1
|
Wang N, Ye RZ, Yu HJ, Han XY, Tian D, Gao WY, Wang BH, Du LF, Zhang MZ, Shi XY, Zhu DY, Shi W, Jia N, Jiang JF, Sun Y, Zhao L, Cui XM, Liu ZH, Cao WC. Genomic characteristics of emerging human pathogen Rickettsia aeschlimannii isolated from two Hyalomma tick species. iScience 2025; 28:112080. [PMID: 40124488 PMCID: PMC11930227 DOI: 10.1016/j.isci.2025.112080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/24/2024] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Rickettsia aeschlimannii, which emerged in Morocco in 1997, causes the Mediterranean spotted fever-like rickettsiosis in various Mediterranean countries and recently in Russia and China. Despite its increasing distribution, no available genome has been reported outside Morocco to date. Here, we isolated two strains of R. aeschlimannii from Hyalomma asiaticum (Ning-1 strain) and Hyalomma scupense (Ning-2 strain) ticks in northwestern China and assembled their complete genomes. The genomes of the two strains were smaller than the Mediterranean MC16 strain, containing fewer pseudogenes, higher ralF virulence factor coverage, and 154 unique orthogroups. The Ning-1 strain overwhelmed the Ning-2 strain with more obvious cytopathic effects, quicker growth, and faster plaque formation in cell culture, likely due to its unique pmp20 gene, higher frequency of single nucleotide polymorphisms, and missense/silent ratio. The prevalence of R. aeschlimannii was high among Hyalomma ticks in northwestern China. These findings highlight the genomic characteristics of R. aeschlimannii and the necessity for enhanced surveillance of the emerging Rickettsia in the human population.
Collapse
Affiliation(s)
- Ning Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing 100071, China
| | - Run-Ze Ye
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Hui-Jun Yu
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiao-Yu Han
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing 100071, China
| | - Di Tian
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Wan-Ying Gao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Bai-Hui Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Li-Feng Du
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiao-Yu Shi
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing 100071, China
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing 100071, China
| | - Wenqiang Shi
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing 100071, China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing 100071, China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing 100071, China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing 100071, China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing 100071, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, China
| | - Zhi-Hong Liu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing 100071, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, China
| |
Collapse
|
2
|
Di Bella S, Blanda V, Scibetta S, Giacchino I, Gentile A, Chiarenza G, Cannella V, Provinzano G, Grippi F, Guercio A. Molecular Detection of Rickettsia spp. and Other Tick-Borne Pathogens in Ticks from a Nature Reserve: Implications for Zoonotic Transmission. Animals (Basel) 2024; 15:72. [PMID: 39795015 PMCID: PMC11718797 DOI: 10.3390/ani15010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Ticks are a major concern for both animal and human health, as they are primary vectors of infectious pathogens. This study focused on ticks found in a nature reserve in southern Italy, highly frequented for recreational activities and inhabited by wild boars. Using molecular techniques, 214 ticks, including questing ticks and those removed from wild boars, were examined for tick-borne pathogens (TBPs), with a focus on zoonotic pathogens. Six tick species were identified: Hyalomma lusitanicum, Rhipicephalus pusillus, Rh. sanguineus s.l., Rh. bursa, Rh. turanicus, and Dermacentor marginatus, several of which are known vectors of zoonotic pathogens. Overall, 14% of ticks were positive for TBPs, mainly bacteria of Rickettsia genus. Molecular analyses detected Rickettsia slovaca, R. massiliae, Candidatus R. shennongii, R. conorii, R. felis, and R. barbariae. Additionally, single detections of Coxiella burnetii and Theileria annulata were recorded. Phylogenetic analyses were conducted on Rickettsia sequences. The range of ticks and TBPs present in this area highlights potential public health concerns. New associations between tick species and TBPs were documented, though vector roles need further investigation. The study highlights the importance of monitoring tick populations in both rural and urban environments to protect public health and prevent tick-borne disease spreading.
Collapse
Affiliation(s)
- Santina Di Bella
- Centro di Referenza Nazionale per Anaplasma, Babesia Rickettsia, Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (S.D.B.); (A.G.); (V.C.); (A.G.)
| | - Valeria Blanda
- Centro di Referenza Nazionale per Anaplasma, Babesia Rickettsia, Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (S.D.B.); (A.G.); (V.C.); (A.G.)
- Area Diagnostica Sierologica, Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (I.G.); (G.C.); (F.G.)
| | - Silvia Scibetta
- Centro di Referenza Nazionale per Anaplasma, Babesia Rickettsia, Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (S.D.B.); (A.G.); (V.C.); (A.G.)
| | - Ilenia Giacchino
- Area Diagnostica Sierologica, Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (I.G.); (G.C.); (F.G.)
| | - Antonino Gentile
- Centro di Referenza Nazionale per Anaplasma, Babesia Rickettsia, Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (S.D.B.); (A.G.); (V.C.); (A.G.)
| | - Giuseppina Chiarenza
- Area Diagnostica Sierologica, Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (I.G.); (G.C.); (F.G.)
| | - Vincenza Cannella
- Centro di Referenza Nazionale per Anaplasma, Babesia Rickettsia, Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (S.D.B.); (A.G.); (V.C.); (A.G.)
| | - Giovanni Provinzano
- Riserva Naturale Monte Pellegrino, Ente Gestore Associazione Ranger d’Italia Sezione Sicilia ODV, 90146 Palermo, Italy;
| | - Francesca Grippi
- Area Diagnostica Sierologica, Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (I.G.); (G.C.); (F.G.)
| | - Annalisa Guercio
- Centro di Referenza Nazionale per Anaplasma, Babesia Rickettsia, Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (S.D.B.); (A.G.); (V.C.); (A.G.)
| |
Collapse
|
3
|
Di Bella S, Gambino D, Pepe D, Gentile A, Blanda V, Valenti A, Santangelo F, Ballatore A, Spina G, Barbaccia G, Cannella V, Cassata G, Guercio A. Serosurvey of Rickettsia spp. and Ehrlichia canis in Dogs from Shelters in Sicily (Southern Italy). Pathogens 2024; 13:1119. [PMID: 39770378 PMCID: PMC11678695 DOI: 10.3390/pathogens13121119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Vector-borne diseases represent a serious threat to human and animal health, especially where environmental conditions favor pathogen-carrying vectors. Dogs serve as natural hosts for two tick-borne pathogens: Ehrlichia canis, which causes canine monocytic ehrlichiosis, and spotted fever group (SFG) Rickettsia spp., a zoonotic threat in the Mediterranean region. Rhipicephalus sanguineus is the primary vector for these pathogens. Shelter dogs, due to increased exposure to ticks and confined living conditions, facilitate the spread of vector-borne pathogens, raising the risk of zoonotic transmission. This study conducted a serological survey of 1287 dogs from two shelters, assessing exposure to Rickettsia spp. and E. canis and examining the influence of demographic and environmental factors. Seroprevalence rates were 41.8% for Rickettsia spp. and 24.5% for E. canis, with 14% of dogs positive for both pathogens. No significant association was found with sex or breed. A higher seroprevalence was observed in dogs older than 12 months and in those from the shelter on the Mediterranean coast compared to those from the Tyrrhenian coast, likely due to climatic differences. The study highlights the role of climate in disease spread and the need for public health interventions, supporting One Health initiatives to prevent zoonotic disease transmission.
Collapse
Affiliation(s)
- Santina Di Bella
- Centro di Referenza Nazionale per Anaplasma, Babesia Rickettsia, e Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (S.D.B.)
| | - Delia Gambino
- Area Territoriale Palermo, Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (D.G.); (G.B.)
| | - Davide Pepe
- Centro di Referenza Nazionale per Anaplasma, Babesia Rickettsia, e Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (S.D.B.)
| | - Antonino Gentile
- Centro di Referenza Nazionale per Anaplasma, Babesia Rickettsia, e Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (S.D.B.)
| | - Valeria Blanda
- Centro di Referenza Nazionale per Anaplasma, Babesia Rickettsia, e Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (S.D.B.)
| | - Antonio Valenti
- Dipartimento di Prevenzione Veterinario UOS Presidi di Igiene Urbana Veterinaria (Canile), Azienda Sanitaria Provinciale di Palermo, 90123 Palermo, Italy
| | - Francesco Santangelo
- Dipartimento di Prevenzione Veterinario UOS Presidi di Igiene Urbana Veterinaria (Canile), Azienda Sanitaria Provinciale di Palermo, 90123 Palermo, Italy
| | - Antonino Ballatore
- Rifugio Sanitario Municipale di Mazara del Vallo, Azienda Sanitaria Provinciale di Trapani, 91026 Mazara del Vallo, Italy
| | - Giuseppe Spina
- Rifugio Sanitario Municipale di Mazara del Vallo, Azienda Sanitaria Provinciale di Trapani, 91026 Mazara del Vallo, Italy
| | - Giuseppe Barbaccia
- Area Territoriale Palermo, Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (D.G.); (G.B.)
| | - Vincenza Cannella
- Centro di Referenza Nazionale per Anaplasma, Babesia Rickettsia, e Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (S.D.B.)
| | - Giovanni Cassata
- Area Territoriale Palermo, Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (D.G.); (G.B.)
| | - Annalisa Guercio
- Centro di Referenza Nazionale per Anaplasma, Babesia Rickettsia, e Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (S.D.B.)
| |
Collapse
|
4
|
Khan Z, Ullah F, Ullah S, Ibrahim M, Khan M, Rehman G, Tanaka T, Almutairi MM, Alouffi A, Ali A. Molecular detection of Anaplasma bovis, Candidatus Anaplasma boleense and Rickettsia spp. in ticks infesting small ruminants. BMC Vet Res 2024; 20:408. [PMID: 39261829 PMCID: PMC11389282 DOI: 10.1186/s12917-024-04259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Anaplasma spp. and Rickettsia spp. are intracellular vector-borne pathogens and harbored by a wide range of ticks and vertebrate hosts. Aim of this study was to molecularly characterize Anaplasma spp. and Rickettsia spp. in different ticks collected from livestock hosts in nine districts of Khyber Pakhtunkhwa (KP), Pakistan. In total, 862 ticks were collected from cattle, goats and sheep. Highest tick's infestation was observed on cattle 56.14% (32/57), followed by goats 45.45% (40/88), and sheep 42.05% (45/107). Rhipicephalus microplus (305/862, 35.38%) was predominant species, followed by Haemaphysalis sulcata (243/862, 28.19%), Hyalomma anatolicum (133/862, 15.42%), Haemaphysalis bispinosa (120/862, 13.92%), and Hyalomma kumari (61/862, 7.07%). A subset of 135 ticks were screened for Anaplasma spp. and Rickettsia spp. based on the amplification of partial 16 S rDNA and outer-membrane protein A (ompA) fragments, respectively. In total, 16 ticks (11.85%) were positive for Anaplasma spp. and Rickettsia spp. Obtained 16 S rDNA sequences for Anaplasma spp. detected in Ha. bispinosa and Ha. sulcata showed 99.98% identity with Anaplasma bovis, while other detected in Rh. microplus showed 99.84% identity with Candidatus Anaplasma boleense. Similarly, detected ompA sequence in Ha. sulcata showed 100% identity with Rickettsia sp. and 97.93% with Rickettsia slovaca, and another sequence detected in Rh. microplus showed 100% identity with Candidatus Rickettsia shennongii. In phylogenetic trees, these sequences clustered with corresponding species from Pakistan, China, Turkey, South Korea, South Africa, and Herzegovina. This is the first study reporting detection of A. bovis in Ha. bispinosa and Ha. sulcata, Ca. A. boleense in Rh. microplus collected from goats, and R. slovaca-like in Ha. sulcata. Our results enforce the need for regular surveillance of Rickettsiales in hard ticks infesting livestock in the region.
Collapse
Affiliation(s)
- Zaibullah Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23180, Pakistan
| | - Farman Ullah
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23180, Pakistan
| | - Shafi Ullah
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23180, Pakistan
| | - Mohammed Ibrahim
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23180, Pakistan
| | - Momin Khan
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23180, Pakistan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan
- Laboratory of Animal Microbiology, Graduate School of Agricultural Science/Faculty of Agriculture, Tohoku University, Sendai , 980-8572, Japan
| | - Mashal M Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, 12354, Saudi Arabia
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23180, Pakistan.
| |
Collapse
|
5
|
Gharbi Z, Ouni A, Balti G, Bouattour A, Chabchoub A, M'ghirbi Y. First Evidence of Rickettsia conorii Infection in Dogs in Northern Tunisia. Vet Sci 2024; 11:402. [PMID: 39330781 PMCID: PMC11435778 DOI: 10.3390/vetsci11090402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 09/28/2024] Open
Abstract
A cross-sectional study was carried out, between April 2021 and June 2022, to understand the role of dogs in the circulation of rickettsiosis in Tunisia. The presence of specific IgG antibodies against Rickettsia conorii was analyzed by indirect immunofluorescence test. By qPCR, blood and ticks were collected from 136 dogs examined at the Canine Department of National School for Veterinary Medicine of Tunisia. These dogs were also analyzed to detect Rickettsia DNA. The rate of Rickettsia seropositivity in 136 dogs was 55.14%. A total of 51 (53%) seropositive dogs showed clinical and biological signs such as fever and anorexia as well as thrombocytopenia and anemia. By qPCR, targeting the mitochondrial 16S rRNA gene, no Rickettsia DNA was detected in the blood. On the other hand, qPCR followed by sequencing revealed the presence of R. conorii subsp. raoultii in 7 tick pools of the 51 pools composed of the 227 ticks collected. A One Health approach to raise the awareness of dog owners to control tick infestations is imperative, given the dangers of canine zoonoses.
Collapse
Affiliation(s)
- Zeyneb Gharbi
- National School of Veterinary Medicine, Institution of Agricultural Research and Higher Education, University of Manouba, Sidi Thabet 2020, Tunisia
- Laboratory of Viruses, Vectors and Hosts (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Ahmed Ouni
- Laboratory of Viruses, Vectors and Hosts (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Ghofrane Balti
- Laboratory of Viruses, Vectors and Hosts (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Ali Bouattour
- Laboratory of Viruses, Vectors and Hosts (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Ahmed Chabchoub
- National School of Veterinary Medicine, Institution of Agricultural Research and Higher Education, University of Manouba, Sidi Thabet 2020, Tunisia
- Laboratory of Viruses, Vectors and Hosts (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Youmna M'ghirbi
- Laboratory of Viruses, Vectors and Hosts (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| |
Collapse
|
6
|
Guardone L, Nogarol C, Accorsi A, Vitale N, Listorti V, Scala S, Brusadore S, Miceli IN, Wolfsgruber L, Guercio A, Di Bella S, Grippi F, Razzuoli E, Mandola ML. Ticks and Tick-Borne Pathogens: Occurrence and Host Associations over Four Years of Wildlife Surveillance in the Liguria Region (Northwest Italy). Animals (Basel) 2024; 14:2377. [PMID: 39199911 PMCID: PMC11350676 DOI: 10.3390/ani14162377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tick-borne diseases (TBDs) are a considerable public health problem worldwide. The occurrence of Anaplasma spp., Borrelia burgdorferi s.l., Coxiella burnetii, Rickettsia spp., and tick-borne encephalitis virus (TBEv) was investigated via PCR and sequencing in 683 ticks collected from 105 roe deer, 61 wild boars, 49 fallow deer, and 2 chamois, in the Liguria region, northwest Italy, between 2019 and 2022. The ticks were morphologically identified. Four different tick species were found: Ixodes ricinus (66.8% of the collected ticks), Dermacentor marginatus (15.8%), Rhipicephalus sanguineus s.s. (15.7%), and Haemaphysalis punctata (0.9%). Six ticks (0.9%) were only identified as Rhipicephalus spp. Of the 222 pools analyzed, 27.9% were positive. Most pools (n = 58, 26.1% of pools analyzed) were positive for Rickettsia spp., and several species were found: Rickettsia slovaca was the dominant species (15.3%), followed by R. monacensis (8.1%), while R. helvetica (1.8%), R. massiliae (0.5%), and R. raoultii (0.5%) were found only sporadically. Anaplasma phagocytophilum was identified in three pools and B. burgdorferi s.l. in one pool. All samples were negative for C. burnetii and TBEv. Significant associations were found between I. ricinus and roe deer, D. marginatus and wild boar, and between R. monacensis and I. ricinus. The prevalence of Rickettsia spp. differed significantly between tick and host species. This updated picture of tick species and TBPs in wild ungulates in Liguria, where the population of these animals is increasing, shows a widespread presence of potentially zoonotic Rickettsia spp. Continuous monitoring and public information on preventive measures are needed.
Collapse
Affiliation(s)
- Lisa Guardone
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Chiara Nogarol
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| | - Annalisa Accorsi
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
| | - Nicoletta Vitale
- S.S. Epidemiologia—Sanità Animale, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy;
| | - Valeria Listorti
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
| | - Sonia Scala
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| | - Sonia Brusadore
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| | - Ilaria Nina Miceli
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| | - Lara Wolfsgruber
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
| | - Annalisa Guercio
- Centro Nazionale di Referenza per Anaplasma, Babesia, Rickettsia e Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.G.); (S.D.B.)
| | - Santina Di Bella
- Centro Nazionale di Referenza per Anaplasma, Babesia, Rickettsia e Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.G.); (S.D.B.)
| | - Francesca Grippi
- S.C. Diagnostica Sierologica, Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via Gino Marinuzzi 3, 90129 Palermo, Italy;
| | - Elisabetta Razzuoli
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
| | - Maria Lucia Mandola
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| |
Collapse
|
7
|
Qorbani A, Khalili M, Nourollahifard S, Mostafavi E, Farrokhnia M, Esmaeili S. Diversity of Rickettsia species in collected ticks from Southeast Iran. BMC Vet Res 2024; 20:279. [PMID: 38937767 PMCID: PMC11210027 DOI: 10.1186/s12917-024-04142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
Rickettsia occurs worldwide and rickettsiosis is recognized as an emerging infection in several parts of the world. Ticks are reservoir hosts for pathogenic Rickettsia species in humans and domestic animals. Most pathogenic Rickettsia species belong to the spotted Fever Group (SFG). This study aimed to identify and diagnose tick fauna and investigate the prevalence of Rickettsia spp. in ticks collected from domestic animals and dogs in the rural regions of Kerman Province, Southeast Iran. In this study, tick species (fauna) were identified and 2100 ticks (350 pooled samples) from two genera and species including Rhipicephalus linnaei (1128) and Hyalomma deteritum (972) were tested to detect Rickettsia genus using Real-time PCR. The presence of the Rickettsia genus was observed in 24.9% (95%CI 20.28-29.52) of the pooled samples. Sequencing and phylogenetic analyses revealed the presence of Rickettsia aeschlimannii (48.98%), Rickettsia conorii israelensis (28.57%), Rickettsia sibirica (20.41%), and Rickettsia helvetica (2.04%) in the positive samples. The results showed a significant association between county variables and the following variables: tick spp. (p < 0.001), Rickettsia genus infection in ticks (p < 0.001) and Rickettsia spp. (p < 0.001). In addition, there was a significant association between tick species and host animals (dogs and domestic animals) (p < 0.001), Rickettsia spp infection in ticks (p < 0.001), and Rickettsia spp. (p < 0.001). This study indicates a high prevalence of Rickettsia spp. (SFG) in ticks of domestic animals and dogs in rural areas of Kerman Province. The health system should be informed of the possibility of rickettsiosis and the circulating species of Rickettsia in these areas.
Collapse
Affiliation(s)
- Ali Qorbani
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Khalili
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Saeidreza Nourollahifard
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ehsan Mostafavi
- National Reference Laboratory for Plague, Tularemia and Q fever, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, Akanlu, Hamadan, Kabudar Ahang, Iran
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mehrdad Farrokhnia
- Department of internal Medicine, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saber Esmaeili
- National Reference Laboratory for Plague, Tularemia and Q fever, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, Akanlu, Hamadan, Kabudar Ahang, Iran
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Majid A, Almutairi MM, Alouffi A, Tanaka T, Yen TY, Tsai KH, Ali A. First report of spotted fever group Rickettsia aeschlimannii in Hyalomma turanicum, Haemaphysalis bispinosa, and Haemaphysalis montgomeryi infesting domestic animals: updates on the epidemiology of tick-borne Rickettsia aeschlimannii. Front Microbiol 2023; 14:1283814. [PMID: 38163073 PMCID: PMC10756324 DOI: 10.3389/fmicb.2023.1283814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Tick-borne Rickettsia spp. have long been known as causative agents for zoonotic diseases. We have previously characterized Rickettsia spp. in different ticks infesting a broad range of hosts in Pakistan; however, knowledge regarding Rickettsia aeschlimannii in Haemaphysalis and Hyalomma ticks is missing. This study aimed to obtain a better understanding about R. aeschlimannii in Pakistan and update the knowledge about its worldwide epidemiology. Among 369 examined domestic animals, 247 (66%) were infested by 872 ticks. Collected ticks were morphologically delineated into three genera, namely, Rhipicephalus, Hyalomma, and Haemaphysalis. Adult females were the most prevalent (number ₌ 376, 43.1%), followed by nymphs (303, 34.74%) and males (193, 22.13%). Overall, genomic DNA samples of 223 tick were isolated and screened for Rickettsia spp. by the amplification of rickettsial gltA, ompA, and ompB partial genes using conventional PCR. Rickettsial DNA was detected in 8 of 223 (3.58%) ticks including nymphs (5 of 122, 4.0%) and adult females (3 of 86, 3.48%). The rickettsial gltA, ompA, and ompB sequences were detected in Hyalomma turanicum (2 nymphs and 1 adult female), Haemaphysalis bispinosa (1 nymph and 1 adult female), and Haemaphysalis montgomeryi (2 nymphs and 1 adult female). These rickettsial sequences showed 99.71-100% identity with R. aeschlimannii and phylogenetically clustered with the same species. None of the tested Rhipicephalus microplus, Hyalomma isaaci, Hyalomma scupense, Rhipicephalus turanicus, Hyalomma anatolicum, Rhipicephalus haemaphysaloides, Rhipicephalus sanguineus, Haemaphysalis cornupunctata, and Haemaphysalis sulcata ticks were found positive for rickettsial DNA. Comprehensive surveillance studies should be adopted to update the knowledge regarding tick-borne zoonotic Rickettsia species, evaluate their risks to humans and livestock, and investigate the unexamined cases of illness after tick bite among livestock holders in the country.
Collapse
Affiliation(s)
- Abdul Majid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tsai-Ying Yen
- Department of Public Health, Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Kun-Hsien Tsai
- Department of Public Health, Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
9
|
Raele DA, Cafiero MA. Rickettsial Infection in the COVID-19 Era: The Correlation between the Detection of Rickettsia aeschlimannii in Ticks and Storytelling Photography of a Presumable Human Rickettsiosis Case. Microorganisms 2023; 11:2645. [PMID: 38004657 PMCID: PMC10673559 DOI: 10.3390/microorganisms11112645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Rickettsia aeschlimannii infection is an emerging human tick-borne disease with only a few recorded cases. We reported a presumable autochthonous case of rickettsiosis in an Italian cattle breeder associated with a Hyalomma marginatum bite. Rickettsia aeschlimannii DNA was detected in both the tick specimen from the patient and the grazing cattle close to his farm.
Collapse
Affiliation(s)
- Donato Antonio Raele
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy;
| | | |
Collapse
|
10
|
Valcárcel F, Elhachimi L, Vilá M, Tomassone L, Sánchez M, Selles SMA, Kouidri M, González MG, Martín-Hernández R, Valcárcel Á, Fernández N, Tercero JM, Sanchis J, Bellido-Blasco J, González-Coloma A, Olmeda AS. Emerging Hyalomma lusitanicum: From identification to vectorial role and integrated control. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:425-459. [PMID: 37144688 DOI: 10.1111/mve.12660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 04/11/2023] [Indexed: 05/06/2023]
Abstract
In the Mediterranean basin, the tick species Hyalomma lusitanicum Koch stands out among other species of the Hyalomma genus due to its wide distribution, and there is great concern about its potential role as a vector and/or reservoir and its continuous expansion to new areas because of climate warming and human and other animal movements. This review aims to consolidate all the information on H. lusitanicum, including taxonomy and evolution, morphological and molecular identification, life cycle, sampling methods, rearing under laboratory conditions, ecology, hosts, geographical distribution, seasonality, vector role and control methods. The availability of adequate data is extremely relevant to the development of appropriate control strategies in areas where this tick is currently distributed as well as in new areas where it could become established in the near future.
Collapse
Affiliation(s)
- Félix Valcárcel
- Grupo de Parasitología Animal, Departamento de Reproducción Animal, INIA-CSIC, Madrid, Spain
| | - L Elhachimi
- Département de parasitologie et de Santé Publique, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco
| | - M Vilá
- Grupo de Investigación COPAR (GI-2120; USC), Departamento de Patoloxia Animal, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - L Tomassone
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - M Sánchez
- Grupo de Parasitología Animal, Departamento de Reproducción Animal, INIA-CSIC, Madrid, Spain
- Villamagna S.A., Finca "La Garganta", Villanueva de Córdoba, Spain
- Facultad de Veterinaria, Universidad Alfonso X El Sabio (UAX), Madrid, Spain
| | - S M A Selles
- Institute of Veterinary Sciences, University of Tiaret, Tiaret, Algeria
- Laboratory of Research on Local Animal Products, University of Tiaret, Tiaret, Algeria
| | - M Kouidri
- Laboratory of Farm Animal Products, University of Tiaret, Tiaret, Algeria
| | - M G González
- Grupo de Parasitología Animal, Departamento de Reproducción Animal, INIA-CSIC, Madrid, Spain
- Villamagna S.A., Finca "La Garganta", Villanueva de Córdoba, Spain
| | - R Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF-Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Marchamalo, 19180, Spain. Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-ESF/EC-FSE), Fundación Parque Científico y Tecnológico de Castilla-La Mancha, Albacete, Spain
| | - Á Valcárcel
- Lokimica S.L., c/ Valdemorillo, Madrid, Spain
- Veterinary Pathobiology section, University College Dublín, Dublin 4, Ireland
| | - N Fernández
- Facultad de Veterinaria, Universidad Alfonso X El Sabio (UAX), Madrid, Spain
| | - J M Tercero
- Villamagna S.A., Finca "La Garganta", Villanueva de Córdoba, Spain
| | - J Sanchis
- Facultad de Veterinaria, CENUR Litoral Norte, Universidad de la República, Uruguay
| | - J Bellido-Blasco
- Sección de Epidemiología, Centro de Salud Pública de Castelló, CIBER-ESP. Universitat Jaume I (UJI), Castelló, Spain
| | | | - A S Olmeda
- Departamento de Sanidad Animal, Facultad de Veterinaria, UCM, Madrid, Spain
| |
Collapse
|
11
|
Shehla S, Ullah F, Alouffi A, Almutairi MM, Khan Z, Tanaka T, Labruna MB, Tsai KH, Ali A. Association of SFG Rickettsia massiliae and Candidatus Rickettsia shennongii with Different Hard Ticks Infesting Livestock Hosts. Pathogens 2023; 12:1080. [PMID: 37764888 PMCID: PMC10536372 DOI: 10.3390/pathogens12091080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Ixodid ticks are responsible for the transmission of various intracellular bacteria, such as the Rickettsia species. Little Information is available about the genetic characterization and epidemiology of Rickettsia spp. The current study was designed to assess the tick species infesting various livestock hosts and the associated Rickettsia spp. in Pakistan. Ticks were collected from different livestock hosts (equids, cattle, buffaloes, sheep, goats, and camels); morphologically identified; and screened for the genetic characterization of Rickettsia spp. by the amplification of partial fragments of the gltA, ompA and ompB genes. Altogether, 707 ticks were collected from 373 infested hosts out of 575 observed hosts. The infested hosts comprised 105 cattle, 71 buffaloes, 70 sheep, 60 goats, 34 camels, and 33 equids. The overall occurrence of Rickettsia spp. was 7.6% (25/330) in the tested ticks. Rickettsia DNA was detected in Rhipicephalus haemaphysaloides (9/50, 18.0%), followed by Rhipicephalus turanicus (13/99, 13.1%), Haemaphysalis cornupunctata (1/18, 5.5%), and Rhipicephalus microplus (2/49, 4.1%); however, no rickettsial DNA was detected in Hyalomma anatolicum (71), Hyalomma dromedarii (35), and Haemaphysalis sulcata (8). Two Rickettsia agents were identified based on partial gltA, ompA, and ompB DNA sequences. The Rickettsia species detected in Rh. haemaphysaloides, Rh. turanicus, and Rh. microplus showed 99-100% identity with Rickettsia sp. and Candidatus Rickettsia shennongii, and in the phylogenetic trees clustered with the corresponding Rickettsia spp. The Rickettsia species detected in Rh. haemaphysaloides, Rh. turanicus, Rh. microplus, and Ha. cornupunctata showed 100% identity with R. massiliae, and in the phylogenetic trees it was clustered with the same species. Candidatus R. shennongii was characterized for the first time in Rh. haemaphysaloides, Rh. turanicus, and Rh. microplus. The presence of SFG Rickettsia spp., including the human pathogen R. massiliae, indicates a zoonotic risk in the study region, thus stressing the need for regular surveillance.
Collapse
Affiliation(s)
- Shehla Shehla
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (S.S.); (Z.K.)
| | - Farman Ullah
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (S.S.); (Z.K.)
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zaibullah Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (S.S.); (Z.K.)
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Marcelo B. Labruna
- Department of Preventive Veterinary Medicine and Animal Health, Faculty of Veterinary Medicine, University of São Paulo, São Paulo 05508-060, Brazil;
| | - Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, Department of Public Health, College of Public Health, National Taiwan University, Taipei 100025, Taiwan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (S.S.); (Z.K.)
| |
Collapse
|
12
|
Mofokeng LS, Smit NJ, Cook CA. Molecular Detection of Tick-Borne Bacteria from Amblyomma (Acari: Ixodidae) Ticks Collected from Reptiles in South Africa. Microorganisms 2022; 10:microorganisms10101923. [PMID: 36296199 PMCID: PMC9607068 DOI: 10.3390/microorganisms10101923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Reptiles are hosts for various tick species and tick-associated organisms, many of which are zoonotic. However, little is known about the presence and diversity of tick-borne bacteria infecting reptiles and their ticks in South Africa. Amblyomma ticks (n = 253) collected from reptiles were screened for the presence of Coxiella, Anaplasma, Rickettsia, and Borrelia species by amplification, sequencing and phylogenetic analysis of the 16S rRNA, 23S rRNA, gltA, OmpA, and Flagellin genes, respectively. This study recorded the presence of reptile associated Borrelia species and Coxiella-like endosymbiont in South Africa for the first time. Furthermore, a spotted fever group Rickettsia species was observed in 7 Amblyomma marmoreum and 14 Amblyomma sylvaticum from tortoises of genera Kinixys and Chersina. Francisella-like endosymbiont was observed from 2 Amblyomma latum collected from the Mozambique spitting cobra, Naja mossambica. Coxiella burnetii and Anaplasma spp., were not detected from the current samples. Although the direct evidence that reptiles can act as reservoir hosts remains to be determined, observations from this study provide indications that reptilian ticks may play a role in the transmission of pathogenic bacteria to homothermic animals. Furthermore, the absence of Anaplasma spp., and C. burnetii does not mean that these pathogens should be completely neglected.
Collapse
|
13
|
Nogueira BCF, Campos AK, Muñoz-Leal S, Pinter A, Martins TF. Soft and hard ticks (Parasitiformes: Ixodida) on humans: A review of Brazilian biomes and the impact of environmental change. Acta Trop 2022; 234:106598. [PMID: 35841953 DOI: 10.1016/j.actatropica.2022.106598] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022]
Abstract
Records of accidental parasitism by ticks in humans from Brazil are scarce, with most being reported by researchers who are parasitized during their research and by professionals who work with animals. In order to compile these records, an extensive literature review was carried out. Our revision includes studies published between 1909 and 2022, including nine species of the Argasidae family and 32 species of the Ixodidae family that were reported biting humans in the six biomes of the Brazilian territory. The species with the highest number of records of human parasitism was Amblyomma sculptum, followed by Amblyomma coelebs, Amblyomma cajennense sensu stricto, and Amblyomma brasiliense. The Atlantic Forest was the most frequent biome where human parasitism occurred, probably due to the greater number of inhabitants, universities, and researchers in the region; however, this does not mean that this biome is more conducive to the development of ticks and their parasitism in humans. In addition to Amblyomma ovale, a vector of Rickettsia parkeri in the country, two of the main species that act as vectors of Rickettsia rickettsii, A. sculptum, and Amblyomma aureolatum, have been reported, which is quite worrying considering that the wide distribution of the species and life stages most frequently mentioned in parasitism (i.e., nymphs and adults) are the ones that favour pathogen transmission. This research provides a significant contribution to the knowledge of tick species associated with human parasitism in Brazil; however, due to environmental change potentiated by deforestation and fires, it is expected that there will be a geographic expansion of some tick species and the pathogens that use them as a vector and an increase in human parasitism.
Collapse
Affiliation(s)
| | - Artur Kanadani Campos
- Departamento de Medicina Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - Sebastián Muñoz-Leal
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Adriano Pinter
- Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, Secretaria de Estado da Saúde de São Paulo, São Paulo, São Paulo, Brasil
| | - Thiago Fernandes Martins
- Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, Secretaria de Estado da Saúde de São Paulo, São Paulo, São Paulo, Brasil; Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brasil.
| |
Collapse
|
14
|
Molecular Detection of Zoonotic and Non-Zoonotic Pathogens from Wild Boars and Their Ticks in the Corsican Wetlands. Pathogens 2021; 10:pathogens10121643. [PMID: 34959598 PMCID: PMC8707423 DOI: 10.3390/pathogens10121643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Corsica is the main French island in the Mediterranean Sea and has high levels of human and animal population movement. Among the local animal species, the wild boar is highly prevalent in the Corsican landscape and in the island’s traditions. Wild boars are the most commonly hunted animals on this island, and can be responsible for the transmission and circulation of pathogens and their vectors. In this study, wild boar samples and ticks were collected in 17 municipalities near wetlands on the Corsican coast. A total of 158 hunted wild boars were sampled (523 samples). Of these samples, 113 were ticks: 96.4% were Dermacentor marginatus, and the remainder were Hyalomma marginatum, Hyalomma scupense and Rhipicephalus sanguineus s.l. Of the wild boar samples, only three blood samples were found to be positive for Babesia spp. Of the tick samples, 90 were found to be positive for tick-borne pathogens (rickettsial species). These results confirm the importance of the wild boar as a host for ticks carrying diseases such as rickettsiosis near wetlands and recreational sites. Our findings also show that the wild boar is a potential carrier of babesiosis in Corsica, a pathogen detected for the first time in wild boars on the island.
Collapse
|
15
|
Ticks infesting humans and associated pathogens: a cross-sectional study in a 3-year period (2017-2019) in northwest Italy. Parasit Vectors 2021; 14:136. [PMID: 33673864 PMCID: PMC7934501 DOI: 10.1186/s13071-021-04603-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tick-borne diseases are common throughout Europe. Ticks transmit pathogens to the host while feeding and together with mosquitoes, they are major vectors of infectious agents worldwide. In recent years, there has been a marked increase in the incidence of tick-bite events and tick-borne disease in northwest Italy, but information on the prevalence of tick-borne pathogens in ticks removed from humans remains scarce. To fill this gap, we report here the prevalence of tick bites and tick-borne pathogens documented for humans in Piedmont, northwest Italy, in the 3-year period 2017-2019. METHODS Ticks attached to humans during 2017-2019 were collected from residents of urban and rural area by physicians and veterinarians working with local veterinary agencies. All ticks (n = 1290) were morphologically identified to the species level. A subset of ticks removed from children (age 0-18 years) and the elderly (> 70 years), both age groups considered to be at-risk populations, was screened by biomolecular analysis to detect pathogens (e.g. Rickettsia spp., Borrelia spp., Anaplasma spp.). Pathogen identity was confirmed by Sanger sequencing. RESULTS Ticks were taxonomically assigned to ten species of six genera (Amblyomma, Dermacentor, Haemaphysalis, Hyalomma, Ixodes and Rhipicephalus). Most belonged to the genus Ixodes: 1009 ticks (78.22%) were classified as Ixodes ricinus. A subset of 500 ticks collected from the two at-risk populations were subjected to PCR assay to determine the presence of Rickettsia spp., Borrelia spp., and Anaplasma spp. The overall prevalence of infection was 22.8% (n = 114; 95% confidence interval [CI]: 19.19-26.73%), meaning that at least one pathogen was detected: Rickettsia spp. (prevalence 15%, n = 76; 95% CI 12.17-18.65%); Borrelia spp. (prevalence 6.4%, n = 32; 95% CI 4.42-8.92%); and Anaplasma spp. (prevalence 1.2%, n = 6; 95% CI 0.44-2.6%). CONCLUSIONS Our data underline the importance of surveillance in the epidemiology of tick-borne diseases and the implementation of strategies to control tick infestation and associated pathogens.
Collapse
|
16
|
Abstract
There is no updated information on the spread of Rickettsiales in Italy. The purpose of our study is to take stock of the situation on Rickettsiales in Italy by focusing attention on the species identified by molecular methods in humans, in bloodsucking arthropods that could potentially attack humans, and in animals, possible hosts of these Rickettsiales. A computerized search without language restriction was conducted using PubMed updated as of December 31, 2020. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology was followed. Overall, 36 species of microorganisms belonging to Rickettsiales were found. The only species identified in human tissues were Anaplasma phagocytophilum,Rickettsia conorii, R. conorii subsp. israelensis, R. monacensis, R. massiliae, and R. slovaca. Microorganisms transmissible by bloodsucking arthropods could cause humans pathologies not yet well characterized. It should become routine to study the pathogens present in ticks that have bitten a man and at the same time that molecular studies for the search for Rickettsiales can be performed routinely in people who have suffered bites from bloodsucking arthropods.
Collapse
|
17
|
Buczek A, Buczek W. Importation of Ticks on Companion Animals and the Risk of Spread of Tick-Borne Diseases to Non-Endemic Regions in Europe. Animals (Basel) 2020; 11:ani11010006. [PMID: 33375145 PMCID: PMC7822119 DOI: 10.3390/ani11010006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Increased human mobility elevates the risk of exposure of companion animals travelling with their owners or imported from other regions to tick attacks. In this study, we highlight the potential role of dogs and cats taken for tourist trips or imported animals in the spread of ticks and tick-borne pathogens. The Rhipicephalus sanguineus tick, which is a vector of numerous pathogens causing diseases in animals and humans, is imported most frequently from endemic areas to many European countries. Additionally, alien tick species with high epizootic and epidemiological importance can be imported on dogs from other continents. Companion animals play an even greater role in the spread of autochthonous tick species and transmission of tick pathogens to other animals and humans. Although the veterinary and medical effects of the parasitism of ticks carried by companion animals travelling with owners or imported animals are poorly assessed, these animals seem to play a role in the rapid spread of tick-borne diseases. Development of strategies for protection of the health of companion animals in different geographic regions should take into account the potential emergence of unknown animal tick-borne diseases that can be transmitted by imported ticks.
Collapse
|
18
|
Piotrowski M, Rymaszewska A. Expansion of Tick-Borne Rickettsioses in the World. Microorganisms 2020; 8:E1906. [PMID: 33266186 PMCID: PMC7760173 DOI: 10.3390/microorganisms8121906] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/30/2020] [Accepted: 11/25/2020] [Indexed: 12/28/2022] Open
Abstract
Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group of the genus Rickettsia. These infections are among the oldest known diseases transmitted by vectors. In the last three decades there has been a rapid increase in the recognition of this disease complex. This unusual expansion of information was mainly caused by the development of molecular diagnostic techniques that have facilitated the identification of new and previously recognized rickettsiae. A lot of currently known bacteria of the genus Rickettsia have been considered nonpathogenic for years, and moreover, many new species have been identified with unknown pathogenicity. The genus Rickettsia is distributed all over the world. Many Rickettsia species are present on several continents. The geographical distribution of rickettsiae is related to their vectors. New cases of rickettsioses and new locations, where the presence of these bacteria is recognized, are still being identified. The variety and rapid evolution of the distribution and density of ticks and diseases which they transmit shows us the scale of the problem. This review article presents a comparison of the current understanding of the geographic distribution of pathogenic Rickettsia species to that of the beginning of the century.
Collapse
|
19
|
Barradas PF, Mesquita JR, Ferreira P, Amorim I, Gärtner F. Detection of tick-borne pathogens in Rhipicephalus sanguineus sensu lato and dogs from different districts of Portugal. Ticks Tick Borne Dis 2020; 11:101536. [PMID: 32993945 DOI: 10.1016/j.ttbdis.2020.101536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Dogs are highly exposed to pathogens transmitted by ectoparasites. The Mediterranean climate of Southern Europe, together with the presence of stray and/or neglected pets in close proximity with humans, contribute for tick expansion and stand for increased risk to infections in humans due to the zoonotic potential of many of these agents. The aim of this study was to perform a molecular survey in dogs (suspected of tick-borne disease and/or infested with ticks), as well as in ticks collected from those animals, from 12 districts of Portugal to investigate the occurrence of Rickettsia spp. and other tick-borne pathogens (Babesia, Ehrlichia, Anaplasma and Hepatozoon). Additionally, a serological survey of spotted fever group Rickettsia in Portuguese dogs was performed using an in-house immunofluorescence assay (IFA). A total of 200 whole-blood samples and 221 Rhipicephalus sanguineus s. l. ticks were collected from dogs. A total of 14 (7 %) blood samples and 10 (4.5 %) ticks yielded presumptively positive 420-bp amplicons using the Rickettsia spp. partial ompB nested PCR. Screening of the ompB-positive samples using the gltA gene showed 8 positive ticks. All Rickettsia ompB and gltA sequences had the highest identity with R. massiliae. The Rickettsia-positive dogs were further tested for other tick-borne pathogens and were found to be infected with Babesia spp. (n = 5), but not with Ehrlichia, Anaplasma or Hepatozoon. Of the 149 dog serum specimens tested in the serological assay, 103 (69 %) were positive for IgG antibodies against spotted fever group Rickettsia. Antibodies were found in dogs from all the studied districts, in 55 (53 %) of the stray and in 48 (47 %) of the owned dogs. Our study detected and characterized for the first time R. massiliae in dogs from Portugal, broadening the geographical range of this canine pathogen and adding knowledge to the impact of this disease in dogs.
Collapse
Affiliation(s)
- Patrícia F Barradas
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João R Mesquita
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Paula Ferreira
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Fátima Gärtner
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.
| |
Collapse
|
20
|
Blanda V, D’Agostino R, Giudice E, Randazzo K, La Russa F, Villari S, Vullo S, Torina A. New Real-Time PCRs to Differentiate Rickettsia spp. and Rickettsia conorii. Molecules 2020; 25:molecules25194431. [PMID: 32992475 PMCID: PMC7582818 DOI: 10.3390/molecules25194431] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
Rickettsia species are an important cause of emerging infectious diseases in people and animals, and rickettsiosis is one of the oldest known vector-borne diseases. Laboratory diagnosis of Rickettsia is complex and time-consuming. This study was aimed at developing two quantitative real-time PCRs targeting ompB and ompA genes for the detection, respectively, of Rickettsia spp. and R. conorii DNA. Primers were designed following an analysis of Rickettsia gene sequences. The assays were optimized using SYBR Green and TaqMan methods and tested for sensitivity and specificity. This study allowed the development of powerful diagnostic methods, able to detect and quantify Rickettsia spp. DNA and differentiate R. conorii species.
Collapse
Affiliation(s)
- Valeria Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (V.B.); (R.D.); (K.R.); (S.V.); (S.V.); (A.T.)
| | - Rosalia D’Agostino
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (V.B.); (R.D.); (K.R.); (S.V.); (S.V.); (A.T.)
| | - Elisabetta Giudice
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, Università degli Studi di Messina, 98122 Messina, Italy;
| | - Kety Randazzo
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (V.B.); (R.D.); (K.R.); (S.V.); (S.V.); (A.T.)
| | - Francesco La Russa
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (V.B.); (R.D.); (K.R.); (S.V.); (S.V.); (A.T.)
- Correspondence:
| | - Sara Villari
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (V.B.); (R.D.); (K.R.); (S.V.); (S.V.); (A.T.)
| | - Stefano Vullo
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (V.B.); (R.D.); (K.R.); (S.V.); (S.V.); (A.T.)
| | - Alessandra Torina
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (V.B.); (R.D.); (K.R.); (S.V.); (S.V.); (A.T.)
| |
Collapse
|
21
|
First Report of the Ticks Haemaphysalis punctata Canestrini et Fanzago, 1878, Haemaphysalis parva (Neumann, 1897) and Dermacentor marginatus (Sulzer, 1776) (Acari, Amblyommidae) from Humans in Lebanon. Acta Parasitol 2020; 65:541-545. [PMID: 31960216 PMCID: PMC7272484 DOI: 10.2478/s11686-019-00160-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/14/2019] [Indexed: 12/04/2022]
Abstract
Purpose Knowledge on ticks infesting humans is scarce for the middle East. In this work, tick specimens (Acari: Amblyommidae) infesting humans in Lebanon were identified. Methods Ticks that were found on humans were received in the Lebanese University, Faculty of Sciences. The specimens were preserved in alcohol for their further morphological identification. Results Three tick species were identified: a red sheep tick Haemaphysalis punctata Canestrini et Fanzago, 1878, a Mediterranean ear tick H. parva (Neumann, 1897), and an ornate sheep tick Dermacentor marginatus (Sulzer, 1776); all isolated from human hosts. Conclusion This is the first report of Haemaphysalis punctata, H. parva and Dermacentor marginatus infesting humans from Central and North Lebanon.
Collapse
|
22
|
Demir S, Erkunt Alak S, Köseoğlu AE, Ün C, Nalçacı M, Can H. Molecular investigation of Rickettsia spp. and Francisella tularensis in ticks from three provinces of Turkey. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 81:239-253. [PMID: 32394036 DOI: 10.1007/s10493-020-00498-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Ticks are obligate hematophagous ectoparasites as well as mechanical and biological vectors of a wide variety of microbial pathogens. To date, 19 tick-borne diseases have been reported from Turkey. In this study, ticks collected from Aydın, İzmir and Şanlıurfa provinces of Turkey were identified using morphological and molecular methods. After the presence of bacterial DNA was checked, Rickettsia spp. and Francisella tularensis were investigated in bacterial DNA-positive tick specimens by PCR. Furthermore, amplicons belonging to tick specimens and positive bacterial samples were sequenced and processed for BLAST, alignment and phylogenetic analysis. As a result, seven tick species were identified: Rhipicephalus sanguineus, Rh. bursa, Rh. turanicus, Hyalomma marginatum, Hy. aegyptium, Hy. anatolicum and Haemaphysalis erinacei. Fifty-five tick specimens tested positive for bacterial DNA and among them, rickettsial DNA was found in five ticks (infection rate = 9.1%) belonging to Hy. marginatum, Hy. aegyptium, Rh. bursa and Rh. turanicus. Of the five Rickettsia-positive ticks, three contained Rickettsia aeschlimannii, one Ri. massiliae and one an unidentified Rickettsia sp. No Francisella tularensis DNA was detected. Sequence analysis of the ompB gene indicated two novel single nucleotide polymorphisms (SNP) in two different Ri. aeschlimannii strains and two novel SNPs as well as a novel insertion (GACGGT) were found in Rickettsia sp. This study indicated the presence of polymorphic Rickettsia species in ticks from Turkey.
Collapse
Affiliation(s)
- Samiye Demir
- Zoology Section, Department of Biology, Faculty of Science, Ege University, Bornova, İzmir, Turkey
| | - Sedef Erkunt Alak
- Molecular Biology Section, Department of Biology, Faculty of Science, Ege University, Bornova, İzmir, Turkey
| | - Ahmet Efe Köseoğlu
- Molecular Biology Section, Department of Biology, Faculty of Science, Ege University, Bornova, İzmir, Turkey
| | - Cemal Ün
- Molecular Biology Section, Department of Biology, Faculty of Science, Ege University, Bornova, İzmir, Turkey
| | - Muhammed Nalçacı
- Zoology Section, Department of Biology, Faculty of Science, Ege University, Bornova, İzmir, Turkey
| | - Hüseyin Can
- Molecular Biology Section, Department of Biology, Faculty of Science, Ege University, Bornova, İzmir, Turkey.
| |
Collapse
|
23
|
New Spotted Fever Group Rickettsia Isolate, Identified by Sequence Analysis of Conserved Genomic Regions. Pathogens 2019; 9:pathogens9010011. [PMID: 31861899 PMCID: PMC7168670 DOI: 10.3390/pathogens9010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
The clinical features of spotted fever group (SFG) Rickettsia induced disease range from a mild to severe illness. The clinical complexity is even greater due to the fact that the disease can be caused by different species with varying degrees of virulence. Current knowledge asserts that the Israeli SFG (ISF) strain Rickettsia conorii israelensis is the only human pathogenic SFG member in Israel. Current diagnostic procedures distinguish between SFG and the typhus group rickettsiosis, assuming all SFG-positive clinical samples positive for ISF. Molecular studies on questing ticks over the past decade have uncovered the existence of other SFG strains besides ISF in Israel and the region. This study describes the first documented analysis of SFG-positive samples from Israeli patients with the goal of distinguishing between ISF and non-ISF SFG strains. We managed to identify a new Rickettsia isolate from three independent clinical samples in Israel which was shown to be an as-yet unknown SFG member, showing no absolute identity with any known Rickettsia species present in the NCBI database.
Collapse
|
24
|
Broecker F, Moelling K. What viruses tell us about evolution and immunity: beyond Darwin? Ann N Y Acad Sci 2019; 1447:53-68. [PMID: 31032941 PMCID: PMC6850104 DOI: 10.1111/nyas.14097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/09/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022]
Abstract
We describe mechanisms of genetic innovation mediated by viruses and related elements that, during evolution, caused major genetic changes beyond what was anticipated by Charles Darwin. Viruses and related elements introduced genetic information and have shaped the genomes and immune systems of all cellular life forms. None of these mechanisms contradict Darwin's theory of evolution but extend it by means of sequence information that has recently become available. Not only do small increments of genetic information contribute to evolution, but also do major events such as infection by viruses or bacteria, which can supply new genetic information to a host by horizontal gene transfer. Thereby, viruses and virus-like elements act as major drivers of evolution.
Collapse
Affiliation(s)
- Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Karin Moelling
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
25
|
Rickettsia massiliae infection after a tick bite on the eyelid. Travel Med Infect Dis 2018; 26:66-68. [DOI: 10.1016/j.tmaid.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 11/23/2022]
|
26
|
Gomez-Barroso D, Vescio MF, Bella A, Ciervo A, Busani L, Rizzo C, Rezza G, Pezzotti P. Mediterranean spotted fever rickettsiosis in Italy, 2001-2015: Spatio-temporal distribution based on hospitalization records. Ticks Tick Borne Dis 2018; 10:43-50. [PMID: 30197269 DOI: 10.1016/j.ttbdis.2018.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 11/16/2022]
Abstract
The Mediterranean spotted fever (MSF) rickettsiosis is the predominant rickettsial disease among the spotted fever group (SFG) rickettsiae in the Mediterranean countries and North Africa. Its causative agent is Rickettsia conorii, although, SFG rickettsiosis - cases due to Rickettsia monacensis, Rickettsia massiliae and Rickettsia aeschlimannii were also described. A retrospective study based on hospital discharge records with a diagnosis of SFG rickettsiosis was carried out to describe the spatial pattern, the trend of the disease, and the epidemiological characteristics of persons hospitalized in the period 2001-2015. Standardized hospitalization ratios were calculated at municipal level using the European population. Smoothed maps were produced using a localised smoothing Poisson model. The mean annual standardized hospitalization rate was 1.36/100,000 person years (95%CI: 1.34; 1.39). Rates showed strong summer seasonality and tended to decrease over time. During the study period, 28.89% of municipalities had smoothed standardized hospitalization ratios greater than 1 and 14.01% above 20. Higher standardized hospitalization ratios were found in areas along the Tyrrhenian coast, especially in the south of Calabria and in the islands of Sardinia and Sicily, where the disease is of public health relevance.
Collapse
Affiliation(s)
- Diana Gomez-Barroso
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.
| | | | - Antonino Bella
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Ciervo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Luca Busani
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Caterina Rizzo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Rezza
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Patrizio Pezzotti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
27
|
First molecular detection of the human pathogen Rickettsia raoultii and other spotted fever group rickettsiae in Ixodid ticks from wild and domestic mammals. Parasitol Res 2018; 117:3421-3429. [PMID: 30078071 DOI: 10.1007/s00436-018-6036-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
Tick-borne rickettsioses are recognized as emerging vector-borne infections capable of infecting both human and animal hosts worldwide. This study focuses on the detection and molecular identification of species belonging to the genus Rickettsia in ticks sampled from human, vegetation, and domestic and wild vertebrates in Sardinia. Ticks were tested by PCR targeting gltA, ompA, and ompB genes, followed by sequencing analysis. The results provide evidences of a great variety of Rickettsia species of the Spotted fever group in Ixodid ticks and allow establishing for the first time the presence of R. raoultii in Rhipicephalus sanguineus s.l. and Dermacentor marginatus ticks in Sardinia island. Rickettsia massiliae was detected on R. sanguineus s.l. and R. aeschlimannii in Hyalomma marginatum and Hy. lusitanicum ticks. In addition, eight D. marginatus ticks were positive for R. slovaca. This study provides further evidence that different Rickettsia species are widespread in Sardinian ticks and that detailed investigations are required to understand the role these tick species play on spotted fever group rickettsiae circulation. More studies will provide new background on molecular epidemiology of zoonotic rickettsiae, the geographical distribution of tick-transmitted rickettsial pathogens, and the involvement of vertebrate hosts in propagation and maintenance of these bacteria in nature.
Collapse
|
28
|
Torina A, Blanda V, Blanda M, Auteri M, La Russa F, Scimeca S, D'Agostino R, Disclafani R, Villari S, Currò V, Caracappa S. A Geographical Information System Based Approach for Integrated Strategies of Tick Surveillance and Control in the Peri-Urban Natural Reserve of Monte Pellegrino (Palermo, Southern Italy). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15030404. [PMID: 29495440 PMCID: PMC5876949 DOI: 10.3390/ijerph15030404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/17/2023]
Abstract
Ticks (Acari: Ixodidae) are bloodsucking arthropods involved in pathogen transmission in animals and humans. Tick activity depends on various ecological factors such as vegetation, hosts, and temperature. The aim of this study was to analyse the spatial/temporal distribution of ticks in six sites within a peri-urban area of Palermo (Natural Reserve of Monte Pellegrino) and correlate it with field data using Geographical Information System (GIS) data. A total of 3092 ticks were gathered via dragging method from June 2012 to May 2014. The species collected were: Ixodes ventalloi (46.09%), Hyalomma lusitanicum (19.99%), Rhipicephalus sanguineus (17.34%), Rhipicephalus pusillus (16.11%), Haemaphisalis sulcata (0.36%), Dermacentor marginatus (0.10%), and Rhipicephalus turanicus (0.03%). GIS analysis revealed environmental characteristics of each site, and abundance of each tick species was analysed in relation to time (monthly trend) and space (site-specific abundance). A relevant presence of I. ventalloi in site 2 and H. lusitanicum in site 5 was observed, suggesting the possible exposure of animals and humans to tick-borne pathogens. Our study shows the importance of surveillance of ticks in peri-urban areas and the useful implementation of GIS analysis in vector ecology; studies on temporal and spatial distribution of ticks correlated to GIS-based ecological analysis represent an integrated strategy for decision support in public health.
Collapse
Affiliation(s)
- Alessandra Torina
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| | - Valeria Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| | - Marcellocalogero Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| | - Michelangelo Auteri
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| | - Francesco La Russa
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| | - Salvatore Scimeca
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| | - Rosalia D'Agostino
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| | - Rosaria Disclafani
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| | - Sara Villari
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| | - Vittoria Currò
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| | - Santo Caracappa
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| |
Collapse
|
29
|
Detection of Rickettsia massiliae/Bar29 and Rickettsia conorii in red foxes (Vulpes vulpes) and their Rhipicephalus sanguineus complex ticks. Ticks Tick Borne Dis 2018; 9:629-631. [PMID: 29433817 DOI: 10.1016/j.ttbdis.2018.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 11/21/2022]
Abstract
To determine the prevalence of exposure to Rickettsia massiliae/Bar29 and Rickettsia conorii in wild red foxes, we collected blood samples and ticks from 135 foxes shot in different game reserve areas in Catalonia. To detect SFG rickettsia in Rhipicephalus sanguineus complex ticks collected from the foxes, we used real-time polymerase chain reaction (PCR) to screen for ompA gene and a tick-borne bacteria flow chip technique based on multiplex PCR. Serum samples were positive for antibodies against spotted fever group (SFG) rickettsiae in 68 (50.3%). Molecular techniques identified R. massiliae in 107 ticks, R. aeschlimannii in 3 ticks, and R. slovaca in one tick; no R. conorii was identified in any of the ticks analyzed. We conclude that red foxes can carry ticks with SFG rickettsia.
Collapse
|