1
|
Chowdhury MAH, Reem CSA, Ashrafudoulla M, Rahman MA, Shaila S, Jie-Won Ha A, Ha SD. Role of advanced cleaning and sanitation techniques in biofilm prevention on dairy equipment. Compr Rev Food Sci Food Saf 2025; 24:e70176. [PMID: 40260792 DOI: 10.1111/1541-4337.70176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/24/2025]
Abstract
Biofilm formation on dairy equipment is a persistent challenge in the dairy industry, contributing to product contamination, equipment inefficiency, and economic losses. Traditional methods such as manual cleaning and basic chemical sanitation are discussed as foundational approaches, followed by an in-depth investigation of cutting-edge technologies, including clean-in-place systems, high-pressure cleaning, foam cleaning, ultrasonic and electrochemical cleaning, dry ice blasting, robotics, nanotechnology-based agents, enzymatic cleaners, and oxidizing agents. Enhanced sanitation techniques, such as dry steam, pulsed light, acidic and alkaline electrolyzed water, hydrogen peroxide vapor, microbubble technology, and biodegradable biocides, are highlighted for their potential to achieve superior sanitation while promoting sustainability. The effectiveness, feasibility, and limitations of these methods are evaluated, emphasizing their role in maintaining dairy equipment hygiene and reducing biofilm-associated risks. Additionally, challenges, such as equipment compatibility, cost, and regulatory compliance, are addressed, along with insights into future directions and innovations, including automation, smart cleaning systems, and green cleaning solutions. This review provides a comprehensive resource for researchers, industry professionals, and policymakers aiming to tackle biofilm formation in dairy production systems and enhance food safety, operational efficiency, and sustainability.
Collapse
Affiliation(s)
- Md Anamul Hasan Chowdhury
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-Do, Republic of Korea
- GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Chowdhury Sanat Anjum Reem
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-Do, Republic of Korea
- GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Md Ashrafudoulla
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Md Ashikur Rahman
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-Do, Republic of Korea
- GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Shanjida Shaila
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-Do, Republic of Korea
- GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Angela Jie-Won Ha
- Sofitel Ambassador Seoul Hotel & Serviced Residences, Seoul, Republic of Korea
| | - Sang-Do Ha
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-Do, Republic of Korea
- GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Huang H, Tong Y, Lyu X, Zhao W, Yang R. Ultrasound and lactic/malic acid treatment for mitten crab decontamination: Efficacy and mechanisms against A. hydrophila. ULTRASONICS SONOCHEMISTRY 2025; 115:107294. [PMID: 40023899 PMCID: PMC11919395 DOI: 10.1016/j.ultsonch.2025.107294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
The Chinese mitten crab (Eriocheir sinensis), recognized as a high-value aquatic product, necessitates effective cleaning to ensure both safety and quality. Conventional cleaning methods frequently fail to eliminate biofilms and pathogenic bacteria, such as Aeromonas hydrophila, which pose significant health risks and contribute to spoilage. This study explores the bactericidal efficacy and underlying mechanisms of ultrasound treatment combined with a lactic acid and malic acid complex solution for decontaminating crabs and enhancing food safety. Employing a range of methodologies, including microscopic imaging, live/dead staining, RT-qPCR, and texture and microstructure analysis, the results indicate that the combined treatment significantly reduced A. hydrophila counts by 4.16 lg CFU/mL and induced substantial bacterial membrane damage, as evidenced by scanning electron microscopy (SEM). Gene expression analysis revealed a pronounced downregulation of biofilm-related genes. Notably, the treatment also preserved the texture and sensory properties of crab meat, thereby ensuring high product quality. These findings suggest that the application of ultrasound in conjunction with a lactic acid-malic acid solution represents a green and effective strategy for improving food safety and quality in the processing of aquatic products, offering a sustainable and eco-friendly alternative to traditional cleaning methods.
Collapse
Affiliation(s)
- Han Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yanjun Tong
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiaomei Lyu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
3
|
Ai X, Zhang X, Tian Y, Lu M, Wang W. Research status, key technologies and development trends of pharmaceutical waste salt treatment technology: A review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2025:734242X251326271. [PMID: 40132134 DOI: 10.1177/0734242x251326271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The expanding pharmaceutical industry generates a large amount of waste salt (WS) with a complex composition, which is difficult to treat and poses potential risks to the environment and human health. Removing toxic organic compounds has become a bottleneck issue that needs to be addressed. This article presents a comprehensive review of traditional and emerging treatment technologies based on the sources and characteristics of WS from the pharmaceutical industry. It also discusses the problems and challenges faced by typical WS treatment technologies and evaluates the application of innovative integrated processes. Building on this, a future outlook for pharmaceutical WS treatment technologies is outlined. This review aims to assist scientists in enhancing their understanding of different technologies used for treating WS, thereby accelerating the improvement of process parameters and technologies.
Collapse
Affiliation(s)
- Xiaoqing Ai
- School of Economics and Management, Beijing University of Technology, Beijing, P. R China
| | - Xiaoyue Zhang
- School of Economics and Management, Beijing University of Technology, Beijing, P. R China
| | - Yi Tian
- Solid Waste and Chemicals Management Center, Ministry of Ecology and Environment, Beijing, P. R China
| | - Mei Lu
- Zhejiang Environment Technology Co., Ltd, Zhejiang, P. R China
| | - Wei Wang
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, P. R China
| |
Collapse
|
4
|
Liu G, Li C, Li D, Xue W, Hua T, Li F. Application of catalytic technology based on the piezoelectric effect in wastewater purification. J Colloid Interface Sci 2024; 673:113-133. [PMID: 38875783 DOI: 10.1016/j.jcis.2024.06.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/24/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
The demands of human life and industrial activities result in a significant influx of toxic contaminants into aquatic ecosystems. In particular, organic pollutants such as antibiotics and dye molecules, bacteria, and heavy metal ions are represented, posing a severe risk to the health and continued existence of living organisms. The method of removing pollutants from water bodies by utilizing the principle of the piezoelectric effect in combination with chemical catalytic processes is superior to other wastewater purification technologies because it can collect water energy, mechanical energy, etc. to achieve cleanliness and high removal efficiency. Herein, we briefly introduced the piezoelectric mechanisms and then reviewed the latest advances in the design and synthesis of piezoelectric materials, followed by a summary of applications based on the principle of piezoelectric effect to degrade pollutants in water for wastewater purification. Moreover, water purification technologies incorporating the piezoelectric effect, including piezoelectric effect-assisted membrane filtration, activation of persulfate, and battery electrocatalysis are elaborated. Finally, future challenges and research directions for the piezoelectric effect are proposed.
Collapse
Affiliation(s)
- Gaolei Liu
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Chengzhi Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Donghao Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Wendan Xue
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Tao Hua
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
5
|
Miramontes-Escobar HA, Hengl N, Dornier M, Montalvo-González E, Chacón-López MA, Achir N, Vaillant F, Ortiz-Basurto RI. Coupling Low-Frequency Ultrasound to a Crossflow Microfiltration Pilot: Effect of Ultrasonic Pulse Application on Sono-Microfiltration of Jackfruit Juice. MEMBRANES 2024; 14:192. [PMID: 39330533 PMCID: PMC11433797 DOI: 10.3390/membranes14090192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/13/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024]
Abstract
To reduce membrane fouling during the processing of highly pulpy fruit juices into clarified beverages, a crossflow Sono-Microfiltration (SMF) system was employed, strategically equipped with an ultrasonic probe for the direct application of low-frequency ultrasound (LFUS) to the juice just before the entrance to the ceramic membrane. Operating conditions were standardized, and the application of LFUS pulses in both corrective and preventive modes was investigated. The effect of SMF on the physicochemical properties and the total soluble phenol (TSP) content of the clarified juice was also evaluated. The distance of ultrasonic energy irradiation guided the selection of the LFUS probe. Amplitude conditions and ultrasonic pulses were more effective in the preventive mode and did not cause membrane damage, reducing the operation time of jackfruit juice by up to 50% and increasing permeability by up to 81%. The SMF did not alter the physicochemical parameters of the clarified juice, and the measured LFUS energy ranges did not affect the TSP concentration during the process. This study is the first to apply LFUS directly to the feed stream in a pilot-scale crossflow microfiltration system to reduce the fouling of ceramic membranes and maintain bioactive compounds in jackfruit juice.
Collapse
Affiliation(s)
- Herenia Adilene Miramontes-Escobar
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México—Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (H.A.M.-E.); (E.M.-G.); (M.A.C.-L.)
- Institut Agro, Institut de Re-cherche pour le Développement, UMR Qualisud, Université de Montpellier, Université d’Avignon, Université de La Réunion, 34000 Montpellier, France; (M.D.); (N.A.)
| | - Nicolas Hengl
- Laboratoire Rhéologie Et Procédés, Grenoble INP (Institute of Engineering Université Grenoble Alpes), Centre National de la Recherche Scientifique, Université Grenoble Alpes, 38000 Grenoble, France;
| | - Manuel Dornier
- Institut Agro, Institut de Re-cherche pour le Développement, UMR Qualisud, Université de Montpellier, Université d’Avignon, Université de La Réunion, 34000 Montpellier, France; (M.D.); (N.A.)
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México—Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (H.A.M.-E.); (E.M.-G.); (M.A.C.-L.)
| | - Martina Alejandra Chacón-López
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México—Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (H.A.M.-E.); (E.M.-G.); (M.A.C.-L.)
| | - Nawel Achir
- Institut Agro, Institut de Re-cherche pour le Développement, UMR Qualisud, Université de Montpellier, Université d’Avignon, Université de La Réunion, 34000 Montpellier, France; (M.D.); (N.A.)
| | - Fabrice Vaillant
- Institut Agro, Institut de Re-cherche pour le Développement, UMR Qualisud, Université de Montpellier, Université d’Avignon, Université de La Réunion, 34000 Montpellier, France; (M.D.); (N.A.)
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Qualisud, Agrosavia, Rionegro-Antioquia 054048, Colombia
| | - Rosa Isela Ortiz-Basurto
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México—Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (H.A.M.-E.); (E.M.-G.); (M.A.C.-L.)
| |
Collapse
|
6
|
Tomczak W, Woźniak P, Gryta M, Grzechulska-Damszel J, Daniluk M. Cleaning of Ultrafiltration Membranes: Long-Term Treatment of Car Wash Wastewater as a Case Study. MEMBRANES 2024; 14:159. [PMID: 39057667 PMCID: PMC11278524 DOI: 10.3390/membranes14070159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Car wash wastewaters (CWWs) contain various pollutants with different contents. Hence, selecting an appropriate process for their treatment is a great challenge. Undoubtedly, the ultrafiltration (UF) process is one of the most interesting and reliable choices. Therefore, the main aim of the current study was to investigate the performance of the UF membranes used for the long-term treatment of real CWWs. For this purpose, two polyethersulfone (PES) membranes with molecular weight cut-off (MWCO) values equal to 10 and 100 kDa were applied. As expected, a significant decrease in the permeate flux during the UF run was observed. However, it was immediately demonstrated that the systematic cleaning of membranes (every day) with Insect agent (pH = 11.5) prevented a further decline in the process's performance. In addition, this study focused on the relative flux during the process run with breaks lasting a few days when the UF installation was filled with distilled water. The results of this research indicated that aqueous media favor microorganism adherence to the surface which leads to the formation of biofilms inside processing installations. As a consequence, many attempts have been made to restore the initial membrane performance. It has been found that the application of several chemical agents is required. More precisely, the use of an Insect solution, P3 Ultrasil 11 agent, and phosphoric acid increases the relative flux to a value of 0.8. Finally, it has been indicated that the membranes used in this work are resistant to the long-term exposure to bacteria and chemical agents. However, during the separation of CWWs for the membrane with an MWCO of 10 kDa, a lesser fouling influence and higher effectiveness of cleaning were obtained. Finally, the present study demonstrates a novel analysis and innovative implications towards applying the UF process for the CWW treatment.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland;
| | - Piotr Woźniak
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 10 Pułaskiego Street, 70-322 Szczecin, Poland; (P.W.); (J.G.-D.)
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 10 Pułaskiego Street, 70-322 Szczecin, Poland; (P.W.); (J.G.-D.)
| | - Joanna Grzechulska-Damszel
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 10 Pułaskiego Street, 70-322 Szczecin, Poland; (P.W.); (J.G.-D.)
| | - Monika Daniluk
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland;
| |
Collapse
|
7
|
Namagondlu Seetharamaiah G, Marisiddappa L, Dhareshwar S, Rani S, Das N. Application of therapeutic ultrasonic waves across the dialyzer membrane: A pilot study on the impact on dialyzer clearance and safety. Hemodial Int 2024; 28:313-325. [PMID: 38783838 DOI: 10.1111/hdi.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/27/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Progressive clogging of the dialyzer membrane during hemodialysis can compromise solute removal efficiency. Existing solutions fall short in addressing intradialytic reduction of dialyzer clearance. This pilot study aims to assess the impact and safety of applying therapeutic ultrasonic waves to dialyzers for mitigating intradialytic clogging. METHODS In this pilot study, 15 stable maintenance hemodialysis patients (12 males and 3 females) were enrolled. Each patient served as their own control. They underwent one session of hemodialysis with the application of therapeutic ultrasonic waves (Ultrasonic session) and were crossed-over to a second session without the use of ultrasonic waves (Control session). All the study sessions operated at a fixed dialysate flow rate of 500 mL/min and a blood flow rate of 250 or 300 mL/min. The adequacy of dialysis achieved during each session was monitored using Online Clearance Monitoring of the dialysis machines, and clearance K values, varying between 135 and 209 mL/min, were recorded, and plotted. A direct comparison between Control and Ultrasonic sessions was performed to assess the impact and safety of using ultrasonic waves during hemodialysis. FINDINGS The mean percentage decline in dialyzer clearance values was 4.41% for Ultrasonic sessions (SD: 5.3) and 12.69% for Control sessions (SD: 6.35) (p-value <0.001). This indicates that the application of ultrasonic waves reduced the decline in clearance values. The mean differences of the blood component parameters were comparable between both Ultrasonic sessions and Control sessions, suggesting the safety of utilizing ultrasonic waves during dialysis. Microscopic membrane analysis corroborated the safety. DISCUSSION Intradialytic clogging of dialyzer membranes is a significant problem that can cause dialysis inadequacy. Our study tackles this issue by introducing therapeutic ultrasonic waves to improve dialyzer clearance during hemodialysis sessions in patients.
Collapse
Affiliation(s)
| | | | | | | | - Nikhil Das
- Sedign Solutions Pvt. Ltd., Bengaluru, India
| |
Collapse
|
8
|
Wang L, Wang H, Liu D, Han Z, Fan J. A review of the polyphenols purification from apple products. Crit Rev Food Sci Nutr 2024; 64:7397-7407. [PMID: 36876502 DOI: 10.1080/10408398.2023.2185199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Apple polyphenols are one of the major bioactive compounds in apple products and have strong anti-inflammatory effects and the ability to prevent chronic diseases with health benefits. The development of apple polyphenol products is dependent on the extraction, purification and identification of apple polyphenols. The extracted polyphenols need to be further purified to improve the concentration of the extracted polyphenols. This review, therefore, presents the studies on the conventional and novel methods for polyphenols purification from apple products. The different chromatography methods, as one of the most widely used conventional purification methods, for polyphenol purification from various apple products are introduced. In addition, the perspective of the adsorption-desorption process and membrane filtration technique in enhancing the purification of polyphenols from apple products are presented in this review. The advantages and disadvantages of these purification techniques are also discussed and compared in depth. However, each of the reviewed technologies has some disadvantages that need to be overcome, and some mechanisms need to be further identified. Therefore, more competitive polyphenols purification techniques need to emerge in the future. It is hoped that this review can provide a research basis for the efficient purification of apple polyphenols, which can facilitate their application in various fields.
Collapse
Affiliation(s)
- Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
- Research Institute, Jilin University, Yibin, People's Republic of China
| | - Hanyue Wang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, People's Republic of China
| | - Zhiwu Han
- Key Laboratory of Bionics Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Jianhua Fan
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
9
|
Perchikov R, Cheliukanov M, Plekhanova Y, Tarasov S, Kharkova A, Butusov D, Arlyapov V, Nakamura H, Reshetilov A. Microbial Biofilms: Features of Formation and Potential for Use in Bioelectrochemical Devices. BIOSENSORS 2024; 14:302. [PMID: 38920606 PMCID: PMC11201457 DOI: 10.3390/bios14060302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Microbial biofilms present one of the most widespread forms of life on Earth. The formation of microbial communities on various surfaces presents a major challenge in a variety of fields, including medicine, the food industry, shipping, etc. At the same time, this process can also be used for the benefit of humans-in bioremediation, wastewater treatment, and various biotechnological processes. The main direction of using electroactive microbial biofilms is their incorporation into the composition of biosensor and biofuel cells This review examines the fundamental knowledge acquired about the structure and formation of biofilms, the properties they have when used in bioelectrochemical devices, and the characteristics of the formation of these structures on different surfaces. Special attention is given to the potential of applying the latest advances in genetic engineering in order to improve the performance of microbial biofilm-based devices and to regulate the processes that take place within them. Finally, we highlight possible ways of dealing with the drawbacks of using biofilms in the creation of highly efficient biosensors and biofuel cells.
Collapse
Affiliation(s)
- Roman Perchikov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Maxim Cheliukanov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Yulia Plekhanova
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| | - Sergei Tarasov
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| | - Anna Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Denis Butusov
- Computer-Aided Design Department, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg 197022, Russia;
| | - Vyacheslav Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Hideaki Nakamura
- Department of Liberal Arts, Tokyo University of Technology, 1404-1 Katakura, Hachioji 192-0982, Tokyo, Japan;
| | - Anatoly Reshetilov
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| |
Collapse
|
10
|
Rosales Pérez A, Esquivel Escalante K. The Evolution of Sonochemistry: From the Beginnings to Novel Applications. Chempluschem 2024; 89:e202300660. [PMID: 38369655 DOI: 10.1002/cplu.202300660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Sonochemistry is the use of ultrasonic waves in an aqueous medium, to generate acoustic cavitation. In this context, sonochemistry emerged as a focal point over the past few decades, starting as a manageable process such as a cleaning technique. Now, it is found in a wide range of applications across various chemical, physical, and biological processes, creating opportunities for analysis between these processes. Sonochemistry is a powerful and eco-friendly technique often called "green chemistry" for less energy use, toxic reagents, and residues generation. It is increasing the number of applications achieved through the ultrasonic irradiation (USI) method. Sonochemistry has been established as a sustainable and cost-effective alternative compared to traditional industrial methods. It promotes scientific and social well-being, offering non-destructive advantages, including rapid processes, improved process efficiency, enhanced product quality, and, in some cases, the retention of key product characteristics. This versatile technology has significantly contributed to the food industry, materials technology, environmental remediation, and biological research. This review is created with enthusiasm and focus on shedding light on the manifold applications of sonochemistry. It delves into this technique's evolution and current applications in cleaning, environmental remediation, microfluidic, biological, and medical fields. The purpose is to show the physicochemical effects and characteristics of acoustic cavitation in different processes across various fields and to demonstrate the extending application reach of sonochemistry. Also to provide insights into the prospects of this versatile technique and demonstrating that sonochemistry is an adapting system able to generate more efficient products or processes.
Collapse
Affiliation(s)
- Alicia Rosales Pérez
- Centro de Investigación en Química para la Economía Circular, CIQEC, Facultad de Química, Universidad Autónoma de Querétaro Centro Universitario, Santiago de Querétaro, 76010, Mexico
| | - Karen Esquivel Escalante
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro, 76010, Mexico
| |
Collapse
|
11
|
Ren W, Zhang S, Liu Y, Ju W, Liu G, Xie K. Study on efficiency and mechanism of ultrasonic controlling membrane fouling in ceramic membrane bioreactors. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11032. [PMID: 38698675 DOI: 10.1002/wer.11032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
In recent years, ceramic membranes have been increasingly used in membrane bioreactors (MBRs). However, membrane fouling was still the core issue restricting the large-scale engineering application of ceramic MBRs. As a novel and alternative technology, ultrasonic could be used to control membrane fouling. This research focused on the efficiency and mechanism of ultrasonic controlling membrane fouling in ceramic MBRs. The results showed that ultrasonic reduced the sludge concentration in MBR, and the average particle size of sludge was always in a high range. The sludge activity of the system was stable at 6-9 (mg O2·(g MLSS·h)-1), indicating that ultrasonic did not destroy the activity of microorganisms in the system. The extracellular polymer substance (EPS) of the ultrasonic group was slightly higher than that of the control group, while the soluble microbial product (SMP) content was relatively stable. The ceramic membrane of the ultrasonic group has a partial retention effect on the organic components. The application of ultrasonic slowed down the decrease of the hydrophilicity of the ceramic membrane. The main pollutants on the membrane surface exist in the form of aromatic and heteroaromatic rings, alkynes, and so forth. Ultrasonic removes the amide substances from the membrane surface. Membrane fouling resistance is mainly due to membrane pore blockage, accounting for 75.53%. PRACTITIONER POINTS: Enrich the research on the mechanism of ultrasonic technology in membrane fouling control. The MBR can still operate normally with ultrasonic applied. The time for the ceramic membrane to reach the fouling end point is 2.4 times that without ultrasonic. The main cause of membrane fouling was pore blocking, accounting for 75.53%.
Collapse
Affiliation(s)
- Wenyi Ren
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China
| | - Shoubin Zhang
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China
| | - Yutian Liu
- Jinan Municipal Engineering Design &Research Institute (Group) CO., LTD., Jinan, China
| | - Weipeng Ju
- Jinan Municipal Engineering Design &Research Institute (Group) CO., LTD., Jinan, China
| | - Guicai Liu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China
| | - Kang Xie
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China
| |
Collapse
|
12
|
Mamba PP, Msagati TAM, Mamba BB, Motsa MM, Nkambule TTI. The removal of pathogenic bacteria and dissolved organic matter from freshwater using microporous membranes: insights into biofilm formation and fouling reversibility. BIOFOULING 2024; 40:245-261. [PMID: 38639133 DOI: 10.1080/08927014.2024.2339438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/01/2024] [Indexed: 04/20/2024]
Abstract
Pathogenic bacteria in drinking-water pose a health risk to consumers, as they compromise the quality of portable water. Chemical disinfection of water containing dissolved organic matter (DOM) causes harmful disinfection by-products. In this work, 4-hydroxybenzoic acid (4-HBA) blended polyethersulfone membranes were fabricated and characterised using microscopic and spectroscopic techniques. The membranes were evaluated for the removal of bacteria and DOM from synthetic and environmental water. Permeate flux increased from 287.30 to 374.60 l m-2 h-1 at 3 bars when 4-HBA increased from 0 to 1.5 wt.%, suggesting that 4-HBA influenced the membrane's affinity for water. Furthermore, 4-HBA demonstrated antimicrobial properties by inhibiting bacterial growth. The membrane with 1 wt.% 4-HBA recorded 99.4 and 100% bacteria removal in synthetic and environmental water, respectively. Additionally, DOM removal of 55-73% was achieved. A flux recovery ratio (FRR) of 94.6% was obtained when a mixture of bacteria and humic acid was filtered, implying better fouling layer reversibility during cleaning. Furthermore, 100% FRR was achieved when a multimedia granular filtration step was installed prior to membrane filtration. The results illustrated that the membranes had a high permeate flux with low irreversible fouling. This indicated the potential of the membranes in treating complex feed streams using simple cleaning protocols.
Collapse
Affiliation(s)
- Phumlile P Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Florida, Johannesburg, South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Florida, Johannesburg, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Florida, Johannesburg, South Africa
| | - Machawe M Motsa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Florida, Johannesburg, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Florida, Johannesburg, South Africa
| |
Collapse
|
13
|
Bai Y, Zhu H, Zu L, Zhang Y, Bi H. Environment-friendly, efficient process for mechanical recovery of waste lithium iron phosphate batteries. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1549-1558. [PMID: 37070218 DOI: 10.1177/0734242x231164325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Technology for recycling retired lithium batteries has become increasingly environment-friendly and efficient. In traditional recovery methods, pyrometallurgy or hydrometallurgy is often used as an auxiliary treatment method, which results in secondary pollution and increases the cost of harmless treatment. In this article, a new method for combined mechanical recycling of waste lithium iron phosphate (LFP) batteries is proposed to realize the classification and recycling of materials. Appearance inspections and performance tests were conducted on 1000 retired LFP batteries. After discharging and disassembling the defective batteries, the physical structure of the cathode binder was destroyed under ball-milling cycle stress, and the electrode material and metal foil were separated using ultrasonic cleaning technology. After treating the anode sheet with 100 W of ultrasonic power for 2 minutes, the anode material was completely stripped from the copper foil, and no cross-contamination between the copper foil and graphite was observed. After the cathode plate was ball-milled for 60 seconds with an abrasive particle size of 20 mm and then ultrasonically treated for 20 minutes with a power of 300 W, the stripping rate of the cathode material reached 99.0%, and the purities of the aluminium foil and LFP reached 100% and 98.1%, respectively.
Collapse
Affiliation(s)
- Yuxuan Bai
- School of Mechanical Engineering, Hefei University of Technology, Hefei, China
| | - Huabing Zhu
- School of Mechanical Engineering, Hefei University of Technology, Hefei, China
| | - Lei Zu
- School of Mechanical Engineering, Hefei University of Technology, Hefei, China
| | - Yanlong Zhang
- School of Mechanical Engineering, Hefei University of Technology, Hefei, China
| | - Haijun Bi
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
14
|
Peng Y, Xu X, Liang Y. Influence of an Axial-Electromagnetic Field Treatment Device with a Solenoid Structure on Crystallization Fouling on the Tube Side of a Shell-and-Tube Heat Exchanger. ENTROPY (BASEL, SWITZERLAND) 2023; 25:962. [PMID: 37509909 PMCID: PMC10378375 DOI: 10.3390/e25070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023]
Abstract
In this study, the influence of an axial-electromagnetic field treatment device (AEFTD) with a solenoid structure using different electromagnetic frequencies on calcium carbonate (CaCO3) crystallization fouling on the tube side of a shell-and-tube heat exchanger was investigated. The experimental results indicated that the application of the AEFTD could effectively reduce fouling resistance and decelerate the growth rate of CaCO3 fouling. The opposite trend between fouling resistance and the outlet temperature of an experimental fluid indicated that the application of the AEFTD could enhance heat transfer. Meanwhile, the crystal morphologies of the fouling samples were analyzed by means of scanning electron microscopy (SEM). The axial-electromagnetic field favored the formation of vaterite as opposed to calcite. Non-adhesive vaterite did not easily aggregate into clusters and was suspended in bulk to form muddy fouling that could be carried away by turbulent flow. Furthermore, the anti-fouling mechanism of the axial-electromagnetic field is discussed in detail. The anti-fouling effect of the AEFTD on CaCO3 fouling exhibited extreme characteristics in this study. Therefore, the effectiveness of the AEFTD is contingent upon the selection of the electromagnetic parameters.
Collapse
Affiliation(s)
- Yaxuan Peng
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, China
| | - Xuefei Xu
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Yandong Liang
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
15
|
Cheng Q, Ma Q, Pei H, He S, Wang R, Guo R, Liu N, Mo Z. Enantioseparation Membranes: Research Status, Challenges, and Trends. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300376. [PMID: 36794289 DOI: 10.1002/smll.202300376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Indexed: 05/18/2023]
Abstract
The purity of enantiomers plays a critical role in human health and safety. Enantioseparation is an effective way and necessary process to obtain pure chiral compounds. Enantiomer membrane separation is a new chiral resolution technique, which has the potential for industrialization. This paper mainly summarizes the research status of enantioseparation membranes including membrane materials, preparation methods, factors affecting membrane properties, and separation mechanisms. In addition, the key problems and challenges to be solved in the research of enantioseparation membranes are analyzed. Last but not least, the future development trend of the chiral membrane is expected.
Collapse
Affiliation(s)
- Qingsong Cheng
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Qian Ma
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Hebing Pei
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Simin He
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Rui Wang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Nijuan Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
16
|
Abstract
Microbubbles are largely unused in the food industry yet have promising capabilities as environmentally friendly cleaning and supporting agents within products and production lines due to their unique physical behaviors. Their small diameters increase their dispersion throughout liquid materials, promote reactivity because of their high specific surface area, enhance dissolution of gases into the surrounding liquid phase, and promote the generation of reactive chemical species. This article reviews techniques to generate microbubbles, their modes of action to enhance cleaning and disinfection, their contributions to functional and mechanical properties of food materials, and their use in supporting the growth of living organisms in hydroponics or bioreactors. The utility and diverse applications of microbubbles, combined with their low intrinsic ingredient cost, strongly encourage their increased adoption within the food industry in coming years.
Collapse
Affiliation(s)
- Jiakai Lu
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Owen G Jones
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA;
| | - Weixin Yan
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Carlos M Corvalan
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA;
| |
Collapse
|
17
|
Chen C, Rao J, Tao Y, Nie C, Xiong P, Xue Y, Peng X. Study on the crystallisation formation mechanism and breakage of tunnel drainage system in dolomite area. ASIA-PAC J CHEM ENG 2023. [DOI: 10.1002/apj.2897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Chaoying Chen
- College of Civil Engineering, Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety Guizhou University Guiyang 550025 China
| | - Junying Rao
- Research Center of Space Structure Guizhou University Guiyang 550025 China
| | - Yonghu Tao
- Powerchina Guiyang Engineering Corporation Limited Guiyang 550081 China
| | - Chongxin Nie
- College of Civil Engineering, Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety Guizhou University Guiyang 550025 China
| | - Peng Xiong
- Guizhou University of Engineering Science Bijie 551700 China
| | - Yanghao Xue
- College of Civil Engineering, Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety Guizhou University Guiyang 550025 China
| | - Xing Peng
- College of Civil Engineering, Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety Guizhou University Guiyang 550025 China
| |
Collapse
|
18
|
Peng G, Gao Q, Dong Z, Liang L, Chen J, Zhu C, Zhang P, Lu L. Surface Cleanliness Maintenance with Laminar Flow Based on the Characteristics of Laser-Induced Sputtering Particles in High-Power Laser Systems. MICROMACHINES 2023; 14:598. [PMID: 36985007 PMCID: PMC10051549 DOI: 10.3390/mi14030598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
In high-power laser systems, the primary cause of contamination of optical components and degradation of spatial cleanliness is laser-induced sputtering of particles. To mitigate this problem, laminar flow is frequently utilized to control the direction and transport of these particles. This study characterizes the properties of laser-induced sputtering particles, including their flying trend, diameter range, and velocity distribution at varying time intervals. A time-resolved imaging method was employed to damage the rear surface of fused silica using a 355 nm Nd: YAG pump laser. The efficacy of laminar flow in controlling these particles was then assessed, with a particular focus on the influence of laminar flow direction, laminar flow velocity, particle flight height, and particle diameter. Our results indicate that the optimal laminar flow velocity for preventing particle invasion is highly dependent on the maximum particle attenuation distance (or safety distance), which can vary by up to two orders of magnitude. Furthermore, a laminar flow velocity of 0.5 m/s can effectively prevent particle sedimentation. Future research will aim to optimize laminar flow systems based on these findings to achieve high surface cleanliness in high-power laser systems with minimal energy consumption.
Collapse
Affiliation(s)
- Ge Peng
- Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, West Dazhi Street, Harbin 150001, China
| | - Qiang Gao
- Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, West Dazhi Street, Harbin 150001, China
- Chongqing Research Institute of Harbin Institute of Technology, Chongqing 401135, China
| | - Zhe Dong
- Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, West Dazhi Street, Harbin 150001, China
| | - Lingxi Liang
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, West Dazhi Street, Harbin 150080, China
| | - Jiaxuan Chen
- Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, West Dazhi Street, Harbin 150001, China
| | - Chengyu Zhu
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, West Dazhi Street, Harbin 150080, China
| | - Peng Zhang
- Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, West Dazhi Street, Harbin 150001, China
| | - Lihua Lu
- Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, West Dazhi Street, Harbin 150001, China
| |
Collapse
|
19
|
Luo Y, Khoshyan A, Al Amin M, Nolan A, Robinson F, Fenstermacher J, Niu J, Megharaj M, Naidu R, Fang C. Ultrasound-enhanced Magnéli phase Ti 4O 7 anodic oxidation of per- and polyfluoroalkyl substances (PFAS) towards remediation of aqueous film forming foams (AFFF). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160836. [PMID: 36521599 DOI: 10.1016/j.scitotenv.2022.160836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Per-and polyfluoroalkyl substances (PFAS) remediation is still a challenge. In this study, we propose a hybrid system that combines electrochemical treatment with ultrasound irradiation, aiming for an enhanced degradation of PFAS. Equipped with a titanium suboxide (Ti4O7) anode, the electrochemical cell is able to remove perfluorooctanoic acid (PFOA) effectively. Under the optimal conditions (50 mA/cm2 current density, 0.15 M Na2SO4 supporting electrolyte, and stainless steel/Ti4O7/stainless steel electrode configuration with a gap of ∼10 mm), the electrochemical process achieves ∼100 % PFOA removal and 43 % defluorination after 6 h. Applying ultrasound irradiation (130 kHz) alone offers a limited PFOA removal, with 33 % PFOA removal and 5.5 % defluorination. When the electrochemical process is combined with ultrasound irradiation, we observe a significant improvement in the remediation performance, with ∼100 % PFOA removal and 63.5 % defluorination, higher than the sum of 48.5 % (43 % achieved by the electrochemical process, plus 5.5 % by the ultrasound irradiation), implying synergistic removal/oxidation effects. The hybrid system also consistently shows the synergistic defluorination during degradation of other PFAS and the PFAS constituents in aqueous film forming foam (AFFF). We attribute the synergistic effect to an activated/cleaned electrode surface, improved mass transfer, and enhanced production of radicals.
Collapse
Affiliation(s)
- Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ashkan Khoshyan
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Md Al Amin
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Annette Nolan
- Ramboll Australia, The Junction, NSW 2291, Australia
| | | | | | - Junfeng Niu
- Suzhou institute of North China Electric Power University, Jiangsu 215000, PR China
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
20
|
Ma B, Ulbricht M, Hu C, Fan H, Wang X, Pan YR, Hosseini SS, Panglisch S, Van der Bruggen B, Wang Z. Membrane Life Cycle Management: An Exciting Opportunity for Advancing the Sustainability Features of Membrane Separations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3013-3020. [PMID: 36786864 DOI: 10.1021/acs.est.2c09257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Membrane science and technology is growing rapidly worldwide and continues to play an increasingly important role in diverse fields by offering high separation efficiency with low energy consumption. Membranes have also shown great promise for "green" separation. A majority of the investigations in the field are devoted to the membrane fabrication and modification with the ultimate goals of enhancing the properties and separation performance of membranes. However, less attention has been paid to membrane life cycle management, particularly at the end of service. This is becoming very important, especially taking into account the trends toward sustainable development and carbon neutrality. On the contrary, this can be a great opportunity considering the large variety of membrane processes, especially in terms of the size and capacity of plants in operation. This work aims to highlight the prominent aspects that govern membrane life cycle management with special attention to life cycle assessment (LCA). While fabrication, application, and recycling are the three key aspects of LCA, we focus here on membrane (module) recycling at the end of life by elucidating the relevant aspects, potential criteria, and strategies that effectively contribute to the achievement of green development and sustainability goals.
Collapse
Affiliation(s)
- Baiwen Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongwei Fan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yi-Rong Pan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Seyed Saeid Hosseini
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Stefan Panglisch
- Chair for Mechanical Process Engineering/Water Technology, University of Duisburg-Essen, Duisburg 47057, Germany
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
21
|
Ultrasonication-assisted Fouling Control during Ceramic Membrane Filtration of Primary Wastewater under Gravity-driven and Constant Flux Conditions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Soltani Firouz M, Sardari H, Soofiabadi M, Hosseinpour S. Ultrasound assisted processing of milk: Advances and challenges. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mahmoud Soltani Firouz
- Department of Agricultural Machinery Engineering, Faculty of Agricultural University of Tehran Karaj Iran
| | - Hamed Sardari
- Department of Agricultural Machinery Engineering, Faculty of Agricultural University of Tehran Karaj Iran
| | - Mahsa Soofiabadi
- Department of Agricultural Machinery Engineering, Faculty of Agricultural University of Tehran Karaj Iran
| | - Soleiman Hosseinpour
- Department of Agricultural Machinery Engineering, Faculty of Agricultural University of Tehran Karaj Iran
| |
Collapse
|
23
|
Synergistic Effect of Alternating Current-based Electric and Acoustic Fields on Flux Recovery in Crossflow Microfiltration of Synthetic Wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Choi SJ, Kim S, Im SJ, Jang A, Hwang DS, Kang S. Ionic fluid as a novel cleaning agent for the control of irreversible fouling in reverse osmosis membrane processes. WATER RESEARCH 2022; 224:119063. [PMID: 36122446 DOI: 10.1016/j.watres.2022.119063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/01/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
While a variety of chemical cleaning strategies has been studied to control fouling in membrane-based water treatment processes, the removal of irreversible foulants strongly bound on membrane surfaces has not been successful. In this study, we firstly investigated the diluted aqueous solutions of ionic fluid (IF, 1-ethyl-3-methylimidazolium acetate) as a cleaning agent for three model organic foulants (humic acid, HA; bovine serum albumin, BSA; sodium alginate, SA). The real-time monitoring of cleaning progress by optical coherence tomography (OCT) showed that fouling layer was dramatically swelled by introducing IF solution and removed by shear force exerted during cleaning. This phenomenon was induced due to the pre-existing interactions between organic foulants were weakened by the intrusion of IF into the fouling layer, which was analyzed by the measurement of adhesion forces using atomic force microscopy (AFM). In the experiments with model foulants and wastewater effluent, IF was added to alkaline cleaning agents (NaOH) to verify the applicability to be supplemented in commercial cleaning agents, and resulted in the significantly enhanced control of irreversible membrane fouling. Implication of utilizing recyclable IF with negligible volatility is that environmental effects of membrane cleaning solutions could be minimized by decreasing usage of cleaning chemicals, while increasing the cleaning efficiency.
Collapse
Affiliation(s)
- Seung-Ju Choi
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sangsik Kim
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ 85721, United States; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea; Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeonsangbuk-do 37673, Republic of Korea
| | - Sung-Ju Im
- Graduate School of Water Resources, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Dong Soo Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea; Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeonsangbuk-do 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University International Campus I-CREATE, Incheon 21983, Republic of Korea.
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
25
|
High mechanical strength conductive inorganic–organic composite membranes for chiral separation and in situ cleaning. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Daghooghi-Mobarakeh H, Miner M, Wang L, Wang R, Phelan PE. Ultrasound-assisted regeneration of activated alumina/water adsorption pair for drying and dehumidification processes. ULTRASONICS 2022; 124:106769. [PMID: 35644098 DOI: 10.1016/j.ultras.2022.106769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Desorption processes are important part of all processes which involve utilization of solid adsorbents and are inherently energy-intensive. Here we investigate how those energy requirements can be reduced through the application of ultrasound for the activated alumina/water adsorption pair. To analyze the energy-saving characteristics of ultrasound, the ultrasonic-power-to-total power ratios of 0.2, 0.25, 0.4 and 0.5 were investigated and the results compared with those of no ultrasound at the same total input power. Duplicate experiments were performed at three nominal frequencies of 28, 40 and 80 kHz to observe the influence of frequency on regeneration dynamics. Regarding moisture removal, the highest desorption was achieved at the lowest ultrasonic-to-total power ratio corresponding to about 27% reduction in energy consumption. A nonlinear inverse proportionality was observed between the effectiveness of ultrasound and the frequency at which it is applied. Regarding regeneration temperature, application of ultrasound at higher ultrasonic-to-total power ratios of 0.4 and 0.5 reduces the regeneration temperature without taking a toll on desorption. Based on the variation of desorption dynamics with ultrasonic power and frequency, a novel ultrasound-enhanced desorption mechanism involving adsorbate surface energy is proposed and a relationship between acoustically induced strain and adsorbate surface energy is introduced. An analytical model that describes the desorption process is developed based on the experimental data. From this a novel efficiency metric is proposed, which can be employed to justify incorporating ultrasound in regeneration and drying processes.
Collapse
Affiliation(s)
- Hooman Daghooghi-Mobarakeh
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Mark Miner
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-6305, USA
| | - Liping Wang
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Robert Wang
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Patrick E Phelan
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287-6106, USA.
| |
Collapse
|
27
|
Al-Sakaji BAK, Al-Asheh S, Maraqa MA. A Review on the Development of an Integer System Coupling Forward Osmosis Membrane and Ultrasound Waves for Water Desalination Processes. Polymers (Basel) 2022; 14:2710. [PMID: 35808754 PMCID: PMC9269142 DOI: 10.3390/polym14132710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
This review considers the forward osmosis (FO) membrane process as one of the feasible solutions for water desalination. Different aspects related to the FO process are reviewed with an emphasis on ultrasound assisted FO membrane processes. The different types of membranes used in FO are also reviewed and discussed; thus, their configuration, structure and applications are considered. Coupling ultrasound with FO enhances water flux through the membrane under certain conditions. In addition, this review addresses questions related to implementation of an ultrasound/FO system for seawater desalination, such as the impact on fouling, flow configuration, and location of fouling. Finally, the mechanisms for the impact of ultrasound on FO membranes are discussed and future research directions are suggested.
Collapse
Affiliation(s)
- Bara A. K. Al-Sakaji
- Department of Civil and Environmental Engineering, College of Engineering, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (B.A.K.A.-S.); (M.A.M.)
| | - Sameer Al-Asheh
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 2666, United Arab Emirates
| | - Munjed A. Maraqa
- Department of Civil and Environmental Engineering, College of Engineering, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (B.A.K.A.-S.); (M.A.M.)
- National Water and Energy Center, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| |
Collapse
|
28
|
Effects of Operating Conditions on the Performance of Forward Osmosis with Ultrasound for Seawater Desalination. WATER 2022. [DOI: 10.3390/w14132092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study investigates the effect of using ultrasound on water flux through a forward osmosis membrane when applied for seawater desalination. A synthetically prepared solution simulating seawater with scaling substances and organic foulants was used. The parameters considered include membrane cross-flow velocity, flow configuration (co-current versus counter-current), direction of ultrasound waves relative to the membrane side (active layer versus support layer), and type of draw solution (NaCl versus MgCl2). The study revealed that applying a continuous ultrasound frequency of 40 kHz was effective in enhancing water flux, especially when the ultrasound source faces the membrane active layer, irrespective of the used draw solution. The highest water flux enhancement (70.8% with NaCl draw solution and 61.9% with MgCl2 draw solution) occurred at low cross-flow velocity and with the ultrasound waves facing the membrane active layer. It was also observed that the use of ultrasound generally caused an adverse effect on the water flux when the ultrasound source faces the membrane support layer. Moreover, applying the ultrasound at the membrane support layer increased the reverse solute flux. For all tested cases, higher water flux enhancement was observed with NaCl as a draw solution compared to the cases when MgCl2 was used as a draw solution.
Collapse
|
29
|
Pasternak G, de Rosset A, Tyszkiewicz N, Widera B, Greenman J, Ieropoulos I. Prevention and removal of membrane and separator biofouling in bioelectrochemical systems - a comprehensive review. iScience 2022; 25:104510. [PMID: 35720268 PMCID: PMC9204736 DOI: 10.1016/j.isci.2022.104510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bioelectrochemical systems (BESs) have made significant progress in recent years in all aspects of their technology. BESs usually work with a membrane or a separator, which is one of their most critical components affecting performance. Quite often, biofilm from either the anolyte or catholyte forms on the membrane, which can negatively affect its performance. In critical cases, the long-term power performance observed for microbial fuel cells (MFCs) has dropped by over 90%. Surface modification and composite material approaches as well as chemical and physical cleaning techniques involving surfactants, acids, hydroxides, and ultrasounds have been successfully implemented to combat biofilm formation. Surface modifications produced up to 6–7 times higher power performance in the long-term, whereas regeneration strategies resulted in up to 100% recovery of original performance. Further studies include tools such as fluid dynamics-based design and plasma cleaning. The biofouling area is still underexplored in the field of bioelectrochemistry and requires systematic improvement. Therefore, this review summarizes the most recent knowledge with the aim of helping the research and engineering community select the best strategy and discuss further perspectives for combating the undesirable biofilm.
Collapse
Affiliation(s)
- Grzegorz Pasternak
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, 50-344 Wrocław, Poland
- Corresponding author
| | - Aleksander de Rosset
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, 50-344 Wrocław, Poland
| | - Natalia Tyszkiewicz
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, 50-344 Wrocław, Poland
| | - Bartosz Widera
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, 50-344 Wrocław, Poland
| | - John Greenman
- Centre for Research in Biosciences, Department of Applied Sciences, University of the West of England, BS16 1QY Bristol, UK
| | - Ioannis Ieropoulos
- Centre for Research in Biosciences, Department of Applied Sciences, University of the West of England, BS16 1QY Bristol, UK
- Water and Environmental Engineering Group, University of Southampton, SO17 1BJ Southampton, UK
| |
Collapse
|
30
|
Tan Z, Chen S, Mao X, Lv H, Wang Y, Ye X. Antifouling BaTiO 3/PVDF piezoelectric membrane for ultrafiltration of oily bilge water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2980-2992. [PMID: 35638800 DOI: 10.2166/wst.2022.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Barium titanate/polyvinylidene fluoride (BaTiO3/PVDF) piezoelectric membrane was successfully prepared and generated in-situ vibrations to reduce membrane fouling by applying alternating current (AC) signal for oily bilge water ultrafiltration. The effect of in-situ vibration on membrane fouling was investigated through changing in the excitation alternating voltage and its frequency, pH, crossflow rate. The results indicated that the piezoelectric membrane by applying AC signal remarkably alleviated the membrane fouling for bilge water ultrafiltration. The membrane fouling decreased with increasing the AC signal voltage. The final steady-state permeate flux from the piezoelectric membrane for bilge water ultrafiltration increased with the AC signal voltage, raising it by up to 63.4% at AC signal voltage of 20 V compared to that of the membrane without applying AC voltage. The high permeate flux was obtained at the resonant frequency of 220 kHz. During the 50-h ultrafiltration of bilge water with the piezoelectric membrane excited at 220 kHz and 15 V, the permeate flux from the membrane was stable. The oil concentration in outflow from the piezoelectric membrane was below 14 ppm, which met the discharged level required by IMO convention. The total organic carbon removal rate in bilge water was over 94%.
Collapse
Affiliation(s)
- Zhirong Tan
- School of Navigation, Wuhan University of Technology, Wuhan 430063, PR China; Hubei Key Laboratory of Inland Shiping Technology, Wuhan 430063, PR China
| | - Shuiping Chen
- School of Resource & Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China E-mail:
| | - Xin Mao
- School of Navigation, Wuhan University of Technology, Wuhan 430063, PR China; Hubei Key Laboratory of Inland Shiping Technology, Wuhan 430063, PR China
| | - Heng Lv
- School of Resource & Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China E-mail:
| | - Yong Wang
- School of the Environment, Nanjing University, NanJing 210023, PR China
| | - Xiaoqing Ye
- School of Navigation, Wuhan University of Technology, Wuhan 430063, PR China; Hubei Key Laboratory of Inland Shiping Technology, Wuhan 430063, PR China
| |
Collapse
|
31
|
Terán Hilares R, Singh I, Tejada Meza K, Colina Andrade GJ, Pacheco Tanaka DA. Alternative methods for cleaning membranes in water and wastewater treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10708. [PMID: 35365970 DOI: 10.1002/wer.10708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Membrane fouling is caused by foulant deposition or adsorption through physical or chemical interactions on the membrane surface, causing the reduction of flux through the membrane. The main drawbacks of chemical agents used for cleaning are cost, damage caused on the membrane, and waste stream making the process unattractive. Alternative, methods such as ultrasound, enzymatic process, and osmotic backwashing were explored for membrane cleaning. Among all mentioned methods, micronanobubbles have been reported as a promising and emergent method for membrane surface cleaning; unfortunately, the information is limited, but preliminary studies have shown it as an efficient, cheap, and environmentally friendly technique. Other methods like electrically and vibratory-enhanced membrane cleaning also could be interesting but currently are unexplored and information is limited. PRACTITIONER POINTS: Chemical cleaning is an efficient option; however, from an environmental point of view, it is not attractive, and high concentrations could cause damage to the membrane. Micronanobubbles are an emergent and suitable technology for membrane and surface cleaning. Membrane modification and functionalization avoid membrane fast fouling, and the cleaning process is easier, but the manufacture cost could be expensive.
Collapse
Affiliation(s)
- Ruly Terán Hilares
- Departamento de Ciencias e Ingenierías Biológicas y Químicas, Universidad Católica de Santa María (UCSM), Arequipa, Peru
| | - Imman Singh
- Rauschert Industries, Inc., Atlanta, Georgia, USA
| | - Kevin Tejada Meza
- Departamento de Ciencias e Ingenierías Biológicas y Químicas, Universidad Católica de Santa María (UCSM), Arequipa, Peru
| | - Gilberto J Colina Andrade
- Departamento de Ciencias e Ingenierías Biológicas y Químicas, Universidad Católica de Santa María (UCSM), Arequipa, Peru
| | - David Alfredo Pacheco Tanaka
- Departamento de Ciencias e Ingenierías Biológicas y Químicas, Universidad Católica de Santa María (UCSM), Arequipa, Peru
| |
Collapse
|
32
|
Tapia-Quirós P, Montenegro-Landívar MF, Reig M, Vecino X, Saurina J, Granados M, Cortina JL. Integration of membrane processes for the recovery and separation of polyphenols from winery and olive mill wastes using green solvent-based processing. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114555. [PMID: 35085965 DOI: 10.1016/j.jenvman.2022.114555] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/26/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Winery and olive mill industries generate large amounts of wastes causing important environmental problems. The main aim of this work is the evaluation of different membrane separation processes like microfiltration, ultrafiltration, nanofiltration, and reverse osmosis for the recovery of polyphenols from winery and olive mill wastes in aqueous solutions. Membrane processes were tested separately in a closed-loop system, and by an integration in a concentration mode sequential design (open-loop). Feed flow rate was varied from 1 to 10 mL min-1, and permeate samples were taken in order to measure the polyphenols concentration. The separation and concentration efficiency were evaluated in terms of total polyphenol content, and by polyphenols families (hydroxybenzoic acids (HB), hydroxycinnamic acids (HC), and flavonoids (F)), using high performance liquid chromatography. Results showed that MF and UF membranes removed suspended solids and colloids from the extracts. NF was useful for polyphenols separation (HB rejections were lower than for HC and F: HB rejections of 50 and 63% for lees filters and olive pomace extracts, respectively), and RO membranes were able to concentrate polyphenols streams (86 and 95% rejection from lees filters and olive pomace, respectively). Membranes sequential designs for lees filters and olive pomace extracts, using a selective membrane train composed by UF, NF and RO membranes, were able to obtain polyphenol rich streams and high-quality water streams for reuse purposes.
Collapse
Affiliation(s)
- P Tapia-Quirós
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930, Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930, Barcelona, Spain
| | - M F Montenegro-Landívar
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930, Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930, Barcelona, Spain
| | - M Reig
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930, Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930, Barcelona, Spain
| | - X Vecino
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930, Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930, Barcelona, Spain; CINTECX, University of Vigo, Chemical Engineering Department, 36310, Vigo, Spain
| | - J Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain
| | - M Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain
| | - J L Cortina
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930, Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930, Barcelona, Spain; CETAQUA, Carretera d'Esplugues, 75, 08940, Cornellà de Llobregat, Spain.
| |
Collapse
|
33
|
Reverse Osmosis Membrane Combined with Ultrasonic Cleaning for Flue Gas Desulfurization Wastewater Treatment. WATER 2022. [DOI: 10.3390/w14060875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Flue gas desulfurization (FGD) wastewater treatment is currently of interest, as stringent standards have been released in order to limit the pollution emissions from the energy industry, and concerns about water scarcity are also increasing. Reverse osmosis (RO) membrane is a promising alternative for highly efficient FGD wastewater treatment. However, membrane fouling strongly limits its application. This study developed a suitable treatment system by combining RO membrane with ultrasonic cleaning. The introduction of low-frequency and high-intensity ultrasonic cleaning improved the cleaning efficiency of membrane fouling, as the permeate flux recovered 49% of the reduced value within 10 min of cleaning. The lifespan of the membrane was also extended, as the time of permeate flux declined to the same level, increasing from 2 h to 4 h after ultrasonic cleaning. The effluent of the system could meet the standard of desulfurization wastewater treatment. The treatment system is feasible for FGD wastewater treatment at a laboratory scale. These findings proved that the combination of RO membrane and ultrasonic cleaning could be applied to FGD wastewater treatment. The study provided an efficient, cost-saving, and convenient way to develop the FGD wastewater treatment system.
Collapse
|
34
|
Mao H, Fan W, Cao H, Chen X, Qiu M, Verweij H, Fan Y. Self-cleaning performance of in-situ ultrasound generated by quartz-based piezoelectric membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Song B, Zhang Y, Lu J, Pang X, Wei M, Zheng S, Zhang M, Zhang S, Lv J. Effect of different diafiltration process on the protein fractionation of skim milk by cross flow microfiltration. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Pu L, Zhang J, Wang C, Pan Y, Zhao Y, Bu Y, Zhang Q, Pan B, Gao G. Membrane cleaning strategy via in situ oscillation driven by piezoelectricity. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
A comprehensive review of membrane fouling and cleaning methods with emphasis on ultrasound-assisted fouling control processes. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0832-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Wen‐qiong W, Ji‐yang Z, Qian Y, Jianju L. The effect of composite enzyme catalysis whey protein cross-linking on filtration performance. Food Sci Nutr 2021; 9:3078-3090. [PMID: 34136173 PMCID: PMC8194946 DOI: 10.1002/fsn3.2265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/06/2022] Open
Abstract
In this study, enzymatic cross-linked whey protein coupling ultrafiltration was used to reduce membrane fouling and increase whey protein recovery rate. The filtration efficiency and protein interaction with the membrane surface were investigated. The results showed that the protein recovery rate and relative flux of transglutaminase catalysis protein followed by tyrosinase each increased by approximately 30% during ultrafiltration. The total membrane resistance was reduced by approximately 20%. The shape of the transglutaminase and tyrosinase cross-linked protein had somewhat spherical and cylindrical structure similar to an elongated shape based on fluorescence microscopy imaging, which indicated membrane resistance reduction. Fluorescence excitation-emission matrix spectroscopy (EEM) showed that the permeation peak intensities of transglutaminase followed by tyrosinase catalysis protein decreased sharply in the tryptophan and aromatic-like protein fields, indicating that most protein was rejected after ultrafiltration. The repulsive interaction energy was increased between the cross-linked proteins and membrane based on extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis.
Collapse
Affiliation(s)
- Wang Wen‐qiong
- College of Food Science and EngineeringYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety ControlYangzhou UniversityYangzhouChina
- Weiwei Food and Beverage Co., LtdXuzhouChina
| | - Zhou Ji‐yang
- College of Food Science and EngineeringYangzhou UniversityYangzhouChina
| | - Yu Qian
- College of Food Science and EngineeringYangzhou UniversityYangzhouChina
| | - Li Jianju
- College of Food Science and EngineeringYangzhou UniversityYangzhouChina
| |
Collapse
|
39
|
Ji D, Xiao C, Chen K, Zhou F, Gao Y, Zhang T, Ling H. Solvent-free green fabrication of PVDF hollow fiber MF membranes with controlled pore structure via melt-spinning and stretching. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118953] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
40
|
Gruskevica K, Mezule L. Cleaning Methods for Ceramic Ultrafiltration Membranes Affected by Organic Fouling. MEMBRANES 2021; 11:131. [PMID: 33672835 PMCID: PMC7918771 DOI: 10.3390/membranes11020131] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 01/15/2023]
Abstract
The use of ceramic membranes in the treatment and processing of various liquids, including those of organic origin, has increased tremendously at the industrial level. Apart from the selection of the most appropriate membrane materials and operational conditions, suitable membrane cleaning procedures are a must to minimize fouling and increase membrane lifespan. The review summarizes currently available and practiced non-reagent and cleaning-in-place methods for ceramic membranes that are used in the treatment of organic liquids, thus causing organic fouling. Backflushing, backwashing, and ultrasound represent the most often used physical methods for reversible fouling treatment. At the same time, the use of alkalis, e.g, sodium hydroxide, acids, or strong oxidants are recommended for cleaning of irreversible fouling treatment.
Collapse
Affiliation(s)
| | - Linda Mezule
- Water Research and Environmental Biotechnology Laboratory, Faculty of Civil Engineering, Riga Technical University, Paula Valdena 1-204/205, Riga LV-1048, Latvia;
| |
Collapse
|
41
|
Hemmati A, Mirsaeedghazi H, Aboonajmi M. The effect of ultrasound treatment on the efficiency of membrane clarification of carrot juice. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Arash Hemmati
- Department of Agrotechnology College of Abouraihan University of Tehran Pakdasht Iran
| | - Hossein Mirsaeedghazi
- Department of Food Technology College of Abouraihan University of Tehran Pakdasht Iran
| | - Mohammad Aboonajmi
- Department of Agrotechnology College of Abouraihan University of Tehran Pakdasht Iran
| |
Collapse
|