1
|
Painter H, Willcocks S, Zelmer A, Reljic R, Tanner R, Fletcher H. Demonstrating the utility of the ex vivo murine mycobacterial growth inhibition assay (MGIA) for high-throughput screening of tuberculosis vaccine candidates against multiple Mycobacterium tuberculosis complex strains. Tuberculosis (Edinb) 2024; 146:102494. [PMID: 38367368 DOI: 10.1016/j.tube.2024.102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Human tuberculosis (TB) is caused by various members of the Mycobacterium tuberculosis (Mtb) complex. Differences in host response to infection have been reported, illustrative of a need to evaluate efficacy of novel vaccine candidates against multiple strains in preclinical studies. We previously showed that the murine lung and spleen direct mycobacterial growth inhibition assay (MGIA) can be used to assess control of ex vivo mycobacterial growth by host cells. The number of mice required for the assay is significantly lower than in vivo studies, facilitating testing of multiple strains and/or the incorporation of other cellular analyses. Here, we provide proof-of-concept that the murine MGIA can be applied to evaluate vaccine-induced protection against multiple Mtb clinical isolates. Using an ancient and modern strain of the Mtb complex, we demonstrate that ex vivo bacillus Calmette-Guérin (BCG)-mediated mycobacterial growth inhibition recapitulates protection observed in the lung and spleen following in vivo infection of mice. Further, we provide the first report of cellular and transcriptional correlates of BCG-induced growth inhibition in the lung MGIA. The ex vivo MGIA represents a promising platform to gain early insight into vaccine performance against a collection of Mtb strains and improve preclinical evaluation of TB vaccine candidates.
Collapse
Affiliation(s)
- Hannah Painter
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Sam Willcocks
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Andrea Zelmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Rajko Reljic
- Institute of Infection and Immunity, St George's University of London, Cranmer Terrrace, London, SW17 0RE, UK
| | - Rachel Tanner
- Department of Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Helen Fletcher
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
2
|
Chugh S, Bahal RK, Dhiman R, Singh R. Antigen identification strategies and preclinical evaluation models for advancing tuberculosis vaccine development. NPJ Vaccines 2024; 9:57. [PMID: 38461350 PMCID: PMC10924964 DOI: 10.1038/s41541-024-00834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024] Open
Abstract
In its myriad devastating forms, Tuberculosis (TB) has existed for centuries, and humanity is still affected by it. Mycobacterium tuberculosis (M. tuberculosis), the causative agent of TB, was the foremost killer among infectious agents until the COVID-19 pandemic. One of the key healthcare strategies available to reduce the risk of TB is immunization with bacilli Calmette-Guerin (BCG). Although BCG has been widely used to protect against TB, reports show that BCG confers highly variable efficacy (0-80%) against adult pulmonary TB. Unwavering efforts have been made over the past 20 years to develop and evaluate new TB vaccine candidates. The failure of conventional preclinical animal models to fully recapitulate human response to TB, as also seen for the failure of MVA85A in clinical trials, signifies the need to develop better preclinical models for TB vaccine evaluation. In the present review article, we outline various approaches used to identify protective mycobacterial antigens and recent advancements in preclinical models for assessing the efficacy of candidate TB vaccines.
Collapse
Affiliation(s)
- Saurabh Chugh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India
| | - Ritika Kar Bahal
- Marshall Centre, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India.
| |
Collapse
|
3
|
Khan S, Ahmad F, Ansari MI, Ashfaque M, Islam MH, Khubaib M. Toxin-Antitoxin system of Mycobacterium tuberculosis: Roles beyond stress sensor and growth regulator. Tuberculosis (Edinb) 2023; 143:102395. [PMID: 37722233 DOI: 10.1016/j.tube.2023.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/10/2023] [Indexed: 09/20/2023]
Abstract
The advent of effective drug regimen and BCG vaccine has significantly decreased the rate of morbidity and mortality of TB. However, lengthy treatment and slower recovery rate, as well as reactivation of the disease with the emergence of multi-drug, extensively-drug, and totally-drug resistance strains, pose a serious concern. The complexities associated are due to the highly evolved and complex nature of the bacterium itself. One of the unique features of Mycobacterium tuberculosis [M.tb] is that it has undergone reductive evolution while maintaining and amplified a few gene families. One of the critical gene family involved in the virulence and pathogenesis is the Toxin-Antitoxin system. These families are believed to harbor virulence signature and are strongly associated with various stress adaptations and pathogenesis. The M.tb TA systems are linked with growth regulation machinery during various environmental stresses. The genes of TA systems are differentially expressed in the host during an active infection, oxidative stress, low pH stress, and starvation, which essentially indicate their role beyond growth regulators. Here in this review, we have discussed different roles of TA gene families in various stresses and their prospective role at the host-pathogen interface, which could be exploited to understand the M.tb associated pathomechanisms better and further designing the new strategies against the pathogen.
Collapse
Affiliation(s)
- Saima Khan
- Department of Biosciences, Integral University, Lucknow, India
| | - Firoz Ahmad
- Department of Biosciences, Integral University, Lucknow, India
| | | | | | | | - Mohd Khubaib
- Department of Biosciences, Integral University, Lucknow, India.
| |
Collapse
|
4
|
Morgan J, Muskat K, Tippalagama R, Sette A, Burel J, Lindestam Arlehamn CS. Classical CD4 T cells as the cornerstone of antimycobacterial immunity. Immunol Rev 2021; 301:10-29. [PMID: 33751597 PMCID: PMC8252593 DOI: 10.1111/imr.12963] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Tuberculosis is a significant health problem without an effective vaccine to combat it. A thorough understanding of the immune response and correlates of protection is needed to develop a more efficient vaccine. The immune response against Mycobacterium tuberculosis (Mtb) is complex and involves all aspects of the immune system, however, the optimal protective, non‐pathogenic T cell response against Mtb is still elusive. This review will focus on discussing CD4 T cell immunity against mycobacteria and its importance in Mtb infection with a primary focus on human studies. We will in particular discuss the large heterogeneity of immune cell subsets that have been revealed by recent immunological investigations at an unprecedented level of detail. These studies have identified specific classical CD4 T cell subsets important for immune responses against Mtb in various states of infection. We further discuss the functional attributes that have been linked to the various subsets such as upregulation of activation markers and cytokine production. Another important topic to be considered is the antigenic targets of Mtb‐specific immune responses, and how antigen reactivity is influenced by both disease state and environmental exposure(s). These are key points for both vaccines and immune diagnostics development. Ultimately, these factors are holistically considered in the definition and investigations of what are the correlates on protection and resolution of disease.
Collapse
Affiliation(s)
- Jeffrey Morgan
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kaylin Muskat
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Rashmi Tippalagama
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Julie Burel
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | |
Collapse
|
5
|
Liu S, Wu M, A E, Wu S, Geng S, Li Z, Li M, Li L, Pang Y, Kang W, Tang S. Factors associated with differential T cell responses to antigens ESAT-6 and CFP-10 in pulmonary tuberculosis patients. Medicine (Baltimore) 2021; 100:e24615. [PMID: 33663071 PMCID: PMC7909155 DOI: 10.1097/md.0000000000024615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/07/2021] [Indexed: 01/05/2023] Open
Abstract
The T-SPOT.TB assay detects cellular immune responses to 2 core Mycobacterium tuberculosis antigens, early secreted antigenic target of 6-kDa protein (ESAT-6) and culture filtrate protein-10 (CFP-10). T-SPOT.TB has been recently used for auxiliary diagnosis of active pulmonary tuberculosis (PTB). However, testing can produce inconsistent results due to differential PTB patient immune responses to these antigens, prompting us to identify factors underlying inconsistent results.Data were retrospectively analyzed from 1225 confirmed PTB patients who underwent T-SPOT.TB testing at 5 specialized tuberculosis hospitals in China between December 2012 and November 2015. Numbers of spot-forming cells (SFCs) reflecting T cell responses to ESAT-6 and CFP-10 antigens were recorded then analyzed via multivariable logistic regression to reveal factors underlying discordant T cell responses to these antigens.The agreement rate of 84.98% (82.85%-86.94%) between PTB patient ESAT-6 and CFP-10 responses demonstrated high concordance. Additionally, positivity rates were higher for ESAT-6 than for CFP-10 (84.8% vs 80.7%, P < .001), with ESAT-6 and CFP-10 microwell SFC numbers for each single positive group not differing significantly (P > .99), while spot numbers of the single positive group were lower than numbers for the double positive group (P < .001). Elderly patients (aged ≥66 years) and patients receiving retreatment were most likely to have discordance results.ESAT-6 promoted significantly more positive T-SPOT.TB results than did CFP-10 in PTB patients. Advanced age and retreatment status were correlated with discordant ESAT-6 and CFP-10 results. Assessment of factors underlying discordance may lead to improved PTB diagnosis using T-SPOT.TB.
Collapse
Affiliation(s)
- Shengsheng Liu
- Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing
| | | | - Ertai A
- Chest Hospital of Xinjiang Uygur Autonomous Region, Urumqi
| | | | | | | | - Mingwu Li
- Kunming 3rd People's Hospital, Kunming, China
| | - Liang Li
- Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing
| | - Yu Pang
- Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing
| | - Wanli Kang
- Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing
| | - Shenjie Tang
- Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing
| |
Collapse
|
6
|
Rakshit S, Hingankar N, Alampalli SV, Adiga V, Sundararaj BK, Sahoo PN, Finak G, Uday Kumar J AJ, Dhar C, D'Souza G, Virkar RG, Ghate M, Thakar MR, Paranjape RS, De Rosa SC, Ottenhoff THM, Vyakarnam A. HIV Skews a Balanced Mtb-Specific Th17 Response in Latent Tuberculosis Subjects to a Pro-inflammatory Profile Independent of Viral Load. Cell Rep 2020; 33:108451. [PMID: 33264614 DOI: 10.1016/j.celrep.2020.108451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/15/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
HIV infection predisposes latent tuberculosis-infected (LTBI) subjects to active TB. This study is designed to determine whether HIV infection of LTBI subjects compromises the balanced Mycobacterium tuberculosis (Mtb)-specific T helper 17 (Th17) response of recognized importance in anti-TB immunity. Comparative analysis of Mtb- and cytomegalovirus (CMV)-specific CD4+ T cell responses demonstrates a marked dampening of the Mtb-specific CD4+ T cell effectors and polyfunctional cells while preserving CMV-specific response. Additionally, HIV skews the Mtb-specific Th17 response in chronic HIV-infected LTBI progressors, but not long-term non-progressors (LTNPs), with preservation of pro-inflammatory interferon (IFN)-γ+/interleukin-17+ (IL-17+) and significant loss of anti-inflammatory IL-10+/IL-17+ effectors that is restored by anti-retroviral therapy (ART). HIV-driven impairment of Mtb-specific response cannot be attributed to preferential infection as cell-associated HIV DNA and HIV RNA reveal equivalent viral burden in CD4+ T cells from different antigen specificities. We therefore propose that beyond HIV-induced loss of Mtb-specific CD4+ T cells, the associated dysregulation of Mtb-specific T cell homeostasis can potentially enhance the onset of TB in LTBI subjects.
Collapse
Affiliation(s)
- Srabanti Rakshit
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Nitin Hingankar
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Shuba Varshini Alampalli
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Vasista Adiga
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Bharath K Sundararaj
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Pravat Nalini Sahoo
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Anto Jesuraj Uday Kumar J
- Departments of Infectious Diseases & Pulmonary Medicine, St. John's Research Institute, Bangalore, India
| | - Chirag Dhar
- Departments of Infectious Diseases & Pulmonary Medicine, St. John's Research Institute, Bangalore, India
| | - George D'Souza
- Departments of Infectious Diseases & Pulmonary Medicine, St. John's Research Institute, Bangalore, India
| | | | - Manisha Ghate
- National Aids Research Institute, Bhosari, Pune, Maharashtra, India
| | - Madhuri R Thakar
- National Aids Research Institute, Bhosari, Pune, Maharashtra, India
| | | | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Annapurna Vyakarnam
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences & Medicine, Guy's Hospital, King's College London, London SE1 9RT, UK.
| |
Collapse
|
7
|
Clemmensen HS, Knudsen NPH, Billeskov R, Rosenkrands I, Jungersen G, Aagaard C, Andersen P, Mortensen R. Rescuing ESAT-6 Specific CD4 T Cells From Terminal Differentiation Is Critical for Long-Term Control of Murine Mtb Infection. Front Immunol 2020; 11:585359. [PMID: 33240275 PMCID: PMC7677256 DOI: 10.3389/fimmu.2020.585359] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022] Open
Abstract
In most cases, Mycobacterium tuberculosis (Mtb) causes life-long chronic infections, which poses unique challenges for the immune system. Most of the current tuberculosis (TB) subunit vaccines incorporate immunodominant antigens and at this point, it is poorly understood how the CD4 T cell subsets recognizing these antigens are affected during long-term infection. Very little is known about the requirements for sustainable vaccine protection against TB. To explore this, we screened 62 human-recognized Mtb antigens during chronic murine Mtb infection and identified the four most immunodominant antigens in this setting (MPT70, Rv3020c, and Rv3019c and ESAT-6). Combined into a subunit vaccine, this fusion protein induced robust protection both in a standard short-term model and in a long-term infection model where immunity from BCG waned. Importantly, replacement of ESAT-6 with another ESAT-6-family antigen, Rv1198, led to similar short-term protection but a complete loss of bacterial control during chronic infection. This observation was further underscored, as the ESAT-6 containing vaccine mediated sustainable protection in a model of post-exposure vaccination, where the ESAT-6-replacement vaccine did not. An individual comparison of the CD4 T cell responses during Mtb infection revealed that ESAT-6-specific T cells were more terminally differentiated than the other immunodominant antigens and immunization with the ESAT-6 containing vaccine led to substantially greater reduction in the overall T cell differentiation status. Our data therefore associates long-term bacterial control with the ability of a vaccine to rescue infection-driven CD4T cell differentiation and future TB antigen discovery programs should focus on identifying antigens with the highest accompanying T cell differentiation, like ESAT-6. This also highlights the importance of long-term readouts in both preclinical and clinical studies with TB vaccines.
Collapse
Affiliation(s)
- Helena Strand Clemmensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | - Rolf Billeskov
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Gregers Jungersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Claus Aagaard
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
8
|
Nemes E, Abrahams D, Scriba TJ, Ratangee F, Keyser A, Makhethe L, Erasmus M, Mabwe S, Bilek N, Rozot V, Geldenhuys H, Hatherill M, Lempicki MD, Holm LL, Bogardus L, Ginsberg AM, Blauenfeldt T, Smith B, Ellis RD, Loxton AG, Walzl G, Andersen P, Ruhwald M. Diagnostic Accuracy of Early Secretory Antigenic Target-6-Free Interferon-gamma Release Assay Compared to QuantiFERON-TB Gold In-tube. Clin Infect Dis 2020; 69:1724-1730. [PMID: 30668657 PMCID: PMC6821223 DOI: 10.1093/cid/ciz034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/16/2019] [Indexed: 01/08/2023] Open
Abstract
Background Early secretory antigenic target-6 (ESAT-6) is an immunodominant Mycobacterium tuberculosis (M.tb) antigen included in novel vaccines against tuberculosis (TB) and in interferon-gamma (IFN-γ) release assays (IGRAs). Therefore, the availability of an ESAT-6–free IGRA is essential to determine M.tb infection status following vaccination with ESAT-6–containing vaccines. We aimed to qualify a recently developed ESAT-6–free IGRA and to assess its diagnostic performance in comparison to QuantiFERON-TB Gold In-tube (QFT). Methods Participants with different levels of M.tb exposure and TB disease were enrolled to determine the ESAT-6–free IGRA cutoff, test assay performance in independent cohorts compared to standard QFT, and perform a technical qualification of antigen-coated blood collection tubes. Results ESAT-6–free IGRA antigen recognition was evaluated in QFT-positive and QFT-negative South African adolescents. The ESAT-6–free IGRA cutoff was established at 0.61 IU/mL, based on receiver operating characteristic analysis in M.tb-unexposed controls and microbiologically confirmed pulmonary TB patients. In an independent cohort of healthy adolescents, levels of IFN-γ released in QFT and ESAT-6–free IGRA were highly correlated (P < .0001, r = 0.83) and yielded comparable positivity rates, 41.5% and 43.5%, respectively, with 91% concordance between the tests (kappa = 0.82; 95% confidence interval, 0.74–0.90; McNemar test P = .48). ESAT-6–free IGRA blood collection tubes had acceptable lot-to-lot variability, precision, and stability. Conclusions The novel ESAT-6–free IGRA had diagnostic accuracy comparable to QFT and is suitable for use in clinical trials to assess efficacy of candidate TB vaccines to prevent established M.tb infection.
Collapse
Affiliation(s)
- Elisa Nemes
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Division of Immunology, Department of Pathology, University of Cape Town
| | - Deborah Abrahams
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Division of Immunology, Department of Pathology, University of Cape Town
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Division of Immunology, Department of Pathology, University of Cape Town
| | - Frances Ratangee
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Division of Immunology, Department of Pathology, University of Cape Town
| | - Alana Keyser
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Division of Immunology, Department of Pathology, University of Cape Town
| | - Lebohang Makhethe
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Division of Immunology, Department of Pathology, University of Cape Town
| | - Mzwandile Erasmus
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Division of Immunology, Department of Pathology, University of Cape Town
| | - Simbarashe Mabwe
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Division of Immunology, Department of Pathology, University of Cape Town
| | - Nicole Bilek
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Division of Immunology, Department of Pathology, University of Cape Town
| | - Virginie Rozot
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Division of Immunology, Department of Pathology, University of Cape Town
| | - Hennie Geldenhuys
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Division of Immunology, Department of Pathology, University of Cape Town
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Division of Immunology, Department of Pathology, University of Cape Town
| | | | | | | | | | | | - Bronwyn Smith
- South Africa Department of Science and Technology-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town
| | | | - Andre G Loxton
- South Africa Department of Science and Technology-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town
| | - Gerhard Walzl
- South Africa Department of Science and Technology-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town
| | | | | |
Collapse
|
9
|
Martínez-Barricarte R, Markle JG, Ma CS, Deenick EK, Ramírez-Alejo N, Mele F, Latorre D, Mahdaviani SA, Aytekin C, Mansouri D, Bryant VL, Jabot-Hanin F, Deswarte C, Nieto-Patlán A, Surace L, Kerner G, Itan Y, Jovic S, Avery DT, Wong N, Rao G, Patin E, Okada S, Bigio B, Boisson B, Rapaport F, Seeleuthner Y, Schmidt M, Ikinciogullari A, Dogu F, Tanir G, Tabarsi P, Bloursaz MR, Joseph JK, Heer A, Kong XF, Migaud M, Lazarov T, Geissmann F, Fleckenstein B, Arlehamn CL, Sette A, Puel A, Emile JF, van de Vosse E, Quintana-Murci L, Di Santo JP, Abel L, Boisson-Dupuis S, Bustamante J, Tangye SG, Sallusto F, Casanova JL. Human IFN-γ immunity to mycobacteria is governed by both IL-12 and IL-23. Sci Immunol 2018; 3:eaau6759. [PMID: 30578351 PMCID: PMC6380365 DOI: 10.1126/sciimmunol.aau6759] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
Hundreds of patients with autosomal recessive, complete IL-12p40 or IL-12Rβ1 deficiency have been diagnosed over the last 20 years. They typically suffer from invasive mycobacteriosis and, occasionally, from mucocutaneous candidiasis. Susceptibility to these infections is thought to be due to impairments of IL-12-dependent IFN-γ immunity and IL-23-dependent IL-17A/IL-17F immunity, respectively. We report here patients with autosomal recessive, complete IL-12Rβ2 or IL-23R deficiency, lacking responses to IL-12 or IL-23 only, all of whom, unexpectedly, display mycobacteriosis without candidiasis. We show that αβ T, γδ T, B, NK, ILC1, and ILC2 cells from healthy donors preferentially produce IFN-γ in response to IL-12, whereas NKT cells and MAIT cells preferentially produce IFN-γ in response to IL-23. We also show that the development of IFN-γ-producing CD4+ T cells, including, in particular, mycobacterium-specific TH1* cells (CD45RA-CCR6+), is dependent on both IL-12 and IL-23. Last, we show that IL12RB1, IL12RB2, and IL23R have similar frequencies of deleterious variants in the general population. The comparative rarity of symptomatic patients with IL-12Rβ2 or IL-23R deficiency, relative to IL-12Rβ1 deficiency, is, therefore, due to lower clinical penetrance. There are fewer symptomatic IL-23R- and IL-12Rβ2-deficient than IL-12Rβ1-deficient patients, not because these genetic disorders are rarer, but because the isolated absence of IL-12 or IL-23 is, in part, compensated by the other cytokine for the production of IFN-γ, thereby providing some protection against mycobacteria. These experiments of nature show that human IL-12 and IL-23 are both required for optimal IFN-γ-dependent immunity to mycobacteria, both individually and much more so cooperatively.
Collapse
Affiliation(s)
- Rubén Martínez-Barricarte
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Janet G Markle
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research and St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Elissa K Deenick
- Immunology Division, Garvan Institute of Medical Research and St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Noé Ramírez-Alejo
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Federico Mele
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of italian Switzerland (USI), Bellinzona, Switzerland
| | - Daniela Latorre
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of italian Switzerland (USI), Bellinzona, Switzerland
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Caner Aytekin
- Department of Pediatric Immunology, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Davood Mansouri
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vanessa L Bryant
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Fabienne Jabot-Hanin
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Alejandro Nieto-Patlán
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Laura Surace
- Innate Immunity Unit, Pasteur Institute, INSERM U1223, Paris, France
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Charles Bronfman Institute for Personalized Medicine, and the Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra Jovic
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of italian Switzerland (USI), Bellinzona, Switzerland
| | - Danielle T Avery
- Immunology Division, Garvan Institute of Medical Research and St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Natalie Wong
- Immunology Division, Garvan Institute of Medical Research and St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Geetha Rao
- Immunology Division, Garvan Institute of Medical Research and St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Department of Genomes and Genetics, Pasteur Institute, Paris, France
- Centre National de la Recherche Scientifique, UMR 2000, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Pasteur Institute, Paris, France
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Monika Schmidt
- Institute for Clinical and Molecular Virology, University Erlangen-Nuremberg,Erlangen, Germany
| | - Aydan Ikinciogullari
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Gonul Tanir
- Department of Pediatric Infectious Diseases, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Payam Tabarsi
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammed Reza Bloursaz
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Julia K Joseph
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Avneet Heer
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Xiao-Fei Kong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Tomi Lazarov
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Frédéric Geissmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK
| | - Bernhard Fleckenstein
- Institute for Clinical and Molecular Virology, University Erlangen-Nuremberg,Erlangen, Germany
| | | | - Alessandro Sette
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Jean-François Emile
- EA4340 and Pathology Department, Ambroise Paré Hospital AP-HP, Versailles Saint-Quentin-en-Yvelines University, Paris-Saclay University, Boulogne, France
| | - Esther van de Vosse
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Department of Genomes and Genetics, Pasteur Institute, Paris, France
- Centre National de la Recherche Scientifique, UMR 2000, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Pasteur Institute, Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Pasteur Institute, INSERM U1223, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- Study Center of Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research and St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Federica Sallusto
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of italian Switzerland (USI), Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Switzerland
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children AP-HP, Paris, France
| |
Collapse
|
10
|
Tian Y, da Silva Antunes R, Sidney J, Lindestam Arlehamn CS, Grifoni A, Dhanda SK, Paul S, Peters B, Weiskopf D, Sette A. A Review on T Cell Epitopes Identified Using Prediction and Cell-Mediated Immune Models for Mycobacterium tuberculosis and Bordetella pertussis. Front Immunol 2018; 9:2778. [PMID: 30555469 PMCID: PMC6281829 DOI: 10.3389/fimmu.2018.02778] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023] Open
Abstract
In the present review, we summarize work from our as well as other groups related to the characterization of bacterial T cell epitopes, with a specific focus on two important pathogens, namely, Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), and Bordetella pertussis (BP), the bacterium that causes whooping cough. Both bacteria and their associated diseases are of large societal significance. Although vaccines exist for both pathogens, their efficacy is incomplete. It is widely thought that defects and/or alteration in T cell compartments are associated with limited vaccine effectiveness. As discussed below, a full genome-wide map was performed in the case of Mtb. For BP, our focus has thus far been on the antigens contained in the acellular vaccine; a full genome-wide screen is in the planning stage. Nevertheless, the sum-total of the results in the two different bacterial systems allows us to exemplify approaches and techniques that we believe are generally applicable to the mapping and characterization of human immune responses to bacterial pathogens. Finally, we add, as a disclaimer, that this review by design is focused on the work produced by our laboratory as an illustration of approaches to the study of T cell responses to Mtb and BP, and is not meant to be comprehensive, nor to detract from the excellent work performed by many other groups.
Collapse
Affiliation(s)
- Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Sinu Paul
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
11
|
Slayden RA, Dawson CC, Cummings JE. Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis. Pathog Dis 2018; 76:4969681. [PMID: 29788125 DOI: 10.1093/femspd/fty039] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/01/2018] [Indexed: 11/14/2022] Open
Abstract
There has been a significant reduction in annual tuberculosis incidence since the World Health Organization declared tuberculosis a global health threat. However, treatment of M. tuberculosis infections requires lengthy multidrug therapeutic regimens to achieve a durable cure. The development of new drugs that are active against resistant strains and phenotypically diverse organisms continues to present the greatest challenge in the future. Numerous phylogenomic analyses have revealed that the Mtb genome encodes a significantly expanded repertoire of toxin-antitoxin (TA) loci that makes up the Mtb TA system. A TA loci is a two-gene operon encoding a 'toxin' protein that inhibits bacterial growth and an interacting 'antitoxin' partner that neutralizes the inhibitory activity of the toxin. The presence of multiple chromosomally encoded TA loci in Mtb raises important questions in regard to expansion, regulation and function. Thus, the functional roles of TA loci in Mtb pathogenesis have received considerable attention over the last decade. The cumulative results indicate that they are involved in regulating adaptive responses to stresses associated with the host environment and drug treatment. Here we review the TA families encoded in Mtb, discuss the duplication of TA loci in Mtb, regulatory mechanism of TA loci, and phenotypic heterogeneity and pathogenesis.
Collapse
Affiliation(s)
- Richard A Slayden
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Clinton C Dawson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Jason E Cummings
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| |
Collapse
|
12
|
Coppola M, Ottenhoff TH. Genome wide approaches discover novel Mycobacterium tuberculosis antigens as correlates of infection, disease, immunity and targets for vaccination. Semin Immunol 2018; 39:88-101. [PMID: 30327124 DOI: 10.1016/j.smim.2018.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 01/15/2023]
Abstract
Every day approximately six thousand people die of Tuberculosis (TB). Its causative agent, Mycobacterium tuberculosis (Mtb), is an ancient pathogen that through its evolution developed complex mechanisms to evade immune surveillance and acquire the ability to establish persistent infection in its hosts. Currently, it is estimated that one-fourth of the human population is latently infected with Mtb and among those infected 3-10% are at risk of developing active TB disease during their lifetime. The currently available diagnostics are not able to detect this risk group for prophylactic treatment to prevent transmission. Anti-TB drugs are available but only as long regimens with considerable side effects, which could both be reduced if adequate tests were available to monitor the response of TB to treatment. New vaccines are also urgently needed to substitute or boost Bacille Calmette-Guérin (BCG), the only approved TB vaccine: although BCG prevents disseminated TB in infants, it fails to impact the incidence of pulmonary TB in adults, and therefore has little effect on TB transmission. To achieve TB eradication, the discovery of Mtb antigens that effectively correlate with the human response to infection, with the curative host response following TB treatment, and with natural as well as vaccine induced protection will be critical. Over the last decade, many new Mtb antigens have been found and proposed as TB biomarkers and vaccine candidates, but only a very small number of these is being used in commercial diagnostic tests or is being assessed as candidate TB vaccine antigens in human clinical trials, aiming to prevent infection, disease or disease recurrence following treatment. Most of these antigens were discovered decades ago, before the complete Mtb genome sequence became available, and thus did not harness the latest insights from post-genomic antigen discovery strategies and genome wide approaches. These have, for example, revealed critical phase variation in Mtb replication and accompanying gene -and therefore antigen- expression patterns. In this review, we present a brief overview of past methodologies, and subsequently focus on the most important recent Mtb antigen discovery studies which have mined the Mtb antigenome through "unbiased" genome wide approaches. We compare the results for these approaches -as far as we know for the first time-, highlight Mtb antigens that have been identified independently by different strategies and present a comprehensive overview of the Mtb antigens thus discovered.
Collapse
Affiliation(s)
- Mariateresa Coppola
- Dept. Infectious Diseases, LUMC, PO Box 9600, 2300RC Leiden, The Netherlands.
| | - Tom Hm Ottenhoff
- Dept. Infectious Diseases, LUMC, PO Box 9600, 2300RC Leiden, The Netherlands
| |
Collapse
|
13
|
Martin C, Aguilo N, Gonzalo-Asensio J. Vaccination against tuberculosis. Enferm Infecc Microbiol Clin 2018; 36:648-656. [PMID: 29627126 DOI: 10.1016/j.eimc.2018.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 01/24/2023]
Abstract
BCG (Bacille Calmette-Guérin) vaccination is included in the immunization schedule for tuberculosis endemic countries with a global coverage at birth close to 90% worldwide. BCG was attenuated from Mycobacterium bovis almost a century ago, and provides a strong protection against disseminated forms of the disease, though very limited against pulmonary forms of tuberculosis, responsible for transmission. Novel prophylactic tuberculosis vaccines are in clinical development either to replace BCG or to improve its protection against respiratory forms of the disease. There are limitations understanding the immunological responses involved and the precise type of long-lived immunity that new vaccines need to induce. MTBVAC is the first and only tuberculosis vaccine candidate based on live-attenuated Mycobacterium tuberculosis in clinical evaluation. MTBVAC clinical development plans to target tuberculosis prevention in newborns, as a BCG replacement strategy, and as secondary objective to be tested in adolescents and adults previous vaccinated with BCG.
Collapse
Affiliation(s)
- Carlos Martin
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, España; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, España; Servicio de Microbiología, Hospital Universitario Miguel Servet, ISS Aragón, Zaragoza, España.
| | - Nacho Aguilo
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, España; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, España
| | - Jesús Gonzalo-Asensio
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, España; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, España; Servicio de Microbiología, Hospital Universitario Miguel Servet, ISS Aragón, Zaragoza, España
| |
Collapse
|
14
|
Whatney WE, Gandhi NR, Lindestam Arlehamn CS, Nizam A, Wu H, Quezada MJ, Campbell A, Allana S, Kabongo MM, Khayumbi J, Muchiri B, Ongalo J, Tonui J, Sasser LE, Fergus TJ, Ouma GS, Ouma SG, Beck AA, Mulligan MJ, Oladele A, Kaushal D, Cain KP, Waller L, Blumberg HM, Altman JD, Ernst JD, Rengarajan J, Day CL. A High Throughput Whole Blood Assay for Analysis of Multiple Antigen-Specific T Cell Responses in Human Mycobacterium tuberculosis Infection. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29540577 DOI: 10.4049/jimmunol.1701737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antigen-specific CD4 and CD8 T cells are important components of the immune response to Mycobacterium tuberculosis, yet little information is currently known regarding how the breadth, specificity, phenotype, and function of M. tuberculosis-specific T cells correlate with M. tuberculosis infection outcome in humans. To facilitate evaluation of human M. tuberculosis-specific T cell responses targeting multiple different Ags, we sought to develop a high throughput and reproducible T cell response spectrum assay requiring low blood sample volumes. We describe here the optimization and standardization of a microtiter plate-based, diluted whole blood stimulation assay utilizing overlapping peptide pools corresponding to a functionally diverse panel of 60 M. tuberculosis Ags. Using IFN-γ production as a readout of Ag specificity, the assay can be conducted using 50 μl of blood per test condition and can be expanded to accommodate additional Ags. We evaluated the intra- and interassay variability, and implemented testing of the assay in diverse cohorts of M. tuberculosis-unexposed healthy adults, foreign-born adults with latent M. tuberculosis infection residing in the United States, and tuberculosis household contacts with latent M. tuberculosis infection in a tuberculosis-endemic setting in Kenya. The M. tuberculosis-specific T cell response spectrum assay further enhances the immunological toolkit available for evaluating M. tuberculosis-specific T cell responses across different states of M. tuberculosis infection, and can be readily implemented in resource-limited settings. Moreover, application of the assay to longitudinal cohorts will facilitate evaluation of treatment- or vaccine-induced changes in the breadth and specificity of Ag-specific T cell responses, as well as identification of M. tuberculosis-specific T cell responses associated with M. tuberculosis infection outcomes.
Collapse
Affiliation(s)
- Wendy E Whatney
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329
| | - Neel R Gandhi
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Azhar Nizam
- Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, GA 30322
| | - Hao Wu
- Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, GA 30322
| | - Melanie J Quezada
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329
| | - Angela Campbell
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322
| | - Salim Allana
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322
| | - Mbuyi Madeleine Kabongo
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322
| | - Jeremiah Khayumbi
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya
| | - Benson Muchiri
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya
| | - Joshua Ongalo
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya
| | - Joan Tonui
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya
| | - Loren E Sasser
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329
| | - Tawania J Fergus
- Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Gregory Sadat Ouma
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya
| | - Samuel Gurrion Ouma
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya
| | - Allison A Beck
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Mark J Mulligan
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, LA 70433.,Department of Microbiology and Immunology, Tulane Health Sciences Center, New Orleans, LA 70112
| | - Kevin P Cain
- Division of Global HIV and Tuberculosis, U.S. Centers for Disease Control and Prevention, Kisumu 40100, Kenya; and
| | - Lance Waller
- Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, GA 30322
| | - Henry M Blumberg
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - John D Altman
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Joel D Ernst
- Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Jyothi Rengarajan
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329; .,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Cheryl L Day
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329; .,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | | |
Collapse
|
15
|
Habib Z, Xu W, Jamal M, Rehman K, Dai J, Fu ZF, Chen X, Cao G. Adaptive gene profiling of Mycobacterium tuberculosis during sub-lethal kanamycin exposure. Microb Pathog 2017; 112:243-253. [PMID: 28966063 DOI: 10.1016/j.micpath.2017.09.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 11/25/2022]
Abstract
Resistance to anti-tuberculosis drugs is a formidable obstacle to effective tuberculosis (TB) treatment and prevention globally. New forms of multidrug, extensive drug and total drug resistance Mycobacterium tuberculosis (Mtb) causing a serious threat to human as well as animal's population. Mtb shows diverse adaptability under stress conditions especially antibiotic treatment, however underlying physiological mechanism remained elusive. In present study, we investigated Mtb's response and adaptation with reference to gene expression during sub-lethal kanamycin exposure. Mtb were cultured under sub-lethal drug and control conditions, where half were sub-cultured every 3-days to observe serial adaptation under same conditions and the remaining were subjected to RNA-seq. We identified 98 up-regulated and 198 down-regulated responsive genes compared to control through differential analysis, of which Ra1750 and Ra3160 were the most responsive genes. In adaptive analysis, we found Ra1750, Ra3160, Ra3161, Ra3893 and Ra2492 up-regulation at early stage and gradually showed low expression levels at the later stages of drug exposure. The adaptive expression of Ra1750, Ra3160 and Ra3161 were further confirmed by real time qPCR. These results suggested that these genes contributed in Mtb's physiological adaptation during sub-lethal kanamycin exposure. Our findings may aid to edify these potential targets for drug development against drug resistance tuberculosis.
Collapse
Affiliation(s)
- Zeshan Habib
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Weize Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Muhammad Jamal
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Khaista Rehman
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Jinxia Dai
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Zhen Fang Fu
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
| | - Xi Chen
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Gang Cao
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Bio-Medcial Center, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
16
|
da Silva TP, Giacoia-Gripp CBW, Schmaltz CA, Sant'Anna FM, Saad MH, Matos JAD, de Lima E Silva JCA, Rolla VC, Morgado MG. Risk factors for increased immune reconstitution in response to Mycobacterium tuberculosis antigens in tuberculosis HIV-infected, antiretroviral-naïve patients. BMC Infect Dis 2017; 17:606. [PMID: 28874142 PMCID: PMC5585929 DOI: 10.1186/s12879-017-2700-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/22/2017] [Indexed: 11/22/2022] Open
Abstract
Background Little is known regarding the restoration of the specific immune response after combined antiretroviral therapy (cART) and anti-tuberculosis (TB) therapy introduction among TB-HIV patients. In this study, we examined the immune response of TB-HIV patients to Mycobacterium tuberculosis (Mtb) antigens to evaluate the response dynamics to different antigens over time. Moreover, we also evaluated the influence of two different doses of efavirenz and the factors associated with immune reconstitution. Methods This is a longitudinal study nested in a clinical trial, where cART was initiated during the baseline visit (D0), which occurred 30 ± 10 days after the introduction of anti-TB therapy. Follow-up visits were performed at 30, 60, 90 and 180 days after cART initiation. The production of IFN-γ upon in vitro stimulation with Mtb antigens purified protein derivative (PPD), ESAT-6 and 38 kDa/CFP-10 using ELISpot was examined at baseline and follow-up visits. Results Sixty-one patients, all ART-naïve, were selected and included in the immune reconstitution analysis; seven (11.5%) developed Immune Reconstitution Inflammatory Syndrome (IRIS). The Mtb specific immune response was higher for the PPD antigen followed by 38 kDa/CFP-10 and increased in the first 60 days after cART initiation. In multivariate analysis, the variables independently associated with increased IFN-γ production in response to PPD antigen were CD4+ T cell counts <200 cells/mm3 at baseline, age, site of tuberculosis, 800 mg efavirenz dose and follow-up CD4+ T cell counts. Moreover, the factors associated with the production of IFN-γ in response to 38 kDa/CFP-10 were detectable HIV viral load (VL) and CD4+ T cell counts at follow-up visits of ≥200 cells/mm3. Conclusions These findings highlight the differences in immune response according to the specificity of the Mtb antigen, which contributes to a better understanding of TB-HIV immunopathogenesis. IFN-γ production elicited by PPD and 38 kDa/CFP-10 antigens have a greater magnitude compared to ESAT-6 and are associated with different factors. The low response to ESAT-6, even during immune restoration, suggests that this antigen is not adequate to assess the immune response of immunosuppressed TB-HIV patients.
Collapse
Affiliation(s)
- Tatiana Pereira da Silva
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.
| | | | - Carolina A Schmaltz
- Clinical Research Laboratory on Mycobacteria - National Institute of Infectious Diseases Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
| | - Flavia Marinho Sant'Anna
- Clinical Research Laboratory on Mycobacteria - National Institute of Infectious Diseases Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
| | - Maria Helena Saad
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Juliana Arruda de Matos
- Clinical Research Laboratory on Health Surveillance and Immunization - National Institute of Infectious Diseases Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Valeria Cavalcanti Rolla
- Clinical Research Laboratory on Mycobacteria - National Institute of Infectious Diseases Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
| | - Mariza Gonçalves Morgado
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Abstract
Immunology is a central theme when it comes to tuberculosis (TB). The outcome of human infection with Mycobacterium tuberculosis is dependent on the ability of the immune response to clear or contain the infection. In cases where this fails, the bacterium replicates, disseminates within the host, and elicits a pathologic inflammatory response, and disease ensues. Clinical presentation of TB disease is remarkably heterogeneous, and the disease phenotype is largely dependent on host immune status. Onward transmission of M. tuberculosis to new susceptible hosts is thought to depend on an excessive inflammatory response causing a breakdown of the lung matrix and formation of lung cavities. But this varies in cases of underlying immunological dysfunction: for example, HIV-1 infection is associated with less cavitation, while diabetes mellitus comorbidity is associated with increased cavitation and risk of transmission. In compliance with the central theme of immunology in tuberculosis, we rely on detection of an adaptive immune response, in the form of interferon-gamma release assays or tuberculin skin tests, to diagnose infection with M. tuberculosis. Here we review the immunology of TB in the human host, focusing on cellular and humoral adaptive immunity as well as key features of innate immune responses and the underlying immunological dysfunction which associates with human TB risk factors. Our review is restricted to human immunology, and we highlight distinctions from the immunological dogma originating from animal models of TB, which pervade the field.
Collapse
|
18
|
Marinova D, Gonzalo-Asensio J, Aguilo N, Martin C. MTBVAC from discovery to clinical trials in tuberculosis-endemic countries. Expert Rev Vaccines 2017; 16:565-576. [PMID: 28447476 DOI: 10.1080/14760584.2017.1324303] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION BCG remains the only vaccine against tuberculosis (TB) in use today and despite its impressive global coverage, the nature of BCG protection against the pulmonary forms of TB remains subject to ongoing debate. Because of the limitations of BCG, novel TB vaccine candidates have been developed and several have reached the clinical pipeline. One of these candidates is MTBVAC, the first and only TB vaccine in the clinical pipeline to date based on live-attenuated Mycobacterium tuberculosis that has successfully entered clinical evaluation, a historic milestone in human vaccinology. Areas covered: This review describes development of MTBVAC from discovery to clinical development in high burden TB-endemic countries. The preclinical experiments where MTBVAC has shown to confer improved safety and efficacy over BCG are presented and the clinical development plans for MTBVAC are revealed. The search of all supportive literature in this manuscript was carried out via Pubmed. Expert commentary: Small experimental medicine trials in humans and preclinical efficacy studies with a strong immunological component mimicking clinical trial design are considered essential by the scientific community to help identify reliable vaccine-specific correlates of protection in order to support and accelerate community-wide efficacy trials of new TB vaccines.
Collapse
Affiliation(s)
- Dessislava Marinova
- a Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública , Universidad de Zaragoza , Zaragoza , Spain.,b CIBER Enfermedades Respiratorias , Instituto de Salud Carlos III , Madrid , Spain
| | - Jesus Gonzalo-Asensio
- a Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública , Universidad de Zaragoza , Zaragoza , Spain.,b CIBER Enfermedades Respiratorias , Instituto de Salud Carlos III , Madrid , Spain.,c Servicio de Microbiología , Hospital Universitario Miguel Servet, ISS Aragón , Zaragoza , Spain
| | - Nacho Aguilo
- a Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública , Universidad de Zaragoza , Zaragoza , Spain.,b CIBER Enfermedades Respiratorias , Instituto de Salud Carlos III , Madrid , Spain
| | - Carlos Martin
- a Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública , Universidad de Zaragoza , Zaragoza , Spain.,b CIBER Enfermedades Respiratorias , Instituto de Salud Carlos III , Madrid , Spain.,c Servicio de Microbiología , Hospital Universitario Miguel Servet, ISS Aragón , Zaragoza , Spain
| |
Collapse
|
19
|
Tkachuk AP, Gushchin VA, Potapov VD, Demidenko AV, Lunin VG, Gintsburg AL. Multi-subunit BCG booster vaccine GamTBvac: Assessment of immunogenicity and protective efficacy in murine and guinea pig TB models. PLoS One 2017; 12:e0176784. [PMID: 28453555 PMCID: PMC5409163 DOI: 10.1371/journal.pone.0176784] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/17/2017] [Indexed: 11/18/2022] Open
Abstract
New innovative vaccines are highly needed to combat the global threat posed by tuberculosis. Efficient components-antigens and adjuvants-are crucial for development of modern recombinant TB vaccines. This study describes a new vaccine (GamTBvac) consisting of two mycobacterial antigen fusions (Ag85A and ESAT6-CFP10)-with dextran-binding domain immobilized on dextran and mixed with an adjuvant consisting of DEAE-dextran core, and with CpG oligodeoxynucleotides (TLR9 agonists). GamTBvac and its components were assessed for immunogenicity and protective efficacy in GamTBvac-prime/boost and BCG-prime/ GamTBvac-boost in murine and guinea pig TB models. Results show that in both infectious models, GamTBvac has a strong immunogenicity and significant protective effect against Mycobacterium tuberculosis strain H37Rv under aerosol and intravenous challenges. GamTBvac showed a particularly strong protective effect as a BCG booster vaccine.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Administration, Intravenous
- Aerosols
- Animals
- Antibodies, Bacterial/blood
- BCG Vaccine/immunology
- Cell Proliferation/physiology
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Female
- Guinea Pigs
- Immunization
- Immunization, Secondary
- Immunogenicity, Vaccine
- Lung/immunology
- Lymph Nodes/immunology
- Male
- Mice, Inbred C57BL
- Mycobacterium tuberculosis/immunology
- Spleen/immunology
- T-Lymphocytes/immunology
- Tuberculosis/immunology
- Tuberculosis/prevention & control
- Tuberculosis Vaccines/immunology
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- A. P. Tkachuk
- Translational Biomedicine Laboratory, N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Moscow, Russia
| | - V. A. Gushchin
- Translational Biomedicine Laboratory, N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - V. D. Potapov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - A. V. Demidenko
- Laboratory of bioactive nanostructures, N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Moscow, Russia
| | - V. G. Lunin
- Laboratory of bioactive nanostructures, N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Moscow, Russia
| | - A. L. Gintsburg
- N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Moscow, Russia
| |
Collapse
|
20
|
Oseroff C, Pham J, Frazier A, Hinz D, Sidney J, Paul S, Greenbaum JA, Vita R, Peters B, Schulten V, Sette A. Immunodominance in allergic T-cell reactivity to Japanese cedar in different geographic cohorts. Ann Allergy Asthma Immunol 2016; 117:680-689.e1. [PMID: 27979027 PMCID: PMC5172395 DOI: 10.1016/j.anai.2016.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/13/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Japanese cedar (JC) pollen is a common trigger for allergic rhinitis in Japan. Pollen proteins targeted by IgE, including Cry j 1 and Cry j 2, and isoflavone reductase (IFR) have been identified. OBJECTIVE To compare antigen-specific IgE titers and T-cell responses to JC pollen-derived extract and peptides in cohorts with high and low pollen exposure. METHODS Peripheral blood mononuclear cells from JC pollen allergic or nonallergic patients who have lived in Japan for at least 1 year and JC pollen allergic patients who have never been to Japan were tested for T-cell responses against JC pollen extract and peptide pools derived from Cry j 1, Cry j 2, or IFR. T-cell reactivity was assessed by interleukin 5 and interferon γ production by ELISPOT. RESULTS JC pollen-specific T-cell reactivity and IgE titers were significantly higher in the allergic compared with the nonallergic Japanese cohort, which was also associated with different patterns of polysensitization. Interestingly, a significant overlap was observed in the hierarchy of the T-cell epitopes in the allergic Japanese cohort compared with the allergic non-Japanese cohort. In all 3 cohorts, T-cell reactivity was dominantly directed against peptides from the major allergens Cry j 1 and 2, with few T-cell responses detected against IFR. CONCLUSION Our studies identify common denominators of T-cell reactivity in patient populations with different sensitization patterns, suggesting that generally applicable immunotherapeutic approaches might be developed irrespective of exposure modality.
Collapse
MESH Headings
- Adolescent
- Adult
- Alleles
- Allergens/immunology
- Amino Acid Sequence
- Antigens, Plant/immunology
- Cohort Studies
- Cryptomeria/adverse effects
- Epitopes, T-Lymphocyte/immunology
- Female
- HLA Antigens/genetics
- HLA Antigens/immunology
- Humans
- Immunoglobulin E/immunology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Activation/immunology
- Male
- Middle Aged
- Peptides/immunology
- Pollen/immunology
- Rhinitis, Allergic, Seasonal/genetics
- Rhinitis, Allergic, Seasonal/immunology
- Rhinitis, Allergic, Seasonal/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Young Adult
Collapse
Affiliation(s)
- Carla Oseroff
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - John Pham
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - April Frazier
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Denise Hinz
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Sinu Paul
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | | | - Randi Vita
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | | | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| |
Collapse
|
21
|
Coppola M, van Meijgaarden KE, Franken KLMC, Commandeur S, Dolganov G, Kramnik I, Schoolnik GK, Comas I, Lund O, Prins C, van den Eeden SJF, Korsvold GE, Oftung F, Geluk A, Ottenhoff THM. New Genome-Wide Algorithm Identifies Novel In-Vivo Expressed Mycobacterium Tuberculosis Antigens Inducing Human T-Cell Responses with Classical and Unconventional Cytokine Profiles. Sci Rep 2016; 6:37793. [PMID: 27892960 PMCID: PMC5125271 DOI: 10.1038/srep37793] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/03/2016] [Indexed: 12/16/2022] Open
Abstract
New strategies are needed to develop better tools to control TB, including identification of novel antigens for vaccination. Such Mtb antigens must be expressed during Mtb infection in the major target organ, the lung, and must be capable of eliciting human immune responses. Using genome-wide transcriptomics of Mtb infected lungs we developed data sets and methods to identify IVE-TB (in-vivo expressed Mtb) antigens expressed in the lung. Quantitative expression analysis of 2,068 Mtb genes from the predicted first operons identified the most upregulated IVE-TB genes during in-vivo pulmonary infection. By further analysing high-level conservation among whole-genome sequenced Mtb-complex strains (n = 219) and algorithms predicting HLA-class-Ia and II presented epitopes, we selected the most promising IVE-TB candidate antigens. Several of these were recognized by T-cells from in-vitro Mtb-PPD and ESAT6/CFP10-positive donors by proliferation and multi-cytokine production. This was validated in an independent cohort of latently Mtb-infected individuals. Significant T-cell responses were observed in the absence of IFN-γ-production. Collectively, the results underscore the power of our novel antigen discovery approach in identifying Mtb antigens, including those that induce unconventional T-cell responses, which may provide important novel tools for TB vaccination and biomarker profiling. Our generic approach is applicable to other infectious diseases.
Collapse
Affiliation(s)
- Mariateresa Coppola
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Susanna Commandeur
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Gregory Dolganov
- Department Microbiology Immunology, Stanford Univ. School of Medicine, Stanford, USA
| | - Igor Kramnik
- Department Immunology Infectious Diseases, Harvard School of Public Health, Boston, USA
| | - Gary K Schoolnik
- Department Microbiology Immunology, Stanford Univ. School of Medicine, Stanford, USA
| | - Inaki Comas
- Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain.,CIBER in Epidemiology and Public Health, Madrid, Spain
| | - Ole Lund
- Dept. Systems Biology, Technical Univ., Denmark
| | - Corine Prins
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Susan J F van den Eeden
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Gro E Korsvold
- Department of Infectious Disease Immunology, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Fredrik Oftung
- Department of Infectious Disease Immunology, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Triccas JA, Counoupas C. Novel vaccination approaches to prevent tuberculosis in children. Pneumonia (Nathan) 2016; 8:18. [PMID: 28702297 PMCID: PMC5471729 DOI: 10.1186/s41479-016-0020-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
Pediatric tuberculosis (TB) is an underappreciated problem and accounts for 10 % of all TB deaths worldwide. Children are highly susceptible to infection with Mycobacterium tuberculosis and interrupting TB spread would require the development of effective strategies to control TB transmission in pediatric populations. The current vaccine for TB, M. bovis Bacille Calmette-Guérin (BCG), can afford some level of protection against TB meningitis and severe forms of disseminated TB in children; however, its efficacy against pulmonary TB is variable and the vaccine does not afford life-long protective immunity. For these reasons there is considerable interest in the development of new vaccines to control TB in children. Multiple vaccine strategies are being assessed and include recombinant forms of the existing BCG vaccine, protein or viral candidates designed to boost BCG-induced immunity, or live attenuated forms of M. tuberculosis. A number of these candidates have entered clinical trials; however, no vaccine has shown improved protective efficacy compared to BCG in humans. The current challenge is to identify the most suitable candidates to progress from early to late stage clinical trials, in order to deliver a vaccine that can control and hopefully eliminate the global threat of TB.
Collapse
Affiliation(s)
- James A Triccas
- Microbial Pathogenesis and Immunity Group, Department of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Level 5, Charles Perkins Centre D17, Sydney, NSW 2006 Australia.,Tuberculosis Research Program, Centenary Institute, University of Sydney, Sydney, NSW Australia.,Sydney Medical School and the Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW Australia
| | - Claudio Counoupas
- Microbial Pathogenesis and Immunity Group, Department of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Level 5, Charles Perkins Centre D17, Sydney, NSW 2006 Australia.,Tuberculosis Research Program, Centenary Institute, University of Sydney, Sydney, NSW Australia
| |
Collapse
|
23
|
Agarwal S, Nguyen DT, Lew JD, Teeter LD, Yamal JM, Restrepo BI, Brown EL, Dorman SE, Graviss EA. Differential positive TSPOT assay responses to ESAT-6 and CFP-10 in health care workers. Tuberculosis (Edinb) 2016; 101S:S83-S91. [PMID: 27727133 DOI: 10.1016/j.tube.2016.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The TSPOT.TB (TSPOT) diagnostic test for latent tuberculosis infection is based on a cell-mediated response to the Mycobacteria tuberculosis antigens, ESAT-6 and/or CFP-10, producing an "interferon-gamma footprint". We investigated the within-sample and within-subject variability of positive TSPOT assays due to the individual assay antigens' reactivity. METHODS Positive TSPOT assay frequencies due to ESAT-6 or CFP-10 among health care workers (HCWs) at 6-month intervals for 18 months were compared. Differences in result interpretation (positive or negative) for ESAT-6 and CFP10 and potential prognostic factors were investigated. RESULTS There were 576 positive results in 8805 TSPOT assays representing 2418 participants. A significant difference was detected in positive TSPOT results due to a positive response to either ESAT-6, CFP-10 or both antigens at baseline through 12 M (p < 0.001), but not for the 18 M follow-up. Gender, ethnicity, occupation, previous positive tuberculin skin test (TST) and study site were significantly associated with specific antigen positivity. CONCLUSIONS Among our HCW samples with positive TSPOT assays, CFP-10 induced a larger proportion of positive TSPOT results than ESAT-6. Potential causes for this finding include: BCG vaccinated subpopulations, certain jobs, history of positive TST, U.S. birth, and study site. A high proportion of single-positive specimens may reflect false-positives results.
Collapse
Affiliation(s)
- Saroochi Agarwal
- Houston Methodist Hospital Institute, 6670 Bertner Ave, Houston, TX, 77030, USA; University of Texas School of Public Health, Center for Infectious Diseases, 1200 Pressler St, Houston, TX, 77030, USA.
| | - Duc T Nguyen
- Houston Methodist Hospital Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
| | - Justin D Lew
- Houston Methodist Hospital Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
| | - Larry D Teeter
- Houston Methodist Hospital Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
| | - Jose-Miguel Yamal
- University of Texas School of Public Health, Center for Infectious Diseases, 1200 Pressler St, Houston, TX, 77030, USA.
| | - Blanca I Restrepo
- University of Texas School of Public Health, Center for Infectious Diseases, 1200 Pressler St, Houston, TX, 77030, USA.
| | - Eric L Brown
- University of Texas School of Public Health, Center for Infectious Diseases, 1200 Pressler St, Houston, TX, 77030, USA.
| | - Susan E Dorman
- Johns Hopkins Medicine, 733 North Broadway, Baltimore, MD, 21205, USA.
| | - Edward A Graviss
- Houston Methodist Hospital Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Lindestam Arlehamn CS, McKinney DM, Carpenter C, Paul S, Rozot V, Makgotlho E, Gregg Y, van Rooyen M, Ernst JD, Hatherill M, Hanekom WA, Peters B, Scriba TJ, Sette A. A Quantitative Analysis of Complexity of Human Pathogen-Specific CD4 T Cell Responses in Healthy M. tuberculosis Infected South Africans. PLoS Pathog 2016; 12:e1005760. [PMID: 27409590 PMCID: PMC4943605 DOI: 10.1371/journal.ppat.1005760] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/18/2016] [Indexed: 12/13/2022] Open
Abstract
We performed a quantitative analysis of the HLA restriction, antigen and epitope specificity of human pathogen specific responses in healthy individuals infected with M. tuberculosis (Mtb), in a South African cohort as a test case. The results estimate the breadth of T cell responses for the first time in the context of an infection and human population setting. We determined the epitope repertoire of eleven representative Mtb antigens and a large panel of previously defined Mtb epitopes. We estimated that our analytic methods detected 50-75% of the total response in a cohort of 63 individuals. As expected, responses were highly heterogeneous, with responses to a total of 125 epitopes detected. The 66 top epitopes provided 80% coverage of the responses identified in our study. Using a panel of 48 HLA class II-transfected antigen-presenting cells, we determined HLA class II restrictions for 278 epitope/donor recognition events (36% of the total). The majority of epitopes were restricted by multiple HLA alleles, and 380 different epitope/HLA combinations comprised less than 30% of the estimated Mtb-specific response. Our results underline the complexity of human T cell responses at a population level. Efforts to capture and characterize this broad and highly HLA promiscuous Mtb-specific T cell epitope repertoire will require significant peptide multiplexing efforts. We show that a comprehensive "megapool" of Mtb peptides captured a large fraction of the Mtb-specific T cells and can be used to characterize this response.
Collapse
Affiliation(s)
- Cecilia S. Lindestam Arlehamn
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| | - Denise M. McKinney
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| | - Chelsea Carpenter
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| | - Sinu Paul
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| | - Virginie Rozot
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Edward Makgotlho
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Yolande Gregg
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Michele van Rooyen
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Joel D. Ernst
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, New York, United States of America
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Willem A. Hanekom
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| |
Collapse
|
25
|
Dan JM, Lindestam Arlehamn CS, Weiskopf D, da Silva Antunes R, Havenar-Daughton C, Reiss SM, Brigger M, Bothwell M, Sette A, Crotty S. A Cytokine-Independent Approach To Identify Antigen-Specific Human Germinal Center T Follicular Helper Cells and Rare Antigen-Specific CD4+ T Cells in Blood. THE JOURNAL OF IMMUNOLOGY 2016; 197:983-93. [PMID: 27342848 DOI: 10.4049/jimmunol.1600318] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/19/2016] [Indexed: 12/13/2022]
Abstract
Detection of Ag-specific CD4(+) T cells is central to the study of many human infectious diseases, vaccines, and autoimmune diseases. However, such cells are generally rare and heterogeneous in their cytokine profiles. Identification of Ag-specific germinal center (GC) T follicular helper (Tfh) cells by cytokine production has been particularly problematic. The function of a GC Tfh cell is to selectively help adjacent GC B cells via cognate interaction; thus, GC Tfh cells may be stingy cytokine producers, fundamentally different from Th1 or Th17 cells in the quantities of cytokines produced. Conventional identification of Ag-specific cells by intracellular cytokine staining relies on the ability of the CD4(+) T cell to generate substantial amounts of cytokine. To address this problem, we have developed a cytokine-independent activation-induced marker (AIM) methodology to identify Ag-specific GC Tfh cells in human lymphoid tissue. Whereas Group A Streptococcus-specific GC Tfh cells produced minimal detectable cytokines by intracellular cytokine staining, the AIM method identified 85-fold more Ag-specific GC Tfh cells. Intriguingly, these GC Tfh cells consistently expressed programmed death ligand 1 upon activation. AIM also detected non-Tfh cells in lymphoid tissue. As such, we applied AIM for identification of rare Ag-specific CD4(+) T cells in human peripheral blood. Dengue, tuberculosis, and pertussis vaccine-specific CD4(+) T cells were readily detectable by AIM. In summary, cytokine assays missed 98% of Ag-specific human GC Tfh cells, reflecting the biology of these cells, which could instead be sensitively identified by coexpression of TCR-dependent activation markers.
Collapse
Affiliation(s)
- Jennifer M Dan
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Division of Infectious Diseases, University of California, San Diego, La Jolla, CA 92093
| | | | - Daniela Weiskopf
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | | | - Colin Havenar-Daughton
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037; and
| | - Samantha M Reiss
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037; and
| | | | | | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Shane Crotty
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Division of Infectious Diseases, University of California, San Diego, La Jolla, CA 92093; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037; and
| |
Collapse
|
26
|
Bresciani A, Paul S, Schommer N, Dillon MB, Bancroft T, Greenbaum J, Sette A, Nielsen M, Peters B. T-cell recognition is shaped by epitope sequence conservation in the host proteome and microbiome. Immunology 2016; 148:34-9. [PMID: 26789414 DOI: 10.1111/imm.12585] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/09/2016] [Accepted: 01/14/2016] [Indexed: 01/15/2023] Open
Abstract
Several mechanisms exist to avoid or suppress inflammatory T-cell immune responses that could prove harmful to the host due to targeting self-antigens or commensal microbes. We hypothesized that these mechanisms could become evident when comparing the immunogenicity of a peptide from a pathogen or allergen with the conservation of its sequence in the human proteome or the healthy human microbiome. Indeed, performing such comparisons on large sets of validated T-cell epitopes, we found that epitopes that are similar with self-antigens above a certain threshold showed lower immunogenicity, presumably as a result of negative selection of T cells capable of recognizing such peptides. Moreover, we also found a reduced level of immune recognition for epitopes conserved in the commensal microbiome, presumably as a result of peripheral tolerance. These findings indicate that the existence (and potentially the polarization) of T-cell responses to a given epitope is influenced and to some extent predictable based on its similarity to self-antigens and commensal antigens.
Collapse
Affiliation(s)
- Anne Bresciani
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Department of Systems Biology, Centre for Biological Sequence Analysis, The Technical University of Denmark, Lyngby, Denmark
| | - Sinu Paul
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Nina Schommer
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Myles B Dillon
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Tara Bancroft
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Jason Greenbaum
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Morten Nielsen
- Department of Systems Biology, Centre for Biological Sequence Analysis, The Technical University of Denmark, Lyngby, Denmark.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
27
|
Abstract
While much progress has been made in the fight against the scourge of tuberculosis (TB), we are still some way from reaching the ambitious targets of eliminating it as a global public health problem by the mid twenty-first century. A new and effective vaccine that protects against pulmonary TB disease will be an essential element of any control strategy. Over a dozen vaccines are currently in development, but recent efficacy trial data from one of the most advanced candidates have been disappointing. Limitations of current preclinical animal models exist, together with a lack of a complete understanding of host immunity to TB or robust correlates of disease risk and protection. Therefore, in the context of such obstacles, we discuss the lessons identified from recent efficacy trials, current concepts of biomarkers and correlates of protection, the potential of innovative clinical models such as human challenge and conducting trials in high-incidence settings to evaluate TB vaccines in humans, and the use of systems vaccinology and novel technologies including transcriptomics and metabolomics, that may facilitate their utility.
Collapse
Affiliation(s)
| | - Helen McShane
- a The Jenner Institute, University of Oxford , Oxford , UK
| |
Collapse
|