1
|
Narciso AR, Dookie R, Nannapaneni P, Normark S, Henriques-Normark B. Streptococcus pneumoniae epidemiology, pathogenesis and control. Nat Rev Microbiol 2025; 23:256-271. [PMID: 39506137 DOI: 10.1038/s41579-024-01116-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
Infections caused by Streptococcus pneumoniae (also known as pneumococci) pose a threat to human health. Pneumococcal infections are the most common cause of milder respiratory tract infections, such as otitis and sinusitis, and of more severe diseases, including pneumonia (with or without septicaemia) and meningitis. The introduction of pneumococcal conjugate vaccines in the childhood vaccination programme in many countries has led to a notable decrease of severe invasive pneumococcal disease in vaccinated children. However, infections caused by non-vaccine types have concurrently increased, causing invasive pneumococcal disease in unvaccinated populations (such as older adults), which has hampered the effect of these vaccines. Moreover, emerging antibiotic resistance is threatening effective therapy. Thus, new approaches are needed for the treatment and prevention of pneumococcal infections, and recent advances in the field may pave the way for new strategies. Recently, several important findings have been gained regarding pneumococcal epidemiology, genomics and the effect of the introduction of pneumococcal conjugate vaccines and of the COVID-19 pandemic. Moreover, elucidative pathogenesis studies have shown that the interactions between pneumococcal virulence factors and host receptors may be exploited for new therapies, and new vaccine candidates have been suggested. In this Review, we summarize some recent findings from clinical disease to basic pathogenesis studies that may be of importance for future control strategies.
Collapse
Affiliation(s)
- Ana Rita Narciso
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Rebecca Dookie
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Priyanka Nannapaneni
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Staffan Normark
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
2
|
McPeek MK, Gomez JC, Martin JR, Iannone MA, Dang H, Doerschuk CM. Leukocyte kinetics and bacterial clearance during Streptococcus pneumoniae pneumonia and contributions of ICAM-1. Am J Physiol Lung Cell Mol Physiol 2025; 328:L41-L59. [PMID: 39437756 PMCID: PMC11905799 DOI: 10.1152/ajplung.00039.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Streptococcus pneumoniae is a leading cause of community-acquired pneumonia. Intercellular adhesion molecule-1 (ICAM-1) is an adhesion molecule that is highly expressed on the pulmonary capillary endothelium, alveolar epithelium, and other cell types within the lung. ICAM-1 plays important roles in leukocyte adhesion, migration, and motility. To determine the contributions of ICAM-1 to bacterial clearance and leukocyte kinetics during pneumonia, mice were inoculated with S. pneumoniae and evaluated 1, 4, and 7 days later. Our results show that Icam1-/- mice have a greater number of viable bacteria within the lung at each time point. The impaired clearance observed in Icam1-/- mice was not due to an impediment in leukocyte recruitment. In fact, Icam1-/- mice had a greater number of neutrophils and recruited inflammatory macrophages in the lung tissue and the alveoli/airways on day 7. In contrast, fewer alveolar macrophages were present in the bronchoalveolar lavage (BAL) of Icam1-/- mice. The loss of body weight and the concentrations of inflammatory mediators in the BAL were also significantly greater in Icam1-/- mice. Mechanistic studies to understand the defect in clearance show that neutrophils and macrophage subpopulations had no defect in phagocytosis or acidification of phagosomes. RNA sequencing reveals many differences in gene expression but no suggestion of a defect in phagocytosis or killing. Thus, ICAM-1 is necessary for the clearance of S. pneumoniae and for the resolution of pneumonia but is not required for the recruitment of neutrophils or inflammatory macrophages into the pneumonic lung parenchyma or the alveoli/airways during S. pneumoniae-induced pneumonia.NEW & NOTEWORTHY Streptococcus pneumoniae is the leading cause of community-acquired pneumonia. Our study examined ICAM-1, an adhesion molecule that is expressed on most cell types and plays important roles in leukocyte adhesion, migration, and motility. The data demonstrate that ICAM-1 is necessary for the clearance of S. pneumoniae and for the resolution of pneumonia but is not required for the recruitment of neutrophils or inflammatory macrophages into the pneumonic lung parenchyma or the alveoli/airways.
Collapse
MESH Headings
- Animals
- Intercellular Adhesion Molecule-1/metabolism
- Streptococcus pneumoniae/immunology
- Pneumonia, Pneumococcal/immunology
- Pneumonia, Pneumococcal/microbiology
- Pneumonia, Pneumococcal/metabolism
- Pneumonia, Pneumococcal/pathology
- Mice
- Neutrophils/immunology
- Neutrophils/metabolism
- Mice, Inbred C57BL
- Lung/microbiology
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Leukocytes/metabolism
- Leukocytes/immunology
- Leukocytes/microbiology
- Mice, Knockout
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/microbiology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/pathology
- Bronchoalveolar Lavage Fluid/immunology
- Bronchoalveolar Lavage Fluid/microbiology
- Kinetics
Collapse
Affiliation(s)
- Matthew K McPeek
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - John C Gomez
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jessica R Martin
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Marie Anne Iannone
- Mass Cytometry Core, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Claire M Doerschuk
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
3
|
Wang X, Song X, Fang K, Chang X. CD38 modulates cytokine secretion by NK cells through the Sirt1/NF-κB pathway, suppressing immune surveillance in colorectal cancer. Sci Rep 2024; 14:28702. [PMID: 39562615 PMCID: PMC11577103 DOI: 10.1038/s41598-024-79008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024] Open
Abstract
Tregs and M2-type macrophages are essential for immune surveillance. CD38 + NK cells are involved in immunoregulation by modulating cytokine secretion. This study investigated how CD38 + NKs affect Tregs and macrophages in colorectal cancer (CRC). Higher proportions of CD38 + NKs and Tregs were detected in bloods and tumor tissues of CRC patients than that in the samples from healthy controls (HCs). Compared with CD38 + NKs from HCs, the NK cells from CRC promoted the differentiation of Tregs from CD4 + T cells, and secreted increased levels of IL-10, TGF-β and TNF-α and decreased levels of IFN-γ. CD38 + NKs from CRC expressed higher levels of CD38, NF-κB and acetyl-NF-κB and lower levels of Sirt1. When CRC CD38 + NK cells were treated with anti-CD38 monoclonal antibody, the above trends were reversed. CRC CD38 + NKs with treatment of NF-κB inhibitor also showed opposite effects on cytokine secretion and CD4 + T-cell differentiation. After treatment with a Sirt1 activator, NF-κB signaling was inhibited in these CD38 + NKs, whereas treatment with a Sirt1 inhibitor activated NF-κB signaling. The supernatants of CRC CD38 + NK culture promoted M0 macrophage polarization to M2-type. We suggest that CD38 modulates cytokine secretion by NK cells through Sirt1/NF-κB signaling pathway, thereby suppressing immune surveillance in tumorigenesis.
Collapse
Affiliation(s)
- Xueling Wang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Wutaishan road 1677, Qingdao, 266000, People's Republic of China
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Jiaozhou road 1, Qingdao, 266000, People's Republic of China
| | - Xianqin Song
- Medical Research Center, The Affiliated Hospital of Qingdao University, Wutaishan road 1677, Qingdao, 266000, People's Republic of China
| | - Kehua Fang
- Clinical Laboratory, The Affiliated Hospital of Qingdao University, Wutaishan road 1677, Qingdao, 266000, Shandong, People's Republic of China.
| | - Xiaotian Chang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Wutaishan road 1677, Qingdao, 266000, People's Republic of China.
| |
Collapse
|
4
|
Pollenus E, Possemiers H, Knoops S, Prenen F, Vandermosten L, Pham TT, Buysrogge L, Matthys P, Van den Steen PE. NK cells contribute to the resolution of experimental malaria-associated acute respiratory distress syndrome after antimalarial treatment. Front Immunol 2024; 15:1433904. [PMID: 39355242 PMCID: PMC11442241 DOI: 10.3389/fimmu.2024.1433904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
In both humans and mice, natural killer (NK) cells are important lymphocytes of the innate immune system. They are often considered pro-inflammatory effector cells but may also have a regulatory or pro-resolving function by switching their cytokine profile towards the production of anti-inflammatory cytokines, including interleukin-10 (IL-10) and transforming growth factor-β, and by killing pro-inflammatory immune cells. Here, the role of NK cells in the resolution of malaria lung pathology was studied. Malaria complications, such as malaria-associated acute respiratory distress syndrome (MA-ARDS), are often lethal despite the rapid and efficient killing of Plasmodium parasites with antimalarial drugs. Hence, studying the resolution and healing mechanisms involved in the recovery from these complications could be useful to develop adjunctive treatments. Treatment of Plasmodium berghei NK65-infected C57BL/6 mice with a combination of artesunate and chloroquine starting at the appearance of symptoms was used as a model to study the resolution of MA-ARDS. The role of NK cells was studied using anti-NK1.1 depletion antibodies and NK cell-deficient mice. Using both methods, NK cells were found to be dispensable in the development of MA-ARDS, as shown previously. In contrast, NK cells were crucial in the initiation of resolution upon antimalarial treatment, as survival was significantly decreased in the absence of NK cells. Considerably increased IL-10 expression by NK cells suggested an anti-inflammatory and pro-resolving phenotype. Despite the increase in Il10 expression in the NK cells, inhibition of the IL-10/IL-10R axis using anti-IL10R antibodies had no effect on the resolution for MA-ARDS, suggesting that the pro-resolving effect of NK cells cannot solely be attributed to their IL-10 production. In conclusion, NK cells contribute to the resolution of experimental MA-ARDS.
Collapse
Affiliation(s)
- Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Fran Prenen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Thao-Thy Pham
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Laura Buysrogge
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Philippe E. Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Wang Q, Zhao Z, Sun R, Shi Z, Zhang Y, Wang B, Zhang X, Ji W. Bioinformatics characteristics and expression analysis of IL-8 and IL-10 in largemouth bass (Micropterus salmoides) upon Nocardia seriolae infection. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109465. [PMID: 38408547 DOI: 10.1016/j.fsi.2024.109465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024]
Abstract
IL-8 and IL-10 are crucial inflammatory cytokines that participate in defending host cells against infections. To demonstrate the function of the two interleukin genes in largemouth bass (Micropterus salmoides), we initially cloned and identified the cDNA sequences of il-8 and il-10 in largemouth bass, referred to as Msil-8 and Msil-10, respectively. The open reading frame (ORF) of Msil-8 was 324 bp in length, encoding 107 amino acids, while the ORF of Msil-10 consisted of 726 bp and encoded 241 amino acids. Furthermore, the functional domains of the SCY domain in MsIL-8 and the IL-10 family signature motif in MsIL-10 were highly conserved across vertebrates. Additionally, both MsIL-8 and MsIL-10 showed close relationships with M. dolomieu. Constitutive expression of Msil-8 and Msil-10 was observed in various tissues, with the highest level found in the head kidney. Subsequently, largemouth bass were infected with Nocardia seriolae via intraperitoneal injection to gain a further understanding of the function of these two genes. Bacterial loads were initially detected in the foregut, followed by the midgut, hindgut, and liver. The mRNA expression of Msil-8 was significantly down-regulated after infection, especially at 2 days post-infection (DPI), with a similar expression to Msil-10. In contrast, the expression of Msil-8 and Msil-10 was significantly upregulated in the foregut at 14 DPI. Taken together, these results reveal that the function of IL-8 and IL-10 was likely hindered by N. seriolae, which promoted bacterial proliferation and intercellular diffusion.
Collapse
Affiliation(s)
- Qin Wang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhangchun Zhao
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruhan Sun
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zechao Shi
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yaqian Zhang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bingchao Wang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuezhen Zhang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Ji
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Bravo M, Dileepan T, Dolan M, Hildebrand J, Wolford J, Hanson ID, Hamilton SE, Frosch AE, Burrack KS. IL-15 Complex-Induced IL-10 Enhances Plasmodium-specific CD4+ T Follicular Helper Differentiation and Antibody Production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:992-1001. [PMID: 38305633 PMCID: PMC10932862 DOI: 10.4049/jimmunol.2300525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Malaria, which results from infection with Plasmodium parasites, remains a major public health problem. Although humans do not develop long-lived, sterilizing immunity, protection against symptomatic disease develops after repeated exposure to Plasmodium parasites and correlates with the acquisition of humoral immunity. Despite the established role Abs play in protection from malaria disease, dysregulated inflammation is thought to contribute to the suboptimal immune response to Plasmodium infection. Plasmodium berghei ANKA (PbA) infection results in a fatal severe malaria disease in mice. We previously demonstrated that treatment of mice with IL-15 complex (IL-15C; IL-15 bound to an IL-15Rα-Fc fusion protein) induces IL-10 expression in NK cells, which protects mice from PbA-induced death. Using a novel MHC class II tetramer to identify PbA-specific CD4+ T cells, in this study we demonstrate that IL-15C treatment enhances T follicular helper (Tfh) differentiation and modulates cytokine production by CD4+ T cells. Moreover, genetic deletion of NK cell-derived IL-10 or IL-10R expression on T cells prevents IL-15C-induced Tfh differentiation. Additionally, IL-15C treatment results in increased anti-PbA IgG Ab levels and improves survival following reinfection. Overall, these data demonstrate that IL-15C treatment, via its induction of IL-10 from NK cells, modulates the dysregulated inflammation during Plasmodium infection to promote Tfh differentiation and Ab generation, correlating with improved survival from reinfection. These findings will facilitate improved control of malaria infection and protection from disease by informing therapeutic strategies and vaccine design.
Collapse
Affiliation(s)
| | | | | | - Jacob Hildebrand
- Center for Immunology, University of Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota
| | | | | | - Sara E. Hamilton
- Center for Immunology, University of Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota
| | - Anne E. Frosch
- Hennepin Healthcare Research Institute
- Center for Immunology, University of Minnesota
| | - Kristina S. Burrack
- Hennepin Healthcare Research Institute
- Center for Immunology, University of Minnesota
| |
Collapse
|
7
|
Horn KJ, Fulte S, Yang M, Lorenz BP, Clark SE. Neutrophil responsiveness to IL-10 impairs clearance of Streptococcus pneumoniae from the lungs. J Leukoc Biol 2024; 115:4-15. [PMID: 37381945 PMCID: PMC10768920 DOI: 10.1093/jleuko/qiad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
The early immune response to bacterial pneumonia requires a careful balance between pathogen clearance and tissue damage. The anti-inflammatory cytokine interleukin (IL)-10 is critical for restraining otherwise lethal pulmonary inflammation. However, pathogen-induced IL-10 is associated with bacterial persistence in the lungs. In this study, we used mice with myeloid cell specific deletion of IL-10R to investigate the cellular targets of IL-10 immune suppression during infection with Streptococcus pneumoniae, the most common bacterial cause of pneumonia. Our findings suggest that IL-10 restricts the neutrophil response to S. pneumoniae, as neutrophil recruitment to the lungs was elevated in myeloid IL-10 receptor (IL-10R)-deficient mice and neutrophils in the lungs of these mice were more effective at killing S. pneumoniae. Improved killing of S. pneumoniae was associated with increased production of reactive oxygen species and serine protease activity in IL-10R-deficient neutrophils. Similarly, IL-10 suppressed the ability of human neutrophils to kill S. pneumoniae. Burdens of S. pneumoniae were lower in myeloid IL-10R-deficient mice compared with wild-type mice, and adoptive transfer of IL-10R-deficient neutrophils into wild-type mice significantly improved pathogen clearance. Despite the potential for neutrophils to contribute to tissue damage, lung pathology scores were similar between genotypes. This contrasts with total IL-10 deficiency, which is associated with increased immunopathology during S. pneumoniae infection. Together, these findings identify neutrophils as a critical target of S. pneumoniae-induced immune suppression and highlight myeloid IL-10R abrogation as a mechanism to selectively reduce pathogen burdens without exacerbating pulmonary damage.
Collapse
Affiliation(s)
- Kadi J Horn
- Department of Otolaryngology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, United States
| | - Sam Fulte
- Department of Otolaryngology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, United States
| | - Michael Yang
- Department of Pathology, University of Colorado School of Medicine, 12631 East 17th Avenue, Aurora, CO80045, United States
| | - Brian P Lorenz
- Department of Otolaryngology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, United States
| | - Sarah E Clark
- Department of Otolaryngology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, United States
| |
Collapse
|
8
|
Chen R, Zhao H, Ai L, Zhang J, Jiang D. Inhibiting T-Cell-Mediated Rejection of the Porcine Meniscus Through Freeze-Thawing and Downregulating Porcine Xenoreactive Antigen Genes. Cell Transplant 2024; 33:9636897241273689. [PMID: 39180383 PMCID: PMC11344903 DOI: 10.1177/09636897241273689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 08/26/2024] Open
Abstract
Immune rejection presents a significant challenge in xenogenic meniscal transplantation. Pigs are widely regarded as an advantageous tissue source for such transplants, with porcine GGTA1, CMAH, and B4GALNT2 being among the most common xenoreactive antigen (Ag) genes. While some studies have suggested that allogeneic meniscus (AM) transplants may exhibit immunoprivileged properties, our study observed slight immunological rejection has been observed following contact between human meniscal cells (HMCs) and human peripheral blood mononuclear cells (PBMCs). Given the limited systematic research on immune responses following xenograft meniscus transplantation, we established porcine meniscus transplantation (PMT) models to comprehensively assess the immunogenicity of porcine meniscus (PM) from both innate and adaptive immune perspectives. Our investigations confirmed that PMT beneath the epidermis led to innate cell infiltration into the xenografts and T-cell activation in local lymph nodes. T-cell activation upregulated the interleukin (IL)-17 signaling pathway, disrupting collagen organization and metabolic processes, thereby hindering PM regeneration. Using freeze-thaw treatment on PM alleviated T-cell activation post-transplantation by eliminating xenogenic DNA. In vitro findings demonstrated that gene editing in porcine meniscal cells (PMCs) suppressed human T-cell activation by downregulating the expression of xenoreactive Ag genes. These results suggest that GGTA1/CMAH/B4GALNT2 knockout (KO) pigs hold significant promise for advancing the field of meniscal transplantation.
Collapse
Affiliation(s)
- Rao Chen
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, P.R. China
- Beijing Key Laboratory of Sports Injuries, Beijing, P.R. China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, P.R. China
| | - Hailong Zhao
- School of Basic Medical Science, Peking University, Beijing, P.R. China
- Peking University International Cancer Institute, Beijing, P.R. China
| | - Liya Ai
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, P.R. China
- Beijing Key Laboratory of Sports Injuries, Beijing, P.R. China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, P.R. China
| | - Jiying Zhang
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, P.R. China
- Beijing Key Laboratory of Sports Injuries, Beijing, P.R. China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, P.R. China
| | - Dong Jiang
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, P.R. China
- Beijing Key Laboratory of Sports Injuries, Beijing, P.R. China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, P.R. China
| |
Collapse
|
9
|
Camarasa TMN, Torné J, Chevalier C, Rasid O, Hamon MA. Streptococcus pneumoniae drives specific and lasting Natural Killer cell memory. PLoS Pathog 2023; 19:e1011159. [PMID: 37486946 PMCID: PMC10399893 DOI: 10.1371/journal.ppat.1011159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/03/2023] [Accepted: 06/27/2023] [Indexed: 07/26/2023] Open
Abstract
NK cells are important mediators of innate immunity and play an essential role for host protection against infection, although their responses to bacteria are poorly understood. Recently NK cells were shown to display memory properties, as characterized by an epigenetic signature leading to a stronger secondary response. Although NK cell memory could be a promising mechanism to fight against infection, it has not been described upon bacterial infection. Using a mouse model, we reveal that NK cells develop specific and long-term memory following sub-lethal infection with the extracellular pathogen Streptococcus pneumoniae. Memory NK cells display intrinsic sensing and response to bacteria in vitro, in a manner that is enhanced post-bacterial infection. In addition, their transfer into naïve mice confers protection from lethal infection for at least 12 weeks. Interestingly, NK cells display enhanced cytotoxic molecule production upon secondary stimulation and their protective role is dependent on Perforin and independent of IFNγ. Thus, our study identifies a new role for NK cells during bacterial infection, opening the possibility to harness innate immune memory for therapeutic purposes.
Collapse
Affiliation(s)
- Tiphaine M. N. Camarasa
- Chromatin and Infection Unit, Institut Pasteur, Paris, France
- Université Paris Cité, 562 Bio Sorbonne Paris Cité, Paris, France
| | - Júlia Torné
- Chromatin and Infection Unit, Institut Pasteur, Paris, France
| | | | - Orhan Rasid
- Chromatin and Infection Unit, Institut Pasteur, Paris, France
| | | |
Collapse
|
10
|
Zhang T, Zhang M, Yang L, Gao L, Sun W. Potential targeted therapy based on deep insight into the relationship between the pulmonary microbiota and immune regulation in lung fibrosis. Front Immunol 2023; 14:1032355. [PMID: 36761779 PMCID: PMC9904240 DOI: 10.3389/fimmu.2023.1032355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Pulmonary fibrosis is an irreversible disease, and its mechanism is unclear. The lung is a vital organ connecting the respiratory tract and the outside world. The changes in lung microbiota affect the progress of lung fibrosis. The latest research showed that lung microbiota differs in healthy people, including idiopathic pulmonary fibrosis (IPF) and acute exacerbation-idiopathic pulmonary fibrosis (AE-IPF). How to regulate the lung microbiota and whether the potential regulatory mechanism can become a necessary targeted treatment of IPF are unclear. Some studies showed that immune response and lung microbiota balance and maintain lung homeostasis. However, unbalanced lung homeostasis stimulates the immune response. The subsequent biological effects are closely related to lung fibrosis. Core fucosylation (CF), a significant protein functional modification, affects the lung microbiota. CF regulates immune protein modifications by regulating key inflammatory factors and signaling pathways generated after immune response. The treatment of immune regulation, such as antibiotic treatment, vitamin D supplementation, and exosome micro-RNAs, has achieved an initial effect in clearing the inflammatory storm induced by an immune response. Based on the above, the highlight of this review is clarifying the relationship between pulmonary microbiota and immune regulation and identifying the correlation between the two, the impact on pulmonary fibrosis, and potential therapeutic targets.
Collapse
Affiliation(s)
- Tao Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Min Zhang
- Department of Geriatric Endocrinology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Liqing Yang
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, Chengdu, China
| | - Lingyun Gao
- Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, China,Medical College, University of Electronic Science and Technology, Chengdu, China,Guanghan People's Hospital, Guanghan, China,*Correspondence: Wei Sun, ; Lingyun Gao,
| | - Wei Sun
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, Chengdu, China,Medical College, University of Electronic Science and Technology, Chengdu, China,*Correspondence: Wei Sun, ; Lingyun Gao,
| |
Collapse
|
11
|
Horn KJ, Schopper MA, Drigot ZG, Clark SE. Airway Prevotella promote TLR2-dependent neutrophil activation and rapid clearance of Streptococcus pneumoniae from the lung. Nat Commun 2022; 13:3321. [PMID: 35680890 PMCID: PMC9184549 DOI: 10.1038/s41467-022-31074-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
This study investigates how specific members of the lung microbiome influence the early immune response to infection. Prevotella species are a major component of the endogenous airway microbiota. Increased abundance of Prevotella melaninogenica correlates with reduced infection with the bacterial pathogen Streptococcus pneumoniae, indicating a potentially beneficial role. Here, we show that P. melaninogenica enhances protection against S. pneumoniae, resulting in rapid pathogen clearance from the lung and improved survival in a mouse lung co-infection model. This response requires recognition of P. melaninogenica lipoproteins by toll-like receptor (TLR)2, the induction of TNFα, and neutrophils, as the loss of any of these factors abrogates Prevotella-induced protection. Improved clearance of S. pneumoniae is associated with increased serine protease-mediated killing by lung neutrophils and restraint of P. melaninogenica-induced inflammation by IL-10 in co-infected mice. Together, these findings highlight innate immune priming by airway Prevotella as an important protective feature in the respiratory tract. How the airway microbiome protects against bacterial pneumonia remains unclear. Here, the authors identify airway bacterial species that activate the immune system to facilitate rapid clearance of the pathogen Streptococcus pneumoniae from the lung.
Collapse
Affiliation(s)
- Kadi J Horn
- University of Colorado School of Medicine, Department of Otolaryngology, Aurora, CO, 80045, USA
| | - Melissa A Schopper
- University of Colorado School of Medicine, Department of Otolaryngology, Aurora, CO, 80045, USA
| | - Zoe G Drigot
- University of Colorado School of Medicine, Department of Otolaryngology, Aurora, CO, 80045, USA.,University of Colorado Boulder, College of Arts and Sciences, Boulder, CO, 80309, USA
| | - Sarah E Clark
- University of Colorado School of Medicine, Department of Otolaryngology, Aurora, CO, 80045, USA.
| |
Collapse
|
12
|
Horn KJ, Jaberi Vivar AC, Arenas V, Andani S, Janoff EN, Clark SE. Corynebacterium Species Inhibit Streptococcus pneumoniae Colonization and Infection of the Mouse Airway. Front Microbiol 2022; 12:804935. [PMID: 35082772 PMCID: PMC8784410 DOI: 10.3389/fmicb.2021.804935] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022] Open
Abstract
The stability and composition of the airway microbiome is an important determinant of respiratory health. Some airway bacteria are considered to be beneficial due to their potential to impede the acquisition and persistence of opportunistic bacterial pathogens such as Streptococcus pneumoniae. Among such organisms, the presence of Corynebacterium species correlates with reduced S. pneumoniae in both adults and children, in whom Corynebacterium abundance is predictive of S. pneumoniae infection risk. Previously, Corynebacterium accolens was shown to express a lipase which cleaves host lipids, resulting in the production of fatty acids that inhibit growth of S. pneumoniae in vitro. However, it was unclear whether this mechanism contributes to Corynebacterium-S. pneumoniae interactions in vivo. To address this question, we developed a mouse model for Corynebacterium colonization in which colonization with either C. accolens or another species, Corynebacterium amycolatum, significantly reduced S. pneumoniae acquisition in the upper airway and infection in the lung. Moreover, the lungs of co-infected mice had reduced pro-inflammatory cytokines and inflammatory myeloid cells, indicating resolution of infection-associated inflammation. The inhibitory effect of C. accolens on S. pneumoniae in vivo was mediated by lipase-dependent and independent effects, indicating that both this and other bacterial factors contribute to Corynebacterium-mediated protection in the airway. We also identified a previously uncharacterized bacterial lipase in C. amycolatum that is required for inhibition of S. pneumoniae growth in vitro. Together, these findings demonstrate the protective potential of airway Corynebacterium species and establish a new model for investigating the impact of commensal microbiota, such as Corynebacterium, on maintaining respiratory health.
Collapse
Affiliation(s)
- Kadi J. Horn
- Department of Otolaryngology Head and Neck Surgery, University of Colorado School of Medicine, Aurora, CO, United States
| | - Alexander C. Jaberi Vivar
- Department of Otolaryngology Head and Neck Surgery, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Vera Arenas
- Department of Otolaryngology Head and Neck Surgery, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sameer Andani
- Department of Otolaryngology Head and Neck Surgery, University of Colorado School of Medicine, Aurora, CO, United States
| | - Edward N. Janoff
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, United States
- Denver Veterans Affairs Medical Center, Aurora, CO, United States
| | - Sarah E. Clark
- Department of Otolaryngology Head and Neck Surgery, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
13
|
Martinez-Espinosa I, Serrato JA, Ortiz-Quintero B. Role of IL-10-Producing Natural Killer Cells in the Regulatory Mechanisms of Inflammation during Systemic Infection. Biomolecules 2021; 12:biom12010004. [PMID: 35053151 PMCID: PMC8773486 DOI: 10.3390/biom12010004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells have the dual ability to produce pro-inflammatory (IFNγ) and anti-inflammatory (IL-10) cytokines during systemic infection, which points to their crucial role both as inflammatory effectors for infection clearance and as regulators to counterbalance inflammation to limit immune-mediated damage to the host. In particular, immunosuppressive IL-10 secretion by NK cells has been described to occur in systemic, but not local, infections as a recent immunoregulatory mechanism of inflammation that may be detrimental or beneficial, depending on the timing of release, type of disease, or the infection model. Understanding the factors that drive the production of IL-10 by NK cells and their impact during dualistic inflammatory states, such as sepsis and other non-controlled inflammatory diseases, is relevant for achieving effective therapeutic advancements. In this review, the evidence regarding the immunoregulatory role of IL-10-producing NK cells in systemic infection is summarized and discussed in detail, and the potential molecular mechanisms that drive IL-10 production by NK cells are considered.
Collapse
|
14
|
Zhang C, Wang H, Li J, Hou X, Li L, Wang W, Shi Y, Li D, Li L, Zhao Z, Li L, Aji T, Lin R, Shao Y, Vuitton DA, Tian Z, Sun H, Wen H. Involvement of TIGIT in Natural Killer Cell Exhaustion and Immune Escape in Patients and Mouse Model With Liver Echinococcus multilocularis Infection. Hepatology 2021; 74:3376-3393. [PMID: 34192365 DOI: 10.1002/hep.32035] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Alveolar echinococcosis (AE) is a lethal helminthic liver disease caused by persistent infection with Echinococcus multilocularis. Although more attention has been paid to the immunotolerance of T cells caused by E. multilocularis infection, the role of natural killer (NK) cell, a critical player in liver immunity, is seldom studied. APPROACH AND RESULTS Here, we observed that NK cells from the blood and closed liver tissue (CLT) of AE patients expressed a higher level of inhibitory receptor TIGIT and were functionally exhausted with a lower expression of granzyme B, perforin, interferon-gamma (IFN-γ), and TNF-α. Addition of anti-TIGIT (T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain) monoclonal antibody into AE patients' peripheral blood mononuclear cell culture significantly enhanced the synthesis of IFN-γ and TNF-α by NK cells, indicating the reversion of exhausted NK cells by TIGIT blockade. In the mouse model of E. multilocularis infection, liver and splenic TIGIT+ NK cells progressively increased dependent of infection dosage and timing and were less activated and less degranulated with lower cytokine secretion. Furthermore, TIGIT deficiency or blockade in vivo inhibited liver metacestode growth, reduced liver injury, and increased the level of IFN-γ produced by liver NK cells. Interestingly, NK cells from mice with persistent chronic infection expressed a higher level of TIGIT compared to self-healing mice. To look further into the mechanisms, more regulatory CD56bright and murine CD49a+ NK cells with higher TIGIT expression existed in livers of AE patients and mice infected with E. multilocularis, respectively. They coexpressed higher surface programmed death ligand 1 and secreted more IL-10, two strong inducers to mediate the functional exhaustion of NK cells. CONCLUSIONS Our results indicate that inhibitory receptor TIGIT is involved in NK cell exhaustion and immune escape from E. multilocularis infection.
Collapse
Affiliation(s)
- Chuanshan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Hui Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Jing Li
- Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Xinling Hou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Linghui Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wei Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Yang Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Dewei Li
- Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Liang Li
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, WHO Collaborating Centre for Prevention and Case Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhibin Zhao
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Liang Li
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Tuerganaili Aji
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Renyong Lin
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, WHO Collaborating Centre for Prevention and Case Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yingmei Shao
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dominique A Vuitton
- WHO Collaborating Centre for the Prevention and Treatment of Human Echinococcosis, Department of Parasitology, University Bourgogne Franche-Comté (EA 3181) and University Hospital, Besançon, France
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haoyu Sun
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
15
|
Muruganandah V, Kupz A. Immune responses to bacterial lung infections and their implications for vaccination. Int Immunol 2021; 34:231-248. [PMID: 34850883 DOI: 10.1093/intimm/dxab109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/28/2021] [Indexed: 11/14/2022] Open
Abstract
The pulmonary immune system plays a vital role in protecting the delicate structures of gaseous exchange against invasion from bacterial pathogens. With antimicrobial resistance becoming an increasing concern, finding novel strategies to develop vaccines against bacterial lung diseases remains a top priority. In order to do so, a continued expansion of our understanding of the pulmonary immune response is warranted. Whilst some aspects are well characterised, emerging paradigms such as the importance of innate cells and inducible immune structures in mediating protection provide avenues of potential to rethink our approach to vaccine development. In this review, we aim to provide a broad overview of both the innate and adaptive immune mechanisms in place to protect the pulmonary tissue from invading bacterial organisms. We use specific examples from several infection models and human studies to depict the varying functions of the pulmonary immune system that may be manipulated in future vaccine development. Particular emphasis has been placed on emerging themes that are less reviewed and underappreciated in vaccine development studies.
Collapse
Affiliation(s)
- Visai Muruganandah
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| |
Collapse
|
16
|
Orimo K, Tamari M, Saito H, Matsumoto K, Nakae S, Morita H. Characteristics of tissue-resident ILCs and their potential as therapeutic targets in mucosal and skin inflammatory diseases. Allergy 2021; 76:3332-3348. [PMID: 33866593 DOI: 10.1111/all.14863] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Discovery of innate lymphoid cells (ILCs), which are non-T and non-B lymphocytes that have no antigen-specific receptors, changed the classical concept of the mechanism of allergy, which had been explained mainly as antigen-specific acquired immunity based on IgE and Th2 cells. The discovery led to dramatic improvement in our understanding of the mechanism of non-IgE-mediated allergic inflammation. Numerous studies conducted in the past decade have elucidated the characteristics of each ILC subset in various organs and tissues and their ontogeny. We now know that each ILC subset exhibits heterogeneity. Moreover, the functions and activating/suppressing factors of each ILC subset were found to differ among both organs and types of tissue. Therefore, in this review, we summarize our current knowledge of ILCs by focusing on the organ/tissue-specific features of each subset to understand their roles in various organs. We also discuss ILCs' involvement in human inflammatory diseases in various organs and potential therapeutic/preventive strategies that target ILCs.
Collapse
Affiliation(s)
- Keisuke Orimo
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Masato Tamari
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life Hiroshima University Hiroshima Japan
- Precursory Research for Embryonic Science and Technology Japan Science and Technology Agency Saitama Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| |
Collapse
|
17
|
González LA, Melo-González F, Sebastián VP, Vallejos OP, Noguera LP, Suazo ID, Schultz BM, Manosalva AH, Peñaloza HF, Soto JA, Parker D, Riedel CA, González PA, Kalergis AM, Bueno SM. Characterization of the Anti-Inflammatory Capacity of IL-10-Producing Neutrophils in Response to Streptococcus pneumoniae Infection. Front Immunol 2021; 12:638917. [PMID: 33995357 PMCID: PMC8113954 DOI: 10.3389/fimmu.2021.638917] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are immune cells classically defined as pro-inflammatory effector cells. However, current accumulated evidence indicates that neutrophils have more versatile immune-modulating properties. During acute lung infection with Streptococcus pneumoniae in mice, interleukin-10 (IL-10) production is required to temper an excessive lung injury and to improve survival, yet the cellular source of IL-10 and the immunomodulatory role of neutrophils during S. pneumoniae infection remain unknown. Here we show that neutrophils are the main myeloid cells that produce IL-10 in the lungs during the first 48 h of infection. Importantly, in vitro assays with bone-marrow derived neutrophils confirmed that IL-10 can be induced by these cells by the direct recognition of pneumococcal antigens. In vivo, we identified the recruitment of two neutrophil subpopulations in the lungs following infection, which exhibited clear morphological differences and a distinctive profile of IL-10 production at 48 h post-infection. Furthermore, adoptive transfer of neutrophils from WT mice into IL-10 knockout mice (Il10-/-) fully restored IL-10 production in the lungs and reduced lung histopathology. These results suggest that IL-10 production by neutrophils induced by S. pneumoniae limits lung injury and is important to mediate an effective immune response required for host survival.
Collapse
Affiliation(s)
- Liliana A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina P Sebastián
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Omar P Vallejos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreani P Noguera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Isidora D Suazo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrés H Manosalva
- Servicio de Anatomía Patológica, Hospital Barros Luco Trudeau, Santiago, Chile
| | - Hernán F Peñaloza
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Biología Celular, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Bachiller M, Battram AM, Perez-Amill L, Martín-Antonio B. Natural Killer Cells in Immunotherapy: Are We Nearly There? Cancers (Basel) 2020; 12:E3139. [PMID: 33120910 PMCID: PMC7694052 DOI: 10.3390/cancers12113139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells are potent anti-tumor and anti-microbial cells of our innate immune system. They are equipped with a vast array of receptors that recognize tumor cells and other pathogens. The innate immune activity of NK cells develops faster than the adaptive one performed by T cells, and studies suggest an important immunoregulatory role for each population against the other. The association, observed in acute myeloid leukemia patients receiving haploidentical killer-immunoglobulin-like-receptor-mismatched NK cells, with induction of complete remission was the determinant to begin an increasing number of clinical studies administering NK cells for the treatment of cancer patients. Unfortunately, even though transfused NK cells demonstrated safety, their observed efficacy was poor. In recent years, novel studies have emerged, combining NK cells with other immunotherapeutic agents, such as monoclonal antibodies, which might improve clinical efficacy. Moreover, genetically-modified NK cells aimed at arming NK cells with better efficacy and persistence have appeared as another option. Here, we review novel pre-clinical and clinical studies published in the last five years administering NK cells as a monotherapy and combined with other agents, and we also review chimeric antigen receptor-modified NK cells for the treatment of cancer patients. We then describe studies regarding the role of NK cells as anti-microbial effectors, as lessons that we could learn and apply in immunotherapy applications of NK cells; these studies highlight an important immunoregulatory role performed between T cells and NK cells that should be considered when designing immunotherapeutic strategies. Lastly, we highlight novel strategies that could be combined with NK cell immunotherapy to improve their targeting, activity, and persistence.
Collapse
Affiliation(s)
| | | | | | - Beatriz Martín-Antonio
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (M.B.); (A.M.B.); (L.P.-A.)
| |
Collapse
|
19
|
Theresine M, Patil ND, Zimmer J. Airway Natural Killer Cells and Bacteria in Health and Disease. Front Immunol 2020; 11:585048. [PMID: 33101315 PMCID: PMC7546320 DOI: 10.3389/fimmu.2020.585048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells at the interface between innate and adaptive immunity and mostly studied for their important roles in viral infections and malignant tumors. They can kill diseased cells and produce cytokines and chemokines, thereby shaping the adaptive immune response. Nowadays, NK cells are considered as a strong weapon for cancer immunotherapy and can for example be transduced to express tumor-specific chimeric antigen receptors or harnessed with therapeutic antibodies such as the so-called NK engagers. Whereas a large body of literature exists about the antiviral and antitumoral properties of NK cells, their potential role in bacterial infections is not that well delineated. Furthermore, NK cells are much more heterogeneous than previously thought and have tissue-characteristic features and phenotypes. This review gives an overview of airway NK cells and their position within the immunological army dressed against bacterial infections in the upper and predominantly the lower respiratory tracts. Whereas it appears that in several infections, NK cells play a non-redundant and protective role, they can likewise act as rather detrimental. The use of mouse models and the difficulty of access to human airway tissues for ethical reasons might partly explain the divergent results. However, new methods are appearing that are likely to reduce the heterogeneity between studies and to give a more coherent picture in this field.
Collapse
Affiliation(s)
- Maud Theresine
- CG I Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Neha D Patil
- CG I Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Jacques Zimmer
- CG I Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|