1
|
An Y, Ni R, Zhuang L, Yang L, Ye Z, Li L, Parkkila S, Aspatwar A, Gong W. Tuberculosis vaccines and therapeutic drug: challenges and future directions. MOLECULAR BIOMEDICINE 2025; 6:4. [PMID: 39841361 PMCID: PMC11754781 DOI: 10.1186/s43556-024-00243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 01/23/2025] Open
Abstract
Tuberculosis (TB) remains a prominent global health challenge, with the World Health Organization documenting over 1 million annual fatalities. Despite the deployment of the Bacille Calmette-Guérin (BCG) vaccine and available therapeutic agents, the escalation of drug-resistant Mycobacterium tuberculosis strains underscores the pressing need for more efficacious vaccines and treatments. This review meticulously maps out the contemporary landscape of TB vaccine development, with a focus on antigen identification, clinical trial progress, and the obstacles and future trajectories in vaccine research. We spotlight innovative approaches, such as multi-antigen vaccines and mRNA technology platforms. Furthermore, the review delves into current TB therapeutics, particularly for multidrug-resistant tuberculosis (MDR-TB), exploring promising agents like bedaquiline (BDQ) and delamanid (DLM), as well as the potential of host-directed therapies. The hurdles in TB vaccine and therapeutic development encompass overcoming antigen diversity, enhancing vaccine effectiveness across diverse populations, and advancing novel vaccine platforms. Future initiatives emphasize combinatorial strategies, the development of anti-TB compounds targeting novel pathways, and personalized medicine for TB treatment and prevention. Despite notable advances, persistent challenges such as diagnostic failures and protracted treatment regimens continue to impede progress. This work aims to steer future research endeavors toward groundbreaking TB vaccines and therapeutic agents, providing crucial insights for enhancing TB prevention and treatment strategies.
Collapse
Affiliation(s)
- Yajing An
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Ruizi Ni
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Li Zhuang
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Ling Yang
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhaoyang Ye
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Linsheng Li
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories PLC, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland.
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China.
| |
Collapse
|
2
|
Unki P, Kondekar S, Morkhade K, Rathi SP, Rathi PM. TB prevention and immunization in pediatrics. Indian J Tuberc 2024; 71:444-452. [PMID: 39278678 DOI: 10.1016/j.ijtb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 09/18/2024]
Abstract
Tuberculosis (TB) is one of the main contributors to global mortality and morbidity. Prevalence of TB is more in developing countries. It is one of the airborne diseases that has always been a major health problem. It is caused by organisms of the Mycobacterium tuberculosis (MTB) complex affecting different organ systems. The proverb prevention is better than cure best applies to TB and it has been practiced from ancient periods. However, modalities of prevention have varied much depending upon the advancement in research and technology. TB preventive practice reduces the load of TB significantly and it was used as the theme for world TB Day for the year 2013. Bacille Calmette-Guérin (BCG) vaccination is one of the modalities to prevent TB and it's been practiced for decades with a lot of modifications from synthesis, schedule and method of administration. BCG mainly prevents serious TB with a less known effect on TB prevention. Other uses of BCG vaccination are being studied. In the modern era, heterologous effects of BCG vaccination have brought BCG once again into the limelight. TB prevention strategies start from basic health education and vaccination. Newer vaccines are under trial to improve the efficacy of TB vaccination and yet to be used for general practice. Prevention and immunization against TB have been modified in immunocompromised children. The concept of drug resistance has to be kept in mind before using anti tubercular drugs without any bacteriological evidence for tuberculosis. National Tuberculosis Elimination Programme (NTEP) focuses on contact tracing and treatment of latent TB infection as a resort to prevent further spread of TB in India. This review article has been authored following an exhaustive examination of the existing literature, with the aim of enhancing comprehension regarding tuberculosis prevention and immunization.
Collapse
Affiliation(s)
- Praveen Unki
- Department of Paediatrics, Topiwala National Medical College, Mumbai, 400008, India
| | - Santosh Kondekar
- Department of Paediatrics, Topiwala National Medical College, Mumbai, 400008, India
| | - Kirti Morkhade
- Department of Paediatrics, Topiwala National Medical College, Mumbai, 400008, India
| | - Surbhi Pravin Rathi
- Department of Paediatrics, Topiwala National Medical College, Mumbai, 400008, India
| | | |
Collapse
|
3
|
Mousavi-Sagharchi SMA, Afrazeh E, Seyyedian-Nikjeh SF, Meskini M, Doroud D, Siadat SD. New insight in molecular detection of Mycobacterium tuberculosis. AMB Express 2024; 14:74. [PMID: 38907086 PMCID: PMC11192714 DOI: 10.1186/s13568-024-01730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is a pathogenic bacterium that has claimed millions of lives since the Middle Ages. According to the World Health Organization's report, tuberculosis ranks among the ten deadliest diseases worldwide. The presence of an extensive array of genes and diverse proteins within the cellular structure of this bacterium has provided us with a potent tool for diagnosis. While the culture method remains the gold standard for tuberculosis diagnosis, it is possible that molecular diagnostic methods, emphasis on the identification of mutation genes (e.g., rpoB and gyrA) and single nucleotide polymorphisms, could offer a safe and reliable alternative. Over the past few decades, as our understanding of molecular genetics has expanded, methods have been developed based on gene expansion and detection. These methods typically commence with DNA amplification through nucleic acid targeted techniques such as polymerase chain reaction. Various molecular compounds and diverse approaches have been employed in molecular assays. In this review, we endeavor to provide an overview of molecular assays for the diagnosis of tuberculosis with their properties (utilization, challenges, and functions). The ultimate goal is to explore the potential of replacing traditional bacterial methods with these advanced molecular diagnostic techniques.
Collapse
Affiliation(s)
| | - Elina Afrazeh
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | | | - Maryam Meskini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran.
| | - Delaram Doroud
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Gcebe N, Hlokwe TM, Bouw A, Michel A, Rutten VPMG. The Presence of esat-6 and cfp10 and Other Gene Orthologs of the RD 1 Region in Non-Tuberculous Mycobacteria, Mycolicibacteria, Mycobacteroides and Mycolicibacter as Possible Impediments for the Diagnosis of (Animal) Tuberculosis. Microorganisms 2024; 12:1151. [PMID: 38930534 PMCID: PMC11206017 DOI: 10.3390/microorganisms12061151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The Esx-1 family proteins of the Type VII secretion systems of Mycobacterium bovis and Mycobacterium tuberculosis have been assessed and are frequently used as candidates for tuberculosis (TB) diagnosis in both humans and animals. The presence of ESAT-6 and CFP 10 proteins, which are the most immunogenic proteins of the Esx-1 system and have been widely investigated for the immunodiagnosis of tuberculosis, in some Mycobacteriaceae and in Mycobacterium leprae, poses limitations for their use in specific diagnoses of TB. As such, to improve the specificity of the ESAT-6/CFP 10-based cell-mediated immunity (CMI) assays, other proteins encoded by genes within and outside the RD 1 region of the esx-1 locus have been evaluated as candidate antigens for CMI, as well as to investigate humoral responses in combination with ESAT-6 and or CFP 10, with varying specificity and sensitivity results. Hence, in this study, we evaluated various non-tuberculous mycobacteria (NTM), Mycolicibacterium, Mycolicibacter and Mycobacteroides species genomes available on the NCBI database for the presence and composition of the RD1 region of the esx-1 locus. In addition, we also assayed by polymerase chain reaction (PCR) and sequencing of Mycobacteriaceae available in our culture collection for the presence and sequence diversity of esxA and esxB genes encoding ESAT-6 and CFP 10, respectively. Whole genome sequence (WGS) data analysis revealed the presence of RD 1 gene orthologs in 70 of the over 100 published genomes of pathogenic and non- pathogenic Mycobcteriaceae other than tuberculosis. Among species evaluated from our culture collection, in addition to earlier reports of the presence of esxA and esxB in certain Mycolicibacterium, Mycolicibacterium septicum/peregrinum, Mycolicibacterium porcinum and Mycobacterium sp. N845T were also found to harbour orthologs of both genes. Orthologs of esxA only were detected in Mycobacterium brasiliensis, Mycolicibacterium elephantis and Mycolicibacterium flouroantheinivorans, whereas in Mycolicibacter engbackii, Mycolicibacterium mageritense and Mycobacterium paraffinicum, only esxB orthologs were detected. A phylogenetic analysis based on esxA and esxB sequences separated slow-growing from rapidly growing bacteria. These findings strengthen previous suggestions that esxA and esxB may be encoded in the majority of Mycobacteriaceae. The role of the Esx-1 system in both pathogenic and non-pathogenic Mycobacteriaceae needs further investigation, as these species may pose limitations to immunological assays for TB.
Collapse
Affiliation(s)
- Nomakorinte Gcebe
- Bacteriology Laboratory, Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort 0110, South Africa;
| | - Tiny Motlatso Hlokwe
- Bacteriology Laboratory, Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort 0110, South Africa;
| | - Agnes Bouw
- Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.B.); (V.P.M.G.R.)
| | - Anita Michel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa;
| | - Victor P. M. G. Rutten
- Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.B.); (V.P.M.G.R.)
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa;
| |
Collapse
|
5
|
Ma M, Duan Y, Peng C, Wu Y, Zhang X, Chang B, Wang F, Yang H, Zheng R, Cheng H, Cheng Y, He Y, Huang J, Lei J, Ma H, Li L, Wang J, Huang X, Tang F, Liu J, Li J, Ying R, Wang P, Sha W, Gao Y, Wang L, Ge B. Mycobacterium tuberculosis inhibits METTL14-mediated m 6A methylation of Nox2 mRNA and suppresses anti-TB immunity. Cell Discov 2024; 10:36. [PMID: 38548762 PMCID: PMC10978938 DOI: 10.1038/s41421-024-00653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/29/2024] [Indexed: 04/01/2024] Open
Abstract
Internal N6-methyladenosine (m6A) modifications are among the most abundant modifications of messenger RNA, playing a critical role in diverse biological and pathological processes. However, the functional role and regulatory mechanism of m6A modifications in the immune response to Mycobacterium tuberculosis infection remains unknown. Here, we report that methyltransferase-like 14 (METTL14)-dependent m6A methylation of NAPDH oxidase 2 (Nox2) mRNA was crucial for the host immune defense against M. tuberculosis infection and that M. tuberculosis-secreted antigen EsxB (Rv3874) inhibited METTL14-dependent m6A methylation of Nox2 mRNA. Mechanistically, EsxB interacted with p38 MAP kinase and disrupted the association of TAB1 with p38, thus inhibiting the TAB1-mediated autophosphorylation of p38. Interaction of EsxB with p38 also impeded the binding of p38 with METTL14, thereby inhibiting the p38-mediated phosphorylation of METTL14 at Thr72. Inhibition of p38 by EsxB restrained liquid-liquid phase separation (LLPS) of METTL14 and its subsequent interaction with METTL3, preventing the m6A modification of Nox2 mRNA and its association with the m6A-binding protein IGF2BP1 to destabilize Nox2 mRNA, reduce ROS levels, and increase intracellular survival of M. tuberculosis. Moreover, deletion or mutation of the phosphorylation site on METTL14 impaired the inhibition of ROS level by EsxB and increased bacterial burden or histological damage in the lungs during infection in mice. These findings identify a previously unknown mechanism that M. tuberculosis employs to suppress host immunity, providing insights that may empower the development of effective immunomodulators that target M. tuberculosis.
Collapse
Affiliation(s)
- Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yongjia Duan
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Cheng Peng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - You Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinning Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Boran Chang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Hongyu Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yuanna Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yifan He
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Jingping Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Jinming Lei
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Hanyu Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Liru Li
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Fen Tang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Jun Liu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ruoyan Ying
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Wang
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China.
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China.
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China.
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Specht AG, Ginese M, Kurtz SL, Elkins KL, Specht H, Beamer G. Host Genetic Background Influences BCG-Induced Antibodies Cross-Reactive to SARS-CoV-2 Spike Protein. Vaccines (Basel) 2024; 12:242. [PMID: 38543876 PMCID: PMC10975245 DOI: 10.3390/vaccines12030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 04/01/2024] Open
Abstract
Mycobacterium bovis Bacillus Calmette-Guérin (BCG) protects against childhood tuberculosis; and unlike most vaccines, BCG broadly impacts immunity to other pathogens and even some cancers. Early in the COVID-19 pandemic, epidemiological studies identified a protective association between BCG vaccination and outcomes of SARS-CoV-2, but the associations in later studies were inconsistent. We sought possible reasons and noticed the study populations often lived in the same country. Since individuals from the same regions can share common ancestors, we hypothesized that genetic background could influence associations between BCG and SARS-CoV-2. To explore this hypothesis in a controlled environment, we performed a pilot study using Diversity Outbred mice. First, we identified amino acid sequences shared by BCG and SARS-CoV-2 spike protein. Next, we tested for IgG reactive to spike protein from BCG-vaccinated mice. Sera from some, but not all, BCG-vaccinated Diversity Outbred mice contained higher levels of IgG cross-reactive to SARS-CoV-2 spike protein than sera from BCG-vaccinated C57BL/6J inbred mice and unvaccinated mice. Although larger experimental studies are needed to obtain mechanistic insight, these findings suggest that genetic background may be an important variable contributing to different associations observed in human randomized clinical trials evaluating BCG vaccination on SARS-CoV-2 and COVID-19.
Collapse
Affiliation(s)
- Aubrey G. Specht
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (A.G.S.); (M.G.)
| | - Melanie Ginese
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (A.G.S.); (M.G.)
| | - Sherry L. Kurtz
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; (S.L.K.); (K.L.E.)
| | - Karen L. Elkins
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; (S.L.K.); (K.L.E.)
| | - Harrison Specht
- Department of Bioengineering and Barnett Institute, Northeastern University, Boston, MA 02115, USA;
| | - Gillian Beamer
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
7
|
Greenblatt CL, Lathe R. Vaccines and Dementia: Part I. Non-Specific Immune Boosting with BCG: History, Ligands, and Receptors. J Alzheimers Dis 2024; 98:343-360. [PMID: 38393912 PMCID: PMC10977417 DOI: 10.3233/jad-231315] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/25/2024]
Abstract
Vaccines such as Bacille Calmette-Guérin (BCG) can apparently defer dementia onset with an efficacy better than all drugs known to date, as initially reported by Gofrit et al. (PLoS One14, e0224433), now confirmed by other studies. Understanding how and why is of immense importance because it could represent a sea-change in how we manage patients with mild cognitive impairment through to dementia. Given that infection and/or inflammation are likely to contribute to the development of dementias such as Alzheimer's disease (Part II of this work), we provide a historical and molecular background to how vaccines, adjuvants, and their component molecules can elicit broad-spectrum protective effects against diverse agents. We review early studies in which poxvirus, herpes virus, and tuberculosis (TB) infections afford cross-protection against unrelated pathogens, a concept known as 'trained immunity'. We then focus on the attenuated TB vaccine, BCG, that was introduced to protect against the causative agent of TB, Mycobacterium tuberculosis. We trace the development of BCG in the 1920 s through to the discovery, by Freund and McDermott in the 1940 s, that extracts of mycobacteria can themselves exert potent immunostimulating (adjuvant) activity; Freund's complete adjuvant based on mycobacteria remains the most potent immunopotentiator reported to date. We then discuss whether the beneficial effects of BCG require long-term persistence of live bacteria, before focusing on the specific mycobacterial molecules, notably muramyl dipeptides, that mediate immunopotentiation, as well as the receptors involved. Part II addresses evidence that immunopotentiation by BCG and other vaccines can protect against dementia development.
Collapse
Affiliation(s)
- Charles L. Greenblatt
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel–Canada (IMRIC), Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard Lathe
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh, UK
| |
Collapse
|
8
|
Li L, Lyon CJ, LaCourse SM, Zheng W, Stern J, Escudero JN, Murithi WB, Njagi L, John-Stewart G, Hawn TR, Nduba V, Abdelgaliel W, Tombler T, Horne D, Jiang L, Hu TY. Sensitive Blood-Based Detection of HIV-1 and Mycobacterium tuberculosis Peptides for Disease Diagnosis by Immuno-Affinity Liquid Chromatography-Tandem Mass Spectrometry: A Method Development and Proof-of-Concept Study. Clin Chem 2023; 69:1409-1419. [PMID: 37956323 PMCID: PMC10965313 DOI: 10.1093/clinchem/hvad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Novel approaches that allow early diagnosis and treatment monitoring of both human immunodeficiency virus-1 (HIV-1) and tuberculosis disease (TB) are essential to improve patient outcomes. METHODS We developed and validated an immuno-affinity liquid chromatography-tandem mass spectrometry (ILM) assay that simultaneously quantifies single peptides derived from HIV-1 p24 and Mycobacterium tuberculosis (Mtb) 10-kDa culture filtrate protein (CFP10) in trypsin-digested serum derived from cryopreserved serum archives of cohorts of adults and children with/without HIV and TB. RESULTS ILM p24 and CFP10 results demonstrated good intra-laboratory precision and accuracy, with recovery values of 96.7% to 104.6% and 88.2% to 111.0%, total within-laboratory precision (CV) values of 5.68% to 13.25% and 10.36% to 14.92%, and good linearity (r2 > 0.99) from 1.0 to 256.0 pmol/L and 0.016 to 16.000 pmol/L, respectively. In cohorts of adults (n = 34) and children (n = 17) with HIV and/or TB, ILM detected p24 and CFP10 demonstrated 85.7% to 88.9% and 88.9% to 100.0% diagnostic sensitivity for HIV-1 and TB, with 100% specificity for both, and detected HIV-1 infection earlier than 3 commercial p24 antigen/antibody immunoassays. Finally, p24 and CFP10 values measured in longitudinal serum samples from children with HIV-1 and TB distinguished individuals who responded to TB treatment from those who failed to respond or were untreated, and who developed TB immune reconstitution inflammatory syndrome. CONCLUSIONS Simultaneous ILM evaluation of p24 and CFP10 results may allow for early TB and HIV detection and provide valuable information on treatment response to facilitate integration of TB and HIV diagnosis and management.
Collapse
Affiliation(s)
- Lin Li
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
- Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Christopher J. Lyon
- Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Sylvia M. LaCourse
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - Wenshu Zheng
- Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Joshua Stern
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Jaclyn N. Escudero
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Wilfred Bundi Murithi
- Centre for Respiratory Diseases Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Lilian Njagi
- Centre for Respiratory Diseases Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Grace John-Stewart
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Epidemiology, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Thomas R. Hawn
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Videlis Nduba
- Centre for Respiratory Diseases Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | | | - David Horne
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Li Jiang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Tony Y. Hu
- Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, United States
| |
Collapse
|
9
|
Kwon KW, Kang TG, Lee A, Jin SM, Lim YT, Shin SJ, Ha SJ. Protective Efficacy and Immunogenicity of Rv0351/Rv3628 Subunit Vaccine Formulated in Different Adjuvants Against Mycobacterium tuberculosis Infection. Immune Netw 2023; 23:e16. [PMID: 37179749 PMCID: PMC10166659 DOI: 10.4110/in.2023.23.e16] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 05/15/2023] Open
Abstract
Bacillus Calmette-Guerin (BCG) vaccine is the only licensed vaccine for tuberculosis (TB) prevention. Previously, our group demonstrated the vaccine potential of Rv0351 and Rv3628 against Mycobacterium tuberculosis (Mtb) infection by directing Th1-biased CD4+ T cells co-expressing IFN-γ, TNF-α, and IL-2 in the lungs. Here, we assessed immunogenicity and vaccine potential of the combined Ags (Rv0351/Rv3628) formulated in different adjuvants as subunit booster in BCG-primed mice against hypervirulent clinical Mtb strain K (Mtb K). Compared to BCG-only or subunit-only vaccine, BCG prime and subunit boost regimen exhibited significantly enhanced Th1 response. Next, we evaluated the immunogenicity to the combined Ags when formulated with four different types of monophosphoryl lipid A (MPL)-based adjuvants: 1) dimethyldioctadecylammonium bromide (DDA), MPL, and trehalose dicorynomycolate (TDM) in liposome form (DMT), 2) MPL and Poly I:C in liposome form (MP), 3) MPL, Poly I:C, and QS21 in liposome form (MPQ), and 4) MPL and Poly I:C in squalene emulsion form (MPS). MPQ and MPS displayed greater adjuvancity in Th1 induction than DMT or MP did. Especially, BCG prime and subunit-MPS boost regimen significantly reduced the bacterial loads and pulmonary inflammation against Mtb K infection when compared to BCG-only vaccine at a chronic stage of TB disease. Collectively, our findings highlighted the importance of adjuvant components and formulation to induce the enhanced protection with an optimal Th1 response.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tae Gun Kang
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Korea
| | - Ara Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Korea
| | - Seung Mo Jin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Sung Jae Shin
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
10
|
Turbawaty DK, Surdjaja NR, Indrati AR, Lismayanti L, Logito V. High Positivity Rate of Urinary Mycobacterium tuberculosis Antigens Cocktail (ESAT-6, CFP-10, and MPT-64) in Active Tuberculosis Patients With and Without Human Immunodeficiency Virus Infection: A Cross-Sectional Study. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2023; 16:2632010X231198831. [PMID: 37719805 PMCID: PMC10501057 DOI: 10.1177/2632010x231198831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
Introduction Human immunodeficiency virus (HIV) infection is a risk factor for the occurrence of a large of Mycobacterium tuberculosis (Mtb) antigen load in the body. The antigens cocktail namely early secretory antigenic target protein 6-kDa (ESAT-6), Culture filtrate protein 10 kDa (CFP-10), and Mycobacterium tuberculosis protein 64 (MPT-64) are secreted by Mtb during replication, hence, their concentration increase in patients with active Tuberculosis (TB). This increased levels facilitates their entry into the systemic circulation, followed by secretion by the glomerulus into the urine. The aim of this study was to determine the positivity rate of the urinary Mtb antigens cocktail between TB patients with and without HIV infection. Methods This is an observational descriptive comparative study conducted with a cross-sectional design. Random urine samples were collected from patients diagnosed with active TB in Dr. Hasan Sadikin Bandung Hospital in 2021. The subjects were divided into 2 groups, TB-HIV group and TB without HIV group. The samples were tested using the quantitative immunochromatography method. Result Sixty active TB patients consisting of TB patients with HIV infection (n = 30) and TB patients without HIV infection (n = 30). The positivity in the urinary Mtb antigens cocktail was 93.3% for TB-HIV group and 100% for TB without HIV group (P = .492). The median concentration of urinary Mtb antigens cocktail in TB patients without HIV infection was higher than that of TB patients with HIV infection (137.73 ng/mL vs 96.69 ng/mL, respectively; P = .001). Conclusion There was no significant difference in the positivity rate, meanwhile, there was a significant difference in concentration of the urinary Mtb antigens cocktail between active TB patients with and without HIV infection. Interestingly, this urinary Mtb antigens cocktail can be found in both groups without being affected by the patient's immune condition, thus becoming a test to assist diagnose active TB.
Collapse
Affiliation(s)
- Dewi Kartika Turbawaty
- Department of Clinical Pathology, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, Jawa Barat, Indonesia
| | - Novie Rahmawati Surdjaja
- Department of Clinical Pathology, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, Jawa Barat, Indonesia
| | - Agnes Rengga Indrati
- Department of Clinical Pathology, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, Jawa Barat, Indonesia
| | - Leni Lismayanti
- Department of Clinical Pathology, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, Jawa Barat, Indonesia
| | - Verina Logito
- Department of Clinical Pathology, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, Jawa Barat, Indonesia
| |
Collapse
|
11
|
Korotetskaya MV, Rubakova EI. Metabolic biological markers for diagnosing and monitoring the course of tuberculosis. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2022. [DOI: 10.15789/2220-7619-mbm-1947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The international biomedical community has been currently facing a need to find a simple and most accessible type of analysis that helps to diagnose tuberculosis (TB) with the maximum reliability even before the onset of clinical manifestations. Tuberculosis results in more deaths than any other pathogen, second only to pneumonia caused by the SARS-CoV-2 virus, but the majority of infected people remain asymptomatic. In addition, it is important to develop methods to distinguish various forms of tuberculosis infection course at early stages and to reliably stratify patients into appropriate groups (persons with a rapidly progressing infection, chronic course, latent infection carriers). Immunometabolism investigates a relationship between bioenergetic pathways and specific functions of immune cells that has recently become increasingly important in scientific research. The host anti-mycobacteria immune response in tuberculosis is regulated by a number of metabolic networks that can interact both cooperatively and antagonistically, influencing an outcome of the disease. The balance between inflammatory and immune reactions limits the spread of mycobacteria in vivo and protects from developing tuberculosis. Cytokines are essential for host defense, but if uncontrolled, some mediators may contribute to developing disease and pathology. Differences in plasma levels of metabolites between individuals with advanced infection, LTBI and healthy individuals can be detected long before the onset of the major related clinical signs. Changes in amino acid and cortisol level may be detected as early as 12 months before the onset of the disease and become more prominent at verifying clinical diagnosis. Assessing serum level of certain amino acids and their ratios may be used as additional diagnostic markers of active pulmonary TB. Metabolites, including serum fatty acids, amino acids and lipids may contribute to detecting active TB. Metabolic profiles indicate about increased indolamine 2.3-dioxygenase 1 (IDO1) activity, decreased phospholipase activity, increased adenosine metabolite level, and fibrous lesions in active vs. latent infection. TB treatment can be adjusted based on individual patient metabolism and biomarker profiles. Thus, exploring immunometabolism in tuberculosis is necessary for development of new therapeutic strategies.
Collapse
|
12
|
Hadi SA, Brenner EP, Palmer MV, Waters WR, Thacker TC, Vilchèze C, Larsen MH, Jacobs WR, Sreevatsan S. Mycobacterium bovis Strain Ravenel Is Attenuated in Cattle. Pathogens 2022; 11:1330. [PMID: 36422582 PMCID: PMC9699013 DOI: 10.3390/pathogens11111330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 11/08/2022] [Indexed: 08/02/2023] Open
Abstract
Mycobacterium tuberculosis variant bovis (MBO) has one of the widest known mammalian host ranges, including humans. Despite the characterization of this pathogen in the 1800s and whole genome sequencing of a UK strain (AF2122) nearly two decades ago, the basis of its host specificity and pathogenicity remains poorly understood. Recent experimental calf infection studies show that MBO strain Ravenel (MBO Ravenel) is attenuated in the cattle host compared to other pathogenic strains of MBO. In the present study, experimental infections were performed to define attenuation. Whole genome sequencing was completed to identify regions of differences (RD) and single nucleotide polymorphisms (SNPs) to explain the observed attenuation. Comparative genomic analysis of MBO Ravenel against three pathogenic strains of MBO (strains AF2122-97, 10-7428, and 95-1315) was performed. Experimental infection studies on five calves each, with either MBO Ravenel or 95-1315, revealed no visible lesions in all five animals in the Ravenel group despite robust IFN-γ responses. Out of 486 polymorphisms in the present analysis, 173 were unique to MBO Ravenel among the strains compared. A high-confidence subset of nine unique SNPs were missense mutations in genes with annotated functions impacting two major MBO survival and virulence pathways: (1) Cell wall synthesis & transport [espH (A103T), mmpL8 (V888I), aftB (H484Y), eccC5 (T507M), rpfB (E263G)], and (2) Lipid metabolism & respiration [mycP1(T125I), pks5 (G455S), fadD29 (N231S), fadE29 (V360G)]. These substitutions likely contribute to the observed attenuation. Results from experimental calf infections and the functional attributions of polymorphic loci on the genome of MBO Ravenel provide new insights into the strain's genotype-disease phenotype associations.
Collapse
Affiliation(s)
- Syeda A. Hadi
- Pathobiology and Diagnostic Investigation Department, Michigan State University, East Lansing, MI 48824, USA
| | - Evan P. Brenner
- Pathobiology and Diagnostic Investigation Department, Michigan State University, East Lansing, MI 48824, USA
| | - Mitchell V. Palmer
- National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA 50010, USA
| | - W. Ray Waters
- National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA 50010, USA
| | - Tyler C. Thacker
- National Veterinary Services Laboratories, US Department of Agriculture, Ames, IA 50010, USA
| | - Catherine Vilchèze
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10475, USA
| | - Michelle H. Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10475, USA
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10475, USA
| | - Srinand Sreevatsan
- Pathobiology and Diagnostic Investigation Department, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Yao Q, Xie Y, Xu D, Qu Z, Wu J, Zhou Y, Wei Y, Xiong H, Zhang XL. Lnc-EST12, which is negatively regulated by mycobacterial EST12, suppresses antimycobacterial innate immunity through its interaction with FUBP3. Cell Mol Immunol 2022; 19:883-897. [PMID: 35637281 PMCID: PMC9149337 DOI: 10.1038/s41423-022-00878-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been implicated in the pathogenesis of intracellular pathogens. However, the role and mechanism of the important lncRNAs in Mycobacterium tuberculosis (M.tb) infection remain largely unexplored. Recently, we found that a secreted M.tb Rv1579c (an early secreted target with a molecular weight of 12 kDa, named EST12) protein activates NLRP3-gasdermin D (GSDMD)-mediated pyroptosis and plays a pivotal role in M.tb-induced immunity. In the present study, M.tb and the EST12 protein negatively regulated the expression of a key lncRNA (named lnc-EST12) in mouse macrophages by activating the JAK2-STAT5a signaling pathway. Lnc-EST12, with a size of 1583 bp, is mainly expressed in immune-related organs (liver, lung and spleen). Lnc-EST12 not only reduces the expression of the proinflammatory cytokines IL-1β, IL-6, and CCL5/8 but also suppresses the NLRP3 inflammasome and GSDMD pyroptosis-IL-1β immune pathway through its interaction with the transcription factor far upstream element-binding protein 3 (FUBP3). The KH3 and KH4 domains of FUBP3 are the critical sites for binding to lnc-EST12. Deficiency of mouse lnc-EST12 or FUBP3 in macrophages increased M.tb clearance and inflammation in mouse macrophages or mice. In conclusion, we report a new immunoregulatory mechanism in which mouse lnc-EST12 negatively regulates anti-M.tb innate immunity through FUBP3.
Collapse
Affiliation(s)
- Qili Yao
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yan Xie
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Dandan Xu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Zilu Qu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Jian Wu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yuanyuan Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yuying Wei
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Huan Xiong
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China.
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
- Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
14
|
Guo X, Mao X, Tian D, Liao Y, Su B, Ye C, Shi D, Liu TF, Ling Y, Hao Y. Cryptococcus neoformans Infection Induces IL-17 Production by Promoting STAT3 Phosphorylation in CD4 + T Cells. Front Immunol 2022; 13:872286. [PMID: 35720334 PMCID: PMC9197778 DOI: 10.3389/fimmu.2022.872286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/14/2022] [Indexed: 12/02/2022] Open
Abstract
Cryptococcus neoformans infection in the central nervous system is a severe infectious disease with poor outcomes and high mortality. It has been estimated that there are 220,000 new cases each year. Over 90% of C. neoformans meningitis cases were diagnosed in AIDS patients with CD4+ T cell count <100 cells/μl; however, the mechanism of cryptococcal meningitis in patients with normal immune functions remains unclear. IL-17 is a pro-inflammatory cytokine and plays an important role in anti-fungal immunity. Here we report that significantly high levels of IL-17 were predominantly detected in the cerebrospinal fluid of patients with either AIDS- or non-AIDS-associated C. neoformans meningitis but not in patients with tuberculous meningitis or non-neurosyphilis. Antifungal therapy minimized the IL-17 level in the cerebrospinal fluid. An in vitro mechanistic study showed that C. neoformans stimulation of healthy peripheral blood mononuclear cells prompted IL-17 production, and CD4+ T cells were the predominant IL-17-producing cells. IL-17 production by C. neoformans stimulation was STAT3 signaling dependent. Inhibition of STAT3 phosphorylation attenuated the C. neoformans-mediated IL-17 expression. Our data highlighted the significance of CD4+ T cells in antifungal immunity and suggested IL-17 as a diagnostic biomarker of C. neoformans infection and STAT3 as a checkpoint for antifungal targeted therapies.
Collapse
Affiliation(s)
- Xiaoman Guo
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinru Mao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Tian
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yixin Liao
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bintao Su
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Laboratory Medicine, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoliang Ye
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongling Shi
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tie Fu Liu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yun Ling
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yi Hao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Cobelens F, Suri RK, Helinski M, Makanga M, Weinberg AL, Schaffmeister B, Deege F, Hatherill M. Accelerating research and development of new vaccines against tuberculosis: a global roadmap. THE LANCET. INFECTIOUS DISEASES 2022; 22:e108-e120. [PMID: 35240041 PMCID: PMC8884775 DOI: 10.1016/s1473-3099(21)00810-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022]
Abstract
To eliminate tuberculosis globally, a new, effective, and affordable vaccine is urgently needed, particularly for use in adults and adolescents in low-income and middle-income countries. We have created a roadmap that lists the actions needed to accelerate tuberculosis vaccine research and development using a participatory process. The vaccine pipeline needs more diverse immunological approaches, antigens, and platforms. Clinical development can be accelerated by validated preclinical models, agreed laboratory correlates of protection, efficient trial designs, and validated endpoints. Determining the public health impact of new tuberculosis vaccines requires understanding of a country's demand for a new tuberculosis vaccine, how to integrate vaccine implementation with ongoing tuberculosis prevention efforts, cost, and national and global demand to stimulate vaccine production. Investments in tuberculosis vaccine research and development need to be increased, with more diversity of funding sources and coordination between these funders. Open science is important to enhance the efficiency of tuberculosis vaccine research and development including early and freely available publication of study findings and effective mechanisms for sharing datasets and specimens. There is a need for increased engagement of industry vaccine developers, for increased political commitment for new tuberculosis vaccines, and to address stigma and vaccine hesitancy. The unprecedented speed by which COVID-19 vaccines have been developed and introduced provides important insight for tuberculosis vaccine research and development.
Collapse
Affiliation(s)
- Frank Cobelens
- Department of Global Health and Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centers, Amsterdam, Netherlands.
| | - Rajinder Kumar Suri
- Department of Governance and Strategy, Developing Countries Vaccine Manufacturers' Network International, Nyon, Switzerland
| | - Michelle Helinski
- European & Developing Countries Clinical Trials Partnership, The Hague, Netherlands
| | - Michael Makanga
- European & Developing Countries Clinical Trials Partnership, The Hague, Netherlands
| | - Ana Lúcia Weinberg
- European & Developing Countries Clinical Trials Partnership, The Hague, Netherlands
| | | | | | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
Pathogenic Effects of M. tuberculosis-Specific Proteins ESAT-6 and CFP-10 in Macrophage Culture and in 3D-Granulemogenesis Model In Vitro. Bull Exp Biol Med 2021; 171:656-660. [PMID: 34617184 DOI: 10.1007/s10517-021-05288-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 10/20/2022]
Abstract
We studied the effects of M. tuberculosis secretory proteins ESAT-6 and CFP-10 on the properties of vaccinal mycobacteria BCG not producing these proteins. Phagocytosis of M. bovis by macrophages, proliferation of mycobacteria in macrophages, apoptosis and necrosis of macrophages, and the production of reactive oxygen and nitrogen species were studied. It was shown that both ESAT-6 and CFP-10 significantly increased the number of phagocytized mycobacteria by increasing the number of phagocytic-active macrophages and augment the intracellular proliferation of the pathogen. At the same time, macrophages preincubated with ESAT-6 and CFP-10 reduce the production of reactive oxygen and nitrogen species and are more susceptible to apoptosis and necrosis in the presence of mycobacteria. In summary, these proteins suppress macrophage-mediated mechanisms of anti-tuberculosis resistance and impart pronounced pathogenic properties to non-pathogenic mycobacteria that do not secrete ESAT-6 and CFP-10.
Collapse
|
17
|
Korablioviene J, Mauricas M, Dumalakiene I, Caplinskas S, Viliene R, Baleisis J, Vysniauskis G, Chorostowska-Wynimko J, Magelinskiene G, Korabliov P, Valiulis A. BCG masking phenomena might depend on the species of Mycobacterium. Acta Microbiol Immunol Hung 2021; 68:27-33. [PMID: 33646137 DOI: 10.1556/030.2021.01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
This study investigated BCG masking dependency on the species of Mycobacterium through the immune response to the mycobacterial region of deletion 1 (RD-1) associated growth affecting proteins (GEP).To evaluate the effects of GEP, 8-week old female BALB/c mice were immunized with either the wild type Mycobacterium bovis (MBGEP) or the ATCC Mycobacterium avium subsp. avium (MAGEP) strain and then subjected to further exposure with Mycobacterium terrae or M. avium sub. avium. Mice immunized with MAGEP and those mice further exposed to M. avium subsp. avium had increased granulocytes (GRA) and monocytes to lymphocytes rate (MLR) compared to control mice. Immunization of mice with GEP induced an antibody response one month after primary immunization, as observed by cross-reactivity. Our findings suggest that MAGEP is related to a latent hypersensitivity reaction and an increased risk of mycobacterial infection susceptibility. According to the results of the present study, previous sensitization with NTM antigens results in varying immune reactions after contact with different NTM argued that masking phenomena may be dependent on the species of Mycobacterium.
Collapse
Affiliation(s)
- Joana Korablioviene
- 1Department of Immunology, State Research Institute Center for Innovative Medicine, Santariskių Str. 5, Vilnius, Lithuania
- 2Center for Communicable Diseases and AIDS, Nugaletojų Str. 14, Vilnius, Lithuania
| | - Mykolas Mauricas
- 1Department of Immunology, State Research Institute Center for Innovative Medicine, Santariskių Str. 5, Vilnius, Lithuania
| | - Irena Dumalakiene
- 1Department of Immunology, State Research Institute Center for Innovative Medicine, Santariskių Str. 5, Vilnius, Lithuania
| | - Saulius Caplinskas
- 2Center for Communicable Diseases and AIDS, Nugaletojų Str. 14, Vilnius, Lithuania
- 3Educology and Social Work Institute, Mykolas Romeris University, Ateities Str. 20, Vilnius, Lithuania
| | - Rita Viliene
- 1Department of Immunology, State Research Institute Center for Innovative Medicine, Santariskių Str. 5, Vilnius, Lithuania
| | - Justinas Baleisis
- 1Department of Immunology, State Research Institute Center for Innovative Medicine, Santariskių Str. 5, Vilnius, Lithuania
| | - Gintautas Vysniauskis
- 1Department of Immunology, State Research Institute Center for Innovative Medicine, Santariskių Str. 5, Vilnius, Lithuania
| | - Joanna Chorostowska-Wynimko
- 4Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Ginreta Magelinskiene
- 5Department of Public Health, Institute of Health Sciences, Vilnius University Faculty of Medicine, M.K. Ciurlionio Str. 21, Vilnius, Lithuania
| | - Pavel Korabliov
- 1Department of Immunology, State Research Institute Center for Innovative Medicine, Santariskių Str. 5, Vilnius, Lithuania
| | - Arunas Valiulis
- 5Department of Public Health, Institute of Health Sciences, Vilnius University Faculty of Medicine, M.K. Ciurlionio Str. 21, Vilnius, Lithuania
- 6Department of Children's Diseases, Institute of Clinical Medicine, Vilnius University Faculty of Medicine, Antakalnio Str. 57, Vilnius, Lithuania
| |
Collapse
|
18
|
Immunological Characterization of Proteins Expressed by Genes Located in Mycobacterium tuberculosis-Specific Genomic Regions Encoding the ESAT6-like Proteins. Vaccines (Basel) 2021; 9:vaccines9010027. [PMID: 33430286 PMCID: PMC7825740 DOI: 10.3390/vaccines9010027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
The 6 kDa early secreted antigen target (ESAT6) is a low molecular weight and highly immunogenic protein of Mycobacterium tuberculosis with relevance in the diagnosis of tuberculosis and subunit vaccine development. The gene encoding the ESAT6 protein is located in the M. tuberculosis-specific genomic region known as the region of difference (RD)1. There are 11 M. tuberculosis-specific RDs absent in all of the vaccine strains of BCG, and three of them (RD1, RD7, and RD9) encode immunodominant proteins. Each of these RDs has genes for a pair of ESAT6-like proteins. The immunological characterizations of all the possible proteins encoded by genes in RD1, RD7 and RD9 have shown that, besides ESAT-6 like proteins, several other proteins are major antigens useful for the development of subunit vaccines to substitute or supplement BCG. Furthermore, some of these proteins may replace the purified protein derivative of M. tuberculosis in the specific diagnosis of tuberculosis by using interferon-gamma release assays and/or tuberculin-type skin tests. At least three subunit vaccine candidates containing ESAT6-like proteins as antigen components of multimeric proteins have shown efficacy in phase 1 and phase II clinical trials in humans.
Collapse
|
19
|
Yabaji SM, Dhamija E, Mishra AK, Srivastava KK. ESAT-6 regulates autophagous response through SOD-2 and as a result induces intracellular survival of Mycobacterium bovis BCG. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140470. [PMID: 32535275 DOI: 10.1016/j.bbapap.2020.140470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
Abstract
Mycobacterium is known for subverting the host defense machinery, and one such mechanism is the inhibition of autophagy. Here, we have demonstrated that Mycobacterium tuberculosis (MTB) secretes a virulence factor; an early secretory antigenic target protein (ESAT-6) into the phagosome, which induces the expression and activity of mitochondrial superoxide dismutase (SOD-2) of macrophages. Using a series of experiments, and Mycobacterium bovis BCG as a model strain (where ESAT-6 protein is not expressed), we have delineated that the protein regulates SOD-2 of macrophages. The expression and augmentation of SOD-2 activity were confirmed by either incubating the macrophages with ESAT-6 protein, transfection of macrophage by esat6 gene using a eukaryotic promoter vector, or by infection with different mycobacterial strains. The induction of acidification of phagosomal compartment containing bacteria was observed in cells that express low levels of SOD-2. This was further confirmed by observing a significant decrease in the M. bovis BCG intracellular load in the sod-2 knocked-down macrophages.
Collapse
Affiliation(s)
- Shivraj M Yabaji
- Division of Microbiology and Academy of Scientific and Innovative Research, CSIR-Central, Drug Research Institute, Lucknow 226031, India
| | - Ekta Dhamija
- Division of Microbiology and Academy of Scientific and Innovative Research, CSIR-Central, Drug Research Institute, Lucknow 226031, India
| | - Alok K Mishra
- Division of Microbiology and Academy of Scientific and Innovative Research, CSIR-Central, Drug Research Institute, Lucknow 226031, India
| | - Kishore K Srivastava
- Division of Microbiology and Academy of Scientific and Innovative Research, CSIR-Central, Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
20
|
Lew MH, Norazmi MN, Tye GJ. Enhancement of immune response against Mycobacterium tuberculosis HspX antigen by incorporation of combined molecular adjuvant (CASAC). Mol Immunol 2019; 117:54-64. [PMID: 31739193 DOI: 10.1016/j.molimm.2019.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB) is one of the deadliest human diseases worldwide caused by mycobacterial infection in the lung. Bacillus Calmette-Guerin (BCG) vaccine protects against disseminated TB in children, but its effectiveness is still questionable due to highly variable protections in adolescence and elderly individuals. Targeting the latency M.tb antigen is a recent therapeutic approach to eradicate dormant pathogen that could possibly lead to disease activation. In this study, we aimed to potentiate immune responses elicited against 16 kDa α-crystalline (HspX) tuberculosis latency antigen by incorporation of Combined Adjuvant for Synergistic Activation of Cellular immunity (CASAC). Histidine-tagged recombinant HspX protein was initially produced in Escherichia coli and purified using Ni-NTA chromatography. To evaluate its adjuvanticity, C57BL/6 mice (n = 5) were initially primed and intradermally immunised in 2-weeks interval for 4 rounds with recombinant HspX, formulated with and without CASAC. Humoral and cell-mediated immune responses elicited against HspX antigen were evaluated using ELISA and Flow Cytometry. Our findings showed that CASAC improved humoral immunity with increased antigen-specific IgG1 and IgG2a antibody response. Stronger CD8+ and Th1-driven immunity was induced by CASAC formulation as supported by elevated level of IFN-γ, TNF-α, IL-12 and IL-17A; and with low IL-10 secretion. Interestingly, adjuvanted HspX vaccine triggered a higher percentage of effector memory T-cell population than those immunised with unadjuvanted vaccine. In conclusion, CASAC adjuvant has great potential to enhance immunogenicity elicited against HspX antigen, which could be an alternative regimen to improve the efficacy of future therapeutic vaccine against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Min Han Lew
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia.
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia.
| |
Collapse
|
21
|
Linge I, Petrova E, Dyatlov A, Kondratieva T, Logunova N, Majorov K, Kondratieva E, Apt A. Reciprocal control of Mycobacterium avium and Mycobacterium tuberculosis infections by the alleles of the classic Class II H2-Aβ gene in mice. INFECTION GENETICS AND EVOLUTION 2019; 74:103933. [DOI: 10.1016/j.meegid.2019.103933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022]
|
22
|
Bonilla-Muro MG, Hernández de la Cruz ON, Gonzalez-Barrios JA, Alcaráz-Estrada SL, Castañón-Arreola M. EsxA mainly contributes to the miR-155 overexpression in human monocyte-derived macrophages and potentially affect the immune mechanism of macrophages through miRNA dysregulation. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 54:185-192. [PMID: 31561988 DOI: 10.1016/j.jmii.2019.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 03/24/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND/PURPOSE Mycobacterium tuberculosis is a successful intracellular pathogen that uses multiple proteins to survive within macrophages, one of the most remarkable is the virulence factor EsxA. In this study, we evaluate the participation of EsxA in the miRNAs expression profile of human monocyte-derived macrophages (hMDM), to mapping out the contribution of this virulence factor in the miRNA profile and how these changes can influence and alter immune-related processes and pathways. METHODS The cytotoxic effect of rEsxA on hMDM was evaluated by the neutral red assay. The evaluation of miRNA expression profile in infected and rEsxA-stimulated hMDM was done using TaqMan Low Density Assays, and in silico analyses was carried on to construct Protein-Protein Interaction network of miRNAs targets. RESULTS miR-155 was the only miRNA upregulated consistently in hMDM infected with M. tuberculosis H37Rv or stimulated with rEsxA. In hMDM stimulated with rEsxA, we found 25 miRNA's dysregulated (8 up-regulated and 17 down-regulated). The most significant were the miR-155 and miR-622 that has been observed in the analysis carried out with two different endogenous controls (U6 snRNA and RNU44) for the normalization of expression analysis. This result suggests that rEsxA induces the deregulation of miRNAs that potentially target genes in key pathways for the infection control, like the MAPK signaling pathway, cytokines, and chemokine signaling pathways, and several connected pathways involved in mycobacterial uptake, vesicular traffic, and endosome maturation. CONCLUSION Higher expression levels of miR-155 suggest potential roles of these miRNA in EsxA-dependent immune subversion.
Collapse
Affiliation(s)
| | | | - Juan Antonio Gonzalez-Barrios
- Coordinación de Capacitación, Desarrollo e Investigación, Hospital Regional 1º de Octubre, ISSSTE, Mexico City, Mexico
| | | | | |
Collapse
|
23
|
Behura A, Mishra A, Chugh S, Mawatwal S, Kumar A, Manna D, Mishra A, Singh R, Dhiman R. ESAT-6 modulates Calcimycin-induced autophagy through microRNA-30a in mycobacteria infected macrophages. J Infect 2019; 79:139-152. [PMID: 31181223 DOI: 10.1016/j.jinf.2019.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/12/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Mycobacterium tuberculosis (M. tb) has a sumptuous repertoire of effector molecules to counter host defenses. Some of these antigens inhibit autophagy but the exact mechanism of this inhibition is poorly understood. METHODS Purified protein derivative (PPD) was fractionated using 10 (PPD 10, antigenic molecular weight > 10 kDa) and 3 (PPD 3, mol. weight > 3 kDa) kDa cutters. Effect of these fractions on Calcimycin-induced autophagy and intracellular mycobacterial viability was then studied using different experimental approaches. RESULT We found significant downregulation of autophagy by PPD 3 pre-treatment in Calcimycin-treated dTHP-1 cells compared to PPD 10. This reduction in autophagy also corroborated with the enhanced survival of mycobacteria in macrophages. We demonstrate that recombinant early secreted antigenic target 6 (rESAT-6) is responsible to inhibit Calcimycin-induced autophagy and enhance intracellular survival of mycobacteria. We also show that pre-treatment with rESAT-6 upregulates microRNA (miR)-30a-3p expression and vis-a-vis downregulates miR-30a-5p expression in Calcimycin-treated dTHP-1 cells. Transfection studies with either miR-30a-3p inhibitor or miR-30a-5p mimic clearly elucidated the opposing roles of miR-30a-3p and miR-30a-5p in rESAT-6 mediated mycobacterial survival through autophagy inhibition. CONCLUSION Taken together, our result evidently highlights that rESAT-6 enhances intracellular survival of mycobacteria by modulating miR-30a-3p and miR-30a-5p expression.
Collapse
Affiliation(s)
- Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Saurabh Chugh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, PO Box # 4, Faridabad 121001, Haryana, India
| | - Shradha Mawatwal
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Debraj Manna
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, PO Box # 4, Faridabad 121001, Haryana, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
24
|
Evaluation of Immune Responses to a DNA Vaccine Encoding Ag85a-Cfp10 Antigen of Mycobacterium tuberculosis in an Animal Model. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.65689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Dewi DNSS, Soedarsono, Mertaniasih NM. T CELL EPITOPES OF THE ESXA FULL GENE OF MYCOBACTERIUM TUBERCULOSIS FROM SPUTUM OF MDR-TB PATIENTS. Afr J Infect Dis 2018; 12:66-70. [PMID: 30109288 PMCID: PMC6085733 DOI: 10.21010/ajid.v12i2.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 02/02/2023] Open
Abstract
Background: In 2015, World Health Organization (WHO) discovered 10.4 million tuberculosis (TB) cases around the world. Multidrug-resistant tuberculosis (MDR-TB) became a threat because it has high mortality number. There were 480,000 new MDR-TB cases in 2015. Based on those problems, diagnostic development to detect M. tuberculosis rapidly and accurately is needed. The importance of detecting epitope expression of esxA full gene because there was a potential of complexity over the protein structure and might affect the protein concentration. By knowing epitope prediction, there’s an expectation that it can help the development of TB diagnostic. This research was aimed to determine the T cell epitope prediction of esxA full gene from MDR-TB patients Material and Methods: Total of 24 MDR-TB sputum isolate from TB patients at Dr. Soetomo Hospital were collected from September to December 2016. Samples were confirmed as MDR-TB using GeneXpert and Bactec MGIT 960. Those samples tested using PCR targeted 580 bp of esxA gene and sequencing. Gene sequence was aligned against wild type using Bioedit program version 7.2.5 and NCBI BLAST. T cell epitope prediction was analyzed by GENETYX version 10. Results: Epitope predictions that could be obtained were IEAAAS, ASAIQG, VTSIHS, TKLAAA, VTGMFA based IAd Pattern Position and EAAAS based Rothbard/Taylor Pattern Position. Those prediction epitopes can determine the severity of disease, therefore full gene of esxA could be used as diagnostic target. Conclusion: This research discovered five specific T cell epitope prediction based on IAd Pattern Position and one epitope prediction according to Rothbard/Taylor Pattern Position.
Collapse
Affiliation(s)
- Desak Nyoman Surya Suameitria Dewi
- Student of Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Jl. Mayjen. Prof. Dr. Moestopo No. 47, Surabaya 60131, Indonesia.,Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Kampus C Jl. Mulyorejo Universitas Airlangga, Surabaya 60115, Indonesia
| | - Soedarsono
- Department of Pulmonology, Faculty of Medicine, Universitas Airlangga -Dr. Soetomo Hospital, Jl. Mayjen. Prof. Dr. Moestopo No. 47, Surabaya 60131, Indonesia
| | - Ni Made Mertaniasih
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Airlangga -Dr. Soetomo Hospital, Jl. Mayjen. Prof. Dr. Moestopo No. 47, Surabaya 60131, Indonesia
| |
Collapse
|
26
|
Jiang H, Sun J, Chen Y, Chen Z, Wang L, Gao W, Shi Y, Zhang W, Mei Y, Chokkakula S, Vissa V, Jiang T, Wu A, Wang H. Landscape of the genome and host cell response of Mycobacterium shigaense reveals pathogenic features. Emerg Microbes Infect 2018; 7:112. [PMID: 29934568 PMCID: PMC6015043 DOI: 10.1038/s41426-018-0116-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 02/08/2023]
Abstract
A systems approach was used to explore the genome and transcriptome of Mycobacterium shigaense, a new opportunistic pathogen isolated from a patient with a skin infection, and the host response transcriptome was assessed using a macrophage infection model. The M. shigaense genome comprises 5,207,883 bp, with 67.2% G+C content and 5098 predicted coding genes. Evolutionarily, the bacterium belongs to a cluster in the phylogenetic tree along with three target opportunistic pathogenic strains, namely, M. avium, M. triplex and M. simiae. Potential virulence genes are indeed expressed by M. shigaense under culture conditions. Phenotypically, M. shigaense had similar infection and replication capacities in a macrophage model as the opportunistic species compared to M. tuberculosis. M. shigaense activated NF-κB, TNF, cytokines and chemokines in the host innate immune-related signaling pathways and elicited an early response shared with pathogenic bacilli except M. tuberculosis. M. shigaense upregulated specific host response genes such as TLR7, CCL4 and CXCL5. We performed an integrated and comparative analysis of M. shigaense. Multigroup comparison indicated certain differences with typical pathogenic bacilli in terms of gene features and the macrophage response.
Collapse
Affiliation(s)
- Haiqin Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
| | - Jiya Sun
- Suzhou Institute of Systems Medicine, Center of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, 215021, China
| | - Yanqing Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
| | - Zhiming Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
| | - Le Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
| | - Wei Gao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
| | - Ying Shi
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
| | - Wenyue Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
| | - Youming Mei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
| | - Santosh Chokkakula
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
| | - Varalakshmi Vissa
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
| | - Taijiao Jiang
- Suzhou Institute of Systems Medicine, Center of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, 215021, China.
| | - Aiping Wu
- Suzhou Institute of Systems Medicine, Center of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, 215021, China.
| | - Hongsheng Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China. .,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China.
| |
Collapse
|
27
|
Song N, Tan Y, Zhang L, Luo W, Guan Q, Yan MZ, Zuo R, Liu W, Luo FL, Zhang XL. Detection of circulating Mycobacterium tuberculosis-specific DNA by droplet digital PCR for vaccine evaluation in challenged monkeys and TB diagnosis. Emerg Microbes Infect 2018; 7:78. [PMID: 29691363 PMCID: PMC5915492 DOI: 10.1038/s41426-018-0076-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/29/2022]
Abstract
Mycobacterium tuberculosis (M. tb) is emerging as a more serious pathogen due to the increased multidrug-resistant TB and co-infection of human immunodeficiency virus (HIV). The development of an effective and sensitive detection method is urgently needed for bacterial load evaluation in vaccine development, early TB diagnosis, and TB treatment. Droplet digital polymerase chain reaction (ddPCR) is a newly developed sensitive PCR method for the absolute quantification of nucleic acid concentrations. Here, we used ddPCR to quantify the circulating virulent M. tb-specific CFP10 (10-kDa culture filtrate protein, Rv3874) and Rv1768 DNA copy numbers in the blood samples from Bacille Calmette-Guerin (BCG)-vaccinated and/or virulent M. tb H37Rv-challenged rhesus monkeys. We found that ddPCR was more sensitive compared to real-time fluorescence quantitative PCR (qPCR), as the detection limits of CFP10 were 1.2 copies/μl for ddPCR, but 15.8 copies/μl for qPCR. We demonstrated that ddPCR could detect CFP10 and Rv1768 DNA after 3 weeks of infection and at least two weeks earlier than qPCR in M.tb H37Rv-challenged rhesus monkey models. DdPCR could also successfully quantify CFP10 and Rv1768 DNA copy numbers in clinical TB patients’ blood samples (active pulmonary TB, extrapulmonary TB (EPTB), and infant TB). To our knowledge, this study is the first to demonstrate that ddPCR is an effective and sensitive method of measuring the circulating CFP10 and Rv1768 DNA for vaccine development, bacterial load evaluation in vivo, and early TB (including EPTB and infant TB) diagnosis as well.
Collapse
Affiliation(s)
- Neng Song
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Yang Tan
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Lingyun Zhang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Wei Luo
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Qing Guan
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Ming-Zhe Yan
- Wuhan Medical Treatment Center, Wuhan, 430071, China
| | - Ruiqi Zuo
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Weixiang Liu
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Feng-Ling Luo
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
28
|
Gcebe N, Rutten VPMG, van Pittius NG, Naicker B, Michel AL. Mycobacterium komaniense sp. nov., a rapidly growing non-tuberculous Mycobacterium species detected in South Africa. Int J Syst Evol Microbiol 2018. [PMID: 29543151 DOI: 10.1099/ijsem.0.002707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Some species of non-tuberculous mycobacteria (NTM) have been reported to be opportunistic pathogens of animals and humans. Recently there has been an upsurge in the number of cases of NTM infections, such that some NTM species are now recognized as pathogens of humans and animals. From a veterinary point of view, the major significance of NTM is the cross-reactive immune response they elicit against Mycobacterium bovis antigens, leading to misdiagnosis of bovine tuberculosis. Four NTM isolates were detected from a bovine nasal swab, soil and water, during an NTM survey in South Africa. These were all found using 16S rRNA gene sequence analysis to be closely related to Mycobacterium moriokaense. The isolates were further characterised by sequence analysis of the partial fragments of hsp65, rpoB and sodA. The genome of the type strain was also elucidated. Gene (16S rRNA, hsp65, rpoB and sodA) and protein sequence data analysis of 6 kDa early secretory antigenic target (ESAT 6) and 10 kDa culture filtrate protein (CFP-10) revealed that these isolates belong to a unique Mycobacterium species. Differences in phenotypic and biochemical traits between the isolates and closely related species further supported that these isolates belong to novel Mycobacterium species. We proposed the name Mycobacterium komaniense sp. nov. for this new species. The type strain is GPK 1020T (=CIP 110823T=ATCC BAA-2758).
Collapse
Affiliation(s)
- Nomakorinte Gcebe
- Tuberculosis Laboratory, Agricultural Research Council - Onderstepoort Veterinary Research, Onderstepoort, South Africa.,Department of Veterinary Tropical Diseases, Bovine Tuberculosis and Brucellosis Research Programme, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Victor P M G Rutten
- Department of Veterinary Tropical Diseases, Bovine Tuberculosis and Brucellosis Research Programme, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.,Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nicolaas Gey van Pittius
- Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Brendon Naicker
- Polymers and Composites, Materials Science and Manufacturing, Council for Scientific and Industrial Research, Brummeria, South Africa
| | - Anita L Michel
- Department of Veterinary Tropical Diseases, Bovine Tuberculosis and Brucellosis Research Programme, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
29
|
Harris SA, White A, Stockdale L, Tanner R, Sibley L, Sarfas C, Meyer J, Peter J, O'Shea MK, Manjaly Thomas ZR, Hamidi A, Satti I, Dennis MJ, McShane H, Sharpe S. Development of a non-human primate BCG infection model for the evaluation of candidate tuberculosis vaccines. Tuberculosis (Edinb) 2018; 108:99-105. [PMID: 29523335 PMCID: PMC5854371 DOI: 10.1016/j.tube.2017.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/18/2022]
Abstract
The lack of validated immunological correlates of protection makes tuberculosis vaccine development difficult and expensive. Using intradermal bacille Calmette-Guréin (BCG) as a surrogate for aerosol Mycobacterium tuberculosis (M.tb) in a controlled human infection model could facilitate vaccine development, but such a model requires preclinical validation. Non-human primates (NHPs) may provide the best model in which to do this. Cynomolgus and rhesus macaques were infected with BCG by intradermal injection. BCG was quantified from a skin biopsy of the infection site and from draining axillary lymph nodes, by culture on solid agar and quantitative polymerase chain reaction. BCG was detected up to 28 days post-infection, with higher amounts of BCG detected in lymph nodes after high dose compared to standard dose infection. Quantifying BCG from lymph nodes of cynomolgus macaques 14 days post-high dose infection showed a significant reduction in the amount of BCG detected in the BCG-vaccinated compared to BCG-naïve animals. Demonstrating a detectable vaccine effect in the lymph nodes of cynomolgus macaques, which is similar in magnitude to that seen in an aerosol M.tb infection model, provides support for proof-of-concept of an intradermal BCG infection model and evidence to support the further evaluation of a human BCG infection model.
Collapse
Affiliation(s)
- Stephanie A. Harris
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Lisa Stockdale
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Rachel Tanner
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | | - Joel Meyer
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Jonathan Peter
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Matthew K. O'Shea
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Ali Hamidi
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Iman Satti
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Helen McShane
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
30
|
Bandehpour M, Ahangarzadeh S, Yarian F, Lari A, Farnia P. In silicoevaluation of the interactions among two selected single chain variable fragments (scFvs) and ESAT-6 antigen ofMycobacterium tuberculosis. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617500699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nowadays antibody engineering is an important approach in the design and manufacture of therapeutic and diagnostic antibodies. The study of interactions between antibodies and antigens is the critical step in the design of antibodies with desirable properties. Computational docking is a useful tool for structural characterization of bimolecular interactions. Docking is the process of predicting bound conformations and binding enthalpy of antibody–antigen complexes. In this study, the three-dimensional structures of two ribosome displayed-selected scFv antibodies were constructed by Kotai Antibody Builder. By using ClusPro 2.0 web server, the ESAT-6 antigen (a tuberculosis-specific antigen) structure was docked to both scFv models to obtain the structures of the binding complexes and molecular dynamics (MD) simulations were performed using GROMACS 4.5.3 package. By analyzing of the ESAT-scFv complexes, important amino acids involved in antigen–antibody interactions were identified which were Asn164 in VL3, Ser164 in VL7 and Asn55 in VH7. All three amino acids belonged to the CDRs. In conclusion, results achieved from this bioinformatics study can help in the design and development of novel antibodies with improved affinities for tuberculosis diagnosis.
Collapse
Affiliation(s)
- Mojgan Bandehpour
- Cellular & Molecular Biology Research Center Shahid Beheshti, University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrzad Ahangarzadeh
- Cellular & Molecular Biology Research Center Shahid Beheshti, University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yarian
- Cellular & Molecular Biology Research Center Shahid Beheshti, University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Lari
- Systems Biomedicine, Pasteur Institute of Iran, Tehran, Iran
| | - Poopak Farnia
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Mycobacteriology Research Centre (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Comparison of the Performance of Urinary Mycobacterium tuberculosis Antigens Cocktail (ESAT6, CFP10, and MPT64) with Culture and Microscopy in Pulmonary Tuberculosis Patients. Int J Microbiol 2017; 2017:3259329. [PMID: 29181028 PMCID: PMC5664358 DOI: 10.1155/2017/3259329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022] Open
Abstract
Pulmonary tuberculosis (TB) is a major global health problem and is one of the top 10 causes of death worldwide. Our study aimed to evaluate the performance of urinary Mycobacterium tuberculosis (Mtb) antigens cocktail (ESAT6, CFP10, and MPT64) compared with culture and microscopy. This descriptive cross-sectional study was conducted in Dr. Hasan Sadikin General Hospital, Bandung, from January 2014 to October 2016. A total of 141 pulmonary tuberculosis patients were included. Sputum samples were examined for acid-fast bacilli (ZN stain) and mycobacterial culture (LJ); the Mtb antigens cocktail was examined in the urine sample. The positivity rate of TB detection from the three methods was as follows: AFB 52/141 (36.9%), culture 50/141 (35.5%), and urinary Mtb antigens cocktail 95/141 (67.4%). Sensitivity, specificity, PPV, and NPV of urinary Mtb antigens cocktail were 68.2%, 33%, 31.6%, and 69.6%, respectively. Validity of combination of both methods with culture as a gold standard yielded sensitivity, specificity, PPV, and NPV of 90%, 28.6%, 40.9%, and 83.8%, respectively. Combination of urinary Mtb antigens cocktail with AFB as a screening test gives a good sensitivity, although the specificity is reduced. Urinary Mtb antigens cocktail can be used as screening test for pulmonary tuberculosis.
Collapse
|
32
|
Ellis A, Balgeman A, Rodgers M, Updike C, Tomko J, Maiello P, Scanga CA, O'Connor SL. Characterization of T Cells Specific for CFP-10 and ESAT-6 in Mycobacterium tuberculosis-Infected Mauritian Cynomolgus Macaques. Infect Immun 2017; 85:e01009-16. [PMID: 28115506 PMCID: PMC5364300 DOI: 10.1128/iai.01009-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022] Open
Abstract
Nonhuman primates can be used to study host immune responses to Mycobacterium tuberculosis Mauritian cynomolgus macaques (MCMs) are a unique group of animals that have limited major histocompatibility complex (MHC) genetic diversity, such that MHC-identical animals can be infected with M. tuberculosis Two MCMs homozygous for the relatively common M1 MHC haplotype were bronchoscopically infected with 41 CFU of the M. tuberculosis Erdman strain. Four other MCMs, which had at least one copy of the M1 MHC haplotype, were infected with a lower dose of 3 CFU M. tuberculosis All animals mounted similar T-cell responses to CFP-10 and ESAT-6. Two epitopes in CFP-10 were characterized, and the MHC class II alleles restricting them were determined. A third epitope in CFP-10 was identified but exhibited promiscuous restriction. The CFP-10 and ESAT-6 antigenic regions targeted by T cells in MCMs were comparable to those seen in cases of human M. tuberculosis infection. Our data lay the foundation for generating tetrameric molecules to study epitope-specific CD4 T cells in M. tuberculosis-infected MCMs, which may guide future testing of tuberculosis vaccines in nonhuman primates.
Collapse
Affiliation(s)
- Amy Ellis
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexis Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cassaundra Updike
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
33
|
Sha S, Shi X, Deng G, Chen L, Xin Y, Ma Y. Mycobacterium tuberculosis Rv1987 induces Th2 immune responses and enhances Mycobacterium smegmatis survival in mice. Microbiol Res 2017; 197:74-80. [PMID: 28219528 DOI: 10.1016/j.micres.2017.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 01/13/2017] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis can interfere with host immune response and escape clearance through its specific antigens. M. tuberculosis Rv1987 encoded by region of difference (RD)-2 gene is a secretory protein with immunogenic potency. Here, we investigated the impact of Rv1987 on host cytokine responses and T cell polarization in mouse aerosol model. A recombinant M. smegmatis mc2155 strain that overexpressed Rv1987 protein (named MS1987) was constructed and used to infect C57BL/6 mice. The mc2155 harbored the empty vector (named MSVec) was as a control. The results showed that MS1987 challenged mice promoted Th2-biased cytokine responses with lower secretion of IFN-γ but higher production of IL-4 and Rv1987-specific IgG antibody compared to MSVec infected mice. Neutrophilic inflammation and high bacterial burden were observed in the lung tissues of MS1987 infected mice probably own to the failed Th1 cell immunity. Besides, subcutaneous injection of Rv1987 protein could mediate the Th1 cytokine responses caused by M. bovis BCG in mice. These results indicated that M. tuberculosis Rv1987 protein could modulate host immune response towards Th2 profile, which probably contributed to the immune evasion of bacteria from host elimination.
Collapse
Affiliation(s)
- Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W. Lushun South Road, Dalian 116044, China
| | - Xiaoxia Shi
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W. Lushun South Road, Dalian 116044, China
| | - Guoying Deng
- Department of Microbiology, Dalian Medical University, Dalian 116044, China
| | - Lina Chen
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Yi Xin
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W. Lushun South Road, Dalian 116044, China.
| |
Collapse
|
34
|
Davenne T, McShane H. Why don't we have an effective tuberculosis vaccine yet? Expert Rev Vaccines 2016; 15:1009-13. [PMID: 27010255 PMCID: PMC4950406 DOI: 10.1586/14760584.2016.1170599] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/22/2016] [Indexed: 11/15/2022]
Abstract
Mycobacterium tuberculosis (M.tb) has co-evolved with humans for thousands of years, to cause tuberculosis (TB). The success of M.tb as a pathogen is in part because of the ways in which M.tb evades and exploits different cell subsets, to persist and cause disease. M.tb expresses numerous molecules to prevent its recognition and destruction by immune cells. The only licensed vaccine against TB, Bacillle Calmette-Guerin (BCG), is effective at preventing disseminated disease in infants but confers highly variable efficacy against pulmonary TB in adults, particularly in the developing world. A greater understanding of the reasons for this variability, together with a better understanding of the early, innate, and non-antigen specific mechanisms of protection would facilitate the design and development of more effective vaccines.
Collapse
Affiliation(s)
- Tamara Davenne
- The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|
35
|
Xiao Y, Sha W, Tian Z, Chen Y, Ji P, Sun Q, Wang H, Wang S, Fang Y, Wen HL, Zhao HM, Lu J, Xiao H, Fan XY, Shen H, Wang Y. Adenylate kinase: a novel antigen for immunodiagnosis and subunit vaccine against tuberculosis. J Mol Med (Berl) 2016; 94:823-34. [PMID: 26903285 DOI: 10.1007/s00109-016-1392-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/07/2016] [Accepted: 02/11/2016] [Indexed: 01/09/2023]
Abstract
UNLABELLED Mycobacterium tuberculosis (M.tb)-derived antigens capable of inducing strong cellular and/or humoral responses are potential targets for both immunodiagnosis and vaccine development against tuberculosis (TB). In the present study, we identified adenylate kinase (ADK, Rv0733) as an antigen that induces high cellular and antibody responses in active TB patients. We consequently tested the use of ADK-specific T cells and antibodies as biomarkers for TB diagnosis. The ADK-specific IFN-γ-producing cells detected by ELISPOT assay showed a sensitivity of 85.0 % and specificity of 94.15 % for TB diagnosis while ADK-specific IgG antibody showed a sensitivity of 40.35 % and specificity of 96.43 %. Combining ADK-specific cellular and antibody responses increased the sensitivity to 91.59 % and the specificity to 96.15 %. Immunogenicity and protection against M.tb infection were further tested in a murine model. Immunization with ADK protein elicited strong specific T- and B-cell responses, and provided protection against the virulent H37Rv stain of M.tb resulting in lower bacilli load in the spleens and lungs. More ADK-specific polyfunctional Th1 cells were observed in the lungs when compared to adjuvant-immunized mice. ADK thus may serve as a novel M.tb antigen for TB immunodiagnosis and development of subunit vaccines. KEY MESSAGES ADK induces strong immune responses both in humans and mice. ADK-specific IFN-γ production and B-cell responses have high potential for TB diagnosis. ADK immunization provides protection against M.tb infection.
Collapse
MESH Headings
- Adenylate Kinase/administration & dosage
- Adenylate Kinase/immunology
- Adjuvants, Immunologic/administration & dosage
- Adolescent
- Adult
- Aged
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/immunology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- Bacterial Proteins/administration & dosage
- Bacterial Proteins/immunology
- Case-Control Studies
- Female
- Humans
- Immunity, Cellular/drug effects
- Immunity, Humoral/drug effects
- Immunogenicity, Vaccine
- Interferon-gamma/biosynthesis
- Mice
- Mice, Inbred C57BL
- Middle Aged
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Tuberculosis Vaccines/administration & dosage
- Tuberculosis, Pulmonary/diagnosis
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/prevention & control
- Vaccines, Subunit
Collapse
Affiliation(s)
- Yangjiong Xiao
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Wei Sha
- Shanghai Key Laboratory of Tuberculosis, Diagnosis and Treat Centre of Tuberculosis, Shanghai Pulmonary Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200433, China
| | - Zhaofeng Tian
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Yingying Chen
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Ping Ji
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Qin Sun
- Shanghai Key Laboratory of Tuberculosis, Diagnosis and Treat Centre of Tuberculosis, Shanghai Pulmonary Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200433, China
| | - Huiyu Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Shujun Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Yong Fang
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Han-Li Wen
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 201508, China
| | - Hui-Min Zhao
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 201508, China
| | - Jie Lu
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Heping Xiao
- Shanghai Key Laboratory of Tuberculosis, Diagnosis and Treat Centre of Tuberculosis, Shanghai Pulmonary Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200433, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 201508, China.
| | - Hao Shen
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China.
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China.
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Ying Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
36
|
Gcebe N, Michel A, Gey van Pittius NC, Rutten V. Comparative Genomics and Proteomic Analysis of Four Non-tuberculous Mycobacterium Species and Mycobacterium tuberculosis Complex: Occurrence of Shared Immunogenic Proteins. Front Microbiol 2016; 7:795. [PMID: 27375559 PMCID: PMC4894912 DOI: 10.3389/fmicb.2016.00795] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 05/11/2016] [Indexed: 01/15/2023] Open
Abstract
The Esx and PE/PPE families of proteins are among the most immunodominant mycobacterial antigens and have thus been the focus of research to develop vaccines and immunological tests for diagnosis of bovine and human tuberculosis, mainly caused by Mycobacterium bovis and Mycobacterium tuberculosis, respectively. In non-tuberculous mycobacteria (NTM), multiple copies of genes encoding homologous proteins have mainly been identified in pathogenic Mycobacterium species phylogenically related to Mycobacterium tuberculosis and Mycobacterium bovis. Only ancestral copies of these genes have been identified in nonpathogenic NTM species like Mycobacterium smegmatis, Mycobacterium sp. KMS, Mycobacterium sp. MCS, and Mycobacterium sp. JLS. In this study we elucidated the genomes of four nonpathogenic NTM species, viz Mycobacterium komanii sp. nov., Mycobacterium malmesburii sp. nov., Mycobacterium nonchromogenicum, and Mycobacterium fortuitum ATCC 6841. These genomes were investigated for genes encoding for the Esx and PE/PPE (situated in the esx cluster) family of proteins as well as adjacent genes situated in the ESX-1 to ESX-5 regions. To identify proteins actually expressed, comparative proteomic analyses of purified protein derivatives from three of the NTM as well as Mycobacterium kansasii ATCC 12478 and the commercially available purified protein derivatives from Mycobacterium bovis and Mycobacterium avium was performed. The genomic analysis revealed the occurrence in each of the four NTM, orthologs of the genes encoding for the Esx family, the PE and PPE family proteins in M. bovis and M. tuberculosis. The identification of genes of the ESX-1, ESX-3, and ESX-4 region including esxA, esxB, ppe68, pe5, and pe35 adds to earlier reports of these genes in nonpathogenic NTM like M. smegmatis, Mycobacterium sp. JLS and Mycobacterium KMS. This report is also the first to identify esxN gene situated within the ESX-5 locus in M. nonchromogenicum. Our proteomics analysis identified a total of 609 proteins in the six PPDs and 22 of these were identified as shared between PPD of M.bovis and one or more of the NTM PPDs. Previously characterized M tuberculosis/M. bovis homologous immunogenic proteins detected in one or more of the nonpathogenic NTM in this study included CFP-10 (detected in M. malmesburii sp. nov. PPD), GroES (detected in all NTM PPDs but M. malmesburii sp. nov.), DnaK (detected in all NTM PPDs), and GroEL (detected in all NTM PPDs). This study confirms reports that the ESX-1, ESX-3, and ESX-4 regions are ancestral regions and thus found in the genomes of most mycobacteria. Identification of NTM homologs of immunogenic proteins warrants further investigation of their ability to cause cross-reactive immune responses with MTBC antigens.
Collapse
Affiliation(s)
- Nomakorinte Gcebe
- Tuberculosis Laboratory, Agricultural Research Council - Onderstepoort Veterinary InstituteOnderstepoort, South Africa; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of PretoriaOnderstepoort, South Africa
| | - Anita Michel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria Onderstepoort, South Africa
| | - Nicolaas C Gey van Pittius
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University Tygerberg, South Africa
| | - Victor Rutten
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of PretoriaOnderstepoort, South Africa; Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
37
|
Shi L, Eugenin EA, Subbian S. Immunometabolism in Tuberculosis. Front Immunol 2016; 7:150. [PMID: 27148269 PMCID: PMC4838633 DOI: 10.3389/fimmu.2016.00150] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023] Open
Abstract
Immunometabolism, the study of the relationship between bioenergetic pathways and specific functions of immune cells, has recently gained increasing appreciation. In response to infection, activation of the host innate and adaptive immune cells is accompanied by a switch in the bioenergetic pathway from oxidative phosphorylation to glycolysis, a metabolic remodeling known as the Warburg effect, which is required for the production of antimicrobial and pro-inflammatory effector molecules. In this review, we summarize the current understanding of the Warburg effect and discuss its association with the expression of host immune responses in tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb). We also discuss potential mechanisms underlying the Warburg effect with a focus on the expression and regulation of hypoxia-inducible factor 1 alpha (HIF-1α), the regulatory subunit of HIF-1, a major transcription regulator involved in cellular stress adaptation processes, including energy metabolism and antimicrobial responses. We also propose a novel hypothesis that Mtb perturbs the Warburg effect of immune cells to facilitate its survival and persistence in the host. A better understanding of the dynamics of metabolic states of immune cells and their specific functions during TB pathogenesis can lead to the development of immunotherapies capable of promoting Mtb clearance and reducing Mtb persistence and the emergence of drug resistant strains.
Collapse
Affiliation(s)
- Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Biomedical and Health Sciences, Rutgers - The State University of New Jersey , Newark, NJ , USA
| | - Eliseo A Eugenin
- Public Health Research Institute, New Jersey Medical School, Biomedical and Health Sciences, Rutgers - The State University of New Jersey , Newark, NJ , USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Biomedical and Health Sciences, Rutgers - The State University of New Jersey , Newark, NJ , USA
| |
Collapse
|
38
|
Dhanda SK, Vir P, Singla D, Gupta S, Kumar S, Raghava GPS. A Web-Based Platform for Designing Vaccines against Existing and Emerging Strains of Mycobacterium tuberculosis. PLoS One 2016; 11:e0153771. [PMID: 27096425 PMCID: PMC4838326 DOI: 10.1371/journal.pone.0153771] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/04/2016] [Indexed: 01/08/2023] Open
Abstract
Development of an effective vaccine against drug-resistant Mycobacterium tuberculosis (Mtb) is crucial for saving millions of premature deaths every year due to tuberculosis. This paper describes a web portal developed for assisting researchers in designing vaccines against emerging Mtb strains using traditional and modern approaches. Firstly, we annotated 59 genomes of Mycobacterium species to understand similarity/dissimilarity between tuberculoid, non-tuberculoid and vaccine strains at genome level. Secondly, antigen-based vaccine candidates have been predicted in each Mtb strain. Thirdly, epitopes-based vaccine candidates were predicted/discovered in above antigen-based vaccine candidates that can stimulate all arms of immune system. Finally, a database of predicted vaccine candidates at epitopes as well at antigen level has been developed for above strains. In order to design vaccine against a newly sequenced genome of Mtb strain, server integrates three modules for identification of strain-, antigen-, epitope-specific vaccine candidates. We observed that 103522 unique peptides (9mers) had the potential to induce an antibody response and/or promiscuous binder to MHC alleles and/or have the capability to stimulate T lymphocytes. In summary, this web-portal will be useful for researchers working on designing vaccines against Mtb including drug-resistant strains. Availability: The database is available freely at http://crdd.osdd.net/raghava/mtbveb/.
Collapse
Affiliation(s)
- Sandeep Kumar Dhanda
- Bioinformatics Centre, Institute of Microbial Technology, Chandigarh, 160036, India
| | - Pooja Vir
- Bioinformatics Centre, Institute of Microbial Technology, Chandigarh, 160036, India
| | - Deepak Singla
- Bioinformatics Centre, Institute of Microbial Technology, Chandigarh, 160036, India
| | - Sudheer Gupta
- Bioinformatics Centre, Institute of Microbial Technology, Chandigarh, 160036, India
| | - Shailesh Kumar
- Bioinformatics Centre, Institute of Microbial Technology, Chandigarh, 160036, India
| | - Gajendra P. S. Raghava
- Bioinformatics Centre, Institute of Microbial Technology, Chandigarh, 160036, India
- * E-mail:
| |
Collapse
|
39
|
Abstract
Adaptive immunity towards tuberculosis (TB) has been extensively studied for many years. In addition, in recent years the profound contribution of innate immunity to host defence against this disease has become evident. The discovery of pattern recognition receptors, which allow innate immunity to tailor its response to different infectious agents, has challenged the view that this arm of immunity is nonspecific. Evidence is now accumulating that innate immunity can remember a previous exposure to a microorganism and respond differently during a second exposure. Although the specificity and memory of innate immunity cannot compete with the highly sophisticated adaptive immune response, its contribution to host defence against infection and to vaccine-induced immunity should not be underestimated and needs to be explored. Here, we present the concept of trained immunity and discuss how this may contribute to new avenues for control of TB.
Collapse
Affiliation(s)
- M Lerm
- Division of Microbiology and Molecular Medicine, Faculty of Medicine and Health Sciences, Linköping, Sweden
| | - M G Netea
- Radboud Institute for Molecular Life Sciences, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
40
|
Vargas-Romero F, Guitierrez-Najera N, Mendoza-Hernández G, Ortega-Bernal D, Hernández-Pando R, Castañón-Arreola M. Secretome profile analysis of hypervirulent Mycobacterium tuberculosis CPT31 reveals increased production of EsxB and proteins involved in adaptation to intracellular lifestyle. Pathog Dis 2016; 74:ftv127. [PMID: 26733498 DOI: 10.1093/femspd/ftv127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 01/05/2023] Open
Abstract
Epidemiological information and animal models have shown various Mycobacterium tuberculosis phenotypes ranging from hyper- to hypovirulent forms. Recent genomic and proteomic studies suggest that the outcome of infection depends on the M. tuberculosis fitness, which is a direct consequence of its phenotype. However, little is known about the molecular and cellular mechanisms used by mycobacteria to survive, replicate and persist during infection. The aim of this study was to perform a comprehensive proteomic analysis of culture filtrate from hypo- (CPT23) and hypervirulent (CPT31) M. tuberculosis isolates. Using two-dimensional electrophoresis we observed that 70 proteins were unique, or more abundant in culture filtrate of CPT31, and 15 of these were identified by mass spectrometry. Our analysis of protein expression showed that most of the proteins identified are involved in lipid metabolism (FadA3, FbpB and EchA3), detoxification and adaptation (GroEL2, SodB and HspX) and cell wall processes (LprA, Tig and EsxB). These results suggest that overrepresented proteins in M. tuberculosis CPT31 secretome could facilitate mycobacterial infection and persistence.
Collapse
Affiliation(s)
| | - Nora Guitierrez-Najera
- Medical Proteomics Unit, National Institute of Genomic Medicine (INMEGEN), 14610, Mexico
| | | | | | - Rogelio Hernández-Pando
- Department of Experimental Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), 14080, Mexico
| | | |
Collapse
|
41
|
Peña D, Rovetta AI, Hernández Del Pino RE, Amiano NO, Pasquinelli V, Pellegrini JM, Tateosian NL, Rolandelli A, Gutierrez M, Musella RM, Palmero DJ, Gherardi MM, Iovanna J, Chuluyan HE, García VE. A Mycobacterium tuberculosis Dormancy Antigen Differentiates Latently Infected Bacillus Calmette-Guérin-vaccinated Individuals. EBioMedicine 2015; 2:884-90. [PMID: 26425695 PMCID: PMC4563115 DOI: 10.1016/j.ebiom.2015.05.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 11/03/2022] Open
Abstract
IFN-γ release assays (IGRAs) are better indicators of Mycobacterium tuberculosis infection than the tuberculin skin test (TST) in Bacillus Calmette–Guérin (BCG)-vaccinated populations. However, IGRAs do not discriminate active and latent infections (LTBI) and no gold standard for LTBI diagnosis is available. Thus, since improved tests to diagnose M. tuberculosis infection are required, we assessed the efficacy of several M. tuberculosis latency antigens. BCG-vaccinated healthy donors (HD) and tuberculosis (TB) patients were recruited. QuantiFERON-TB Gold In-Tube, TST and clinical data were used to differentiate LTBI. IFN-γ production against CFP-10, ESAT-6, Rv2624c, Rv2626c and Rv2628 antigens was tested in peripheral blood mononuclear cells. LTBI subjects secreted significantly higher IFN-γ levels against Rv2626c than HD. Additionally, Rv2626c peptide pools to which only LTBI responded were identified, and their cumulative IFN-γ response improved LTBI discrimination. Interestingly, whole blood stimulation with Rv2626c allowed the discrimination between active and latent infections, since TB patients did not secrete IFN-γ against Rv2626c, in contrast to CFP-10 + ESAT-6 stimulation that induced IFN-γ response from both LTBI and TB patients. ROC analysis confirmed that Rv2626c discriminated LTBI from HD and TB patients. Therefore, since only LTBI recognizes specific epitopes from Rv2626c, this antigen could improve LTBI diagnosis, even in BCG-vaccinated people. Stimulation with Rv2626c M. tuberculosis antigen induced differential amounts of IFN-γ in LTBI individuals as compared to HD. The cumulative response to specific Rv2626c-derived peptide pools improved the discrimination of LTBI individuals from HD. PBMC or whole blood stimulation with Rv2626c differentiated latent from active infection (LTBI from TB patients).
Collapse
Affiliation(s)
- Delfina Peña
- Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA (Universidad de Buenos Aires)-CONICET, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina ; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Ana I Rovetta
- Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA (Universidad de Buenos Aires)-CONICET, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina ; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Rodrigo E Hernández Del Pino
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Nicolás O Amiano
- Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA (Universidad de Buenos Aires)-CONICET, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina ; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Virginia Pasquinelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Joaquín M Pellegrini
- Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA (Universidad de Buenos Aires)-CONICET, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina ; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Nancy L Tateosian
- Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA (Universidad de Buenos Aires)-CONICET, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina ; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Agustín Rolandelli
- Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA (Universidad de Buenos Aires)-CONICET, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina ; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Marisa Gutierrez
- Sección Bacteriología de la Tuberculosis, Hospital General de Agudos "Dr. E. Tornu", Combatientes de Malvinas 3002, 1427 Buenos Aires, Argentina
| | - Rosa M Musella
- División Tisioneumonología Hospital F.J. Muñiz, Uspallata 2272, C1282AEN Buenos Aires, Argentina
| | - Domingo J Palmero
- División Tisioneumonología Hospital F.J. Muñiz, Uspallata 2272, C1282AEN Buenos Aires, Argentina
| | - María M Gherardi
- INBIRS, Facultad de Medicina, UBA, Paraguay 2155, C1121ABG Buenos Aires, Argentina
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - H Eduardo Chuluyan
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina, UBA, Paraguay 2155, C1121ABG Buenos Aires, Argentina
| | - Verónica E García
- Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA (Universidad de Buenos Aires)-CONICET, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina ; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
42
|
Samuchiwal SK, Tousif S, Singh DK, Kumar A, Ghosh A, Bhalla K, Prakash P, Kumar S, Bhattacharyya M, Moodley P, Das G, Ranganathan A. A peptide fragment from the human COX3 protein disrupts association of Mycobacterium tuberculosis virulence proteins ESAT-6 and CFP10, inhibits mycobacterial growth and mounts protective immune response. BMC Infect Dis 2014; 14:355. [PMID: 24985537 PMCID: PMC4089558 DOI: 10.1186/1471-2334-14-355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/25/2014] [Indexed: 12/20/2022] Open
Abstract
Background Tuberculosis (TB) is one of the most prevalent infectious diseases affecting millions worldwide. The currently available anti-TB drugs and vaccines have proved insufficient to contain this scourge, necessitating an urgent need for identification of novel drug targets and therapeutic strategies. The disruption of crucial protein-protein interactions, especially those that are responsible for virulence in Mycobacterium tuberculosis – for example the ESAT-6:CFP10 complex – are a worthy pursuit in this direction. Methods We therefore sought to improvise a method to attenuate M. tuberculosis while retaining the latter’s antigenic properties. We screened peptide libraries for potent ESAT-6 binders capable of dissociating CFP10 from ESAT-6. We assessed the disruption by a peptide named HCL2, of the ESAT-6:CFP10 complex and studied its effects on mycobacterial survival and virulence. Results We found that HCL2, derived from the human cytochrome c oxidase subunit 3 (COX3) protein, disrupts ESAT-6:CFP10 complex, binds ESAT-6 potently, disintegrates bacterial cell wall and inhibits extracellular as well as intracellular mycobacterial growth. In addition, an HCL2 expressing M. tuberculosis strain induces both Th1 and Th17 host protective responses. Conclusions Disruption of ESAT-6:CFP10 association could, therefore, be an alternate method for attenuating M. tuberculosis, and a possible route towards future vaccine generation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Gobardhan Das
- Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, ICGEB, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | | |
Collapse
|
43
|
Yuk JM, Jo EK. Host immune responses to mycobacterial antigens and their implications for the development of a vaccine to control tuberculosis. Clin Exp Vaccine Res 2014; 3:155-67. [PMID: 25003089 PMCID: PMC4083068 DOI: 10.7774/cevr.2014.3.2.155] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/01/2014] [Accepted: 04/07/2014] [Indexed: 01/17/2023] Open
Abstract
Tuberculosis (TB) remains a worldwide health problem, causing around 2 million deaths per year. Despite the bacillus Calmette Guérin vaccine being available for more than 80 years, it has limited effectiveness in preventing TB, with inconsistent results in trials. This highlights the urgent need to develop an improved TB vaccine, based on a better understanding of host-pathogen interactions and immune responses during mycobacterial infection. Recent studies have revealed a potential role for autophagy, an intracellular homeostatic process, in vaccine development against TB, through enhanced immune activation. This review attempts to understand the host innate immune responses induced by a variety of protein antigens from Mycobacterium tuberculosis, and to identify future vaccine candidates against TB. We focus on recent advances in vaccine development strategies, through identification of new TB antigens using a variety of innovative tools. A new understanding of the host-pathogen relationship, and the usefulness of mycobacterial antigens as novel vaccine candidates, will contribute to the design of the next generation of vaccines, and to improving the host protective immune responses while limiting immunopathology during M. tuberculosis infection.
Collapse
Affiliation(s)
- Jae-Min Yuk
- Department of Microbiology and Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology and Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
44
|
Tiwari B, Soory A, Raghunand TR. An immunomodulatory role for theMycobacterium tuberculosisregion of difference 1 locus proteins PE35 (Rv3872) and PPE68 (Rv3873). FEBS J 2014; 281:1556-70. [DOI: 10.1111/febs.12723] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/03/2013] [Accepted: 01/21/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Bhavana Tiwari
- CSIR - Centre for Cellular and Molecular Biology; Hyderabad India
| | | | | |
Collapse
|
45
|
Marongiu L, Donini M, Toffali L, Zenaro E, Dusi S. ESAT-6 and HspX improve the effectiveness of BCG to induce human dendritic cells-dependent Th1 and NK cells activation. PLoS One 2013; 8:e75684. [PMID: 24130733 PMCID: PMC3794045 DOI: 10.1371/journal.pone.0075684] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 08/16/2013] [Indexed: 11/19/2022] Open
Abstract
The limited efficacy of the BCG vaccine against tuberculosis is partly due to the missing expression of immunogenic proteins. We analyzed whether the addition to BCG of ESAT-6 and HspX, two Mycobacterium tuberculosis (Mtb) antigens, could enhance its capacity to activate human dendritic cells (DCs). BCG showed a weak ability to induce DC maturation, cytokine release, and CD4(+) lymphocytes and NK cells activation. The addition of ESAT-6 or HspX alone to BCG-stimulated DC did not improve these processes, whereas their simultaneous addition enhanced BCG-dependent DC maturation and cytokine release, as well as the ability of BCG-treated DCs to stimulate IFN-γ release and CD69 expression by CD4(+) lymphocytes and NK cells. Addition of TLR2-blocking antibody decreased IL-12 release by BCG-stimulated DCs incubated with ESAT-6 and HspX, as well as IFN-γ secretion by CD4(+) lymphocytes co-cultured with these cells. Moreover, HspX and ESAT-6 improved the capacity of BCG-treated DCs to induce the expression of memory phenotype marker CD45RO in naïve CD4(+) T cells. Our results indicate that ESAT-6 and HspX cooperation enables BCG-treated human DCs to induce T lymphocyte and NK cell-mediated immune responses through TLR2-dependent IL-12 secretion. Therefore ESAT-6 and HspX represent good candidates for improving the effectiveness of BCG vaccination.
Collapse
Affiliation(s)
- Laura Marongiu
- Department of Pathology and Diagnostics, Section of General Pathology, University of Verona, Verona, Italy
| | - Marta Donini
- Department of Pathology and Diagnostics, Section of General Pathology, University of Verona, Verona, Italy
| | - Lara Toffali
- Department of Pathology and Diagnostics, Section of General Pathology, University of Verona, Verona, Italy
| | - Elena Zenaro
- Department of Pathology and Diagnostics, Section of General Pathology, University of Verona, Verona, Italy
| | - Stefano Dusi
- Department of Pathology and Diagnostics, Section of General Pathology, University of Verona, Verona, Italy
- * E-mail:
| |
Collapse
|
46
|
Vanden Driessche K, Persson A, Marais BJ, Fink PJ, Urdahl KB. Immune vulnerability of infants to tuberculosis. Clin Dev Immunol 2013; 2013:781320. [PMID: 23762096 PMCID: PMC3666431 DOI: 10.1155/2013/781320] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/30/2013] [Accepted: 03/31/2013] [Indexed: 02/08/2023]
Abstract
One of the challenges faced by the infant immune system is learning to distinguish the myriad of foreign but nonthreatening antigens encountered from those expressed by true pathogens. This balance is reflected in the diminished production of proinflammatory cytokines by both innate and adaptive immune cells in the infant. A downside of this bias is that several factors critical for controlling Mycobacterium tuberculosis infection are significantly restricted in infants, including TNF, IL-1, and IL-12. Furthermore, infant T cells are inherently less capable of differentiating into IFN- γ -producing T cells. As a result, infected infants are 5-10 times more likely than adults to develop active tuberculosis (TB) and have higher rates of severe disseminated disease, including miliary TB and meningitis. Infant TB is a fundamentally different disease than TB in immune competent adults. Immunotherapeutics, therefore, should be specifically evaluated in infants before they are routinely employed to treat TB in this age group. Modalities aimed at reducing inflammation, which may be beneficial for adjunctive therapy of some forms of TB in older children and adults, may be of no benefit or even harmful in infants who manifest much less inflammatory disease.
Collapse
Affiliation(s)
- Koen Vanden Driessche
- Centre for Understanding and Preventing Infections in Children, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
- Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Alexander Persson
- Centre for Understanding and Preventing Infections in Children, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Ben J. Marais
- Sydney Institute for Emerging Infectious Diseases and Biosecurity and The Children's Hospital at Westmead, University of Sydney, Locked Bag 4100, Sydney, NSW 2145, Australia
| | - Pamela J. Fink
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Kevin B. Urdahl
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
47
|
Yang H, Chen H, Liu Z, Ma H, Qin L, Jin R, Zheng R, Feng Y, Cui Z, Wang J, Liu J, Hu Z. A novel B-cell epitope identified within Mycobacterium tuberculosis CFP10/ESAT-6 protein. PLoS One 2013; 8:e52848. [PMID: 23308124 PMCID: PMC3538682 DOI: 10.1371/journal.pone.0052848] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 11/21/2012] [Indexed: 11/29/2022] Open
Abstract
Background The 10-kDa culture filtrate protein (CFP10) and 6-kDa early-secreted target antigen (ESAT-6) play important roles in mycobacterial virulence and pathogenesis through a 1∶1 complex formation (CFP10/ESAT-6 protein, CE protein), which have been used in discriminating TB patients from BCG-vaccinated individuals. The B-cell epitopes of CFP10 and ESAT-6 separately have been analyzed before, however, the epitopes of the CE protein are unclear and the precise epitope in the positions 40 to 62 of ESAT-6 is still unknown. Methods In the present study, we searched for the B-cell epitopes of CE protein by using phage-display library biopanning with the anti-CE polyclonal antibodies. The epitopes were identified by sequence alignment, binding affinity and specificity detection, generation of polyclonal mouse sera and detection of TB patient sera. Results One linear B-cell epitope (KWDAT) consistent with the 162nd–166th sequence of CE and the 57th–61st sequence of ESAT-6 protein was selected and identified. Significantly higher titers of E5 peptide-binding antibodies were found in the sera of TB patients compared with those of healthy individuals. Conclusion There was a B-cell epitope for CE and ESAT-6 protein in the position 40 to 62 of ESAT-6. E5 peptide may be useful in the serodiagnosis of tuberculosis, which need to be further confirmed by more sera samples.
Collapse
Affiliation(s)
- Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haizhen Chen
- Clinical Laboratory Diagnostics, Shanxi Medical University, Taiyuan, China
| | - Zhonghua Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lianhua Qin
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruiliang Jin
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yonghong Feng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenling Cui
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinming Liu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- * E-mail: (JL); (ZH)
| | - Zhongyi Hu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- * E-mail: (JL); (ZH)
| |
Collapse
|
48
|
Chandra Rai R, Dwivedi VP, Chatterjee S, Raghava Prasad DV, Das G. Early secretory antigenic target-6 of Mycobacterium tuberculosis: enigmatic factor in pathogen–host interactions. Microbes Infect 2012; 14:1220-6. [DOI: 10.1016/j.micinf.2012.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/31/2012] [Accepted: 07/31/2012] [Indexed: 11/25/2022]
|
49
|
Activity of trifluoperazine against replicating, non-replicating and drug resistant M. tuberculosis. PLoS One 2012; 7:e44245. [PMID: 22952939 PMCID: PMC3432105 DOI: 10.1371/journal.pone.0044245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/31/2012] [Indexed: 11/25/2022] Open
Abstract
Trifluoperazine, a knowm calmodulin antagonist, belongs to a class of phenothiazine compounds that have multiple sites of action in mycobacteria including lipid synthesis, DNA processes, protein synthesis and respiration. The objective of this study is to evaluate the potential of TFP to be used as a lead molecule for development of novel TB drugs by showing its efficacy on multiple drug resistant (MDR) Mycobacterium tuberculosis (M.tb) and non-replicating dormant M.tb. Wild type and MDR M.tb were treated with TFP under different growth conditions of stress like low pH, starvation, presence of nitric oxide and in THP-1 infection model. Perturbation in growth kinetics of bacilli at different concentrations of TFP was checked to determine the MIC of TFP for active as well as dormant bacilli. Results show that TFP is able to significantly reduce the actively replicating as well as non-replicating bacillary load. It has also shown inhibitory effect on the growth of MDR M.tb. TFP has shown enhanced activity against intracellular bacilli, presumably because phenothiazines are known to get accumulated in macrophages. This concentration was, otherwise, found to be non-toxic to macrophage in vitro. Our results show that TFP has the potential to be an effective killer of both actively growing and non-replicating bacilli including MDR TB. Further evaluation and in vivo studies with Trifluoperazine can finally help us know the feasibility of this compound to be used as either a lead compound for development of new TB drugs or as an adjunct in the current TB chemotherapy.
Collapse
|
50
|
Rosenberger T, Brülle JK, Sander P. A β-Lactamase based reporter system for ESX dependent protein translocation in mycobacteria. PLoS One 2012; 7:e35453. [PMID: 22530024 PMCID: PMC3329429 DOI: 10.1371/journal.pone.0035453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/16/2012] [Indexed: 01/22/2023] Open
Abstract
Protein secretion is essential for all bacteria in order to interact with their environment. Mycobacterium tuberculosis depends on protein secretion to subvert host immune response mechanisms. Both the general secretion system (Sec) and the twin-arginine translocation system (Tat) are functional in mycobacteria. Furthermore, a novel type of protein translocation system named ESX has been identified. In the genome of M. tuberculosis five paralogous ESX regions (ESX-1 to ESX-5) have been found. Several components of the ESX translocation apparatus have been identified over the last ten years. The ESX regions are composed of a basic set of genes for the translocation machinery and the main substrate - a heterodimer. The best studied of these heterodimers is EsxA (ESAT-6)/EsxB (CFP-10), which has been shown to be exported by ESX-1. EsxA/B is heavily involved in virulence of M. tuberculosis. EsxG/H is exported by ESX-3 and seems to be involved in an essential iron-uptake mechanism in M. tuberculosis. These findings make ESX-3 components high profile drug targets. Until now, reporter systems for determination of ESX protein translocation have not been developed. In order to create such a reporter system, a truncated β-lactamase (‘bla TEM-1) was fused to the N-terminus of EsxB, EsxG and EsxU, respectively. These constructs have then been tested in a β-lactamase (BlaS) deletion strain of Mycobacterium smegmatis. M. smegmatis ΔblaS is highly susceptible to ampicillin. An ampicillin resistant phenotype was conferred by translocation of Bla TEM-1-Esx fusion proteins into the periplasm. BlaTEM-1-Esx fusion proteins were not found in the culture filtrate suggesting that plasma membrane translocation and outer membrane translocation are two distinct steps in ESX secretion. Thus we have developed a powerful tool to dissect the molecular mechanisms of ESX dependent protein translocation and to screen for novel components of the ESX systems on a large scale.
Collapse
Affiliation(s)
- Tobias Rosenberger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Juliane K. Brülle
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Nationales Zentrum für Mykobakterien, Zurich, Switzerland
- * E-mail:
| |
Collapse
|