1
|
Kulisz J, Zając Z, Foucault-Simonin A, Woźniak A, Filipiuk M, Kloskowski J, Rudolf R, Corduneanu A, Bartosik K, Moutailler S, Cabezas-Cruz A. Wide spectrum of tick-borne pathogens in juvenile Ixodes ricinus collected from autumn-migrating birds in the Vistula River Valley, Poland. BMC Vet Res 2024; 20:556. [PMID: 39643916 PMCID: PMC11622654 DOI: 10.1186/s12917-024-04415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Migratory birds serve as potential hosts for ticks and can be reservoirs of tick-borne pathogens (TBPs). The aim of our study was to investigate the prevalence of TBPs in juvenile Ixodes ricinus collected from Erithacus rubecula, Turdus merula, and Turdus philomelos passing through the Vistula River Valley, Poland - one of the most important European north-south routes for migratory birds. METHODS To detect TBPs in collected ticks we used a high-throughput microfluidic real-time PCR method. In addition, we performed a phylogenetic analysis of Borreliella garinii flaB and Rickettsia helvetica ompB sequences, considering haplotype diversity through a Median Joining Network. RESULTS Our results showed a high prevalence and wide spectrum of TBPs in both larvae and nymphs of I. ricinus. Overall, including co-infections, 47.41% of the tested tick specimens were infected with at least one TBP. Borreliaceae spirochetes were detected in ticks collected from all examined bird species. Ticks (larvae and nymphs) collected from T. merula showed the highest prevalence of Bo. garinii (33.33%), Bo. burgdorferi s.s. (7.69%) and Borrelia miyamotoi (2.56%), while the highest number of ticks infected with Bo. valaisiana were collected from T. philomelos (8.11%). In turn, the highest prevalence of R. helvetica (20.00%) was observed in ticks collected from E. rubecula. Additionally, infections with A. phagocytophilum (5.00%), Ehrlichia spp. (2.50%), Ba. divergens (2.50%) and Ba. venatorum (2.50%) were only confirmed in ticks collected from this bird species. The phylogenetic analysis of Bo. garinii revealed that the detected haplotype circulates widely across various hosts and is geographically widespread, while the haplotype of R. helvetica is mainly detected in ticks in Central Europe. CONCLUSIONS Ticks carried by T. merula, T. philomelos, and E. rubecula migrating along the Vistula River Valley, Poland are characterized by a high prevalence and a wide spectrum of detected TBPs. Tested ticks carry widespread strains of Bo. garinii, in contrast to R. helvetica, which is mainly found in Central Europe. Therefore, further research on the possible role of birds as reservoirs of TBPs is needed.
Collapse
Affiliation(s)
- Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, Lublin, 20-080, Poland.
| | - Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, Lublin, 20-080, Poland
| | - Angelique Foucault-Simonin
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, 94700, France
| | - Aneta Woźniak
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, Lublin, 20-080, Poland
| | - Maciej Filipiuk
- Department of Zoology and Nature Protection, Institute of Biological Sciences, Maria Curie- Skłodowska University, Akademicka 19, Lublin, 20-033, Poland
| | - Janusz Kloskowski
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, Poznań, 60-625, Poland
| | - Robert Rudolf
- Kaliszany Ornithological Station, Stare Kaliszany, 24-340, Poland
| | - Alexandra Corduneanu
- Department of Animal Breeding and Animal Production, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Katarzyna Bartosik
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, Lublin, 20-080, Poland
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, 94700, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, 94700, France.
| |
Collapse
|
2
|
Rataud A, Drouin A, Bournez L, Pisanu B, Moutailler S, Henry PY, Marsot M. Contributions of birds to the feeding of ticks at host community level: Effects of tick burden, host density and yearly fluctuations. Ticks Tick Borne Dis 2024; 15:102390. [PMID: 39241452 DOI: 10.1016/j.ttbdis.2024.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024]
Abstract
The eco-epidemiology of tick-borne diseases hinges on the abundance and distribution of hosts that sustain tick populations and the pathogens they carry. Research into the role of bird species in the feeding of Ixodes ricinus ticks, the primary tick species of veterinary and public health importance in Europe, remains scarce. This study endeavors to bridge these knowledge gaps by (i) assessing the density of feeding ticks (DFT) within a bird community to pinpoint species making substantial contributions, and (ii) exploring interannual variations in DFT over an extended timeline. Furthermore, we investigate whether variations in individual tick burden (TB) were more closely associated with the characteristics of bird species or interannual variations affecting the density of questing tick, using interannual TB variation as a surrogate. To fulfill these aims, we conducted a 13-year longitudinal study monitoring I. ricinus ticks feeding on a bird community in a periurban forest in France, covering breeding periods from 2007 to 2019. Within this community, we identified seven principal bird species significantly contributing to I. ricinus tick feeding: the Common Blackbird (Turdus merula), the Song Thrush (Turdus philomelos), the European Robin (Erithacus rubecula), the Dunnock (Prunella modularis), the Eurasian Blackcap (Sylvia atricapilla), the Great Tit (Parus major), and the Common Nightingale (Luscinia megarhynchos). Our results show that the bird community's contribution to tick feeding remained relatively consistent from year-to-year, though certain years displayed higher or lower DFT values related to the average over the study period. Moreover, five out the seven major species accounted for 80 % to 95 % of DFT annually. Consequently, we emphasized the need to broaden the scope of future research on bird contributions to tick population dynamics beyond merely thrushes (Turdidae species), to encompass a more diverse range of species, particularly those common birds that engage in ground foraging activities. Furthermore, variations in individual tick burden were predominantly influenced by the characteristics of bird species rather than by interannual variability in infestation rates. This finding suggests a significant role for species-specific traits in determining tick exposure and susceptibility. In conclusion, our study offers new insights into the medium-term dynamics of tick-bird ecological systems, underscoring the need for future study of tick populations and their interactions with vertebrate hosts to improve our understanding of tick-borne disease circulation.
Collapse
Affiliation(s)
- Amalia Rataud
- Université Paris Est, ANSES, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France
| | - Alex Drouin
- Université Paris Est, ANSES, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France; CIRAD, UMR ASTRE, Montpellier F-34398, France; ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Laure Bournez
- Nancy Laboratory for Rabies and Wildlife, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Malzéville, France
| | - Benoit Pisanu
- Office Français de la Biodiversité, UMS Patrimoine Naturel OFB/MNHN/CNRS, 36 rue Geoffroy Saint-Hilaire, CP41, 75005, Paris, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Pierre-Yves Henry
- Mécanismes adaptatifs et Evolution (MECADEV UMR 7179), Muséum National d'Histoire Naturelle, CNRS, Brunoy, France; Centre de Recherches sur la Biologie des Populations d'Oiseaux (CRBPO), Centre d'Ecologie et des Sciences de la Conservation (CESCO UMR 7204), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités, Paris, France
| | - Maud Marsot
- Université Paris Est, ANSES, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France.
| |
Collapse
|
3
|
Pitó A, Fedorov D, Brlík V, Kontschán J, Keve G, Sándor AD, Takács N, Hornok S. East-to-west dispersal of bird-associated ixodid ticks in the northern Palaearctic: Review of already reported tick species according to longitudinal migratory avian hosts and first evidence on the genetic connectedness of Ixodes apronophorus between Siberia and Europe. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100201. [PMID: 39188549 PMCID: PMC11345942 DOI: 10.1016/j.crpvbd.2024.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 08/28/2024]
Abstract
Birds are long-known as important disseminators of ixodid ticks, in which context mostly their latitudinal, south-to-north migration is considered. However, several bird species that occur in the eastern part of the northern Palaearctic are known to migrate westward. In this study, a female tick collected from the sedge warbler, Acrocephalus schoenobaenus, in Lithuania was identified morphologically and analyzed with molecular-phylogenetic methods. In addition, literature data were reviewed on ixodid tick species known to be associated with birds that have recorded east-to-west migratory route in the Palaearctic. The tick collected from A. schoenobaenus was morphologically identified as Ixodes apronophorus. Two mitochondrial genetic markers for this specimen showed 100% identity with a conspecific tick reported previously in Western Siberia, Russia. Based on literature data, as many as 82 bird species from 11 orders were found to have records of ringing in the easternmost part of the northern Palaearctic and recaptures in Europe. Of these bird species, 31 ixodid tick species were reported in the Euro-Siberian region. Nearly all passeriform bird species with east-to-west migration were reported to carry ticks, whereas no reports of tick infestation were documented from the majority of wetland-associated bird species, mostly from the orders Anseriformes and Charadriiformes. The first European sequences of bona fide I. apronophorus revealed genetic connectedness with conspecific ticks reported from Siberia. Since the principal hosts of this tick species are rodents which do not migrate large distances, the most likely explanation for genetic similarity in this direction is dispersal of this tick species via migratory birds. Given the high number of tick species that are known to associate with bird species migrating in westward direction, this appears to be an important means of the gene flow between geographically distant tick populations in the northern Palaearctic.
Collapse
Affiliation(s)
- Andor Pitó
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- BirdLife, Budapest, Hungary
| | - Denis Fedorov
- HUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Hungary
| | - Vojtěch Brlík
- Department of Ecology, Charles University, Prague, Czechia
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czechia
| | - Jenő Kontschán
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
- Department of Plant Sciences, Albert Kázmér Faculty of Mosonmagyaróvár, Széchenyi István University, Mosonmagyaróvár, Hungary
| | - Gergő Keve
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- HUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Hungary
| | - Attila D. Sándor
- HUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Hungary
- STAR-UBB Institute, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Nóra Takács
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- HUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Hungary
| | - Sándor Hornok
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- HUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Hungary
| |
Collapse
|
4
|
Wilhelmsson P, Lager M, Jaenson TGT, Waldenström J, Olsen B, Lindgren PE. Anaplasma phagocytophilum in Ticks Blood-Feeding on Migratory Birds in Sweden. Microorganisms 2024; 12:735. [PMID: 38674679 PMCID: PMC11052380 DOI: 10.3390/microorganisms12040735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Migratory birds play a dual role as potential reservoirs of tick-borne pathogens, and potential dispersers of pathogen-containing ticks during their migratory journeys. Ixodes ricinus, a prevalent tick species in Northern and Western Europe, serves as a primary vector for Anaplasma phagocytophilum-a bacterium with implications for human and animal health. There is limited information available regarding A. phagocytophilum in birds. Our investigation focused on A. phagocytophilum prevalence in ticks collected from migratory birds in southeastern Sweden. The identification of ticks involved both molecular analyses for species determination and morphological classification to ascertain the developmental stage. The presence of A. phagocytophilum was determined using real-time PCR. Of the 1115 ticks analyzed from 4601 birds, 0.9% (n = 10), including I. ricinus and Ixodes frontalis, tested positive for A. phagocytophilum. Notably, common blackbirds (Turdus merula) yielded the highest number of A. phagocytophilum-infected ticks. The findings suggest that A. phagocytophilum is present in a small proportion of ticks infesting migratory birds in southeastern Sweden. Consequently, the role of birds as hosts for ticks infected with A. phagocytophilum appears to be low, suggesting that birds seem to play a minor indirect role in the geographic dispersal of A. phagocytophilum.
Collapse
Affiliation(s)
- Peter Wilhelmsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden;
- National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County, SE-551 85 Jönköping, Sweden;
| | - Malin Lager
- National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County, SE-551 85 Jönköping, Sweden;
| | - Thomas G. T. Jaenson
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden;
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-392 31 Kalmar, Sweden;
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, SE-751 23 Uppsala, Sweden;
| | - Per-Eric Lindgren
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden;
- National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County, SE-551 85 Jönköping, Sweden;
| |
Collapse
|
5
|
Bacak E, Ozsemir AC, Akyildiz G, Gungor U, Bente D, Keles AG, Beskardes V, Kar S. Bidirectional tick transport by migratory birds of the African-Western Palearctic flyway over Turkish Thrace: observation of the current situation and future projection. Parasitol Res 2023; 123:37. [PMID: 38087074 DOI: 10.1007/s00436-023-08069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/20/2023] [Indexed: 12/18/2023]
Abstract
This study was carried out at a vital stopover site of migrating birds in the Turkish Thrace, European part of Turkey, on the Mediterranean/Black Sea Flyway. Ticks were collected from the birds captured in the four migration periods, i.e., autumn 2020, spring 2021, autumn 2021, and spring 2022, and identified morphologically. Throughout the study, 10,651 birds from 77 species were examined, and 671 belonging to 34 species were found infested. The infestation prevalence in total birds and the mean number of ticks per infested bird were 6.3% and 3.8 (range: 1-142), respectively. A total of 2573 ticks were collected with the following species distribution and numbers: Ixodes spp. 70 larvae, I. frontalis 1829 larvae, 337 nymphs, and 30 adults, I. acuminatus 16 nymphs and 42 adults, I. ricinus 39 larvae, 141 nymphs, and one adult, Hyalomma spp. seven larvae and 60 nymphs, and Haemaphysalis sp. one larva. Prevalence, intensity, and species distribution of the ticks in birds varied depending on the month, season, year, and species-specific migration phenology of the birds. The results show that precise determination of the tick-borne risk associated with migratory birds for a particular region necessarily requires long-term and comprehensive studies and indicates that anthropogenic climate change and habitat degradation can significantly differentiate the risk by influencing the migration phenology in birds and by making new regions suitable for the establishment of different ticks.
Collapse
Affiliation(s)
- Ergun Bacak
- Vocational School of Forestry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | | | - Gurkan Akyildiz
- Department of Basic Health Sciences, Health Sciences Faculty, Marmara University, Istanbul, Turkey
| | - Umut Gungor
- Department of Forest Engineering, Institute of Graduate Studies, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Dennis Bente
- Department of Microbiology and Immunology, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Aysen Gargili Keles
- Department of Basic Health Sciences, Health Sciences Faculty, Marmara University, Istanbul, Turkey
| | - Vedat Beskardes
- Department of Forest Entomology and Protection, Faculty of Forestry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sirri Kar
- Department of Biology, Tekirdag Namik Kemal University, 59030 Suleymanpasa, Tekirdag, Turkey.
| |
Collapse
|
6
|
Grassi L, Franzo G, Grillo S, Mondin A, Drigo M, Barbarino F, Comuzzo C, Legnardi M, Bertola M, Montarsi F, Menandro ML. Survey of Tick-Borne Zoonotic Agents in Ixodes Ticks Carried by Wild Passerines during Postbreeding Migration through Italy. Transbound Emerg Dis 2023; 2023:1399089. [PMID: 40303814 PMCID: PMC12016753 DOI: 10.1155/2023/1399089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 05/02/2025]
Abstract
Recently, increasing attention has been posed on the role of migrating birds in the spread of ticks and indirectly of tick-borne pathogens (TBPs). Despite, Italy is considered a bridge between continental Europe and North Africa and a necessary path to connect Mediterranean countries, few studies have been conducted on ticks collected from birds migrating through this country and associated TBPs. The aims of this research were to estimate the infestation burden and identify tick species feeding on migratory birds, and perform a molecular screening for TBPs. During autumn migration (2019-2020), birds were inspected for ticks in a ringing station located in north-east Italy. Ticks were identified and screened for tick-borne encephalitis virus (TBEV), Borrelia burgdorferi sensu latu, Rickettsia spp., Ehrlichia spp., Neoehrlichia spp., Anaplasma phagocytophilum, and Bartonella spp. Ixodes ticks (n = 209) were feeding on 2.6% of passerines (88/3411). Most of these (208/209) were Ixodes ricinus, except one Ixodes frontalis. Eight bird species were infested: common blackbird, redwing, brambling, song thrush, common chaffinch, European robin, water pipit, and coal tit. Rickettsiales showed a low prevalence, from 1.4% of Ehrlichia spp., 4.3% of A. phagocytophilum, up to 7.2% of Rickettsia spp.. Borrelia burgdorferi s.l. had the highest prevalence, 54.6%, and several zoonotic genotypes were identified: B. garinii, B. valaisiana, B. afzeli, B. burgdorferi sensu stricto, and B. miyamotoi. All specimens were negative for TBEV and Bartonella spp.. Although the tick burden was generally low, most of the vectors (>60%) were positive for at least one pathogen, highlighting the relevance of a continuous monitoring of migrating birds as potential sources of pathogen dispersal.
Collapse
Affiliation(s)
- Laura Grassi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università, 16, 35020, Legnaro PD, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università, 16, 35020, Legnaro PD, Italy
| | - Sofia Grillo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università, 16, 35020, Legnaro PD, Italy
| | - Alessandra Mondin
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università, 16, 35020, Legnaro PD, Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università, 16, 35020, Legnaro PD, Italy
| | - Fulvio Barbarino
- Julian Prealps Nature Park, Piazza del Tiglio, 33010, Resia (UD), Italy
| | - Cristina Comuzzo
- Julian Prealps Nature Park, Piazza del Tiglio, 33010, Resia (UD), Italy
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università, 16, 35020, Legnaro PD, Italy
| | - Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro PD, Italy
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro PD, Italy
| | - Maria Luisa Menandro
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università, 16, 35020, Legnaro PD, Italy
| |
Collapse
|
7
|
Lamsal A, Edgar KS, Jenkins A, Renssen H, Kjaer LJ, Alfsnes K, Bastakoti S, Dieseth M, Klitgaard K, Lindstedt HEH, Paulsen KM, Vikse R, Korslund L, Kjelland V, Stuen S, Kjellander P, Christensson M, Teräväinen M, Jensen LM, Regmi M, Giri D, Marsteen L, Bødker R, Soleng A, Andreassen ÅK. Prevalence of tick-borne encephalitis virus in questing Ixodes ricinus nymphs in southern Scandinavia and the possible influence of meteorological factors. Zoonoses Public Health 2023; 70:473-484. [PMID: 37248739 DOI: 10.1111/zph.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023]
Abstract
Ixodes ricinus ticks are Scandinavia's main vector for tick-borne encephalitis virus (TBEV), which infects many people annually. The aims of the present study were (i) to obtain information on the TBEV prevalence in host-seeking I. ricinus collected within the Øresund-Kattegat-Skagerrak (ØKS) region, which lies in southern Norway, southern Sweden and Denmark; (ii) to analyse whether there are potential spatial patterns in the TBEV prevalence; and (iii) to understand the relationship between TBEV prevalence and meteorological factors in southern Scandinavia. Tick nymphs were collected in 2016, in southern Scandinavia, and screened for TBEV, using pools of 10 nymphs, with RT real-time PCR, and positive samples were confirmed with pyrosequencing. Spatial autocorrelation and cluster analysis was performed with Global Moran's I and SatScan to test for spatial patterns and potential local clusters of the TBEV pool prevalence at each of the 50 sites. A climatic analysis was made to correlate parameters such as minimum, mean and maximum temperature, relative humidity and saturation deficit with TBEV pool prevalence. The climatic data were acquired from the nearest meteorological stations for 2015 and 2016. This study confirms the presence of TBEV in 12 out of 30 locations in Denmark, where six were from Jutland, three from Zealand and two from Bornholm and Falster counties. In total, five out of nine sites were positive from southern Sweden. TBEV prevalence of 0.7%, 0.5% and 0.5%, in nymphs, was found at three sites along the Oslofjord (two sites) and northern Skåne region (one site), indicating a potential concern for public health. We report an overall estimated TBEV prevalence of 0.1% in questing I. ricinus nymphs in southern Scandinavia with a region-specific prevalence of 0.1% in Denmark, 0.2% in southern Sweden and 0.1% in southeastern Norway. No evidence of a spatial pattern or local clusters was found in the study region. We found a strong correlation between TBEV prevalence in ticks and relative humidity in Sweden and Norway, which might suggest that humidity has a role in maintaining TBEV prevalence in ticks. TBEV is an emerging tick-borne pathogen in southern Scandinavia, and we recommend further studies to understand the TBEV transmission potential with changing climate in Scandinavia.
Collapse
Affiliation(s)
- Alaka Lamsal
- Department of Natural Science and Environmental Health, The University of South-Eastern Norway, Bø, Norway
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristin Skarsfjord Edgar
- Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
- Department of Microbiology, Norwegian Veterinary Institute, Ås, Norway
| | - Andrew Jenkins
- Department of Natural Science and Environmental Health, The University of South-Eastern Norway, Bø, Norway
| | - Hans Renssen
- Department of Natural Science and Environmental Health, The University of South-Eastern Norway, Bø, Norway
| | - Lene Jung Kjaer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Kristian Alfsnes
- Department of Bacteriology, Norwegian Institute of Public Health, Oslo, Norway
| | - Srijana Bastakoti
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Malene Dieseth
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Kirstine Klitgaard
- Department for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark
| | | | - Katrine M Paulsen
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Rose Vikse
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Lars Korslund
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Vivian Kjelland
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
- Research Unit, Sørlandet Hospital Health Enterprise, Kristiansand, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Sciences, Section of Small Ruminant Research, Norwegian University of Life Sciences, Sandnes, Norway
| | - Petter Kjellander
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Madeleine Christensson
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Malin Teräväinen
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Laura Mark Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Manoj Regmi
- Department of Data Science, Kristiania University College, Oslo, Norway
| | - Dhiraj Giri
- School of Arts, Kathmandu University, Dhulikhel, Nepal
| | | | - René Bødker
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Arnulf Soleng
- Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Åshild Kristine Andreassen
- Department of Natural Science and Environmental Health, The University of South-Eastern Norway, Bø, Norway
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
8
|
Defaye B, Moutailler S, Vollot B, Galon C, Gonzalez G, Moraes RA, Leoncini AS, Rataud A, Le Guillou G, Pasqualini V, Quilichini Y. Detection of Pathogens and Ticks on Sedentary and Migratory Birds in Two Corsican Wetlands (France, Mediterranean Area). Microorganisms 2023; 11:microorganisms11040869. [PMID: 37110292 PMCID: PMC10141976 DOI: 10.3390/microorganisms11040869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Birds are one of the most species-diverse vertebrate groups and are susceptible to numerous hematophagous ectoparasites. Migratory birds likely contribute to the circulation of these ectoparasites and their associated pathogens. One of the many migration paths crosses the Mediterranean islands including Corsica and its wetlands, which are migration stopovers. In our study, we collected blood samples and hematophagous ectoparasites in migratory and sedentary bird populations in two coastal lagoons: Biguglia and Gradugine. A total of 1377 birds were captured from which 762 blood samples, 37 louse flies, and 44 ticks were collected. All the louse flies were identified as Ornithomya biloba and all the ticks were from the Ixodes genus: Ixodes sp. (8.5%), I. accuminatus/ventalloi (2.9%), I. arboricola/lividus (14.3%), I. frontalis (5.7%) and I. ricinus (68.6%). Five pathogens were detected: Anaplasma phagocytophilum, Erhlichia chaffeensis, and Rickettsia helvetica in ticks, and Trypanosoma sp. in louse flies. Ehrlichia chaffeensis and the West Nile virus were both detected in bird blood samples in Corsica. This is the first report of these tick, louse fly and pathogen species isolated on the bird population in Corsica. Our finding highlights the importance of bird populations in the presence of arthropod-borne pathogens in Corsican wetlands.
Collapse
|
9
|
Gynthersen RMM, Hansen MF, Ocias LF, Kjaer A, Petersen RF, Ostrowski SR, Harritshøj L, Jacobsen S, Overgaard U, Krogfelt KA, Lebech AM, Mens H. Neoehrlichia mikurensis in Danish immunocompromised patients: a retrospective cohort study. Ann Clin Microbiol Antimicrob 2023; 22:20. [PMID: 36941613 PMCID: PMC10026440 DOI: 10.1186/s12941-023-00571-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The tick-borne bacterium, Neoehrlichia mikurensis (N. mikurensis) can cause severe febrile illness and thromboembolic complications in immunocompromised individuals. We investigated the presence of N. mikurensis DNA in retrospectively collected plasma from a well-characterized cohort of Danish immunocompromised patients. METHODS Plasma samples from 239 patients with immune dysfunction related to hematological or rheumatological disease or due to immunosuppressive therapy, were retrieved from a transdisciplinary biobank (PERSIMUNE) at Rigshospitalet, Copenhagen, Denmark. Serving as immunocompetent controls, plasma samples from 192 blood donors were included. All samples were collected between 2015 and 2019. Real-time PCR targeting the groEL gene was used to detect N. mikurensis DNA. Sequencing was used for confirmation. Borrelia burgdorferi sensu lato IgG antibodies were detected by ELISA as a proxy of tick exposure. Prevalence was compared using Fisher's exact test. RESULTS Neoehrlichia mikurensis DNA was detected in 3/239 (1.3%, 95% confidence interval (CI): 0.3 - 3.6%) patients, all of whom primarily had a hematological disease. Follow-up samples of these patients were negative. N. mikurensis DNA was not detected in any of the blood donor samples. IgG antibodies against B. burgdorferi s.l. were detected with similar prevalence in immunocompromised patients and blood donors, i.e., 18/239 (7.5%, 95% CI: 4.8-11.5%) and 11/192 (5.7%, 95%: CI 3.2-10.0%). CONCLUSION In this study, patients with N. mikurensis were not identified by clinical indication and N. mikurensis may therefore be underdiagnosed in Danish patients. Further investigations are needed to explore the clinical significance and implications of this infection.
Collapse
Affiliation(s)
- Rosa Maja Møhring Gynthersen
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Mette Frimodt Hansen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark.
| | - Lukas Frans Ocias
- Department of Clinical Microbiology, Karlstad Hospital, Region Värmland, Karlstad, Sweden
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Randi Føns Petersen
- Department of Bacteria, Fungi and Parasites, Statens Serum Institut, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lene Harritshøj
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren Jacobsen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Research Center for Autoimmune Connective Tissue Diseases - COPEACT, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ulrik Overgaard
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Karen Angeliki Krogfelt
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Anne-Mette Lebech
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Helene Mens
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
10
|
Luan Y, Gou J, Zhong D, Ma L, Yin C, Shu M, Liu G, Lin Q. The Tick-Borne Pathogens: An Overview of China's Situation. Acta Parasitol 2023; 68:1-20. [PMID: 36642777 PMCID: PMC9841149 DOI: 10.1007/s11686-023-00658-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/02/2023] [Indexed: 01/17/2023]
Abstract
BACKGROUND Ticks are important medical arthropods that can transmit hundreds of pathogens, such as parasites, bacteria, and viruses, leading to serious public health burdens worldwide. Unexplained fever is the most common clinical manifestation of tick-borne diseases. Since the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the surge of coronavirus disease 2019 (COVID-19) cases led to the hospital overload and fewer laboratory tests for tick-borne diseases. Therefore, it is essential to review the tick-borne pathogens and further understand tick-borne diseases. PURPOSE The geographic distribution and population of ticks in the Northern hemisphere have expanded while emerging tick-borne pathogens have been introduced to China continuously. This paper focused on the tick-borne pathogens that are threatening public health in the world. Their medical significant tick vectors, as well as the epidemiology, clinical manifestations, diagnosis, treatment, prevention, and control measures, are emphasized in this document. METHODS In this study, all required data were collected from articles indexed in English databases, including Scopus, PubMed, Web of Science, Science Direct, and Google Scholar. RESULTS Ticks presented a great threat to the economy and public health. Although both infections by tick-borne pathogens and SARS-CoV-2 have fever symptoms, the history of tick bite and its associated symptoms such as encephalitis or eschar could be helpful for the differential diagnosis. Additionally, as a carrier of vector ticks, migratory birds may play a potential role in the geographical expansion of ticks and tick-borne pathogens during seasonal migration. CONCLUSION China should assess the risk score of vector ticks and clarify the potential role of migratory birds in transmitting ticks. Additionally, the individual and collective protection, vector control, comprehensive surveillance, accurate diagnosis, and symptomatic treatment should be carried out, to meet the challenge.
Collapse
Affiliation(s)
- Yuxuan Luan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,School of Basic Medical Science, Fudan University, Shanghai, 200032, China
| | - Jingmin Gou
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Dongjie Zhong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Chuansong Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Minfeng Shu
- School of Basic Medical Science, Fudan University, Shanghai, 200032, China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Qing Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China. .,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China.
| |
Collapse
|
11
|
Rosendahl SB, Ravn P, Lebech AM, Midtgaard Stenør CP. Lyme neuroborreliosis with encephalitis: A rare case. IDCases 2023; 31:e01704. [PMID: 36845907 PMCID: PMC9947094 DOI: 10.1016/j.idcr.2023.e01704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Encephalitis caused by Borrelia burgdorferi sensu lato is a rare clinical manifestation of Lyme neuroborreliosis and only in few cases have brain parenchymal inflammation been documented. Here, we present a case of Lyme neuroborreliosis with encephalitis with significant parenchymal inflammation on magnetic resonance imaging (MRI) in an immunosuppressed patient.
Collapse
Affiliation(s)
- Simone Bruhn Rosendahl
- Department of Internal Medicine, Infectious Diseases Section, Copenhagen University Hospital - Herlev-Gentofte, Herlev, Denmark,Corresponding author.
| | - Pernille Ravn
- Department of Internal Medicine, Infectious Diseases Section, Copenhagen University Hospital - Herlev-Gentofte, Herlev, Denmark
| | - Anne-Mette Lebech
- Department of Infectious Diseases, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Peter Midtgaard Stenør
- Department of Neurology, Copenhagen University Hospital Herlev-Gentofte, Herlev, Denmark,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Zając Z, Kulisz J, Kunc-Kozioł R, Woźniak A, Filipiuk M, Rudolf R, Bartosik K, Cabezas-Cruz A. Tick Infestation in Migratory Birds of the Vistula River Valley, Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113781. [PMID: 36360665 PMCID: PMC9655835 DOI: 10.3390/ijerph192113781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 05/25/2023]
Abstract
Migratory birds play an important role in the eco-epidemiology of tick-borne diseases due to their ability to carry ticks for long distances. The aim of the present study was to investigate the prevalence and factors influencing the intensity of tick infestation in migratory birds. The study was conducted in a locality situated in the Vistula River valley, eastern Poland, during autumn, when the high migratory activity of birds is registered in the region. The birds were captured using ornithological nets and identified at the species level. In the next step, they were carefully inspected for attached ticks. Tick infestation was observed in 4.43% of the captured birds. The highest mean intensity of tick infestation was observed in birds foraging on the ground or in low shrubs and by long- and medium-distance migrants, i.e., Turdus merula (2.73), T. philomelos (2.04), and Erithacus rubecula (1.58). Ixodes ricinus was found to infest the birds most frequently. However, other tick species, i.e., I. trianguliceps, I. crenulatus (synonym I. canisuga), and I. apronophorus, rarely found in eastern Poland, were also found parasitizing birds. The occurrence of I. persulcatus, I. frontalis, and I. acuminatus (synonym I. redikorzevi) was confirmed in the region for the first time. The results of the study suggest that captured bird species are susceptible to tick infestation and could play an important role in the circulation of some tick-borne pathogens. They also play a significant role in the spread of ticks. The ecology and ethology of birds, including their foraging styles and migratory habits, are factors determining the risk of exposure of birds to tick attacks.
Collapse
Affiliation(s)
- Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Renata Kunc-Kozioł
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Aneta Woźniak
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Maciej Filipiuk
- Department of Zoology and Nature Protection, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Robert Rudolf
- Kaliszany Ornithological Station, 24-340 Stare Kaliszany, Poland
| | - Katarzyna Bartosik
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France
| |
Collapse
|
13
|
Keve G, Sándor AD, Hornok S. Hard ticks (Acari: Ixodidae) associated with birds in Europe: Review of literature data. Front Vet Sci 2022; 9:928756. [PMID: 36090176 PMCID: PMC9453168 DOI: 10.3389/fvets.2022.928756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Hard ticks (Acari: Ixodidae) are considered the most important transmitters of pathogens in the temperate zone that covers most of Europe. In the era of climate change tick-borne diseases are predicted to undergo geographical range expansion toward the north through regions that are connected to southern areas of the continent by bird migration. This alone would justify the importance of synthesized knowledge on the association of tick species with avian hosts, yet birds also represent the most taxonomically and ecologically diverse part of urban vertebrate fauna. Birds frequently occur in gardens and near animal keeping facilities, thus playing a significant role in the dispersal of ticks and tick-borne pathogens in synanthropic environments. The primary aim of this review is to provide a comprehensive reference source (baseline data) for future studies, particularly in the context of discovering new tick-host associations after comparison with already published data. The records on the ixodid tick infestations of birds were assessed from nearly 200 papers published since 1952. In this period, 37 hard tick species were reported from 16 orders of avian hosts in Europe. Here we compile a list of these tick species, followed by the English and Latin name of all reported infested bird species, as well as the tick developmental stage and country of origin whenever this information was available. These data allowed a first-hand analysis of general trends regarding how and at which developmental stage of ticks tend to infest avian hosts. Five tick species that were frequently reported from birds and show a broad geographical distribution in the Western Palearctic (Ixodes arboricola, I. frontalis, I. ricinus, Haemaphysalis concinna and Hyalomma marginatum) were also selected for statistical comparisons. Differences were demonstrated between these tick species regarding their association with bird species that typically feed from the ground and those that rarely occur at the soil level. The ecology of these five bird-infesting tick species is also illustrated here according to avian orders, taking into account the ecology (habitat type) and activity (circadian rhythm and feeding level) of most bird species that represent a certain order.
Collapse
Affiliation(s)
- Gergő Keve
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| | - Attila D. Sándor
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- *Correspondence: Attila D. Sándor
| | - Sándor Hornok
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| |
Collapse
|
14
|
Rataud A, Galon C, Bournez L, Henry PY, Marsot M, Moutailler S. Diversity of Tick-Borne Pathogens in Tick Larvae Feeding on Breeding Birds in France. Pathogens 2022; 11:pathogens11080946. [PMID: 36015066 PMCID: PMC9414652 DOI: 10.3390/pathogens11080946] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Birds play a role in maintaining tick-borne diseases by contributing to the multiplication of ticks and pathogens on a local scale during the breeding season. In the present study, we describe the diversity of tick and pathogen species of medical and veterinary importance in Europe hosted by 1040 captured birds (56 species) during their breeding season in France. Of the 3114 ticks collected, Ixodes ricinus was the most prevalent species (89.5%), followed by I. frontalis (0.8%), I. arboricola (0.7%), Haemaphysalis concinna (0.5%), H. punctata (0.5%), Hyalomma spp. (0.2%), and Rhipicephalus spp. (0.06%). Because they may be representative of the bird infection status for some pathogen species, 1106 engorged tick larvae were screened for pathogens. Borrelia burgdorferi sensu lato was the most prevalent pathogen genus in bird-feeding larvae (11.7%), followed by Rickettsia spp. (7.4%), Anaplasma spp. (5.7%), Babesia spp. (2.3%), Ehrlichia spp. (1.4%), and B. miyamotoi (1%). Turdidae birds (Turdus merula and T. philomelos), Troglodytes troglodytes, and Anthus trivialis had a significantly higher prevalence of B. burgdorferi s.l.-infected larvae than other pathogen genera. This suggests that these bird species could act as reservoir hosts for B. burgdorferi s.l. during their breeding season, and thus play an important role in acarological risk.
Collapse
Affiliation(s)
- Amalia Rataud
- Laboratory for Animal Health, Epidemiology Unit, Université Paris Est, ANSES, 94700 Maisons-Alfort, France
| | - Clemence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Laure Bournez
- ANSES, Nancy Laboratory for Rabies and Wildlife, 54220 Malzéville, France
| | - Pierre-Yves Henry
- Mécanismes Adaptatifs et Evolution (MECADEV UMR 7179), Muséum National d’Histoire Naturelle, CNRS, 91800 Brunoy, France
- Centre de Recherches sur la Biologie des Populations d’Oiseaux (CRBPO), Centre d’Ecologie et des Sciences de la Conservation (CESCO UMR 7204), Muséum National d’Histoire Naturelle, CNRS, 75005 Paris, France
| | - Maud Marsot
- Laboratory for Animal Health, Epidemiology Unit, Université Paris Est, ANSES, 94700 Maisons-Alfort, France
- Correspondence: (M.M.); (S.M.)
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
- Correspondence: (M.M.); (S.M.)
| |
Collapse
|
15
|
Lebert I, Bord S, Saint-Andrieux C, Cassar E, Gasqui P, Beugnet F, Chalvet-Monfray K, Vanwambeke SO, Vourc'h G, René-Martellet M. Habitat suitability map of <em>Ixodes ricinus</em> tick in France using multi-criteria analysis. GEOSPATIAL HEALTH 2022; 17. [PMID: 35579242 DOI: 10.4081/gh.2022.1058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The tick Ixodes ricinus is widely distributed across Europe and is responsible for the transmission of several pathogens to humans and animals. In this study, we used a knowledge-based method to map variations in habitat suitability for I. ricinus ticks throughout continental France and Corsica. The multi-criteria decision analysis (MCDA) integrated four major biotic and abiotic factors known to influence tick populations: climate, land cover, altitude and the density of wild ungulates. For each factor, habitat suitability index (HSI) values were attributed to different locations based on knowledge regarding its impact on tick populations. For the MCDA, two methods of factor combination were tested, additive and multiplicative, both which were evaluated at the spatial scales of departments and local municipalities. The resulting habitat suitability maps (resolution=100x100 m) revealed that conditions are suitable for I. ricinus over most of France and Corsica. Particularly suitable habitats were located in central, north-eastern and south-western France, while less-suitable habitats were found in the Mediterranean and mountainous regions. To validate the approach, the HSI scores were compared to field data of I. ricinus nymph abundance. Regardless of scale, the correlation between abundance indicator and HSI score was stronger for the additive than for the multiplicative approach. Overall, this study demonstrates the value of MCDA for estimating habitat suitability maps for I. ricinus abundance, which could be especially useful in highlighting areas of the tick's distribution where preventive measures should be prioritised.
Collapse
Affiliation(s)
- Isabelle Lebert
- University of Clermont Auvergne, INRAE, VetAgro Sup, Saint-Genès Champanelle, France; University of Lyon, INRAE, VetAgro Sup, Marcy l'Etoile, France.
| | - Séverine Bord
- University of Clermont Auvergne, INRAE, VetAgro Sup, Saint-Genès Champanelle, France; University of Paris-Saclay, INRAE, AgroParisTech, Paris, France.
| | | | - Eva Cassar
- University of Clermont Auvergne, INRAE, VetAgro Sup, Saint-Genès Champanelle, France; University of Lyon, INRAE, VetAgro Sup, Marcy l'Etoile, France.
| | - Patrick Gasqui
- University of Clermont Auvergne, INRAE, VetAgro Sup, Saint-Genès Champanelle, France; University of Lyon, INRAE, VetAgro Sup, Marcy l'Etoile, France.
| | | | - Karine Chalvet-Monfray
- University of Clermont Auvergne, INRAE, VetAgro Sup, Saint-Genès Champanelle, France; University of Lyon, INRAE, VetAgro Sup, Marcy l'Etoile, France.
| | - Sophie O Vanwambeke
- Georges Lemaître Centre for Earth and Climate research, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium.
| | - Gwenaël Vourc'h
- University of Clermont Auvergne, INRAE, VetAgro Sup, Saint-Genès Champanelle, France; University of Lyon, INRAE, VetAgro Sup, Marcy l'Etoile, France.
| | - Magalie René-Martellet
- University of Clermont Auvergne, INRAE, VetAgro Sup, Saint-Genès Champanelle, France; University of Lyon, INRAE, VetAgro Sup, Marcy l'Etoile, France.
| |
Collapse
|
16
|
Sormunen JJ, Klemola T, Vesterinen EJ. Ticks (Acari: Ixodidae) parasitizing migrating and local breeding birds in Finland. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 86:145-156. [PMID: 34787774 PMCID: PMC8702513 DOI: 10.1007/s10493-021-00679-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Ticks are globally renowned vectors for numerous zoonoses, and birds have been identified as important hosts for several species of hard ticks (Acari: Ixodidae) and tick-borne pathogens. Many European bird species overwinter in Africa and Western Asia, consequently migrating back to breeding grounds in Europe in the spring. During these spring migrations, birds may transport exotic tick species (and associated pathogens) to areas outside their typical distribution ranges. In Finland, very few studies have been conducted regarding ticks parasitizing migrating or local birds, and existing data are outdated, likely not reflecting the current situation. Consequently, in 2018, we asked volunteer bird ringers to collect ticks from migrating and local birds, to update current knowledge on ticks found parasitizing birds in Finland. In total 430 ticks were collected from 193 birds belonging to 32 species, caught for ringing between 2018 and 2020. Furthermore, four Ixodes uriae were collected from two roosting islets of sea birds in 2016 and 2020. Ticks collected on birds consisted of: Ixodes ricinus (n = 421), Ixodes arboricola (4), Ixodes lividus (2) and Hyalomma marginatum (3). Ixodes ricinus loads (nymphs and larvae) were highest on thrushes (Passeriformes: Turdidae) and European robins (Erithacus rubecula). The only clearly imported exotic tick species was H. marginatum. This study forms the second report of both I. uriae and I. arboricola from Finland, and possibly the northernmost observation of I. arboricola from Europe. The importation of exotic tick species by migrating birds seems a rare occurrence, as over 97% of all ticks collected from birds arriving in Finland during their spring migrations were I. ricinus, a species native to and abundant in Finland.
Collapse
Affiliation(s)
| | - Tero Klemola
- Department of Biology, University of Turku, Turku, Finland
| | - Eero J Vesterinen
- Department of Biology, University of Turku, Turku, Finland
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
17
|
Ebani VV, Mancianti F. Potential Role of Avian Populations in the Epidemiology of Rickettsia spp. and Babesia spp. Vet Sci 2021; 8:vetsci8120334. [PMID: 34941861 PMCID: PMC8709085 DOI: 10.3390/vetsci8120334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Birds often are carriers of hard and/or soft ticks harboring pathogens of humans and veterinary concern. Migratory avian species, which cover long distance by their flight, may deeply influence the ticks’ distribution worldwide; in particular, they can introduce in a given geographic area new tick species and related tick-borne pathogens. Studies about the detection of tick-borne agents in birds are not numerous, whereas more attention has been turned to the presence of these microorganisms in ticks carried by birds. The present review focused on the role of avian populations in the epidemiology of rickettsioses and babesioses, which represent two severe problems for the health of humans and other mammals.
Collapse
Affiliation(s)
- Valentina Virginia Ebani
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy;
- Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-221-6968
| | - Francesca Mancianti
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy;
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
18
|
Kjær LJ, Jensen LM, Chriél M, Bødker R, Petersen HH. The raccoon dog ( Nyctereutes procyonoides) as a reservoir of zoonotic diseases in Denmark. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 16:175-182. [PMID: 34660192 PMCID: PMC8502833 DOI: 10.1016/j.ijppaw.2021.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Raccoon dogs have successfully invaded Europe, including Denmark. Raccoon dogs are potential vectors and reservoir hosts of several zoonotic pathogens and thus have the potential for posing a threat to both human and animal health. This study includes analysis of four zoonotic parasites, 16 tick-borne pathogens and two pathogen groups from 292 raccoon dogs collected from January 2018 to December 2018. The raccoon dogs were received as a part of the Danish national wildlife surveillance program and were hunted, found dead or road killed. The raccoon dogs were screened for Alaria alata and Echinococcus multilocularis eggs in faeces by microscopy and PCR, respectively, Trichinella spp. larvae in muscles by digestion, antibodies against Toxoplasma gondii by ELISA and screening of ticks for pathogens by fluidigm real-time PCR. All raccoon dogs tested negative for E. multilocularis and Trichinella spp., while 32.9% excreted A. alata eggs and 42.7% were T. gondii sero-positive. Five tick-borne pathogens were identified in ticks collected from 15 raccoon dogs, namely Anaplasma phagocytophilum (20.0%), Babesia venatorum (6.7%), Borrelia miyamotoi (6.7%), Neoehrlichia mikurensis (6.7%) and Rickettsia helvetica (60.0%). We identified raccoon dogs from Denmark as an important reservoir of T. gondii and A. alata infection to other hosts, including humans, while raccoon dogs appear as a negligible reservoir of E. multilocularis and Trichinella spp. infections. Our results suggest that raccoon dogs may be a reservoir of A. phagocytophilum.
Collapse
Affiliation(s)
- Lene Jung Kjær
- Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Laura Mark Jensen
- Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Marian Chriél
- Centre for Diagnostics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - René Bødker
- Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Heidi Huus Petersen
- Centre for Diagnostics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Corresponding author. Tel.: +45 93 51 16 45.
| |
Collapse
|
19
|
Rataud A, Henry PY, Moutailler S, Marsot M. Research effort on birds' reservoir host potential for Lyme borreliosis: A systematic review and perspectives. Transbound Emerg Dis 2021; 69:2512-2522. [PMID: 34453490 DOI: 10.1111/tbed.14305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023]
Abstract
Zoonotic tick-borne diseases threat human and animal health. Understanding the role of hosts in the production of infected ticks in an epidemiological system is essential to be able to design effective measures to reduce the exposure of humans and animals to infectious tick bites. The reservoir host potential, that is, number of infected ticks produced by a host species, depends on three components: tick production, realized reservoir competence and host density. The parameters and factors that determine the reservoir host potential need to be characterized to achieve a robust understanding of the dynamics of pathogen-tick-host systems, and thus to mitigate the acarological risk of emerging infections. Few studies have investigated the role of birds in the local spread of Lyme borreliosis Borrelia. Knowledge of the research effort on the reservoir host potential of birds in Lyme borreliosis Borrelia circulation is necessary to prioritize future research on this topic. We provide a systematic review of the research effort on components of the reservoir host potential of wild birds for Lyme borreliosis Borrelia circulation, and factors that modulate these components in the European epidemiological system. Our review of 242 selected publications showed that tick production has been 1.4 and 21 times more studied than realized reservoir competence and bird density respectively. Only one study achieved to characterize the global host reservoir potential of birds in a given epidemiological system. Investigated factors were mostly related to bird species identity, individual characteristics of birds and tick characteristics, whereas the influence of bird life-history traits have been largely under-investigated. Because simultaneous characterization of all parameters is notoriously complex, interdisciplinary research is needed to combine and accumulate independent field and laboratory investigations targeting each parameter on specific epidemiological system or host species. This can help gain an integrated appraisal of the functioning of the studied system at a local scale.
Collapse
Affiliation(s)
- Amalia Rataud
- Université Paris Est, ANSES, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France
| | - Pierre-Yves Henry
- Mécanismes Adaptatifs et Evolution (MECADEV UMR 7179), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Brunoy, France.,Centre de Recherches sur la Biologie des Populations d'Oiseaux (CRBPO), Centre d'Ecologie et des Sciences de la Conservation (CESCO UMR 7204), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Maud Marsot
- Université Paris Est, ANSES, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France
| |
Collapse
|
20
|
Poulin R, de Angeli Dutra D. Animal migrations and parasitism: reciprocal effects within a unified framework. Biol Rev Camb Philos Soc 2021; 96:1331-1348. [PMID: 33663012 DOI: 10.1111/brv.12704] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022]
Abstract
Migrations, i.e. the recurring, roundtrip movement of animals between distant and distinct habitats, occur among diverse metazoan taxa. Although traditionally linked to avoidance of food shortages, predators or harsh abiotic conditions, there is increasing evidence that parasites may have played a role in the evolution of migration. On the one hand, selective pressures from parasites can favour migratory strategies that allow either avoidance of infections or recovery from them. On the other hand, infected animals incur physiological costs that may limit their migratory abilities, affecting their speed, the timing of their departure or arrival, and/or their condition upon reaching their destination. During migration, reduced immunocompetence as well as exposure to different external conditions and parasite infective stages can influence infection dynamics. Here, we first explore whether parasites represent extra costs for their hosts during migration. We then review how infection dynamics and infection risk are affected by host migration, thereby considering parasites as both causes and consequences of migration. We also evaluate the comparative evidence testing the hypothesis that migratory species harbour a richer parasite fauna than their closest free-living relatives, finding general support for the hypothesis. Then we consider the implications of host migratory behaviour for parasite ecology and evolution, which have received much less attention. Parasites of migratory hosts may achieve much greater spatial dispersal than those of non-migratory hosts, expanding their geographical range, and providing more opportunities for host-switching. Exploiting migratory hosts also exerts pressures on the parasite to adapt its phenology and life-cycle duration, including the timing of major developmental, reproduction and transmission events. Natural selection may even favour parasites that manipulate their host's migratory strategy in ways that can enhance parasite transmission. Finally, we propose a simple integrated framework based on eco-evolutionary feedbacks to consider the reciprocal selection pressures acting on migratory hosts and their parasites. Host migratory strategies and parasite traits evolve in tandem, each acting on the other along two-way causal paths and feedback loops. Their likely adjustments to predicted climate change will be understood best from this coevolutionary perspective.
Collapse
Affiliation(s)
- Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | |
Collapse
|
21
|
Migratory birds as disseminators of ticks and the tick-borne pathogens Borrelia bacteria and tick-borne encephalitis (TBE) virus: a seasonal study at Ottenby Bird Observatory in South-eastern Sweden. Parasit Vectors 2020; 13:607. [PMID: 33272317 PMCID: PMC7713317 DOI: 10.1186/s13071-020-04493-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Background Birds can act as reservoirs of tick-borne pathogens and can also disperse pathogen-containing ticks to both nearby and remote localities. The aims of this study were to estimate tick infestation patterns on migratory birds and the prevalence of different Borrelia species and tick-borne encephalitis virus (TBEV) in ticks removed from birds in south-eastern Sweden. Methods Ticks were collected from resident and migratory birds captured at the Ottenby Bird Observatory, Öland, Sweden, from March to November 2009. Ticks were molecularly identified to species, and morphologically to developmental stage, and the presence of Borrelia bacteria and TBEV was determined by quantitative real-time PCR. Results A total of 1339 ticks in the genera Haemaphysalis, Hyalomma, and Ixodes was recorded of which I. ricinus was the most abundant species. Important tick hosts were the European robin (Erithacus rubecula), Blackbird (Turdus merula), Tree pipit (Anthus trivialis), Eurasian wren (Troglodytes troglodytes), Common redstart (Phoenicurus phoenicurus), Willow warbler (Phylloscopus trochilus), and Common whitethroat (Sylvia communis). Borrelia bacteria were detected in 25% (285/1,124) of the detached ticks available for analysis. Seven Borrelia species (B. afzelii, B. burgdorferi (s.s.), B. garinii, B. lusitaniae, B. turdi, B. valaisiana, and B. miyamotoi) were identified. B. turdi was recorded for the first time in ticks in Sweden. The number of Borrelia cells per tick ranged from 2.0 × 100 to 7.0 × 105. B. miyamotoi-containing ticks contained a significantly higher median number of Borrelia cells than B. burgdorferi (s.l.)-containing ticks. B. garinii and B. miyamotoi were the most prevalent Borrelia species in tick larvae. Larvae of I. ricinus with B. garinii were removed from seven bird species, particularly S. communis and A. trivialis, which may suggest that the larvae had contracted the Borrelia bacteria from or via these birds. Also, a high percentage of tick larvae containing B. miyamotoi was removed from E. rubecula. All ticks were negative for TBEV. Conclusions The results corroborate the view that the contributions of birds to human disease are substantial, particularly as blood hosts for ticks and for their short-, medium-, and long-distance dispersal. Moreover, several ground-foraging bird species appear to be important for the maintenance and dispersal of Borrelia species. The absence of TBEV in the ticks conforms to other similar studies.![]()
Collapse
|
22
|
Kjær LJ, Klitgaard K, Soleng A, Edgar KS, Lindstedt HEH, Paulsen KM, Andreassen ÅK, Korslund L, Kjelland V, Slettan A, Stuen S, Kjellander P, Christensson M, Teräväinen M, Baum A, Jensen LM, Bødker R. Spatial patterns of pathogen prevalence in questing Ixodes ricinus nymphs in southern Scandinavia, 2016. Sci Rep 2020; 10:19376. [PMID: 33168841 PMCID: PMC7652892 DOI: 10.1038/s41598-020-76334-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Tick-borne pathogens cause diseases in animals and humans, and tick-borne disease incidence is increasing in many parts of the world. There is a need to assess the distribution of tick-borne pathogens and identify potential risk areas. We collected 29,440 tick nymphs from 50 sites in Scandinavia from August to September, 2016. We tested ticks in a real-time PCR chip, screening for 19 vector-associated pathogens. We analysed spatial patterns, mapped the prevalence of each pathogen and used machine learning algorithms and environmental variables to develop predictive prevalence models. All 50 sites had a pool prevalence of at least 33% for one or more pathogens, the most prevalent being Borrelia afzelii, B. garinii, Rickettsia helvetica, Anaplasma phagocytophilum, and Neoehrlichia mikurensis. There were large differences in pathogen prevalence between sites, but we identified only limited geographical clustering. The prevalence models performed poorly, with only models for R. helvetica and N. mikurensis having moderate predictive power (normalized RMSE from 0.74-0.75, R2 from 0.43-0.48). The poor performance of the majority of our prevalence models suggest that the used environmental and climatic variables alone do not explain pathogen prevalence patterns in Scandinavia, although previously the same variables successfully predicted spatial patterns of ticks in the same area.
Collapse
Affiliation(s)
- Lene Jung Kjær
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Kirstine Klitgaard
- Department for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark
| | - Arnulf Soleng
- Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | - Katrine M Paulsen
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Lars Korslund
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Vivian Kjelland
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
- Research Unit, Sørlandet Hospital Health Enterprise, Kristiansand, Norway
| | - Audun Slettan
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Sciences, Section of Small Ruminant Research, Norwegian University of Life Sciences, Sandnes, Norway
| | - Petter Kjellander
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Madeleine Christensson
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Malin Teräväinen
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Andreas Baum
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Laura Mark Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - René Bødker
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
23
|
Kjær LJ, Klitgaard K, Soleng A, Edgar KS, Lindstedt HEH, Paulsen KM, Andreassen ÅK, Korslund L, Kjelland V, Slettan A, Stuen S, Kjellander P, Christensson M, Teräväinen M, Baum A, Jensen LM, Bødker R. Spatial data of Ixodes ricinus instar abundance and nymph pathogen prevalence, Scandinavia, 2016-2017. Sci Data 2020; 7:238. [PMID: 32678090 PMCID: PMC7366694 DOI: 10.1038/s41597-020-00579-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/29/2020] [Indexed: 11/09/2022] Open
Abstract
Ticks carry pathogens that can cause disease in both animals and humans, and there is a need to monitor the distribution and abundance of ticks and the pathogens they carry to pinpoint potential high risk areas for tick-borne disease transmission. In a joint Scandinavian study, we measured Ixodes ricinus instar abundance at 159 sites in southern Scandinavia in August-September, 2016, and collected 29,440 tick nymphs at 50 of these sites. We additionally measured abundance at 30 sites in August-September, 2017. We tested the 29,440 tick nymphs in pools of 10 in a Fluidigm real-time PCR chip to screen for 17 different tick-associated pathogens, 2 pathogen groups and 3 tick species. We present data on the geolocation, habitat type and instar abundance of the surveyed sites, as well as presence/absence of each pathogen in all analysed pools from the 50 collection sites and individual prevalence for each site. These data can be used alone or in combination with other data for predictive modelling and mapping of high-risk areas.
Collapse
Affiliation(s)
- Lene Jung Kjær
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Kirstine Klitgaard
- Department for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark
| | - Arnulf Soleng
- Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | - Katrine M Paulsen
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Lars Korslund
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Vivian Kjelland
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
- Sørlandet Hospital Health Enterprise, Research Unit, Kristiansand, Norway
| | - Audun Slettan
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Sciences, Section of Small Ruminant Research, Norwegian University of Life Sciences, Sandnes, Norway
| | - Petter Kjellander
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Madeleine Christensson
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Malin Teräväinen
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Andreas Baum
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Laura Mark Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - René Bødker
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
24
|
Pedersen BN, Jenkins A, Kjelland V. Tick-borne pathogens in Ixodes ricinus ticks collected from migratory birds in southern Norway. PLoS One 2020; 15:e0230579. [PMID: 32271774 PMCID: PMC7145107 DOI: 10.1371/journal.pone.0230579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/03/2020] [Indexed: 01/17/2023] Open
Abstract
Birds are important hosts for the first life stages of the Ixodes ricinus tick and they can transport their parasites over long distances. The aim of this study was to investigate the prevalence of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Neoehrlichia mikurensis and Rickettsia helvetica in ticks collected from migratory birds in Norway. A total of 815 Ixodes ricinus ticks from 216 birds trapped at Lista Bird Observatory in southern Norway during spring and autumn migration in 2008 were analysed by real-time PCR. B. burgdorferi s. l. was the most prevalent pathogen, detected in 6.1% of the ticks. The prevalence of N. mikurensis, A. phagocytophilum and R. helvetica was 1.2%, 0.9% and 0.4% respectively. In addition, one sample (0.1%) was positive for B. miyamotoi. In total, 8.2% of the ticks were infected with at least one pathogen. Co-infection with B. burgdorferi s. l. and N. mikurensis or A. phagocytophilum was found in 6.0% of the infected ticks. Our results show that all the known major tick-borne bacterial pathogens in Norway are subject to transport by migratory birds, potentially allowing spread to new areas. Our study showed a surprisingly high number of samples with PCR inhibition (57%). These samples had been extracted using standard methodology (phenol-chloroform extraction). This illustrates the need for inhibition controls to determine true prevalence rates.
Collapse
Affiliation(s)
- Benedikte N. Pedersen
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Gullbringvegen, Norway
- * E-mail: (BNP); (AJ)
| | - Andrew Jenkins
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Gullbringvegen, Norway
- * E-mail: (BNP); (AJ)
| | - Vivian Kjelland
- Department of Natural Sciences, Faculty of Engineering and Science, University of Agder, Kristiansand, Norway
- Sørlandet Hospital Health Enterprise, Research Unit, Kristiansand, Norway
| |
Collapse
|
25
|
The Potential Role of Migratory Birds in the Rapid Spread of Ticks and Tick-Borne Pathogens in the Changing Climatic and Environmental Conditions in Europe. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17062117. [PMID: 32209990 PMCID: PMC7142536 DOI: 10.3390/ijerph17062117] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 12/28/2022]
Abstract
This opinion piece highlights the role of migratory birds in the spread of ticks and their role in the circulation and dissemination of pathogens in Europe. Birds with different lifestyles, i.e., non-migrants residing in a specific area, or short-, medium-, and long-distance migrants, migrating within one or several distant geographical regions are carriers of a number of ticks and tick-borne pathogens. During seasonal migrations, birds that cover long distances over a short time and stay temporarily in different habitats can introduce tick and pathogen species in areas where they have never occurred. An increase in the geographical range of ticks as well as the global climate changes affecting the pathogens, vectors, and their hosts increase the incidence and the spread of emerging tick-borne diseases worldwide. Tick infestations of birds varied between regions depends on the rhythms of tick seasonal activity and the bird migration rhythms determined by for example, climatic and environmental factors. In areas north of latitude ca. 58°N, immature Ixodes ricinus ticks are collected from birds most frequently, whereas ticks from the Hyalomma marginatum group dominate in areas below 42°N. We concluded that the prognosis of hazards posed by tick-borne pathogens should take into account changes in the migration of birds, hosts of many epidemiologically important tick species.
Collapse
|
26
|
Sekeyová Z, Danchenko M, Filipčík P, Fournier PE. Rickettsial infections of the central nervous system. PLoS Negl Trop Dis 2019; 13:e0007469. [PMID: 31465452 PMCID: PMC6715168 DOI: 10.1371/journal.pntd.0007469] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
As a result of migrations and globalization, people may face a possible increase in the incidence of central nervous system rickettsial infections (CNS R). These diseases, caused by Rickettsia species and transmitted to humans by arthropod bites, are putatively lethal. However, the diagnosis of CNS R is challenging and often delayed due to their nonspecific clinical presentation and the strict intracellular nature of rickettsiae. Furthermore, transfer of rickettsiae to the brain parenchyma is not yet understood. The aim of this review is to analyze and summarize the features and correlated findings of CNS R in order to focus attention on these intriguing but frequently neglected illnesses. We also incorporated data on CNS infections caused by Rickettsia-related microorganisms.
Collapse
Affiliation(s)
- Zuzana Sekeyová
- Institute of Virology, Slovak Academy of Sciences, Dubravska cesta, Bratislava, Slovakia
| | - Monika Danchenko
- Institute of Virology, Slovak Academy of Sciences, Dubravska cesta, Bratislava, Slovakia
| | - Peter Filipčík
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta, Bratislava, Slovakia
| | - Pierre Edouard Fournier
- Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU Mediterranée-Infection, Marseille, France
- Centre National de Référence des Rickettsia, Coxiella et Bartonella, IHU Mediterranée-Infection, Marseille, France
- * E-mail:
| |
Collapse
|
27
|
Kjær LJ, Soleng A, Edgar KS, Lindstedt HEH, Paulsen KM, Andreassen ÅK, Korslund L, Kjelland V, Slettan A, Stuen S, Kjellander P, Christensson M, Teräväinen M, Baum A, Isbrand A, Jensen LM, Klitgaard K, Bødker R. A large-scale screening for the taiga tick, Ixodes persulcatus, and the meadow tick, Dermacentor reticulatus, in southern Scandinavia, 2016. Parasit Vectors 2019; 12:338. [PMID: 31288866 PMCID: PMC6617640 DOI: 10.1186/s13071-019-3596-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/03/2019] [Indexed: 12/30/2022] Open
Abstract
The taiga tick, Ixodes persulcatus, has previously been limited to eastern Europe and northern Asia, but recently its range has expanded to Finland and northern Sweden. The species is of medical importance, as it, along with a string of other pathogens, may carry the Siberian and Far Eastern subtypes of tick-borne encephalitis virus. These subtypes appear to cause more severe disease, with higher fatality rates than the central European subtype. Until recently, the meadow tick, Dermacentor reticulatus, has been absent from Scandinavia, but has now been detected in Denmark, Norway and Sweden. Dermacentor reticulatus carries, along with other pathogens, Babesia canis and Rickettsia raoultii. Babesia canis causes severe and often fatal canine babesiosis, and R. raoultii may cause disease in humans. We collected 600 tick nymphs from each of 50 randomly selected sites in Denmark, southern Norway and south-eastern Sweden in August–September 2016. We tested pools of 10 nymphs in a Fluidigm real time PCR chip to screen for I. persulcatus and D. reticulatus, as well as tick-borne pathogens. Of all the 30,000 nymphs tested, none were I. persulcatus or D. reticulatus. Our results suggest that I. persulcatus is still limited to the northern parts of Sweden, and have not expanded into southern parts of Scandinavia. According to literature reports and supported by our screening results, D. reticulatus may yet only be an occasional guest in Scandinavia without established populations.
Collapse
Affiliation(s)
- Lene Jung Kjær
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Arnulf Soleng
- Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | - Katrine Mørk Paulsen
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway.,Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Lars Korslund
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Vivian Kjelland
- Department of Natural Sciences, University of Agder, Kristiansand, Norway.,Sørlandet Hospital Health Enterprise, Research Unit, Kristiansand, Norway
| | - Audun Slettan
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Sciences, Section of Small Ruminant Research, Norwegian University of Life Sciences, Sandnes, Norway
| | - Petter Kjellander
- Wildlife Ecology Unit, Department of Ecology, Swedish University of Agricultural Sciences, Grimsö, Sweden
| | - Madeleine Christensson
- Wildlife Ecology Unit, Department of Ecology, Swedish University of Agricultural Sciences, Grimsö, Sweden
| | - Malin Teräväinen
- Wildlife Ecology Unit, Department of Ecology, Swedish University of Agricultural Sciences, Grimsö, Sweden
| | - Andreas Baum
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Anastasia Isbrand
- Department for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark
| | - Laura Mark Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Kirstine Klitgaard
- Department for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark
| | - René Bødker
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|