1
|
Madesh S, McGill J, Jaworski DC, Ferm J, Ferm D, Liu H, Fitzwater S, Nair A, Hove P, Alizadeh K, Knox C, Thackrah A, Ganta RR. Prolonged immune response to tick-borne Ehrlichia chaffeensis infection using a genetically modified live vaccine. Vaccine 2025; 48:126730. [PMID: 39826432 PMCID: PMC11839323 DOI: 10.1016/j.vaccine.2025.126730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/15/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Ehrlichia chaffeensis, a tick transmitted rickettsial bacterium, causes monocytic ehrlichiosis in humans and dogs. Earlier, we demonstrated that dogs immunized with a mutant strain of E. chaffeensis having a functional disruption in the gene encoding the phage head-to-tail connector protein serves as a modified live vaccine (MLAV) capable of inducing immunity against intravenous and tick-transmitted infection challenges within one month of vaccination. In this follow-up investigation, we assessed the duration of MLAV-induced immunity for one-year period against tick-transmission infection challenge. Dogs vaccinated with the MLAV were subsequently exposed to wild-type E. chaffeensis via tick transmission at 4-, 8-, and 12-months post-vaccination. Unvaccinated controls showed higher infection rates during the one-month assessment following infection. In contrast, MLAV-immunized dogs rapidly cleared infections and exhibited significantly fewer systemic bacterial infections compared to unvaccinated controls. Robust E. chaffeensis-specific IgG and CD4 T-cell responses persisted throughout the assessment period. Our findings underscore the efficacy of MLAV in providing natural hosts with protection against E. chaffeensis infection for up to one year following infected tick exposure.
Collapse
Affiliation(s)
- Swetha Madesh
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America; Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States of America
| | - Jodi McGill
- Department of Veterinary Microbiology & Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IO 50011, United States of America
| | - Deborah C Jaworski
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
| | - Jonathan Ferm
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America; Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States of America
| | - Dominica Ferm
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America; Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States of America
| | - Huitao Liu
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America; Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States of America
| | - Shawna Fitzwater
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
| | - Arathy Nair
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
| | - Paidashe Hove
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
| | - Kimia Alizadeh
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
| | - Cheyenne Knox
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
| | - Ashley Thackrah
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
| | - Roman R Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America; Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
2
|
Patterson LL, Byerly CD, Solomon R, Pittner N, Bui DC, Patel J, McBride JW. Ehrlichia Notch signaling induction promotes XIAP stability and inhibits apoptosis. Infect Immun 2023; 91:e0000223. [PMID: 37594275 PMCID: PMC10501217 DOI: 10.1128/iai.00002-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/07/2023] [Indexed: 08/19/2023] Open
Abstract
Ehrlichia chaffeensis has evolved multiple strategies to evade innate defenses of the mononuclear phagocyte. Recently, we reported the E. chaffeensis tandem repeat protein (TRP)120 effector functions as a Notch ligand mimetic and a ubiquitin ligase that degrades the nuclear tumor suppressor, F-box and WD repeat domain-containing 7, a negative regulator of Notch. The Notch intracellular domain (NICD) is known to inhibit apoptosis primarily by interacting with X-linked inhibitor of apoptosis protein (XIAP) to prevent degradation. In this study, we determined that E. chaffeensis activation of Notch signaling increases XIAP levels, thereby inhibiting apoptosis through both the intrinsic and executioner pathways. Increased NICD and XIAP levels were detected during E. chaffeensis infection and after TRP120 Notch ligand mimetic peptide treatment. Conversely, XIAP levels were reduced in the presence of Notch inhibitor DAPT. Cytoplasmic and nuclear colocalization of NICD and XIAP was observed during infection and a direct interaction was confirmed by co-immunoprecipitation. Procaspase levels increased temporally during infection, consistent with increased XIAP levels; however, knockdown (KD) of XIAP during infection significantly increased apoptosis and Caspase-3, -7, and -9 levels. Furthermore, treatment with SM-164, a second mitochondrial activator of caspases (Smac/DIABLO) antagonist, resulted in decreased procaspase levels and increased caspase activation, induced apoptosis, and significantly decreased infection. In addition, RNAi KD of XIAP also decreased infection and significantly increased apoptosis. Moreover, ectopic expression of TRP120 HECT Ub ligase catalytically defective mutant in HeLa cells decreased NICD and XIAP levels and increased caspase activation compared to HeLa cells with functional HECT Ub ligase catalytic activity (TRP120-WT). This investigation reveals a mechanism whereby E. chaffeensis modulates Notch signaling to stabilize XIAP and inhibit apoptosis.
Collapse
Affiliation(s)
- LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Regina Solomon
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicholas Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Duc Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jignesh Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
3
|
Wan W, Li D, Li D, Jiao J. Advances in genetic manipulation of Chlamydia trachomatis. Front Immunol 2023; 14:1209879. [PMID: 37449211 PMCID: PMC10337758 DOI: 10.3389/fimmu.2023.1209879] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Chlamydia trachomatis, one species of Chlamydia spp., has the greatest impact on human health and is the main cause of bacterial sexually transmitted diseases and preventable blindness among all Chamydia spp. species. The obligate intracellular parasitism and unique biphasic developmental cycle of C. trachomatis are the main barriers for the development of tools of genetic manipulation. The past decade has witnessed significant gains in genetic manipulation of C. trachomatis, including chemical mutagenesis, group II intron-based targeted gene knockout, fluorescence-reported allelic exchange mutagenesis (FRAEM), CRISPR interference (CRISPRi) and the recently developed transposon mutagenesis. In this review, we discuss the current status of genetic manipulations of C. trachomatis and highlights new challenges in the nascent field of Chlamydia genetics.
Collapse
Affiliation(s)
- Weiqiang Wan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Danni Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dan Li
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
4
|
Jaworski DC, Wang Y, Nair A, Liu H, Ganta RR. Multiple Ehrlichia chaffeensis genes critical for persistent infection in a vertebrate host are identified as nonessential for its growth in the tick vector; Amblyomma americanum. Front Cell Infect Microbiol 2023; 13:1220025. [PMID: 37457955 PMCID: PMC10349175 DOI: 10.3389/fcimb.2023.1220025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Ehrlichia chaffeensis is a tick-transmitted monocytic ehrlichiosis agent primarily causing the disease in people and dogs. We recently described the development and characterization of 55 random mutations in E. chaffeensis, which aided in defining the critical nature of many bacterial genes for its growth in a physiologically relevant canine infection model. In the current study, we tested 45 of the mutants for their infectivity ability to the pathogen's tick vector; Amblyomma americanum. Four mutations resulted in the pathogen's replication deficiency in the tick, similar to the vertebrate host. Mutations causing growth defects in both vertebrate and tick hosts included in genes coding for a predicted alpha/beta hydrolase, a putative dicarboxylate amino acid:cation symporter, a T4SS protein, and predicted membrane-bound proteins. Three mutations caused the bacterial defective growth only in the tick vector, which represented putative membrane proteins. Ten mutations causing no growth defect in the canine host similarly grew well in the tick vector. Mutations in 28 genes/genomic locations causing E. chaffeensis growth attenuation in the canine host were recognized as non-essential for its growth in the tick vector. The tick non-essential genes included genes coding for many metabolic pathway- and outer membrane-associated proteins. This study documents novel vector- and host-specific differences in E. chaffeensis for its functional gene requirements.
Collapse
Affiliation(s)
- Deborah C. Jaworski
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Ying Wang
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Arathy Nair
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Huitao Liu
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
Patterson LL, Byerly CD, Solomon R, Pittner N, Bui DC, Patel J, McBride JW. Ehrlichia Notch signaling induction promotes XIAP stability and inhibits apoptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523066. [PMID: 36711597 PMCID: PMC9881962 DOI: 10.1101/2023.01.06.523066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ehrlichia chaffeensis has evolved multiple strategies to evade innate defenses of the mononuclear phagocyte. Recently, we reported the E. chaffeensis TRP120 effector functions as a Notch ligand mimetic and a ubiquitin ligase that degrades the nuclear tumor suppressor, F-box and WD repeat domain-containing 7 (FBW7), a negative regulator of Notch. The Notch receptor intracellular domain (NICD) is known to inhibit apoptosis primarily by interacting with X-linked inhibitor of apoptosis protein (XIAP) to prevent degradation. In this study, we determined E. chaffeensis activation of Notch signaling increases XIAP levels, thereby inhibiting intrinsic apoptosis. Increased NICD and XIAP levels were detected during E. chaffeensis infection and after TRP120 Notch ligand mimetic peptide treatment. Conversely, XIAP levels were reduced in the presence of Notch inhibitor DAPT. Cytoplasmic colocalization of NICD and XIAP was observed during infection and a direct interaction was confirmed by co-immunoprecipitation. Procaspase levels increased temporally during infection, consistent with increased XIAP levels; however, knockdown of XIAP during infection significantly increased apoptosis and Caspase-3, -7 and -9 levels. Further, treatment with SM-164, a second mitochondrial activator of caspases (Smac/DIABLO) antagonist, resulted in decreased procaspase levels and increased caspase activation, induced apoptosis, and significantly decreased infection. In addition, iRNA knockdown of XIAP also decreased infection and significantly increased apoptosis. Moreover, ectopic expression of TRP120 HECT Ub ligase catalytically defective mutant in HeLa cells decreased NICD and XIAP levels and increased caspase activation compared to WT. This investigation reveals a mechanism whereby E. chaffeensis repurposes Notch signaling to stabilize XIAP and inhibit apoptosis. Author Summary Ehrlichia chaffeensis is a tick-borne, obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes. E. chaffeensis survives by mobilizing various molecular strategies to promote cell survival, including modulation of apoptosis. This investigation reveals an E. chaffeensis initiated, Notch signaling regulated, antiapoptotic mechanism involving inhibitor of apoptosis proteins (IAPs). Herein, we demonstrate that E. chaffeensis induced Notch activation results in Notch intracellular domain stabilization of X-linked inhibitor of apoptosis protein (XIAP) to inhibit intrinsic apoptosis. This study highlights a novel mechanistic strategy whereby intracellular pathogens repurpose evolutionarily conserved eukaryotic signaling pathways to engage an antiapoptotic program for intracellular survival.
Collapse
|
6
|
Efficacy and Immune Correlates of OMP-1B and VirB2-4 Vaccines for Protection of Dogs from Tick Transmission of Ehrlichia chaffeensis. mBio 2022; 13:e0214022. [PMID: 36342170 PMCID: PMC9765013 DOI: 10.1128/mbio.02140-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Ehrlichia chaffeensis, an obligatory intracellular bacterium, causes human monocytic ehrlichiosis, an emerging disease transmitted by the Lone Star tick, Amblyomma americanum. Here, we investigated the vaccine potential of OMP-1B and VirB2-4. Among the highly expressed and immunodominant E. chaffeensis porin P28s/OMP-1s, OMP-1B is predominantly expressed by E. chaffeensis in A. americanum ticks, whereas VirB2-4 is a pilus protein of the type IV secretion system essential for E. chaffeensis infection of host cells. Immunization with recombinant OMP-1B (rOMP-1B) or recombinant VirB2-4 (rVirB2-4) protected mice from E. chaffeensis infection as effectively as Entry-triggering protein of Ehrlichia immunization. Dogs vaccinated with a nanoparticle vaccine composed of rOMP-1B or rVirB2-4 and an immunostimulating complex developed high antibody titers against the respective antigen. Upon challenge with E. chaffeensis-infected A. americanum ticks, E. chaffeensis was undetectable in the blood of rOMP-1B or rVirB2-4 immunized dogs on day 3 or 6 post-tick attachment and for the duration of the experiment, whereas dogs sham-vaccinated with the complex alone were persistently infected for the duration of the experiment. E. chaffeensis exponentially replicates in blood-feeding ticks to facilitate transmission. Previously infected ticks removed from OMP-1B-immunized dogs showed significantly lower bacterial load relative to ticks removed from sham-immunized dogs, suggesting in-tick neutralization. Peripheral blood leukocytes from rVirB2-4-vaccinated dogs secreted significantly elevated amounts of interferon-γ soon after tick attachment by ELISpot assay and reverse transcription-quantitative PCR, suggesting interferon-γ-mediated Ehrlichia inhibition. Thus, Ehrlichia surface-exposed proteins OMP-1B and VirB2-4 represent new potential vaccine candidates for blocking tick-borne ehrlichial transmission. IMPORTANCE Ehrlichia are tick-borne pathogens that cause a potentially fatal illness-ehrlichiosis-in animals and humans worldwide. Currently, no vaccine is available for ehrlichiosis, and treatment options are limited. Ticks are biological vectors of Ehrlichia, i.e., Ehrlichia exponentially replicates in blood-sucking ticks before infecting animals. Ticks also inoculate immunomodulatory substances into animals. Thus, it is important to study effects of candidate vaccines on Ehrlichia infection in both animals and ticks and the immune responses of animals shortly after infected tick challenge. Here, we investigated the efficacy of vaccination with functionality-defined two surface-exposed outer membrane proteins of Ehrlichia chaffeensis, OMP-1B and VirB2-4, in a mouse infection model and then in a dog-tick transmission model. Our results begin to fill gaps in our understanding of Ehrlichia-derived protective antigens against tick-transmission and immune correlates and mechanisms that could help future development of vaccines for immunization of humans and animals to counter tick-transmitted ehrlichiosis.
Collapse
|
7
|
Fowler PD, Nguyentran S, Quatroche L, Porter ML, Kobbekaduwa V, Tippin S, Miller G, Dinh E, Foster E, Tsao JI. Northward Expansion of Amblyomma americanum (Acari: Ixodidae) into Southwestern Michigan. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1646-1659. [PMID: 35776508 PMCID: PMC9989843 DOI: 10.1093/jme/tjac082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 05/28/2023]
Abstract
Amblyomma americanum (Linnaeus) (Acari: Ixodidae) (lone star tick) is an aggressive, generalist parasite that vectors numerous important human and animal pathogens. In recent decades its geographic range has expanded northwards from endemic regions in the southeastern and southcentral United States. In 2019 five questing A. americanum ticks, comprising two life stages were detected at one site in southwestern Michigan, satisfying one CDC criterium for an established population for the first time in recent history in the state. To better characterize the extent of emerging A. americanum, we conducted active surveillance (i.e., drag sampling) in summer 2020 throughout Michigan's southern counties and detected one adult A. americanum from each of six widespread sites, including where they had been detected in 2019. A larger established population was identified at another site in Berrien County, which yielded 691 A. americanum comprising three life stages, and questing phenologies here were similar to that reported for other endemic regions. Statewide surveillance in 2021 revealed no A. americanum outside of Berrien County, but establishment criteria were met again at the two sites where established populations were first detected respectively in 2019 and 2020. These observations may represent the successful invasion of A. americanum into Michigan. Data from passive (1999-2020) and active surveillance (2004-2021) efforts, including a domestic animal sentinel program (2015-2018), are reported to provide context for this nascent invasion. Continued active surveillance is needed to help inform the public, medical professionals, and public health officials of the health risks associated with this vector.
Collapse
Affiliation(s)
| | - S Nguyentran
- Department of Fisheries & Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - L Quatroche
- Department of Fisheries & Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - M L Porter
- Comparative Medicine & Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - V Kobbekaduwa
- Comparative Medicine & Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - S Tippin
- Berrien County Health Department, Benton Harbor, MI 49023, USA
| | - Guy Miller
- Berrien County Health Department, Benton Harbor, MI 49023, USA
| | - E Dinh
- Michigan Department of Health and Human Services, Lansing, MI 48933, USA
| | - E Foster
- Current address: Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - J I Tsao
- Department of Fisheries & Wildlife, Michigan State University, East Lansing, MI 48824, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Hove P, Madesh S, Nair A, Jaworski D, Liu H, Ferm J, Kleinhenz MD, Highland MA, Curtis AK, Coetzee JF, Noh SM, Wang Y, Genda D, Ganta RR. Targeted mutagenesis in Anaplasma marginale to define virulence and vaccine development against bovine anaplasmosis. PLoS Pathog 2022; 18:e1010540. [PMID: 35576225 PMCID: PMC9135337 DOI: 10.1371/journal.ppat.1010540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/26/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Tick-borne Anaplasma species are obligate, intracellular, bacterial pathogens that cause important diseases globally in people, agricultural animals, and dogs. Targeted mutagenesis methods are yet to be developed to define genes essential for these pathogens. In addition, vaccines conferring protection against diseases caused by Anaplasma species are not available. Here, we describe a targeted mutagenesis method for deletion of the phage head-to-tail connector protein (phtcp) gene in Anaplasma marginale. The mutant did not cause disease and exhibited attenuated growth in its natural host (cattle). We then assessed its ability to confer protection against wild-type A. marginale infection challenge. Additionally, we compared vaccine protection with the mutant to that of whole cell A. marginale inactivated antigens as a vaccine (WCAV) candidate. Upon infection challenge, non-vaccinated control cattle developed severe disease, with an average 57% drop in packed cell volume (PCV) between days 26-31 post infection, an 11% peak in erythrocytic infection, and apparent anisocytosis. Conversely, following challenge, all animals receiving the live mutant did not develop clinical signs or anemia, or erythrocyte infection. In contrast, the WCAV vaccinees developed similar disease as the non-vaccinees following A. marginale infection, though the peak erythrocyte infection reduced to 6% and the PCV dropped 43%. This is the first study describing targeted mutagenesis and its application in determining in vivo virulence and vaccine development for an Anaplasma species pathogen. This study will pave the way for similar research in related Anaplasma pathogens impacting multiple hosts.
Collapse
Affiliation(s)
- Paidashe Hove
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, Manhattan, Kansas, United States of America
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, West Indies, Grenada
| | - Swetha Madesh
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, Manhattan, Kansas, United States of America
| | - Arathy Nair
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, Manhattan, Kansas, United States of America
| | - Deborah Jaworski
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, Manhattan, Kansas, United States of America
| | - Huitao Liu
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, Manhattan, Kansas, United States of America
| | - Jonathan Ferm
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, Manhattan, Kansas, United States of America
| | - Michael D. Kleinhenz
- Department of Clinical Sciences, Kansas State University, Manhattan, Kansas, United States of America
| | - Margaret A. Highland
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, Manhattan, Kansas, United States of America
| | - Andrew K. Curtis
- Department of Anatomy and Physiology and, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Johann F. Coetzee
- Department of Anatomy and Physiology and, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Susan M. Noh
- Animal Diseases Research Unit, USDA-ARS, 3003 ADBF, Pullman, Washington, United States of America
| | - Ying Wang
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, Manhattan, Kansas, United States of America
| | - Dominica Genda
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, Manhattan, Kansas, United States of America
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, Manhattan, Kansas, United States of America
| |
Collapse
|
9
|
Patterson LL, Velayutham TS, Byerly CD, Bui DC, Patel J, Veljkovic V, Paessler S, McBride JW. Ehrlichia SLiM Ligand Mimetic Activates Notch Signaling in Human Monocytes. mBio 2022; 13:e0007622. [PMID: 35357214 PMCID: PMC9040721 DOI: 10.1128/mbio.00076-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Ehrlichia chaffeensis evades innate host defenses by reprogramming the mononuclear phagocyte through mechanisms that involve the exploitation of multiple evolutionarily conserved cellular signaling pathways, including Notch. This immune evasion strategy is directed in part by tandem repeat protein (TRP) effectors. Specifically, the TRP120 effector activates and regulates Notch signaling through interactions with the Notch receptor and the negative regulator, F-Box and WD repeat domain-containing 7 (FBW7). However, the specific molecular interactions and motifs required for E. chaffeensis TRP120-Notch receptor interaction and activation have not been defined. To investigate the molecular basis of TRP120 Notch activation, we compared TRP120 with endogenous canonical/noncanonical Notch ligands and identified a short region of sequence homology within the tandem repeat (TR) domain. TRP120 was predicted to share biological function with Notch ligands, and a function-associated sequence in the TR domain was identified. To investigate TRP120-Notch receptor interactions, colocalization between TRP120 and endogenous Notch-1 was observed. Moreover, direct interactions between full-length TRP120, the TRP120 TR domain containing the putative Notch ligand sequence, and the Notch receptor LBR were demonstrated. To molecularly define the TRP120 Notch activation motif, peptide mapping was used to identify an 11-amino acid short linear motif (SLiM) located within the TRP120 TR that activated Notch signaling and downstream gene expression. Peptide mutants of the Notch SLiM or anti-Notch SLiM antibody reduced or eliminated Notch activation and NICD nuclear translocation. This investigation reveals a novel molecularly defined pathogen encoded Notch SLiM mimetic that activates Notch signaling consistent with endogenous ligands. IMPORTANCE E. chaffeensis infects and replicates in mononuclear phagocytes, but how it evades innate immune defenses of this indispensable primary innate immune cell is not well understood. This investigation revealed the molecular details of a ligand mimicry cellular reprogramming strategy that involved a short linear motif (SLiM), which enabled E. chaffeensis to exploit host cell signaling to establish and maintain infection. E. chaffeensis TRP120 is a moonlighting effector that has been associated with cellular activation and other functions, including ubiquitin ligase activity. Herein, we identified and demonstrated that a SLiM present within each tandem repeat of TRP120 activated Notch signaling. Notch is an evolutionarily conserved signaling pathway responsible for many cell functions, including cell fate, development, and innate immunity. This study is significant because it revealed the first molecularly defined pathogen encoded SLiM that appears to have evolved de novo to mimic endogenous Notch ligands. Understanding Notch activation during E. chaffeensis infection provides a model to study pathogen exploitation of signaling pathways and will be useful in developing molecularly targeted countermeasures for inhibiting infection by a multitude of disease-causing pathogens that exploit cell signaling through molecular mimicry.
Collapse
Affiliation(s)
- LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Duc Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jignesh Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
10
|
Oliva Chávez AS, Wang X, Marnin L, Archer NK, Hammond HL, Carroll EEM, Shaw DK, Tully BG, Buskirk AD, Ford SL, Butler LR, Shahi P, Morozova K, Clement CC, Lawres L, Neal AJO, Mamoun CB, Mason KL, Hobbs BE, Scoles GA, Barry EM, Sonenshine DE, Pal U, Valenzuela JG, Sztein MB, Pasetti MF, Levin ML, Kotsyfakis M, Jay SM, Huntley JF, Miller LS, Santambrogio L, Pedra JHF. Tick extracellular vesicles enable arthropod feeding and promote distinct outcomes of bacterial infection. Nat Commun 2021; 12:3696. [PMID: 34140472 PMCID: PMC8211691 DOI: 10.1038/s41467-021-23900-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles are thought to facilitate pathogen transmission from arthropods to humans and other animals. Here, we reveal that pathogen spreading from arthropods to the mammalian host is multifaceted. Extracellular vesicles from Ixodes scapularis enable tick feeding and promote infection of the mildly virulent rickettsial agent Anaplasma phagocytophilum through the SNARE proteins Vamp33 and Synaptobrevin 2 and dendritic epidermal T cells. However, extracellular vesicles from the tick Dermacentor andersoni mitigate microbial spreading caused by the lethal pathogen Francisella tularensis. Collectively, we establish that tick extracellular vesicles foster distinct outcomes of bacterial infection and assist in vector feeding by acting on skin immunity. Thus, the biology of arthropods should be taken into consideration when developing strategies to control vector-borne diseases.
Collapse
Affiliation(s)
- Adela S Oliva Chávez
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Xiaowei Wang
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Liron Marnin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Holly L Hammond
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erin E McClure Carroll
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Excerpta Medica, Doylestown, PA, USA
| | - Dana K Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Brenden G Tully
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Amanda D Buskirk
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Process and Facilities, Division of Microbiology Assessment, Microbiology Assessment Branch III, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Shelby L Ford
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Preeti Shahi
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kateryna Morozova
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Cristina C Clement
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiation Oncology and Physiology and Biophysics, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lauren Lawres
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anya J O' Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Choukri Ben Mamoun
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kathleen L Mason
- USDA, ARS, Animal Disease Research Unit, Washington State University, Pullman, WA, USA
| | - Brandi E Hobbs
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Glen A Scoles
- USDA, ARS, Animal Disease Research Unit, Washington State University, Pullman, WA, USA
- USDA, ARS, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, USA
| | - Eileen M Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel E Sonenshine
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcela F Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael L Levin
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Jason F Huntley
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Immunology, Janssen Research and Development, Spring House, PA, USA
| | - Laura Santambrogio
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiation Oncology and Physiology and Biophysics, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Wang Y, Nair ADS, Alhassan A, Jaworski DC, Liu H, Trinkl K, Hove P, Ganta CK, Burkhardt N, Munderloh UG, Ganta RR. Multiple Ehrlichia chaffeensis Genes Critical for Its Persistent Infection in a Vertebrate Host Are Identified by Random Mutagenesis Coupled with In Vivo Infection Assessment. Infect Immun 2020; 88:e00316-20. [PMID: 32747600 PMCID: PMC7504954 DOI: 10.1128/iai.00316-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Ehrlichia chaffeensis, a tick-transmitted obligate intracellular rickettsial agent, causes human monocytic ehrlichiosis. In recent reports, we described substantial advances in developing random and targeted gene disruption methods to investigate the functions of E. chaffeensis genes. We reported earlier that the Himar1 transposon-based random mutagenesis is a valuable tool in defining E. chaffeensis genes critical for its persistent growth in vivo in reservoir and incidental hosts. The method also aided in extending studies focused on vaccine development and immunity. Here, we describe the generation and mapping of 55 new mutations. To define the critical nature of the bacterial genes, infection experiments were carried out in the canine host with pools of mutant organisms. Infection evaluation in the physiologically relevant host by molecular assays and by xenodiagnoses allowed the identification of many proteins critical for the pathogen's persistent in vivo growth. Genes encoding proteins involved in biotin biosynthesis, protein synthesis and fatty acid biosynthesis, DNA repair, electron transfer, and a component of a multidrug resistance (MDR) efflux pump were concluded to be essential for the pathogen's in vivo growth. Three known immunodominant membrane proteins, i.e., two 28-kDa outer membrane proteins (P28/OMP) and a 120-kDa surface protein, were also recognized as necessary for the pathogen's obligate intracellular life cycle. The discovery of many E. chaffeensis proteins crucial for its continuous in vivo growth will serve as a major resource for investigations aimed at defining pathogenesis and developing novel therapeutics for this and related pathogens of the rickettsial family Anaplasmataceae.
Collapse
Affiliation(s)
- Ying Wang
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Arathy D S Nair
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Andy Alhassan
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, West Indies, Grenada
| | - Deborah C Jaworski
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Huitao Liu
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Kathleen Trinkl
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Paidashe Hove
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, West Indies, Grenada
| | - Charan K Ganta
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Nicole Burkhardt
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
| | - Ulrike G Munderloh
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
| | - Roman R Ganta
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
12
|
An Entry-Triggering Protein of Ehrlichia Is a New Vaccine Candidate against Tick-Borne Human Monocytic Ehrlichiosis. mBio 2020; 11:mBio.00895-20. [PMID: 32723916 PMCID: PMC7387794 DOI: 10.1128/mbio.00895-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The incidence of tick-borne diseases has risen dramatically in the past two decades and continues to rise. Discovered in 1986 and designated a nationally notifiable disease in 1998 by the Centers for Disease Control and Prevention, human monocytic ehrlichiosis, which is caused by the bacterium Ehrlichia chaffeensis, is one of the most prevalent, life-threatening, emerging tick-borne zoonoses in the United States. We investigated the role of the E. chaffeensis protein EtpE in transmission of the bacterium from tick to human cells and in vaccinated dogs with EtpE to assess the efficacy of vaccination against E. chaffeensis-infected tick challenge. Our results help fill gaps in our understanding of E. chaffeensis-derived protective antigens that could be used in a candidate vaccine for immunization of humans to counter tick-transmitted ehrlichiosis. Ehrlichia chaffeensis is an obligatory intracellular bacterium that causes human monocytic ehrlichiosis, an emerging disease transmitted by the Lone Star tick, Amblyomma americanum. E. chaffeensis outer membrane protein entry triggering protein of Ehrlichia (EtpE) is necessary for bacterial entry into human cells. We investigated the role of EtpE in transmission of the bacteria from tick to human cells and whether or not vaccination with EtpE can prevent transmission of ehrlichiae from ticks to mammals. An antiserum against the recombinant C terminus of EtpE (rEtpE-C), which binds a mammalian cell-surface receptor and triggers bacterial entry, significantly inhibited E. chaffeensis transmission from infected tick cells to human monocytes in culture. Each of five specific-pathogen-free dogs were vaccinated with rEtpE-C along with an immunostimulating complex or were sham vaccinated with the complex alone. Dogs vaccinated with rEtpE-C developed high antibody titers against rEtpE-C and produced interferon-γ-secreting cells, as assessed with the ELISpot assay. All 10 dogs were challenged with A. americanum adult ticks infected as nymphs by syringe inoculation with E. chaffeensis. Upon challenge, both the vaccinated and control dogs became infected by day 1 post-tick attachment, but the majority of rEtpE-C-vaccinated dogs rapidly cleared the infection from the bloodstream as soon as day 7, whereas most of sham-vaccinated dogs remained infected at day 35. Peripheral blood leukocytes from vaccinated dogs had significantly elevated interferon-γ mRNA levels and secreted significantly elevated interferon-γ soon after tick attachment. Thus, the EtpE-C vaccine represents the first ehrlichial protein vaccine demonstrated to reduce bacterial infection in mammals upon challenge with infected ticks.
Collapse
|
13
|
McGill JL, Wang Y, Ganta CK, Boorgula GDY, Ganta RR. Antigen-Specific CD4 +CD8 + Double-Positive T Cells Are Increased in the Blood and Spleen During Ehrlichia chaffeensis Infection in the Canine Host. Front Immunol 2018; 9:1585. [PMID: 30050533 PMCID: PMC6050357 DOI: 10.3389/fimmu.2018.01585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 06/26/2018] [Indexed: 12/11/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular bacterium belonging to the order, Rickettsiales and is a frequent cause of severe and fatal tick-borne infection in people in North America. The reservoir host for E. chaffeensis is the white-tailed deer, while humans and dogs are regarded as common incidental hosts. In dogs, we and others have shown that E. chaffeensis establishes a chronic infection that persists for several weeks to months, while promoting the development of Th1 and Th17 cellular responses and pathogen-specific humoral immunity. We demonstrate here that vaccination with a live, attenuated clone of E. chaffeensis bearing a targeted mutation in the Ech_0230 gene neither promotes the development of long-lived cellular or humoral immunity, nor confers protection against secondary wild-type E. chaffeensis challenge. In dogs, a population of mature CD4+CD8+ double-positive (DP) T cells exists in the periphery that shares similarities with the DP T cell populations that have been described in humans and swine. Little is known about the function of these cells, particularly in the context of infectious diseases. Here, we demonstrate that canine DP T cells expand significantly in response to E. chaffeensis infection. Using in vitro antigen recall assays, we further demonstrate that canine DP T cells undergo clonal expansion, produce IFNγ and IL-17, and upregulate expression of granzyme B and granulysin. Together, our results demonstrate that DP T cells accumulate in the host during E. chaffeensis infection, and suggest that alternative lymphocyte populations may participate in the immune response to tick-borne infections in the incidental host.
Collapse
Affiliation(s)
- Jodi L. McGill
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ying Wang
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Chanran K. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Gunavanthi D. Y. Boorgula
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|