living with HIV continue to suffer from high burdens of respiratory infections, lung cancers and chronic lung disease at a higher rate than the general population. The lung mucosa, a previously neglected HIV reservoir site, is of particular importance in this phenomenon. Because ART does not eliminate the virus, residual levels of HIV that remain in deep tissues lead to chronic immune activation and pulmonary inflammatory pathologies. In turn, continuous pulmonary and systemic inflammation cause immune cell exhaustion and pulmonary immune dysregulation, creating a pro-inflammatory environment ideal for HIV reservoir persistence. Moreover, smoking, gut and lung dysbiosis and co-infections further fuel the vicious cycle of residual viral replication which, in turn, contributes to inflammation and immune cell proliferation, further maintaining the HIV reservoir. Herein, we discuss the recent evidence supporting the notion that the lungs serve as an HIV viral reservoir. We will explore how smoking, changes in the microbiome, and common co-infections seen in PLWH contribute to HIV persistence, pulmonary immune dysregulation, and high rates of infectious and non-infectious lung disease among these individuals.
Collapse
Affiliation(s)
- Yulia Alexandrova
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC, Canada
| | - Cecilia T. Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC, Canada
| |
Collapse
|
9
|
Chang S, Guo H, Li J, Ji Y, Jiang H, Ruan L, Du M. Comparative Analysis of Salivary Mycobiome Diversity in Human Immunodeficiency Virus-Infected Patients. Front Cell Infect Microbiol 2021; 11:781246. [PMID: 34926323 PMCID: PMC8671614 DOI: 10.3389/fcimb.2021.781246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Reports on alterations in the oral mycobiome of HIV-infected patients are still limited. This study was designed to compare the salivary mycobiome between 30 human immunodeficiency virus (HIV) infections and 30 healthy controls and explore the effect of antiretroviral therapy (ART) administration on the oral mycobiome of HIV infections. Results showed that the diversity and richness of salivary mycobiome in HIV-infected individuals were higher than those of controls (P < 0.05). After ART, the diversity and richness of salivary mycobiome in HIV-infected patients were reduced significantly (P < 0.05). Candida, Mortierella, Malassezia, Simplicillium, and Penicillium were significantly enriched in the HIV group and dramatically decreased after ART. While the relative abundance of Verticillium, Issatchenkia, and Alternaria significantly increased in patients with HIV after ART. Correlation analysis revealed that Mortierella, Malassezia, Simplicillium, and Chaetomium were positively correlated with viral load (VL), whereas Thyrostroma and Archaeorhizomyces were negatively related to VL and positively related to CD4+ T-cell counts. All results showed that HIV infection and ART administration affected the composition of salivary mycobiome communities. Furthermore, differences of salivary mycobiome in HIV infections after ART were complex and might mirror the immune state of the body.
Collapse
Affiliation(s)
- Shenghua Chang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Haiying Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Han Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lianguo Ruan
- Department of Infectious Diseases Treatment, Wuhan Medical Treatment Center, Wuhan, China
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Ceballos ME, Ross P, Lasso M, Dominguez I, Puente M, Valenzuela P, Enberg M, Serri M, Muñoz R, Pinos Y, Silva M, Noguera M, Dominguez A, Zamora F. Clinical characteristics and outcomes of people living with HIV hospitalized with COVID-19: a nationwide experience. Int J STD AIDS 2021; 32:435-443. [PMID: 33533294 DOI: 10.1177/0956462420973106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this prospective, multicentric, observational study, we describe the clinical characteristics and outcomes of people living with HIV (PLHIV) requiring hospitalization due to COVID-19 in Chile and compare them with Chilean general population admitted with SARS-CoV-2. Consecutive PLHIV admitted with COVID-19 in 23 hospitals, between 16 April and 23 June 2020, were included. Data of a temporally matched-hospitalized general population were used to compare demography, comorbidities, COVID-19 symptoms, and major outcomes. In total, 36 PLHIV subjects were enrolled; 92% were male and mean age was 44 years. Most patients (83%) were on antiretroviral therapy; mean CD4 count was 557 cells/mm3. Suppressed HIV viremia was found in 68% and 56% had, at least, one comorbidity. Severe COVID-19 occurred in 44.4%, intensive care was required in 22.2%, and five patients died (13.9%). No differences were seen between recovered and deceased patients in CD4 count, HIV viral load, or time since HIV diagnosis. Hypertension and cardiovascular disease were associated with a higher risk of death (p = 0.02 and 0.006, respectively). Compared with general population, the HIV cohort had significantly more men (OR 0.15; IC 95% 0.07-0.31) and younger age (OR 8.68; IC 95% 2.66-28.31). In PLHIV, we found more intensive care unit admission (OR 2.31; IC 95% 1.05-5.07) but no differences in the need for mechanical ventilation or death. In this cohort of PLHIV hospitalized with COVID-19, hypertension and cardiovascular comorbidities, but not current HIV viro-immunologic status, were the most important risk factors for mortality. No differences were found between PLHIV and general population in the need for mechanical ventilation and death.
Collapse
Affiliation(s)
- Maria Elena Ceballos
- Department of Infectious Diseases, School of Medicine, 28033Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricio Ross
- Department of Internal Medicine, School of Medicine, 28033Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Lasso
- 60703Hospital Sótero del Río, Puente Alto, Chile
| | | | | | | | - Margarita Enberg
- 560955Hospital Regional de Antofagasta Dr Leonardo Guzmán, Antofagasta, Chile
| | - Michel Serri
- Hospital FACH and Clínica Tabancura, Las Condes, Chile
| | - Rodrigo Muñoz
- 388532Hospital Clínico Magallanes, Punta Arenas, Chile
| | | | | | - Matías Noguera
- 28033Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angelica Dominguez
- Faculty of Medicine, Department of Public Health, 28033Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | |
Collapse
|
11
|
Rofael SA, Brown J, Pickett E, Johnson M, Hurst JR, Spratt D, Lipman M, McHugh TD. Enrichment of the airway microbiome in people living with HIV with potential pathogenic bacteria despite antiretroviral therapy. EClinicalMedicine 2020; 24:100427. [PMID: 32637900 PMCID: PMC7327893 DOI: 10.1016/j.eclinm.2020.100427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Long-term antiretroviral therapy (ART) enables people living with HIV (PLW-HIV) to be healthier and live longer; though they remain at greater risk of pneumonia and chronic lung disease than the general population. Lung microbial dysbiosis has been shown to contribute to respiratory disease. METHODS 16S-rRNA gene sequencing on the Miseq-platform and qPCR for typical respiratory pathogens were performed on sputum samples collected from 64 PLW-HIV (median blood CD4 count 676 cells/μL) and 38 HIV-negative participants. FINDING Richness and α-diversity as well as the relative-abundance (RA) of the major taxa (RA>1%) were similar between both groups. In unweighted-Unifrac ß-diversity, the samples from PLW-HIV showed greater diversity, in contrast to the HIV negative samples which clustered together. Gut bacterial taxa such as Bilophila and members of Enterobacteriaceae as well as pathogenic respiratory taxa (Staphylococcus, Pseudomonas and Klebsiella) were significantly more frequent in PLW-HIV and almost absent in the HIV-negative group. Carriage of these taxa was correlated with the length of time between HIV diagnosis and initiation of ART (Spearman-rho=0·279, p=0·028). INTERPRETATION Although the core airway microbiome was indistinguishable between PLW-HIV on effective ART and HIV-negative participants, PLW-HIV's respiratory microbiome was enriched with potential respiratory pathogens and gut bacteria. The observed differences in PLW-HIV may be due to HIV infection altering the local lung microenvironment to be more permissive to harbour pathogenic bacteria that could contribute to respiratory comorbidities. Prompt start of ART for PLW-HIV may reduce this risk.
Collapse
Affiliation(s)
- Sylvia A.D. Rofael
- UCL Centre for Clinical Microbiology, Division of Infection & Immunity, University College London, Rowland Hill Street, London, NW3 2PF UK
- Faculty of Pharmacy, University of Alexandria, Egypt
| | - James Brown
- UCL Respiratory, Division of Medicine, University College London, UK
- Royal Free London NHS Foundation Trust, Pond Street, NW3 2QG London, UK
| | - Elisha Pickett
- Royal Free London NHS Foundation Trust, Pond Street, NW3 2QG London, UK
| | - Margaret Johnson
- Royal Free London NHS Foundation Trust, Pond Street, NW3 2QG London, UK
| | - John R. Hurst
- UCL Respiratory, Division of Medicine, University College London, UK
| | - David Spratt
- Department of Microbial Diseases, UCL Eastman Dental Institute, UCL, 256 Gray's Inn Rd, WC1 8LD London, UK
| | - Marc Lipman
- UCL Respiratory, Division of Medicine, University College London, UK
- Royal Free London NHS Foundation Trust, Pond Street, NW3 2QG London, UK
| | - Timothy D. McHugh
- UCL Centre for Clinical Microbiology, Division of Infection & Immunity, University College London, Rowland Hill Street, London, NW3 2PF UK
- Corresponding author.
| |
Collapse
|
12
|
Chelvanambi S, Bogatcheva NV, Bednorz M, Agarwal S, Maier B, Alves NJ, Li W, Syed F, Saber MM, Dahl N, Lu H, Day RB, Smith P, Jolicoeur P, Yu Q, Dhillon NK, Weissmann N, Twigg Iii HL, Clauss M. HIV-Nef Protein Persists in the Lungs of Aviremic Patients with HIV and Induces Endothelial Cell Death. Am J Respir Cell Mol Biol 2019; 60:357-366. [PMID: 30321057 DOI: 10.1165/rcmb.2018-0089oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
It remains a mystery why HIV-associated end-organ pathologies persist in the era of combined antiretroviral therapy (ART). One possible mechanism is the continued production of HIV-encoded proteins in latently HIV-infected T cells and macrophages. The proapoptotic protein HIV-Nef persists in the blood of ART-treated patients within extracellular vesicles (EVs) and peripheral blood mononuclear cells. Here we demonstrate that HIV-Nef is present in cells and EVs isolated from BAL of patients on ART. We hypothesize that HIV-Nef persistence in the lung induces endothelial apoptosis leading to endothelial dysfunction and further pulmonary vascular pathologies. The presence of HIV-Nef in patients with HIV correlates with the surface expression of the proapoptotic endothelial-monocyte-activating polypeptide II (EMAPII), which was implicated in progression of pulmonary emphysema via mechanisms involving endothelial cell death. HIV-Nef protein induces EMAPII surface expression in human embryonic kidney 293T cells, T cells, and human and mouse lung endothelial cells. HIV-Nef packages itself into EVs and increases the amount of EVs secreted from Nef-expressing T cells and Nef-transfected human embryonic kidney 293T cells. EVs from BAL of HIV+ patients and Nef-transfected cells induce apoptosis in lung microvascular endothelial cells by upregulating EMAPII surface expression in a PAK2-dependent fashion. Transgenic expression of HIV-Nef in vascular endothelial-cadherin+ endothelial cells leads to lung rarefaction, characterized by reduced alveoli and overall increase in lung inspiratory capacity. These changes occur concomitantly with lung endothelial cell apoptosis. Together, these data suggest that HIV-Nef induces endothelial cell apoptosis via an EMAPII-dependent mechanism that is sufficient to cause pulmonary vascular pathologies even in the absence of inflammation.
Collapse
Affiliation(s)
- Sarvesh Chelvanambi
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,2 R. L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Natalia V Bogatcheva
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,2 R. L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Mariola Bednorz
- 3 Excellence Cluster Cardiopulmonary System, Universities of Giessen and Marburg Lung Center, member of Deutsches Zentrum für Lungenforschung, Justus Liebig University, Giessen, Germany
| | - Stuti Agarwal
- 4 Department of Medicine, Kansas University Medical Center, Kansas City, Kansas
| | - Bernhard Maier
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nathan J Alves
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wei Li
- 5 Department of Microbiology and Immunology, Indiana University, Indianapolis, Indiana
| | - Farooq Syed
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Manal M Saber
- 6 Clinical Pathology Department, Faculty of Medicine, Minia University, Minia, Egypt; and
| | - Noelle Dahl
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,2 R. L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Hongyan Lu
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,2 R. L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Richard B Day
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Patricia Smith
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paul Jolicoeur
- 7 Institut de Recherches Cliniques de Montreal, Montreal, Canada
| | - Qigui Yu
- 5 Department of Microbiology and Immunology, Indiana University, Indianapolis, Indiana
| | - Navneet K Dhillon
- 4 Department of Medicine, Kansas University Medical Center, Kansas City, Kansas
| | - Norbert Weissmann
- 3 Excellence Cluster Cardiopulmonary System, Universities of Giessen and Marburg Lung Center, member of Deutsches Zentrum für Lungenforschung, Justus Liebig University, Giessen, Germany
| | - Homer L Twigg Iii
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Matthias Clauss
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,2 R. L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
13
|
Interactions between microbiome and lungs: Paving new paths for microbiome based bio-engineered drug delivery systems in chronic respiratory diseases. Chem Biol Interact 2019; 310:108732. [DOI: 10.1016/j.cbi.2019.108732] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
|
14
|
Mvaya L, Mwale A, Hummel A, Phiri J, Kamng'ona R, Mzinza D, Chimbayo E, Malamba R, Kankwatira A, Mwandumba HC, Jambo KC. Airway CD8 +CD161 ++TCRvα7.2 + T Cell Depletion During Untreated HIV Infection Targets CD103 Expressing Cells. Front Immunol 2019; 10:2003. [PMID: 31497028 PMCID: PMC6713019 DOI: 10.3389/fimmu.2019.02003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
HIV-infected adults are at an increased risk to lower respiratory tract infections (LRTIs). CD8+CD161++TCRvα7.2+ T cells are an innate-like T cell subset that are thought to play an important role in early defense against pathogens in the respiratory tract. HIV infection leads to irreversible depletion of these cells in peripheral blood, however, its impact on this subset in the human airway is still unclear. Here, we show presence of CD103 expressing CD8+CD161++TCRvα7.2+ T cells in the airway that exhibited a distinct cytokine functional profile compared to their CD103- airway counterparts and those from peripheral blood. These CD103 expressing airway CD8+CD161++TCRvα7.2+ T cells were selectively depleted in untreated HIV-infected adults compared to healthy controls. Their frequency was positively correlated with frequency of airway CD4+ T cells. Furthermore, the frequency of airway CD8+CD161++TCRvα7.2+ T cells was also inversely correlated with HIV plasma viral load, while suppressive antiretroviral therapy (ART) resulted in restoration of airway CD8+CD161++TCRvα7.2+ T cells. Our findings show that CD103 expressing airway CD8+CD161++TCRvα7.2+ T cells are functionally distinct and are preferentially depleted during untreated asymptomatic HIV infection. Depletion of CD103 expressing airway CD8+CD161++TCRvα7.2+ T cells, at a major portal of pathogen entry, could partly contribute to the increased propensity for opportunistic LRTIs observed in untreated HIV-infected adults.
Collapse
Affiliation(s)
- Leonard Mvaya
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Andrew Mwale
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Annemarie Hummel
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Joseph Phiri
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Raphael Kamng'ona
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - David Mzinza
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elizabeth Chimbayo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Rose Malamba
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Anstead Kankwatira
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Henry C Mwandumba
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kondwani C Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
15
|
Fukui Y, Aoki K, Ishii Y, Tateda K. The palatine tonsil bacteriome, but not the mycobiome, is altered in HIV infection. BMC Microbiol 2018; 18:127. [PMID: 30290791 PMCID: PMC6173881 DOI: 10.1186/s12866-018-1274-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/28/2018] [Indexed: 01/01/2023] Open
Abstract
Background Microbial flora in several organs of HIV-infected individuals have been characterized; however, the palatine tonsil bacteriome and mycobiome and their relationship with each other remain unclear. Determining the palatine tonsil microbiome may provide a better understanding of the pathogenesis of oral and systemic complications in HIV-infected individuals. We conducted a cross-sectional study to characterize the palatine tonsil microbiome in HIV-infected individuals. Results Palatine tonsillar swabs were collected from 46 HIV-infected and 20 HIV-uninfected individuals. The bacteriome and mycobiome were analyzed by amplicon sequencing using Illumina MiSeq. The palatine tonsil bacteriome of the HIV-infected individuals differed from that of HIV-uninfected individuals in terms of the decreased relative abundances of the commensal genera Neisseria and Haemophilus. At the species level, the relative abundances and presence of Capnocytophaga ochracea, Neisseria cinerea, and Selenomonas noxia were higher in the HIV-infected group than those in the HIV-uninfected group. In contrast, fungal diversity and composition did not differ significantly between the two groups. Microbial intercorrelation analysis revealed that Candida and Neisseria were negatively correlated with each other in the HIV-infected group. HIV immune status did not influence the palatine tonsil microbiome in the HIV-infected individuals. Conclusions HIV-infected individuals exhibit dysbiotic changes in their palatine tonsil bacteriome, independent of immunological status. Electronic supplementary material The online version of this article (10.1186/s12866-018-1274-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuto Fukui
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo, 143-8540, Japan. .,Department of Infectious Diseases, Toho University Omori Medical Center, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan.
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo, 143-8540, Japan
| |
Collapse
|
16
|
Weitzman CL, Sandmeier FC, Tracy CR. Host species, pathogens and disease associated with divergent nasal microbial communities in tortoises. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181068. [PMID: 30473851 PMCID: PMC6227988 DOI: 10.1098/rsos.181068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/18/2018] [Indexed: 06/09/2023]
Abstract
Diverse bacterial communities are found on every surface of macro-organisms, and they play important roles in maintaining normal physiological functions in their hosts. While the study of microbiomes has expanded with the influx of data enabled by recent technological advances, microbiome research in reptiles lags behind other organisms. We sequenced the nasal microbiomes in a sample of four North American tortoise species, and we found differing community compositions among tortoise species and sampling sites, with higher richness and diversity in Texas and Sonoran desert tortoises. Using these data, we investigated the prevalence and operational taxonomic unit (OTU) diversity of the potential pathogen Pasteurella testudinis and found it to be common, abundant and highly diverse. However, the presence of this bacterium was not associated with differences in bacterial community composition within host species. We also found that the presence of nasal discharge from tortoises at the time of sampling was associated with a decline in diversity and a change in microbiome composition, which we posit is due to the harsh epithelial environment associated with immune responses. Repeated sampling across seasons, and at different points of pathogen colonization, should contribute to our understanding of the causes and consequences of different bacterial communities in these long-lived hosts.
Collapse
Affiliation(s)
- Chava L. Weitzman
- Department of Biology, University of Nevada, Reno, NV 89557, USA
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV 89557, USA
| | | | - C. Richard Tracy
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize recent findings on the lung microbiome in HIV-infected patients and associated pulmonary diseases, and the relationship of airway microbial communities to metabolic and immune signatures within this patient population. RECENT FINDINGS The lung microbiome in HIV infection is a relatively new and rapidly developing field; early studies in the field produced inconclusive evidence as to whether HIV-infection changes the lower airway microbiome. More recent microbiome investigations have addressed these inconsistencies by incorporating systems biology approaches and laboratory models. Several investigations have now identified enrichment of Prevotella, Veillonella, and Streptococcus in the lower airways as consistent correlates of advanced HIV-infection and HIV-associated pulmonary diseases. These bacteria are associated with specific metabolic and immune profiles within the lung and circulation, providing the first indication that the lung microbiome may play a functional role in the pathogenesis of HIV-infection and HIV-associated pulmonary disease. SUMMARY This review summarizes knowledge to date on the lung microbiome in HIV infection, as well as challenges and accomplishments in the field within the last 2 years. Although the lung microbiome in HIV infection is still an emerging field, recent studies have formed a framework for future functional analysis of microbes in HIV pathogenesis.
Collapse
|
18
|
Masekela R, Vosloo S, Venter SN, de Beer WZ, Green RJ. The lung microbiome in children with HIV-bronchiectasis: a cross-sectional pilot study. BMC Pulm Med 2018; 18:87. [PMID: 29788934 PMCID: PMC5964725 DOI: 10.1186/s12890-018-0632-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/25/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Data on the lung microbiome in HIV-infected children is limited. The current study sought to determine the lung microbiome in HIV-associated bronchiectasis and to assess its association with pulmonary exacerbations. METHODS A cross-sectional pilot study of 22 children (68% male; mean age 10.8 years) with HIV-associated bronchiectasis and a control group of 5 children with cystic fibrosis (CF). Thirty-one samples were collected, with 11 during exacerbations. Sputum samples were processed with 16S rRNA pyrosequencing. RESULTS The average number of operational taxonomy units (OTUs) was 298 ± 67 vs. 434 ± 90, for HIV-bronchiectasis and CF, respectively. The relative abundance of Proteobacteria was higher in HIV-bronchiectasis (72.3%), with only 22.2% Firmicutes. There was no correlation between lung functions (FEV1% and FEF25/75%) and bacterial community (r = 0.154; p = 0.470 and r = 0.178; p = 0.403), respectively. Bacterial assemblage of exacerbation and non-exacerbation samples in HIV-bronchiectasis was not significantly different (ANOSIM, RHIV-bronchiectasis = 0.08; p = 0.14 and RCF = 0.08, p = 0.50). Higher within-community heterogeneity and lower evenness was associated with CF (Shannon-Weiner (H') = 5.39 ± 0.38 and Pielou's evenness (J) 0.79 ± 0.10 vs. HIV-bronchiectasis (Shannon-Weiner (H') = 4.45 ± 0.49 and Pielou's (J) 0.89 ± 0.03. CONCLUSION The microbiome in children with HIV-associated bronchiectasis seems to be less rich, diverse and heterogeneous with predominance of Proteobacteria when compared to cystic fibrosis.
Collapse
Affiliation(s)
- Refiloe Masekela
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Maternal and Child Health, Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Congella, Durban, 4013 South Africa
| | - Solize Vosloo
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| | - Stephanus N. Venter
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| | - Wilhelm Z. de Beer
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| | - Robin J. Green
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
19
|
Twigg HL, Crystal R, Currier J, Ridker P, Berliner N, Kiem HP, Rutherford G, Zou S, Glynn S, Wong R, Peprah E, Engelgau M, Creazzo T, Colombini-Hatch S, Caler E. Refining Current Scientific Priorities and Identifying New Scientific Gaps in HIV-Related Heart, Lung, Blood, and Sleep Research. AIDS Res Hum Retroviruses 2017; 33:889-897. [PMID: 28530113 DOI: 10.1089/aid.2017.0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The National Heart, Lung, and Blood Institute (NHLBI) AIDS Program's goal is to provide direction and support for research and training programs in areas of HIV-related heart, lung, blood, and sleep (HLBS) diseases. To better define NHLBI current HIV-related scientific priorities and with the goal of identifying new scientific priorities and gaps in HIV-related HLBS research, a wide group of investigators gathered for a scientific NHLBI HIV Working Group on December 14-15, 2015, in Bethesda, MD. The core objectives of the Working Group included discussions on: (1) HIV-related HLBS comorbidities in the antiretroviral era; (2) HIV cure; (3) HIV prevention; and (4) mechanisms to implement new scientific discoveries in an efficient and timely manner so as to have the most impact on people living with HIV. The 2015 Working Group represented an opportunity for the NHLBI to obtain expert advice on HIV/AIDS scientific priorities and approaches over the next decade.
Collapse
Affiliation(s)
- Homer L. Twigg
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University Medical Center, Indianapolis, Indiana
| | - Ronald Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Judith Currier
- Department of Medicine, University of California, Los Angeles, California
| | - Paul Ridker
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Nancy Berliner
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Hans-Peter Kiem
- Department of Medicine, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
| | - George Rutherford
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Shimian Zou
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Simone Glynn
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Renee Wong
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Emmanuel Peprah
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael Engelgau
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Tony Creazzo
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sandra Colombini-Hatch
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Elisabet Caler
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
20
|
Head BM, Trajtman A, Rueda ZV, Vélez L, Keynan Y. Atypical bacterial pneumonia in the HIV-infected population. Pneumonia (Nathan) 2017; 9:12. [PMID: 28856082 PMCID: PMC5571654 DOI: 10.1186/s41479-017-0036-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/13/2017] [Indexed: 01/02/2023] Open
Abstract
Human immunodeficiency virus (HIV)-infected individuals are more susceptible to respiratory tract infections by other infectious agents (viruses, bacteria, parasites, and fungi) as their disease progresses to acquired immunodeficiency syndrome. Despite effective antiretroviral therapy, bacterial pneumonia (the most frequently occurring HIV-associated pulmonary illness) remains a common cause of morbidity and mortality in the HIV-infected population. Over the last few decades, studies have looked at the role of atypical bacterial pneumonia (i.e. pneumonia that causes an atypical clinical presentation or responds differently to typical therapeutics) in association with HIV infection. Due to the lack of available diagnostic strategies, the lack of consideration, and the declining immunity of the patient, HIV co-infections with atypical bacteria are currently believed to be underreported. Thus, following an extensive database search, this review aimed to highlight the current knowledge and gaps regarding atypical bacterial pneumonia in HIV. The authors discuss the prevalence of Chlamydophila pneumoniae, Mycoplasma pneumoniae, Coxiella burnetii, Legionella species and others in the HIV-infected population as well as their clinical presentation, methods of detection, and treatment. Further studies looking at the role of these microbes in association with HIV are required. Increased knowledge of these atypical bacteria will lead to a more rapid diagnosis of these infections, resulting in an improved quality of life for the HIV-infected population.
Collapse
Affiliation(s)
- Breanne M. Head
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Adriana Trajtman
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Zulma V. Rueda
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - Lázaro Vélez
- Grupo Investigador de Problemas en Enfermedades Infecciosas, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Yoav Keynan
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|