1
|
Assis VR, Cifarelli G, Brehm AM, Orrock JL, Martin LB. Congeneric Rodents Differ in Immune Gene Expression: Implications for Host Competence for Tick-Borne Pathogens. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:502-510. [PMID: 39868592 DOI: 10.1002/jez.2908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Mice in the genus Peromyscus are abundant and geographically widespread in North America, serving as reservoirs for zoonotic pathogens, including Borrelia burgdorferi (B. burgdorferi), the causative agent of Lyme disease, transmitted by Ixodes scapularis ticks. While the white-footed mouse (Peromyscus leucopus (P. leucopus)) is the primary reservoir in the United States, the deer mouse (P. maniculatus), an ecologically similar congener, rarely transmits the pathogen to biting ticks. Understanding the factors that allow these similar species to serve as a poor and competent reservoir is critical for understanding tick-borne disease ecology and epidemiology, especially as climate change expands the habitats where ticks can transmit pathogens. Our study investigated immunological differences between these rodent species. Specifically, we compared the expression of six immune genes (i.e., TLR-2, IFN-γ, IL-6, IL-10, GATA-3, TGF-β) broadly involved in bacterial recognition, elimination, and/or pathology mitigation in ear biopsies collected by the National Ecological Observatory Network (NEON) as part of their routine surveillance. A principal components analysis indicated that immune gene expression in both species varied in two dimensions: TLR2, IFN-γ, IL-6, and IL-10 (comprising PC1) and TGF-β and GATA3 (comprising PC2) expression tended to covary within individuals. However, when we analyzed expression differences of each gene singly between species, P. maniculatus expressed more TLR2, IL-6, and IL-10 but less IFN-γ and GATA3 than P. leucopus. This immune profile could partly explain why P. leucopus is a better reservoir for bacterial pathogens such as B. burgdorferi.
Collapse
Affiliation(s)
- Vania R Assis
- Global Health and Interdisciplinary Disease Research Center and Center for Genomics, College of Public Health, Interdisciplinary Research Building (IDRB), Tampa, Florida, USA
| | - Gabriella Cifarelli
- Global Health and Interdisciplinary Disease Research Center and Center for Genomics, College of Public Health, Interdisciplinary Research Building (IDRB), Tampa, Florida, USA
| | - Allison M Brehm
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lynn B Martin
- Global Health and Interdisciplinary Disease Research Center and Center for Genomics, College of Public Health, Interdisciplinary Research Building (IDRB), Tampa, Florida, USA
| |
Collapse
|
2
|
Rogovskyy AS, Pliasas VC, Buhrer R, Lewy K, Wiener DJ, Jung Y, Bova J, Rogovska Y, Kim SJ, Jeon E“G. Do white-footed mice, the main reservoir of the Lyme disease pathogen in the United States, clinically respond to the borrelial tenancy? Infect Immun 2024; 92:e0038224. [PMID: 39535189 PMCID: PMC11629617 DOI: 10.1128/iai.00382-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
As white-footed mice, Peromyscus leucopus, are considered the primary animal reservoir of Borreliella burgdorferi sensu stricto (Bb), the main agent of Lyme disease (LD) in the United States, these animals represent the most relevant model to study borrelial spirochetes in the context of their natural life cycle. Previous studies have consistently demonstrated that although white-footed mice respond immunologically to the invasion of the Lyme pathogen, P. leucopus adults do not develop a clinically detectable disease. This tolerance, which is common for mammalian reservoirs of different pathogens, contrasts with detrimental anti-borrelial responses of C3H mice, a widely used animal model of LD, which always result in a clinical manifestation (e.g., arthritis). The current investigation is a follow-up of our recent study that already showed a relative quiescence of the spleen transcriptome for Bb-infected white-footed mice compared to the infected C3H mice. In an effort to identify the mechanism behind this tolerance, in this study, we have evaluated an extensive list of hematological and biochemical parameters measured in white-footed mice after their 70-day-long borrelial infection. Despite missing reference intervals for Peromyscus mice, our sex- and age-matched uninfected controls allowed us to assess the blood and serum parameters. In addition, for our assessment, we also utilized behavioral, immunological, and histological analyses. Collectively, by using the metrics reported herein, the present results have demonstrated clinical unresponsiveness of P. leucopus mice to the borrelial infection, presenting no restriction to a long-term host-pathogen co-existence.
Collapse
Affiliation(s)
- Artem S. Rogovskyy
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Vasilis C. Pliasas
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Ryan Buhrer
- Comparative Medicine Program, Texas A&M University, College Station, Texas, USA
| | - Keith Lewy
- Division of Laboratory Animal Medicine, Los Angeles School of Medicine, University of California, Los Angeles, California, USA
| | - Dominique J. Wiener
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Yoonsung Jung
- Department of Statistics, College of Arts and Sciences, Texas A&M University, College Station, Texas, USA
| | - Jonathan Bova
- Comparative Medicine Program, Texas A&M University, College Station, Texas, USA
| | - Yuliya Rogovska
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Sun J. Kim
- Texas A&M Preclinical Phenotyping Core, Texas A&M Institute for Genome Science and Society, Texas A&M University, College Station, Texas, USA
| | - Eunhye “Grace” Jeon
- Texas A&M Preclinical Phenotyping Core, Texas A&M Institute for Genome Science and Society, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
3
|
Milovic A, Duong JV, Barbour AG. The infection-tolerant white-footed deermouse tempers interferon responses to endotoxin in comparison to the mouse and rat. eLife 2024; 12:RP90135. [PMID: 38193896 PMCID: PMC10945503 DOI: 10.7554/elife.90135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
The white-footed deermouse Peromyscus leucopus, a long-lived rodent, is a key reservoir in North America for agents of several zoonoses, including Lyme disease, babesiosis, anaplasmosis, and a viral encephalitis. While persistently infected, this deermouse is without apparent disability or diminished fitness. For a model for inflammation elicited by various pathogens, the endotoxin lipopolysaccharide (LPS) was used to compare genome-wide transcription in blood by P. leucopus, Mus musculus, and Rattus norvegicus and adjusted for white cell concentrations. Deermice were distinguished from the mice and rats by LPS response profiles consistent with non-classical monocytes and alternatively-activated macrophages. LPS-treated P. leucopus, in contrast to mice and rats, also displayed little transcription of interferon-gamma and lower magnitude fold-changes in type 1 interferon-stimulated genes. These characteristics of P. leucopus were also noted in a Borrelia hermsii infection model. The phenomenon was associated with comparatively reduced transcription of endogenous retrovirus sequences and cytoplasmic pattern recognition receptors in the deermice. The results reveal a mechanism for infection tolerance in this species and perhaps other animal reservoirs for agents of human disease.
Collapse
Affiliation(s)
- Ana Milovic
- Department of Microbiology & Molecular Genetics, University of California, IrvineIrvineUnited States
| | - Jonathan V Duong
- Department of Microbiology & Molecular Genetics, University of California, IrvineIrvineUnited States
| | - Alan G Barbour
- Departments of Medicine, Microbiology & Molecular Genetics, and Ecology & Evolutionary Biology, University of California, IrvineIrvineUnited States
| |
Collapse
|
4
|
Milovic A, Duong JV, Barbour AG. The white-footed deermouse, an infection-tolerant reservoir for several zoonotic agents, tempers interferon responses to endotoxin in comparison to the mouse and rat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543964. [PMID: 37745581 PMCID: PMC10515768 DOI: 10.1101/2023.06.06.543964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The white-footed deermouse Peromyscus leucopus, a long-lived rodent, is a key reservoir for agents of several zoonoses, including Lyme disease. While persistently infected, this deermouse is without apparent disability or diminished fitness. For a model for inflammation elicited by various pathogens, the endotoxin lipopolysaccharide (LPS) was used to compare genome-wide transcription in blood by P. leucopus, Mus musculus and Rattus norvegicus and adjusted for white cell concentrations. Deermice were distinguished from the mice and rats by LPS response profiles consistent with non-classical monocytes and alternatively-activated macrophages. LPS-treated P. leucopus, in contrast to mice and rats, also displayed little transcription of interferon-gamma and lower magnitude fold-changes in type 1 interferon-stimulated genes. This was associated with comparatively reduced transcription of endogenous retrovirus sequences and cytoplasmic pattern recognition receptors in the deermice. The results reveal a mechanism for infection tolerance in this species and perhaps other animal reservoirs for agents of human disease.
Collapse
Affiliation(s)
- Ana Milovic
- Department of Microbiology & Molecular Genetics, University of California Irvine
| | - Jonathan V. Duong
- Department of Microbiology & Molecular Genetics, University of California Irvine
| | - Alan G. Barbour
- Departments of Medicine, Microbiology & Molecular Genetics, and Ecology & Evolutionary Biology, University of California Irvine
| |
Collapse
|
5
|
Barbour AG, Duong JV, Long AD. Lyme Disease Agent Reservoirs Peromyscus leucopus and P. maniculatus Have Natively Inactivated Genes for the High-Affinity Immunoglobulin Gamma Fc Receptor I (CD64). Pathogens 2023; 12:1056. [PMID: 37624016 PMCID: PMC10458454 DOI: 10.3390/pathogens12081056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
The abundant and widely distributed deermice Peromyscus leucopus and P. maniculatus are important reservoirs for several different zoonotic agents in North America. For the pathogens they persistently harbor, these species are also examples of the phenomenon of infection tolerance. In the present study a prior observation of absent expression of the high-affinity Fc immunoglobulin gamma receptor I (FcγRI), or CD64, in P. leucopus was confirmed in an experimental infection with Borreliella burgdorferi, a Lyme disease agent. We demonstrate that the null phenotype is attributable to a long-standing inactivation of the Fcgr1 gene in both species by a deletion of the promoter and coding sequence for the signal peptide for FcγRI. The Fcgr1 pseudogene was also documented in the related species P. polionotus. Six other Peromyscus species, including P. californicus, have coding sequences for a full-length FcγRI, including a consensus signal peptide. An inference from reported phenotypes for null Fcgr1 mutations engineered in Mus musculus is that one consequence of pseudogenization of Fcgr1 is comparatively less inflammation during infection than in animals, including humans, with undisrupted, fully active genes.
Collapse
Affiliation(s)
- Alan G. Barbour
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA;
- Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Jonathan V. Duong
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA;
| | - Anthony D. Long
- Department of Ecology & Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA;
| |
Collapse
|
6
|
Gaber AM, Mandric I, Nitirahardjo C, Piontkivska H, Hillhouse AE, Threadgill DW, Zelikovsky A, Rogovskyy AS. Comparative transcriptome analysis of Peromyscus leucopus and C3H mice infected with the Lyme disease pathogen. Front Cell Infect Microbiol 2023; 13:1115350. [PMID: 37113133 PMCID: PMC10126474 DOI: 10.3389/fcimb.2023.1115350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Lyme disease (LD), the most prevalent tick-borne disease of humans in the Northern Hemisphere, is caused by the spirochetal bacterium of Borreliella burgdorferi (Bb) sensu lato complex. In nature, Bb spirochetes are continuously transmitted between Ixodes ticks and mammalian or avian reservoir hosts. Peromyscus leucopus mice are considered the primary mammalian reservoir of Bb in the United States. Earlier studies demonstrated that experimentally infected P. leucopus mice do not develop disease. In contrast, C3H mice, a widely used laboratory strain of Mus musculus in the LD field, develop severe Lyme arthritis. To date, the exact tolerance mechanism of P. leucopus mice to Bb-induced infection remains unknown. To address this knowledge gap, the present study has compared spleen transcriptomes of P. leucopus and C3H/HeJ mice infected with Bb strain 297 with those of their respective uninfected controls. Overall, the data showed that the spleen transcriptome of Bb-infected P. leucopus mice was much more quiescent compared to that of the infected C3H mice. To date, the current investigation is one of the few that have examined the transcriptome response of natural reservoir hosts to Borreliella infection. Although the experimental design of this study significantly differed from those of two previous investigations, the collective results of the current and published studies have consistently demonstrated very limited transcriptomic responses of different reservoir hosts to the persistent infection of LD pathogens. Importance The bacterium Borreliella burgdorferi (Bb) causes Lyme disease, which is one of the emerging and highly debilitating human diseases in countries of the Northern Hemisphere. In nature, Bb spirochetes are maintained between hard ticks of Ixodes spp. and mammals or birds. In the United States, the white-footed mouse, Peromyscus leucopus, is one of the main Bb reservoirs. In contrast to humans and laboratory mice (e.g., C3H mice), white-footed mice rarely develop clinical signs (disease) despite being (persistently) infected with Bb. How the white-footed mouse tolerates Bb infection is the question that the present study has attempted to address. Comparisons of genetic responses between Bb-infected and uninfected mice demonstrated that, during a long-term Bb infection, C3H mice reacted much stronger, whereas P. leucopus mice were relatively unresponsive.
Collapse
Affiliation(s)
- Alhussien M. Gaber
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Igor Mandric
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Caroline Nitirahardjo
- Department of Biological Sciences, and School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Helen Piontkivska
- Department of Biological Sciences, and School of Biomedical Sciences, Kent State University, Kent, OH, United States
- Brain Health Research Institute, Kent State University, Kent, OH, United States
| | - Andrew E. Hillhouse
- Texas A&M Institute for Genomics Sciences and Society, Texas A&M University, College Station, TX, United States
| | - David W. Threadgill
- Texas A&M Institute for Genomics Sciences and Society, Texas A&M University, College Station, TX, United States
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Texas A&M University, College Station, TX, United States
| | - Alex Zelikovsky
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Artem S. Rogovskyy
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
7
|
Prado JR, Rubi TL, Baumgartner J, Hoffman SMG, Dantzer B, Lacey Knowles L. Postglacial colonization in the Great Lakes Region by the white-footed mouse (Peromyscus leucopus): conflicts between genomic and field data. J Mammal 2022. [DOI: 10.1093/jmammal/gyab158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
For regions that were covered by ice during the Pleistocene glaciations, species must have emigrated from unglaciated regions. However, it can be difficult to discern when and from what ancestral source populations such expansions took place, especially since warming climates introduce the possibility of very recent expansions. For example, in the Great Lakes region, pronounced climatic change includes past glaciations as well as recent, rapid warming. Here we evaluate different expansion hypotheses with a genomic study of the white-footed mouse (Peromyscus leucopus noveboracensis), which is one of the most common mammals throughout the Great Lakes region. Ecological surveys coupled with historical museum records suggest a recent range expansion of P. leucopus associated with the warming climate over the last decades. These detailed records have yet to be complemented by genomic data that provide the requisite resolution for detecting recent expansion, although some mitochondrial DNA (mtDNA) sequences have suggested possible hypotheses about the geography of expansion. With more than 7,000 loci generated using RADseq, we evaluate support for multiple hypotheses of a geographic expansion in the Upper Peninsula of Michigan (UP). Analysis of a single random single-nucleotide polymorphism per locus revealed a fine-scale population structure separating the Lower Peninsula (LP) population from all other populations in the UP. We also detected a genetic structure that reflects an evolutionary history of postglacial colonization from two different origins into the UP, one coming from the LP and one coming from the west. Instead of supporting a climate-driven range expansion, as suggested by field surveys, our results support more ancient postglacial colonization of the UP from two different ancestral sources. With these results, we offer new insights about P. leucopus geographic expansion history, as well as a more general phylogeographic framework for testing range shifts in the Great Lakes region.
Collapse
Affiliation(s)
- Joyce R Prado
- Departamento de Ciências Biológicas, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Tricia L Rubi
- Department of Psychology, The University of Michigan, Ann Arbor, MI, USA
| | | | | | - Ben Dantzer
- Department of Psychology, The University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, MI, USA
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Balderrama-Gutierrez G, Milovic A, Cook VJ, Islam MN, Zhang Y, Kiaris H, Belisle JT, Mortazavi A, Barbour AG. An Infection-Tolerant Mammalian Reservoir for Several Zoonotic Agents Broadly Counters the Inflammatory Effects of Endotoxin. mBio 2021; 12:e00588-21. [PMID: 33849979 PMCID: PMC8092257 DOI: 10.1128/mbio.00588-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Animals that are competent reservoirs of zoonotic pathogens commonly suffer little morbidity from the infections. To investigate mechanisms of this tolerance of infection, we used single-dose lipopolysaccharide (LPS) as an experimental model of inflammation and compared the responses of two rodents: Peromyscus leucopus, the white-footed deermouse and reservoir for the agents of Lyme disease and other zoonoses, and the house mouse Mus musculus Four hours after injection with LPS or saline, blood, spleen, and liver samples were collected and subjected to transcriptome sequencing (RNA-seq), metabolomics, and specific reverse transcriptase quantitative PCR (RT-qPCR). Differential expression analysis was at the gene, pathway, and network levels. LPS-treated deermice showed signs of sickness similar to those of exposed mice and had similar increases in corticosterone levels and expression of interleukin 6 (IL-6), tumor necrosis factor, IL-1β, and C-reactive protein. By network analysis, the M. musculus response to LPS was characterized as cytokine associated, while the P. leucopus response was dominated by neutrophil activity terms. In addition, dichotomies in the expression levels of arginase 1 and nitric oxide synthase 2 and of IL-10 and IL-12 were consistent with type M1 macrophage responses in mice and type M2 responses in deermice. Analysis of metabolites in plasma and RNA in organs revealed species differences in tryptophan metabolism. Two genes in particular signified the different phenotypes of deermice and mice: the Slpi and Ibsp genes. Key RNA-seq findings for P. leucopus were replicated in older animals, in a systemic bacterial infection, and with cultivated fibroblasts. The findings indicate that P. leucopus possesses several adaptive traits to moderate inflammation in its balancing of infection resistance and tolerance.IMPORTANCE Animals that are natural carriers of pathogens that cause human diseases commonly manifest little or no sickness as a consequence of infection. Examples include the deermouse, Peromyscus leucopus, which is a reservoir for Lyme disease and several other disease agents in North America, and some types of bats, which are carriers of viruses with pathogenicity for humans. Mechanisms of this phenomenon of infection tolerance and entailed trade-off costs are poorly understood. Using a single injection of lipopolysaccharide (LPS) endotoxin as a proxy for infection, we found that deermice differed from the mouse (Mus musculus) in responses to LPS in several diverse pathways, including innate immunity, oxidative stress, and metabolism. Features distinguishing the deermice cumulatively would moderate downstream ill effects of LPS. Insights gained from the P. leucopus model in the laboratory have implications for studying infection tolerance in other important reservoir species, including bats and other types of wildlife.
Collapse
Affiliation(s)
- Gabriela Balderrama-Gutierrez
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Ana Milovic
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Vanessa J Cook
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, California, USA
| | - M Nurul Islam
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Youwen Zhang
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Hippokratis Kiaris
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, South Carolina, USA
- Department of Medicine, School of Medicine, University of California Irvine, Irvine, California, USA
| | - John T Belisle
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Alan G Barbour
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, California, USA
- Department of Medicine, School of Medicine, University of California Irvine, Irvine, California, USA
- Department of Ecology & Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| |
Collapse
|
9
|
Barbour AG, Shao H, Cook VJ, Baldwin-Brown J, Tsao JI, Long AD. Genomes, expression profiles, and diversity of mitochondria of the White-footed Deermouse Peromyscus leucopus, reservoir of Lyme disease and other zoonoses. Sci Rep 2019; 9:17618. [PMID: 31772306 PMCID: PMC6879569 DOI: 10.1038/s41598-019-54389-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
The cricetine rodents Peromyscus leucopus and P. maniculatus are key reservoirs for several zoonotic diseases in North America. We determined the complete circular mitochondrial genome sequences of representatives of 3 different stock colonies of P. leucopus, one stock colony of P. maniculatus and two wild populations of P. leucopus. The genomes were syntenic with that of the murids Mus musculus and Rattus norvegicus. Phylogenetic analysis confirmed that these two Peromyscus species are sister taxa in a clade with P. polionotus and also uncovered a distinction between P. leucopus populations in the eastern and the central United States. In one P. leucopus lineage four extended regions of mitochondrial pseudogenes were identified in the nuclear genome. RNA-seq analysis revealed transcription of the entire genome and differences from controls in the expression profiles of mitochondrial genes in the blood, but not in liver or brain, of animals infected with the zoonotic pathogen Borrelia hermsii. PCR and sequencing of the D-loop of the mitochondrion identified 32 different haplotypes among 118 wild P. leucopus at a Connecticut field site. These findings help to further establish P. leucopus as a model organism for studies of emerging infectious diseases, ecology, and in other disciplines.
Collapse
Affiliation(s)
- Alan G Barbour
- Departments of Microbiology & Molecular Genetics and Medicine, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA.
| | - Hanjuan Shao
- Departments of Microbiology & Molecular Genetics and Medicine, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Vanessa J Cook
- Departments of Microbiology & Molecular Genetics and Medicine, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - James Baldwin-Brown
- Department of Ecology & Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Jean I Tsao
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Anthony D Long
- Department of Ecology & Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
10
|
Long AD, Baldwin-Brown J, Tao Y, Cook VJ, Balderrama-Gutierrez G, Corbett-Detig R, Mortazavi A, Barbour AG. The genome of Peromyscus leucopus, natural host for Lyme disease and other emerging infections. SCIENCE ADVANCES 2019; 5:eaaw6441. [PMID: 31355335 PMCID: PMC6656541 DOI: 10.1126/sciadv.aaw6441] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
The rodent Peromyscus leucopus is the natural reservoir of several tick-borne infections, including Lyme disease. To expand the knowledge base for this key species in life cycles of several pathogens, we assembled and scaffolded the P. leucopus genome. The resulting assembly was 2.45 Gb in total length, with 24 chromosome-length scaffolds harboring 97% of predicted genes. RNA sequencing following infection of P. leucopus with Borreliella burgdorferi, a Lyme disease agent, shows that, unlike blood, the skin is actively responding to the infection after several weeks. P. leucopus has a high level of segregating nucleotide variation, suggesting that natural resistance alleles to Crispr gene targeting constructs are likely segregating in wild populations. The reference genome will allow for experiments aimed at elucidating the mechanisms by which this widely distributed rodent serves as natural reservoir for several infectious diseases of public health importance, potentially enabling intervention strategies.
Collapse
Affiliation(s)
- Anthony D. Long
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - James Baldwin-Brown
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Yuan Tao
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Vanessa J. Cook
- Departments of Microbiology and Molecular Genetics and Medicine, University of California, Irvine, Irvine, CA, USA
| | | | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Alan G. Barbour
- Departments of Microbiology and Molecular Genetics and Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
11
|
Moscarella RA, Hoffman SMG, Myers P, Yahnke CJ, Lundrigan BL. Genetic and demographic analysis of invasive Peromyscus leucopus in the northern Great Lakes region. J Mammal 2019. [DOI: 10.1093/jmammal/gyz053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rosa A Moscarella
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| | | | - Philip Myers
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Christopher J Yahnke
- Department of Biology and Museum of Natural History, University of Wisconsin – Stevens Point,Stevens Point, WI, USA
| | - Barbara L Lundrigan
- Department of Integrative Biology and Michigan State University Museum, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
12
|
Jaenson TGT, Petersson EH, Jaenson DGE, Kindberg J, Pettersson JHO, Hjertqvist M, Medlock JM, Bengtsson H. The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: incidence of human TBE correlates with abundance of deer and hares. Parasit Vectors 2018; 11:477. [PMID: 30153856 PMCID: PMC6114827 DOI: 10.1186/s13071-018-3057-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Background Tick-borne encephalitis (TBE) is one tick-transmitted disease where the human incidence has increased in some European regions during the last two decades. We aim to find the most important factors causing the increasing incidence of human TBE in Sweden. Based on a review of published data we presume that certain temperature-related variables and the population densities of transmission hosts, i.e. small mammals, and of primary tick maintenance hosts, i.e. cervids and lagomorphs, of the TBE virus vector Ixodes ricinus, are among the potentially most important factors affecting the TBE incidence. Therefore, we compare hunting data of the major tick maintenance hosts and two of their important predators, and four climatic variables with the annual numbers of human cases of neuroinvasive TBE. Data for six Swedish regions where human TBE incidence is high or has recently increased are examined by a time-series analysis. Results from the six regions are combined using a meta-analytical method. Results With a one-year time lag, the roe deer (Capreolus capreolus), red deer (Cervus elaphus), mountain hare (Lepus timidus) and European hare (Lepus europaeus) showed positive covariance; the Eurasian elk (moose, Alces alces) and fallow deer (Dama dama) negative covariance; whereas the wild boar (Sus scrofa), lynx (Lynx lynx), red fox (Vulpes vulpes) and the four climate parameters showed no significant covariance with TBE incidence. All game species combined showed positive covariance. Conclusions The epidemiology of TBE varies with time and geography and depends on numerous factors, i.a. climate, virus genotypes, and densities of vectors, tick maintenance hosts and transmission hosts. This study suggests that the increased availability of deer to I. ricinus over large areas of potential tick habitats in southern Sweden increased the density and range of I. ricinus and created new TBEV foci, which resulted in increased incidence of human TBE. New foci may be established by TBE virus-infected birds, or by birds or migrating mammals infested with TBEV-infected ticks. Generally, persistence of TBE virus foci appears to require presence of transmission-competent small mammals, especially mice (Apodemus spp.) or bank voles (Myodes glareolus). Electronic supplementary material The online version of this article (10.1186/s13071-018-3057-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas G T Jaenson
- Department of Organismal Biology, Uppsala University, Norbyvägen 18d, SE-752 36, Uppsala, Sweden.
| | - Erik H Petersson
- Department of Aquatic Resources, Division of Freshwater Research, Swedish University of Agricultural Sciences, Stångholmsvägen 2, SE-178 93, Drottningholm, Sweden
| | - David G E Jaenson
- Department of Automatic Control, Lund University, SE-221 00, Lund, Sweden
| | - Jonas Kindberg
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - John H-O Pettersson
- Department of Infectious Disease Epidemiology and Modelling, Norwegian Institute of Public Health, Lovisenberggata 8, N-0456, Oslo, Norway.,Department of Medical Biochemistry and Microbiology (IMBIM), Zoonosis Science Center, Uppsala University, Uppsala, Sweden.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, the University of Sydney, Sydney, New South Wales, 2006, Australia.,Public Health Agency of Sweden, Nobels väg 18, SE-171 82, Solna, Sweden
| | - Marika Hjertqvist
- Public Health Agency of Sweden, Nobels väg 18, SE-171 82, Solna, Sweden
| | - Jolyon M Medlock
- Medical Entomology Group, Emergency Response Department, Public Health England, Porton Down, Salisbury, UK.,Health Protection Research Unit in Emerging Infections & Zoonoses, Porton Down, Salisbury, UK
| | - Hans Bengtsson
- Swedish Meteorological and Hydrological Institute (SMHI), Gothenburg, Sweden
| |
Collapse
|
13
|
Barbour AG, Cook VJ. Genotyping Strains of Lyme Disease Agents Directly From Ticks, Blood, or Tissue. Methods Mol Biol 2018; 1690:1-11. [PMID: 29032532 DOI: 10.1007/978-1-4939-7383-5_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The tick-borne spirochetes that cause Lyme disease in North America and Eurasia display strong linkage disequilibrium between certain chromosomal and plasmid loci within each three major geographic areas of their distribution. For strain typing for epidemiologic and ecologic purposes, the commonly used genotypes based on a single locus are the spacer between the 16S-23S ribosomal RNA and the ospC gene of a plasmid. A simple genotyping scheme based on the two loci allows for discrimination between strains representing all the areas of distribution. The methods presented here are meant for genotyping directly from ticks and from blood and tissue samples from vertebrates.
Collapse
Affiliation(s)
- Alan G Barbour
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Ecology & Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA.
| | - Vanessa J Cook
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
14
|
Tracy KE, Baumgarth N. Borrelia burgdorferi Manipulates Innate and Adaptive Immunity to Establish Persistence in Rodent Reservoir Hosts. Front Immunol 2017; 8:116. [PMID: 28265270 PMCID: PMC5316537 DOI: 10.3389/fimmu.2017.00116] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/25/2017] [Indexed: 01/17/2023] Open
Abstract
Borrelia burgdorferi sensu lato species complex is capable of establishing persistent infections in a wide variety of species, particularly rodents. Infection is asymptomatic or mild in most reservoir host species, indicating successful co-evolution of the pathogen with its natural hosts. However, infected humans and other incidental hosts can develop Lyme disease, a serious inflammatory syndrome characterized by tissue inflammation of joints, heart, muscles, skin, and CNS. Although B. burgdorferi infection induces both innate and adaptive immune responses, they are ultimately ineffective in clearing the infection from reservoir hosts, leading to bacterial persistence. Here, we review some mechanisms by which B. burgdorferi evades the immune system of the rodent host, focusing in particular on the effects of innate immune mechanisms and recent findings suggesting that T-dependent B cell responses are subverted during infection. A better understanding of the mechanisms causing persistence in rodents may help to increase our understanding of the pathogenesis of Lyme disease and ultimately aid in the development of therapies that support effective clearance of the bacterial infection by the host’s immune system.
Collapse
Affiliation(s)
- Karen E Tracy
- Graduate Group in Immunology, University of California Davis, Davis, CA, USA; Center for Comparative Medicine, University of California Davis, Davis, CA, USA
| | - Nicole Baumgarth
- Graduate Group in Immunology, University of California Davis, Davis, CA, USA; Center for Comparative Medicine, University of California Davis, Davis, CA, USA; Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA
| |
Collapse
|
15
|
Lynn GE, Oliver JD, Cornax I, O'Sullivan MG, Munderloh UG. Experimental evaluation of Peromyscus leucopus as a reservoir host of the Ehrlichia muris-like agent. Parasit Vectors 2017; 10:48. [PMID: 28129781 PMCID: PMC5273795 DOI: 10.1186/s13071-017-1980-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/12/2017] [Indexed: 11/10/2022] Open
Abstract
Background The Ehrlichia muris-like agent (EMLA) is a newly recognized human pathogen in the North Central United States. Although blacklegged ticks (Ixodes scapularis) have been identified as capable vectors, wild reservoirs have not yet been established for EMLA. As key hosts for I. scapularis, white-footed mice (Peromyscus leucopus) are important reservoirs for various tick-borne pathogens, and potentially, for EMLA. The objective of this study was to evaluate reservoir competence in P. leucopus using a natural vector. Results Mice acquired EMLA infection from feeding ticks and were able to transmit infection to naïve ticks. Transmission between simultaneously feeding tick life stages was also demonstrated. Infections in mice were acute and severe, with systemic dissemination. Limited host survival and clearance of infection among survivors resulted in a narrow interval where EMLA could be acquired by feeding ticks. Conclusions Peromyscus leucopus is a competent reservoir of EMLA and likely to play a role in its enzootic transmission cycle. The duration and severity of EMLA infection in these hosts suggests that tick phenology is a critical factor determining the geographic distribution of EMLA in North America.
Collapse
Affiliation(s)
- Geoffrey E Lynn
- Entomology Department, University of Minnesota - Twin Cities, 1980 Folwell Ave, St. Paul, MN, USA.
| | - Jonathan D Oliver
- Entomology Department, University of Minnesota - Twin Cities, 1980 Folwell Ave, St. Paul, MN, USA
| | - Ingrid Cornax
- Masonic Cancer Center Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota - Twin Cities, 420 Delaware St. SE, Minneapolis, MN, USA
| | - M Gerard O'Sullivan
- Masonic Cancer Center Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota - Twin Cities, 420 Delaware St. SE, Minneapolis, MN, USA
| | - Ulrike G Munderloh
- Entomology Department, University of Minnesota - Twin Cities, 1980 Folwell Ave, St. Paul, MN, USA
| |
Collapse
|
16
|
Barbour AG. Infection resistance and tolerance in Peromyscus spp., natural reservoirs of microbes that are virulent for humans. Semin Cell Dev Biol 2017; 61:115-122. [PMID: 27381345 PMCID: PMC5205561 DOI: 10.1016/j.semcdb.2016.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 01/20/2023]
Abstract
The widely-distributed North American species Peromyscus leucopus and P. maniculatus of cricetine rodents are, between them, important natural reservoirs for several zoonotic diseases of humans: Lyme disease, human granulocytic anaplasmosis, babesiosis, erhlichiosis, hard tickborne relapsing fever, Powassan virus encephalitis, hantavirus pulmonary syndrome, and plague. While these infections are frequently disabling and sometimes fatal for humans, the peromyscines display little pathology and apparently suffer few consequences, even when prevalence of persistent infection in a population is high. While these Peromyscus spp. are unable to clear some of the infections, they appear to have partial resistance, which limits the burden of the pathogen. In addition, they display traits of infection tolerance, which reduces the damage of the infection. Research on these complementary resistance and tolerance phenomena in Peromyscus has relevance both for disease control measures targeting natural reservoirs and for understanding the mechanisms of the comparatively greater sickness of many humans with these and other infections.
Collapse
Affiliation(s)
- Alan G Barbour
- Departments of Medicine, Microbiology & Molecular Genetics, and Ecology & Evolutionary Biology, University of California Irvine, 843 Health Sciences Drive, Irvine, CA 92697-4028, USA.
| |
Collapse
|
17
|
Munshi-South J, Richardson JL. Peromyscus transcriptomics: Understanding adaptation and gene expression plasticity within and between species of deer mice. Semin Cell Dev Biol 2017; 61:131-139. [PMID: 27531052 PMCID: PMC5235989 DOI: 10.1016/j.semcdb.2016.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
Abstract
Deer mice in the genus Peromyscus occupy nearly every terrestrial habitat in North America, and have a long history as subjects of behavioral, ecological, evolutionary, and physiological study. Recent advances in transcriptomics, the study of the complete set of RNA transcripts produced by certain cell types or under certain conditions, have contributed to the development of Peromyscus as a model system. We review the recent use of transcriptomics to investigate how natural selection and gene expression plasticity contribute to the existence of deer mice in challenging environments such as highlands, deserts, and cities across North America. Transcriptomics also holds great promise for elucidating the genetic basis of mating systems and other behaviors in Peromyscus, but has to date been underutilized for developmental biology and disease studies. Future Peromyscus studies should apply robust comparative frameworks to analyze the transcriptomics of multiple populations of the same species across varying environmental conditions, as well as multiple species that vary in traits of interest.
Collapse
Affiliation(s)
- Jason Munshi-South
- Louis Calder Center-Biological Field Station, Fordham University, 31 Whippoorwill Road, Armonk, NY 10504, USA.
| | | |
Collapse
|
18
|
Emergence of New Tickborne Infections. EMERGING ZOONOSES 2017. [PMCID: PMC7122411 DOI: 10.1007/978-3-319-50890-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Johnson TL, Fischer RJ, Raffel SJ, Schwan TG. Host associations and genomic diversity of Borrelia hermsii in an endemic focus of tick-borne relapsing fever in western North America. Parasit Vectors 2016; 9:575. [PMID: 27832805 PMCID: PMC5105259 DOI: 10.1186/s13071-016-1863-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/31/2016] [Indexed: 11/30/2022] Open
Abstract
Background An unrecognized focus of tick-borne relapsing fever caused by Borrelia hermsii was identified in 2002 when five people became infected on Wild Horse Island in Flathead Lake, Montana. The terrestrial small mammal community on the island is composed primarily of pine squirrels (Tamiasciurus hudsonicus) and deer mice (Peromyscus maniculatus), neither of which was known as a natural host for the spirochete. Thus a 3-year study was performed to identify small mammals as hosts for B. hermsii. Methods Small mammals were captured alive on two island and three mainland sites, blood samples were collected and examined for spirochetes, and serological tests performed to detect anti-B. hermsii antibodies. Ornithodoros hermsi ticks were collected and fed on laboratory mice to assess infection. Genomic DNA samples from spirochetes isolated from infected mammals and ticks were analyzed by multilocus sequence typing. Results Eighteen pine squirrels and one deer mouse had detectable spirochetemias when captured, from which 12 isolates of B. hermsii were established. Most pine squirrels were seropositive, and the five species of sciurids combined had a significantly higher prevalence of seropositive animals than did the other six small mammal species captured. The greater diversity of small mammals on the mainland in contrast to the islands demonstrated that other species in addition to pine squirrels were also involved in the maintenance of B. hermsii at Flathead Lake. Ornithodoros hermsi ticks produced an additional 12 isolates of B. hermsii and multilocus sequence typing identified both genomic groups of B. hermsii described previously, and identified a new genomic subdivision. Experimental infections of deer mice with two strains of B. hermsii demonstrated that these animals were susceptible to infection with spirochetes belonging to Genomic Group II but not Genomic Group I. Conclusions Pine squirrels are the primary hosts for the maintenance of B. hermsii on the islands in Flathead Lake, however serological evidence showed that numerous additional species are also involved on the mainland. Future studies testing the susceptibility of several small mammal species to infection with different genetic types of B. hermsii will help define their role as hosts in this and other endemic foci.
Collapse
Affiliation(s)
- Tammi L Johnson
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.,Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Robert J Fischer
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.,Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Sandra J Raffel
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Tom G Schwan
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
20
|
Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex. PLoS Pathog 2016; 12:e1005404. [PMID: 26808924 PMCID: PMC4725857 DOI: 10.1371/journal.ppat.1005404] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/26/2015] [Indexed: 12/03/2022] Open
Abstract
Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems. The human complement system is a connected network of blood proteins capable of recognizing and eliminating microbial intruders. To avoid the destructive force of complement activation, many microorganisms that enter the bloodstream express molecules that disrupt key steps of the complement cascade by interacting with specific complement components. In this study we show that the causative agent of Lyme disease, Borrelia burgdorferi, expresses a surface-protein termed BBK32 that targets and inhibits the first component of complement, designated C1. Upon binding to human C1, BBK32 traps this initiating protease complex of the classical pathway of complement in an inactive state, and prevents the downstream proteolytic events of the pathway. Our study defines a new mechanism by which microbes are able to escape the human innate immune system and identifies complement protease C1r as a previously unknown target of bacterial anti-complement molecules. Thus, discovery of the complement inhibitory activity of the borrelial protein BBK32 significantly advances our understanding of how disease-causing bacteria survive in immune competent hosts.
Collapse
|