1
|
Li T, Liu R, Wang Q, Rao J, Liu Y, Dai Z, Gooneratne R, Wang J, Xie Q, Zhang X. A review of the influence of environmental pollutants (microplastics, pesticides, antibiotics, air pollutants, viruses, bacteria) on animal viruses. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133831. [PMID: 38402684 DOI: 10.1016/j.jhazmat.2024.133831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Microorganisms, especially viruses, cause disease in both humans and animals. Environmental chemical pollutants including microplastics, pesticides, antibiotics sand air pollutants arisen from human activities affect both animal and human health. This review assesses the impact of chemical and biological contaminants (virus and bacteria) on viruses including its life cycle, survival, mutations, loads and titers, shedding, transmission, infection, re-assortment, interference, abundance, viral transfer between cells, and the susceptibility of the host to viruses. It summarizes the sources of environmental contaminants, interactions between contaminants and viruses, and methods used to mitigate such interactions. Overall, this review provides a perspective of environmentally co-occurring contaminants on animal viruses that would be useful for future research on virus-animal-human-ecosystem harmony studies to safeguard human and animal health.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Ruiheng Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Qian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Jiaqian Rao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Yuanjia Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenkai Dai
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China.
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China.
| |
Collapse
|
2
|
Alan E, Daldaban F, Alan A, Aksel EG, Orhan İ, Ulaş Çinar M, Akyüz B, Arslan K. TLR4, MyD88, and TNF-α Expression in the Lungs of Akkaraman and Romanov Lambs in Response to LPS and LTA. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1488-1502. [PMID: 37488827 DOI: 10.1093/micmic/ozad071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/19/2023] [Accepted: 06/18/2023] [Indexed: 07/26/2023]
Abstract
Toll-like receptors are involved in the recognition of bacterial toxins, which cause infection in the respiratory system. This study aimed to evaluate microanatomical and histological alterations in the lungs of 24 healthy Akkaraman and Romanov lambs after the administration of lipoteichoic acid (LTA), lipopolysaccharide (LPS), and LTA + LPS and investigate the gene, protein, and immune expression levels of TLR4, MyD88, and TNF-α molecules, known to have immune functions. Microanatomical examinations showed thickened peribronchial and alveolar walls in the lungs of groups LTA, LPS, and LTA + LPS of both breeds due to immune cell infiltration. TLR4, MyD88, and TNF-α immunoexpressions were positive to varying degrees in the cytoplasm and nucleus of the bronchial and bronchiolar luminal epithelial cells, alveolar epithelial cells, and alveolar macrophages. TLR4 and TNF-α protein expressions were statistically different in the LPS-treated Romanov lambs, compared to the other groups. Among the Akkaraman lambs, TLR4 gene expression was significantly higher in group LPS, and among the Romanov lambs, TLR4, MyD88, and TNF-α gene expressions were significantly higher in group LTA + LPS. Therefore, TLR4, MyD88, and TNF-α molecules, involved in the immune response, were found to be expressed at different levels against LTA and LPS in the lungs of two different sheep breeds.
Collapse
Affiliation(s)
- Emel Alan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, 38039 Kayseri, Turkey
| | - Fadime Daldaban
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, 38039 Kayseri, Turkey
| | - Aydın Alan
- Department of Anatomy, Faculty of Veterinary Medicine, Erciyes University, 38039 Kayseri, Turkey
| | - Esma Gamze Aksel
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, 38039 Kayseri, Turkey
| | - İmdat Orhan
- Department of Anatomy, Faculty of Veterinary Medicine, Erciyes University, 38039 Kayseri, Turkey
| | - Mehmet Ulaş Çinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, 38039 Kayseri, Turkey
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA 99164, USA
| | - Bilal Akyüz
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, 38039 Kayseri, Turkey
| | - Korhan Arslan
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, 38039 Kayseri, Turkey
| |
Collapse
|
3
|
Alan A, Alan E, Arslan K, Daldaban F, Aksel EG, Çınar MU, Akyüz B. LPS- and LTA-Induced Expression of TLR4, MyD88, and TNF-α in Lymph Nodes of the Akkaraman and Romanov Lambs. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-15. [PMID: 36062368 DOI: 10.1017/s1431927622012314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Toll-like receptor (TLR)-mediated inflammatory processes play a critical role in the innate immune response during the initial interaction between the infecting microorganism and immune cells. This study aimed to investigate the possible microanatomical and histological differences in mandibular and bronchial lymph nodes in Akkaraman and Romanov lambs induced by lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and study the gene, protein, and immunoexpression levels of TLR4, myeloid differentiation factor 88 (MyD88), and tumor necrosis factor-α (TNF-α) that are involved in the immune system. Microanatomical examinations demonstrated more intense lymphocyte infiltration in the bronchial lymph nodes of Akkaraman lambs in the LPS and LTA groups compared to Romanov lambs. TLR4, MyD88, and TNF-α immunoreactivities were more intense in the experimental groups of both breeds. Expression levels of MyD88 and TNF-α genes in the bronchial lymph node of Akkaraman lambs were found to increase statistically significantly in the LTA group. TLR4 gene expression level in the mandibular lymph node was found to be statistically significantly higher in the LTA + LPS group. In conclusion, dynamic changes in the immune cell populations involved in response to antigens such as LTA and LPS in the lymph nodes of both breeds can be associated with the difference in the expression level of the TLR4/MyD88/TNF-α genes.
Collapse
Affiliation(s)
- Aydın Alan
- Department of Anatomy, Faculty of Veterinary Medicine, Erciyes University, 38030 Kayseri, Turkey
| | - Emel Alan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, 38030 Kayseri, Turkey
| | - Korhan Arslan
- Department of Genetics, Faculty of Veterinary Medicine, University of Erciyes, 38030 Kayseri, Turkey
| | - Fadime Daldaban
- Department of Genetics, Faculty of Veterinary Medicine, University of Erciyes, 38030 Kayseri, Turkey
| | - Esma Gamze Aksel
- Department of Genetics, Faculty of Veterinary Medicine, University of Erciyes, 38030 Kayseri, Turkey
| | - Mehmet Ulaş Çınar
- Department of Animal Science, Faculty of Agriculture, University of Erciyes, 38030 Kayseri, Turkey
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA 99164, USA
| | - Bilal Akyüz
- Department of Genetics, Faculty of Veterinary Medicine, University of Erciyes, 38030 Kayseri, Turkey
| |
Collapse
|
4
|
Nicol MP, MacGinty R, Workman L, Stadler JAM, Myer L, Allen V, Ah Tow Edries L, Zar HJ. A Longitudinal Study of the Epidemiology of Seasonal Coronaviruses in an African Birth Cohort. J Pediatric Infect Dis Soc 2021; 10:607-614. [PMID: 33528016 PMCID: PMC7928775 DOI: 10.1093/jpids/piaa168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Since non-epidemic, seasonal human coronaviruses (sHCoV) commonly infect children, an improved understanding of the epidemiology of these infections may offer insights into the context of severe acute respiratory syndrome (SARS)-CoV-2. We investigated the epidemiology of sHCoV infection during the first year of life, including risk factors and association with lower respiratory tract infection (LRTI). METHODS We conducted a nested case-control study of infants enrolled in a birth cohort near Cape Town, South Africa, from 2012 to 2015. LRTI surveillance was implemented, and nasopharyngeal swabs were collected fortnightly over infancy. Quantitative PCR detected respiratory pathogens, including coronaviruses-229E, -NL63, -OC43, and -HKU1. Swabs were tested from infants at the time of LRTI and from the 90 days prior as well as from age-matched control infants from the cohort over the equivalent period. RESULTS In total, 885 infants were included, among whom 464 LRTI events occurred. Of the 4751 samples tested for sHCoV, 9% tested positive, with HCoV-NL63 the most common. Seasonal HCoV detection was associated with LRTI; this association was strongest for coronavirus-OC43, which was also found in all sHCoV-associated hospitalizations. Birth in winter was associated with sHCoV-LRTI, but there were no clear seasonal differences in detection. Co-detection of Streptococcus pneumoniae was weakly associated with sHCoV-LRTI (odds ratio: 1.8; 95% confidence interval: 0.9-3.6); detection of other respiratory viruses or bacteria was not associated with sHCoV status. CONCLUSIONS Seasonal HCoV infections were common and associated with LRTI, particularly sHCoV-OC43, which is most closely related to the SARS group of coronaviruses. Interactions of coronaviruses with bacteria in the pathogenesis of LRTI require further study.
Collapse
Affiliation(s)
- Mark P Nicol
- Division of Infection and Immunity, School of Biomedical Sciences, Faculty of Health Sciences, University of Western Australia, Perth, Australia
- Division of Medical Microbiology and Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rae MacGinty
- Department of Paediatrics and Child Health and SA-MRC Unit on Child & Adolescent Health, Red Cross War Memorial Children’s Hospital and University of Cape Town, Cape Town, South Africa
| | - Lesley Workman
- Department of Paediatrics and Child Health and SA-MRC Unit on Child & Adolescent Health, Red Cross War Memorial Children’s Hospital and University of Cape Town, Cape Town, South Africa
| | - Jacob A M Stadler
- Department of Paediatrics and Child Health and SA-MRC Unit on Child & Adolescent Health, Red Cross War Memorial Children’s Hospital and University of Cape Town, Cape Town, South Africa
| | - Landon Myer
- Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Veronica Allen
- Division of Medical Microbiology and Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lemese Ah Tow Edries
- Division of Medical Microbiology and Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health and SA-MRC Unit on Child & Adolescent Health, Red Cross War Memorial Children’s Hospital and University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Aksel EG, Akyüz B. Effect of LPS and LTA stimulation on the expression of TLR-pathway genes in PBMCs of Akkaraman lambs in vivo. Trop Anim Health Prod 2021; 53:65. [PMID: 33392825 PMCID: PMC7779097 DOI: 10.1007/s11250-020-02491-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
This is the first study investigating the changes in some gene expressions related to the TLR pathway in vivo in sheep. Lipopolysaccharide (LPS) and lipoteichoic acid (LTA) molecules were administrated separately and in combination to the Akkaraman lambs via intranasal route. For this purpose, 28 lambs were distributed into four groups (LPS, LTA, LPS + LTA, and control, n = 7). Blood samples were collected to isolate the peripheral blood mononuclear cells (PBMCs) at 24 h and on day 7. Expression levels of TLR2, TLR4, MyD88, TRAF6, TNF-α, IL-1ß, IL-6, IL-10, NF-κß, and IFN-γ genes were determined by qRT-PCR. Increases were determined in the expression data of TLR2 [LPS (P < 0.05) and LTA + LPS (P < 0.01)], TLR4 [LTA + LPS (P < 0.05)], TNF-α, IL-10 [LTA + LPS (P < 0.05)], and IFN-γ genes in all groups in the mRNA expression analysis of PBMCs isolated at 24 h whereas decreases were determined in the expression levels of these genes on day 7. The combination of LPS + LTA stimulated lamb PBMCs more effectively than separate administration of LPS and LTA at 24 h. Therefore, this article may contribute to the understanding the host-pathogen interaction of respiratory-transmitted bacterial diseases concerning PBMCs at 24 h and on day 7. Also this study may contribute to the dose adjustment for bacterial vaccine studies in sheep. Experimental application doses will be helpful for in vivo and in vitro drug and vaccine development studies in the fields of pharmacology and microbiology.
Collapse
Affiliation(s)
- Esma Gamze Aksel
- Department of Genetic, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey.
| | - Bilal Akyüz
- Department of Genetic, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| |
Collapse
|
6
|
Comparative Pathogenesis of Bovine and Porcine Respiratory Coronaviruses in the Animal Host Species and SARS-CoV-2 in Humans. J Clin Microbiol 2020; 58:JCM.01355-20. [PMID: 32522830 PMCID: PMC7383540 DOI: 10.1128/jcm.01355-20] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Discovery of bats with severe acute respiratory syndrome (SARS)-related coronaviruses (CoVs) raised the specter of potential future outbreaks of zoonotic SARS-CoV-like disease in humans, which largely went unheeded. Nevertheless, the novel SARS-CoV-2 of bat ancestral origin emerged to infect humans in Wuhan, China, in late 2019 and then became a global pandemic. Less than 5 months after its emergence, millions of people worldwide have been infected asymptomatically or symptomatically and at least 360,000 have died. Coronavirus disease 2019 (COVID-19) in severely affected patients includes atypical pneumonia characterized by a dry cough, persistent fever, and progressive dyspnea and hypoxia, sometimes accompanied by diarrhea and often followed by multiple organ failure, especially of the respiratory and cardiovascular systems. In this minireview, we focus on two endemic respiratory CoV infections of livestock: bovine coronavirus (BCoV) and porcine respiratory coronavirus (PRCV). Both animal respiratory CoVs share some common features with SARS-CoV and SARS-CoV-2. BCoV has a broad host range including wild ruminants and a zoonotic potential. BCoV also has a dual tropism for the respiratory and gastrointestinal tracts. These aspects, their interspecies transmission, and certain factors that impact disease severity in cattle parallel related facets of SARS-CoV or SARS-CoV-2 in humans. PRCV has a tissue tropism for the upper and lower respiratory tracts and a cellular tropism for type 1 and 2 pneumocytes in lung but is generally a mild infection unless complicated by other exacerbating factors, such as bacterial or viral coinfections and immunosuppression (corticosteroids).
Collapse
|
7
|
Matrine alleviates Staphylococcus aureus lipoteichoic acid-induced endometritis via suppression of TLR2-mediated NF-κB activation. Int Immunopharmacol 2019; 70:201-207. [PMID: 30822611 DOI: 10.1016/j.intimp.2019.02.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 12/28/2022]
Abstract
Endometritis is one of the main diseases that causes great economic losses in the dairy industry. Recent studies have shown that matrine extracted from the traditional Chinese herb Sophora flavescens is an alkaloid with a broad range of bioactivities. Here, we aimed to investigate the protective effects of matrine on Staphylococcus aureus lipoteichoic acid (LTA)-induced endometritis in mice and elucidate the possible molecular mechanisms in vitro. Histopathological changes showed that matrine remarkably attenuated the uterus injury in a mouse model of LTA-induced endometritis. qPCR and ELISA results showed that matrine dose-dependently reduced the expression of pro-inflammatory cytokines (TNF-α and IL-1β). To further elucidate the underlying mechanisms of this protective effect of matrine, LTA-stimulated bovine endometrial epithelial cells (bEECs) were employed in this study. The results demonstrated that TLR2 expression and its downstream nuclear factor (NF)-κB activation were both suppressed by matrine treatment. Furthermore, a small interference RNA targeting TLR2 gene mimicked matrine in its inhibition on LTA-induced activation of TLR2 and NF-κB. In conclusion, these findings suggest the protective effect of matrine against LTA-induced endometritis through negative regulation of TLR2-mediated NF-κB pathway.
Collapse
|
8
|
Morgene MF, Botelho-Nevers E, Grattard F, Pillet S, Berthelot P, Pozzetto B, Verhoeven PO. Staphylococcus aureus colonization and non-influenza respiratory viruses: Interactions and synergism mechanisms. Virulence 2018; 9:1354-1363. [PMID: 30058450 PMCID: PMC6177244 DOI: 10.1080/21505594.2018.1504561] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022] Open
Abstract
Viral infections of the respiratory tract can be complicated by bacterial superinfection, resulting in a significantly longer duration of illness and even a fatal outcome. In this review, we focused on interactions between S. aureus and non-influenza viruses. Clinical data evidenced that rhinovirus infection may increase the S. aureus carriage load in humans and its spread. In children, respiratory syncytial virus infection is associated with S. aureus carriage. The mechanisms by which some non-influenza respiratory viruses predispose host cells to S. aureus superinfection can be summarized in three categories: i) modifying expression levels of cellular patterns involved in S. aureus adhesion and/or internalization, ii) inducing S. aureus invasion of epithelial cells due to the disruption of tight junctions, and iii) decreasing S. aureus clearance by altering the immune response. The comprehension of pathways involved in S. aureus-respiratory virus interactions may help developing new strategies of preventive and curative therapy.
Collapse
Affiliation(s)
- M. Fedy Morgene
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
| | - Elisabeth Botelho-Nevers
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Infectious Diseases Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Florence Grattard
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Sylvie Pillet
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Philippe Berthelot
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Bruno Pozzetto
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Paul O. Verhoeven
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
9
|
|
10
|
Zhao Y, Yu YB. Intestinal microbiota and chronic constipation. SPRINGERPLUS 2016; 5:1130. [PMID: 27478747 PMCID: PMC4951383 DOI: 10.1186/s40064-016-2821-1] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/12/2016] [Indexed: 02/08/2023]
Abstract
Chronic constipation is a prevalent, burdensome gastrointestinal disorder whose aetiology and pathophysiology remains poorly understood and is most likely multifactorial. Differences in the composition of the intestinal microbiota have been demonstrated when constipated patients and healthy controls have been compared. Growing evidence indicates that alterations of intestinal microbiota may contribute to constipation and constipation-related symptoms. The intestinal microbiota is a collection of microorganisms that live within the gastrointestinal tract, and perform many important health-promoting functions. The intestinal microbiota aids in the breakdown of food products into absorbable nutrients, stimulates the host immune system, prevents growth of pathogenic bacteria and produces a great variety of biologically important compounds. In this review, we will summarize the current evidence supporting roles of the intestinal microbiota in the pathogenesis and management of chronic constipation. The discussion will shed light on the novel mechanisms of intestinal microbiota and gut function interactions, which is invaluable in ultimately developing new therapeutic tools for the treatment of chronic constipation.
Collapse
Affiliation(s)
- Ying Zhao
- />Department of Geriatrics, Jinan Military General Hospital, Jinan, 250031 People’s Republic of China
| | - Yan-Bo Yu
- />Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, 250012 People’s Republic of China
| |
Collapse
|
11
|
Vanderhaeghen W, Piepers S, Leroy F, Van Coillie E, Haesebrouck F, De Vliegher S. Invited review: effect, persistence, and virulence of coagulase-negative Staphylococcus species associated with ruminant udder health. J Dairy Sci 2014; 97:5275-93. [PMID: 24952781 DOI: 10.3168/jds.2013-7775] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 05/12/2014] [Indexed: 01/12/2023]
Abstract
The aim of this review is to assess the effect of coagulase-negative staphylococci (CNS) species on udder health and milk yield in ruminants, and to evaluate the capacity of CNS to cause persistent intramammary infections (IMI). Furthermore, the literature on factors suspected of playing a role in the pathogenicity of IMI-associated CNS, such as biofilm formation and the presence of various putative virulence genes, is discussed. The focus is on the 5 CNS species that have been most frequently identified as causing bovine IMI using reliable molecular identification methods (Staphylococcus chromogenes, Staphylococcus simulans, Staphylococcus haemolyticus, Staphylococcus xylosus, and Staphylococcus epidermidis). Although the effect on somatic cell count and milk production is accepted to be generally limited or nonexistent for CNS as a group, indications are that the typical effects differ between CNS species and perhaps even strains. It has also become clear that many CNS species can cause persistent IMI, contrary to what has long been believed. However, this trait appears to be quite complicated, being partly strain dependent and partly dependent on the host's immunity. Consistent definitions of persistence and more uniform methods for testing this phenomenon will benefit future research. The factors explaining the anticipated differences in pathogenic behavior appear to be more difficult to evaluate. Biofilm formation and the presence of various staphylococcal virulence factors do not seem to (directly) influence the effect of CNS on IMI but the available information is indirect or insufficient to draw consistent conclusions. Future studies on the effect, persistence, and virulence of the different CNS species associated with IMI would benefit from using larger and perhaps even shared strain collections and from adjusting study designs to a common framework, as the large variation currently existing therein is a major problem. Also within-species variation should be investigated.
Collapse
Affiliation(s)
- W Vanderhaeghen
- M-Team & Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - S Piepers
- M-Team & Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - F Leroy
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - E Van Coillie
- Technology and Food Science Unit, Institute for Agricultural and Fisheries Research (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium
| | - F Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - S De Vliegher
- M-Team & Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| |
Collapse
|
12
|
Qiu Y, van der Meulen K, Van Reeth K. Prior infection of pigs with a recent human H3N2 influenza virus confers minimal cross-protection against a European swine H3N2 virus. Influenza Other Respir Viruses 2013; 7:1260-8. [PMID: 23551882 PMCID: PMC4634290 DOI: 10.1111/irv.12105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND H3N2 influenza viruses circulating in humans and European pigs originate from the pandemic A/Hong Kong/68 virus. Because of slower antigenic drift in swine, the antigenic divergence between swine and human viruses has been increasing. It remains unknown to what extent this results in a reduced cross-protection between recent human and swine H3N2 influenza viruses. OBJECTIVES We examined whether prior infection of pigs with an old [A/Victoria/3/75 (A/Vic/75)] or a more recent [A/Wisconsin/67/05 (A/Wis/05)] human H3N2 virus protected against a European swine H3N2 virus [sw/Gent/172/08 (sw/Gent/08)]. Genetic and antigenic relationships between sw/Gent/08 and a selection of human H3N2 viruses were also assessed. RESULTS After challenge with sw/Gent/08, all challenge controls had high virus titers in the entire respiratory tract at 3 days post-challenge and nasal virus excretion for 5-6 days. Prior infection with sw/Gent/08 or A/Vic/75 offered complete virological protection against challenge. Pigs previously inoculated with A/Wis/05 showed similar virus titers in the respiratory tract as challenge controls, but the mean duration of nasal shedding was 1·3 days shorter. Unlike sw/Gent/08- and A/Vic/75-inoculated pigs, A/Wis/05-inoculated pigs lacked cross-reactive neutralizing antibodies against sw/Gent/08 before challenge, but they showed a more rapid antibody response to sw/Gent/08 than challenge controls after challenge. Cross-protection and serological responses correlated with genetic and antigenic differences. CONCLUSIONS Infection immunity to a recent human H3N2 virus confers minimal cross-protection against a European swine H3N2 virus. We discuss our findings with regard to the recent zoonotic infections of humans in the United States with a swine-origin H3N2 variant virus.
Collapse
Affiliation(s)
- Yu Qiu
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | |
Collapse
|
13
|
De Vleeschauwer AR, Baras B, Kyriakis CS, Jacob V, Planty C, Giannini SL, Mossman S, Van Reeth K. Efficacy of an AS03A-adjuvanted split H5N1 influenza vaccine against an antigenically distinct low pathogenic H5N1 virus in pigs. Vaccine 2012; 30:5557-63. [DOI: 10.1016/j.vaccine.2012.06.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/27/2012] [Accepted: 06/10/2012] [Indexed: 01/23/2023]
|
14
|
Abstract
Respiratory disease in pigs is common in modern pork production worldwide and is often referred to as porcine respiratory disease complex (PRDC). PRDC is polymicrobial in nature, and results from infection with various combinations of primary and secondary respiratory pathogens. As a true multifactorial disease, environmental conditions, population size, management strategies and pig-specific factors such as age and genetics also play critical roles in the outcome of PRDC. While non-infectious factors are important in the initiation and outcome of cases of PRDC, the focus of this review is on infectious factors only. There are a variety of viral and bacterial pathogens commonly associated with PRDC including porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), porcine circovirus type 2 (PCV2), Mycoplasma hyopneumoniae (MHYO) and Pasteurella multocida (PMULT). The pathogenesis of viral respiratory disease is typically associated with destruction of the mucocilliary apparatus and with interference and decrease of the function of pulmonary alveolar and intravascular macrophages. Bacterial pathogens often contribute to PRDC by activation of inflammation via enhanced cytokine responses. With recent advancements in pathogen detection methods, the importance of polymicrobial disease has become more evident, and identification of interactions of pathogens and their mechanisms of disease potentiation has become a topic of great interest. For example, combined infection of pigs with typically low pathogenic organisms like PCV2 and MHYO results in severe respiratory disease. Although the body of knowledge has advanced substantially in the last 15 years, much more needs to be learned about the pathogenesis and best practices for control of swine respiratory disease outbreaks caused by concurrent infection of two or more pathogens. This review discusses the latest findings on polymicrobial respiratory disease in pigs.
Collapse
|