1
|
Datta P, Moolayadukkam S, Chowdhury D, Rayes A, Lee NS, Sahu RP, Zhou Q, Puri IK. Recent Advances and Future Directions in Sonodynamic Therapy for Cancer Treatment. BME FRONTIERS 2024; 2024:0080. [PMID: 39735354 PMCID: PMC11671681 DOI: 10.34133/bmef.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/18/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024] Open
Abstract
Deep-tissue solid cancer treatment has a poor prognosis, resulting in a very low 5-year patient survival rate. The primary challenges facing solid tumor therapies are accessibility, incomplete surgical removal of tumor tissue, the resistance of the hypoxic and heterogeneous tumor microenvironment to chemotherapy and radiation, and suffering caused by off-target toxicities. Here, sonodynamic therapy (SDT) is an evolving therapeutic approach that uses low-intensity ultrasound to target deep-tissue solid tumors. The ability of ultrasound to deliver energy safely and precisely into small deep-tissue (>10 cm) volumes makes SDT more effective than conventional photodynamic therapy. While SDT is currently in phase 1/2 clinical trials for glioblastoma multiforme, its use for other solid cancer treatments, such as breast, pancreatic, liver, and prostate cancer, is still in the preclinical stage, with further investigation required to improve its therapeutic efficacy. This review, therefore, focuses on recent advances in SDT cancer treatments. We describe the interaction between ultrasound and sonosensitizer molecules and the associated energy transfer mechanism to malignant cells, which plays a central role in SDT-mediated cell death. Different sensitizers used in clinical and preclinical trials of various cancer treatments are listed, and the critical ultrasound parameters for SDT are reviewed. We also discuss approaches to improve the efficacies of these sonosensitizers, the role of the 3-dimensional spheroid in vitro investigations, ultrasound-controlled CAR-T cell and SDT-based multimodal therapy, and machine learning for sonosensitizer optimization, which could facilitate clinical translation of SDT.
Collapse
Affiliation(s)
- Priyankan Datta
- Department of Aerospace and Mechanical Engineering,
University of Southern California, Los Angeles, CA 90089, USA
| | - Sreejesh Moolayadukkam
- Department of Aerospace and Mechanical Engineering,
University of Southern California, Los Angeles, CA 90089, USA
- Iovine and Young Academy,
University of Southern California, Los Angeles, CA 90089, USA
| | - Dhrubajyoti Chowdhury
- Mork Family Department of Chemical Engineering and Material Science,
University of Southern California, Los Angeles, CA 90089, USA
| | - Adnan Rayes
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, Los Angeles, CA 90089, USA
| | - Nan Sook Lee
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, Los Angeles, CA 90089, USA
| | - Rakesh P. Sahu
- Department of Materials Science and Engineering,
McMaster University, Hamilton, ON L8S 4L8, Canada
- School of Biomedical Engineering,
McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Qifa Zhou
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, Los Angeles, CA 90089, USA
| | - Ishwar K. Puri
- Department of Aerospace and Mechanical Engineering,
University of Southern California, Los Angeles, CA 90089, USA
- Mork Family Department of Chemical Engineering and Material Science,
University of Southern California, Los Angeles, CA 90089, USA
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
2
|
Zhang M, Tang R, Li FX, Jin WY, Guo JX, Teng LZ, Meng G, Sansonetti PJ, Gao YZ. Optimization of ultrasound-mediated DNA transfer for bacteria and preservation of frozen competent cells. Microbiol Spectr 2024; 12:e0097824. [PMID: 39530724 PMCID: PMC11620496 DOI: 10.1128/spectrum.00978-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
UNLABELLED The transformation of DNA into cells is the basis of molecular biology. Commonly employed techniques include heat shock transformation, electro-transformation, conjugation, transduction, and protoplast fusion. Recently, ultrasonic transformation technology has been developed to transfer DNA into competent cells. The transformation conditions, such as temperature and ultrasonic power, were preliminarily studied. However, this technique has not been widely applied because competent cells must be prepared de novo. In this study, various factors, such as ultrasonic frequency and power, were optimized for the ultrasonic transformation of Escherichia coli. The study found that the optimal conditions for ultrasonic transformation with a defined ultrasonic transformation vial were a frequency of 28 kHz and a power of 80 W. Meanwhile, this research demonstrated that combining the 42°C heat shock conditions with ultrasonic transformation is the most efficient method compared to using only heat shock. Furthermore, the cryoprotective agent ratio for ultrasonic competent cells was investigated and optimized. These findings provide new insights into enhancing transformation efficiency and lay a foundation for the broader application of ultrasonic transformation. IMPORTANCE Plasmid transformation is widely applicable in gene expression and modification. As an efficient, non-invasive, and gentle method of transformation, ultrasonic transformation provides a novel approach for strain modification. This research presents new strategies for enhancing transformation efficiency and lays the groundwork for expanding the utilization of ultrasonic transformation.
Collapse
Affiliation(s)
- Meng Zhang
- Shanghai Institute of
Immunity and Infection, Chinese Academy of
Sciences, Shanghai,
China
- Suzhou Medical
College, Soochow University,
Suzhou, Jiangsu, China
| | - Rongkang Tang
- Shanghai Institute of
Immunity and Infection, Chinese Academy of
Sciences, Shanghai,
China
| | - Fang-Xia Li
- Shanghai Institute of
Immunity and Infection, Chinese Academy of
Sciences, Shanghai,
China
| | - Wen-Yu Jin
- Shanghai Institute of
Immunity and Infection, Chinese Academy of
Sciences, Shanghai,
China
| | - Jia-Xin Guo
- Shanghai Institute of
Immunity and Infection, Chinese Academy of
Sciences, Shanghai,
China
| | - Lin-Zuo Teng
- Shanghai Institute of
Immunity and Infection, Chinese Academy of
Sciences, Shanghai,
China
| | - Guangxun Meng
- Shanghai Institute of
Immunity and Infection, Chinese Academy of
Sciences, Shanghai,
China
- Suzhou Medical
College, Soochow University,
Suzhou, Jiangsu, China
| | - Philippe J. Sansonetti
- Shanghai Institute of
Immunity and Infection, Chinese Academy of
Sciences, Shanghai,
China
- Unité de
Pathogénie Microbienne Moléculaire, Institute
Pasteur, Paris,
France
| | - Yi-Zhou Gao
- Shanghai Institute of
Immunity and Infection, Chinese Academy of
Sciences, Shanghai,
China
| |
Collapse
|
3
|
Li W, Saleh NA, Gao C, Gagea MA, Vitija X, Kanada M, Deng CX. Dynamic reorganization of multivesicular bodies and exosome production impacted by sonoporation. Sci Rep 2024; 14:27432. [PMID: 39521850 PMCID: PMC11550812 DOI: 10.1038/s41598-024-79042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Naturally occurring cell-derived extracellular vesicles (EVs) have emerged as attractive nanocarriers for drug delivery. However, production of large quantities of EVs for clinical applications in a scalable manner remains a significant challenge. This study investigated at the single cell level how sonoporation, or membrane poration produced by ultrasound-induced microbubble cavitation, impacts EV production using mouse macrophage RAW 264.7 cells stably expressing CD63-GFP as a model system. Real-time fluorescence videomicroscopy detected rapid changes in CD63-GFP, a tetraspanin family member highly enriched in intraluminal vesicles tagged with GFP, to track changes in multivesicular bodies (MVBs), which are the cellular compartments where exosomes originate within the cells. Our results revealed distinct dynamic changes in CD63-GFP intensity and distribution in RAW 264.7 cells in terms of response time and duration depending on whether the cells were directly or indirectly impacted by sonoporation, suggesting reorganization of MVBs in response to direct and indirect mechanisms resulted from the mechanical impact of ultrasound pulse on the cells. Analysis of the supernatant from sonoporation-treated RAW 264.7 cells expressing CD63-GFP demonstrated a delayed and sustained increase in the production of CD63-GFP-positive EVs. These results show the robust and detailed effect of sonoporation and reveal insights into sonoporation-induced EV release useful for guiding the application of sonoporation to enhance large-scale EV production.
Collapse
Affiliation(s)
- Weiping Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Najla A Saleh
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
| | - Connie Gao
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Matthew A Gagea
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Lyman Briggs College, Michigan State University, East Lansing, MI, USA
| | - Xheneta Vitija
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Masamitsu Kanada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA.
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
- College of Human Medicine, Michigan State University, East Lansing, MI, USA.
| | - Cheri X Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Shi J, Ma Y, Shi R, Yu ACH, Qin P. Manipulating long-term fates of sonoporated cells by regulating intracellular calcium for improving sonoporation-based delivery. J Control Release 2024; 375:142-154. [PMID: 39218159 DOI: 10.1016/j.jconrel.2024.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Sonoporation-based delivery has great promise for noninvasive drug and gene therapy. After short-term membrane resealing, the long-term function recovery of sonoporated cells affects the efficiency and biosafety of sonoporation-based delivery. It is necessary to identify the key early biological signals that influence cell fate and to develop strategies for manipulating the long-term fates of sonoporated cells. Here, we used a customized experimental platform with a single cavitating microbubble induced by a single ultrasound pulse (frequency: 1.5 MHz, pulse length:13.33 μs, peak negative pressure: ∼0.40 MPa) to elicit single-site reversible sonoporation on a single HeLa cell model. We used a living-cell microscopic imaging system to trace the long-term fates of sonoporated HeLa cells in real-time for 48 h. Fluorescence from intracellular propidium iodide and Fluo-4 was used to evaluate the degree of sonoporation and intracellular calcium fluctuation (ICF), respectively. Changes in cell morphology were used to assess the long-term cell fates (i.e., proliferation, arrest, or death). We found that heterogeneously sonoporated cells had different long-term fates. With increasing degree of sonoporation, the probability of normal (proliferation) and abnormal fates (arrest and death) in sonoporated cells decreased and increased, respectively. We identified ICF as an important early event for triggering different long-term fates. Reversibly sonoporated cells exhibited stronger proliferation and restoration at lower extents of ICF. We then regulated ICF dynamics in sonoporated cells using 2-APB or BAPTA treatment to reduce calcium release from intracellular organelles and enhance intracellular calcium clearance, respectively. This significantly enhanced the proliferation and restoration of sonoporated cells and reduced the occurrence of cell-cycle arrest and death. Finally, we found that the long-term fates of sonoporated cells at multiple sites and neighboring cells were also dependent on the extent of ICF, and that 2-APB significantly enhanced their viability and reduced death. Thus, using a single HeLa cell model, we demonstrated that regulating intracellular calcium can effectively enhance the proliferation and restoration capabilities of sonoporated cells, therefore rescuing the long-term viability of sonoporated cells. These findings add to our understanding of the biophysical process of sonoporation and help design new strategies for improving the efficiency and biosafety of sonoporation-based delivery.
Collapse
Affiliation(s)
- Jianmin Shi
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuhang Ma
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruchuan Shi
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Alfred C H Yu
- Schlegel Research Institute for Aging, University of Waterloo, Waterloo, ON N2L3G1, Canada
| | - Peng Qin
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Zhu X, Shi Z, Mao Y, Lächelt U, Huang R. Cell Membrane Perforation: Patterns, Mechanisms and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310605. [PMID: 38344881 DOI: 10.1002/smll.202310605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Indexed: 02/21/2024]
Abstract
Cell membrane is crucial for the cellular activities, and any disruption to it may affect the cells. It is demonstrated that cell membrane perforation is associated with some biological processes like programmed cell death (PCD) and infection of pathogens. Specific developments make it a promising technique to perforate the cell membrane controllably and precisely. The pores on the cell membrane provide direct pathways for the entry and exit of substances, and can also cause cell death, which means reasonable utilization of cell membrane perforation is able to assist intracellular delivery, eliminate diseased or cancerous cells, and bring about other benefits. This review classifies the patterns of cell membrane perforation based on the mechanisms into 1) physical patterns, 2) biological patterns, and 3) chemical patterns, introduces the characterization methods and then summarizes the functions according to the characteristics of reversible and irreversible pores, with the aim of providing a comprehensive summary of the knowledge related to cell membrane perforation and enlightening broad applications in biomedical science.
Collapse
Affiliation(s)
- Xinran Zhu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ulrich Lächelt
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| | - Rongqin Huang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
6
|
Zhao P, Wu T, Tian Y, You J, Cui X. Recent advances of focused ultrasound induced blood-brain barrier opening for clinical applications of neurodegenerative diseases. Adv Drug Deliv Rev 2024; 209:115323. [PMID: 38653402 DOI: 10.1016/j.addr.2024.115323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/21/2023] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
With the aging population on the rise, neurodegenerative disorders have taken center stage as a significant health concern. The blood-brain barrier (BBB) plays an important role to maintain the stability of central nervous system, yet it poses a formidable obstacle to delivering drugs for neurodegenerative disease therapy. Various methods have been devised to confront this challenge, each carrying its own set of limitations. One particularly promising noninvasive approach involves the utilization of focused ultrasound (FUS) combined with contrast agents-microbubbles (MBs) to achieve transient and reversible BBB opening. This review provides a comprehensive exploration of the fundamental mechanisms behind FUS/MBs-mediated BBB opening and spotlights recent breakthroughs in its application for neurodegenerative diseases. Furthermore, it addresses the current challenges and presents future perspectives in this field.
Collapse
Affiliation(s)
- Pengxuan Zhao
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Tiantian Wu
- School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Yu Tian
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai 200000, China
| | - Jia You
- School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Xinwu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
7
|
Shakya G, Cattaneo M, Guerriero G, Prasanna A, Fiorini S, Supponen O. Ultrasound-responsive microbubbles and nanodroplets: A pathway to targeted drug delivery. Adv Drug Deliv Rev 2024; 206:115178. [PMID: 38199257 DOI: 10.1016/j.addr.2023.115178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Ultrasound-responsive agents have shown great potential as targeted drug delivery agents, effectively augmenting cell permeability and facilitating drug absorption. This review focuses on two specific agents, microbubbles and nanodroplets, and provides a sequential overview of their drug delivery process. Particular emphasis is given to the mechanical response of the agents under ultrasound, and the subsequent physical and biological effects on the cells. Finally, the state-of-the-art in their pre-clinical and clinical implementation are discussed. Throughout the review, major challenges that need to be overcome in order to accelerate their clinical translation are highlighted.
Collapse
Affiliation(s)
- Gazendra Shakya
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Marco Cattaneo
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Giulia Guerriero
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Anunay Prasanna
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Samuele Fiorini
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Outi Supponen
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland.
| |
Collapse
|
8
|
Bouakaz A, Michel Escoffre J. From concept to early clinical trials: 30 years of microbubble-based ultrasound-mediated drug delivery research. Adv Drug Deliv Rev 2024; 206:115199. [PMID: 38325561 DOI: 10.1016/j.addr.2024.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Ultrasound mediated drug delivery, a promising therapeutic modality, has evolved remarkably over the past three decades. Initially designed to enhance contrast in ultrasound imaging, microbubbles have emerged as a main vector for drug delivery, offering targeted therapy with minimized side effects. This review addresses the historical progression of this technology, emphasizing the pivotal role microbubbles play in augmenting drug extravasation and targeted delivery. We explore the complex mechanisms behind this technology, from stable and inertial cavitation to diverse acoustic phenomena, and their applications in medical fields. While the potential of ultrasound mediated drug delivery is undeniable, there are still challenges to overcome. Balancing therapeutic efficacy and safety and establishing standardized procedures are essential areas requiring attention. A multidisciplinary approach, gathering collaborations between researchers, engineers, and clinicians, is important for exploiting the full potential of this technology. In summary, this review highlights the potential of using ultrasound mediated drug delivery in improving patient care across various medical conditions.
Collapse
Affiliation(s)
- Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | | |
Collapse
|
9
|
AIUM Official Statement for the Statement on Biological Effects of Therapeutic Ultrasound. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:E68-E73. [PMID: 37584480 DOI: 10.1002/jum.16315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/17/2023]
|
10
|
Schafer SF, Croke H, Kriete A, Ayaz H, Lewin PA, von Reyn CR, Schafer ME. A Miniature Ultrasound Source for Neural Modulation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1544-1553. [PMID: 37812556 PMCID: PMC10751802 DOI: 10.1109/tuffc.2023.3322963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
This work describes a unique ultrasound (US) exposure system designed to create very localized ( [Formula: see text]) sound fields at operating frequencies that are currently being used for preclinical US neuromodulation. This system can expose small clusters of neuronal tissue, such as cell cultures or intact brain structures in target animal models, opening up opportunities to examine possible mechanisms of action. We modified a dental descaler and drove it at a resonance frequency of 96 kHz, well above its nominal operating point of 28 kHz. A ceramic microtip from an ultrasonic wire bonder was attached to the end of the applicator, creating a 100- [Formula: see text] point source. The device was calibrated with a polyvinylidene difluoride (PVDF) membrane hydrophone, in a novel, air-backed, configuration. The experimental results were confirmed by simulation using a monopole model. The results show a consistent decaying sound field from the tip, well-suited to neural stimulation. The system was tested on an existing neurological model, Drosophila melanogaster, which has not previously been used for US neuromodulation experiments. The results show brain-directed US stimulation induces or suppresses motor actions, demonstrated through synchronized tracking of fly limb movements. These results provide the basis for ongoing and future studies of US interaction with neuronal tissue, both at the level of single neurons and intact organisms.
Collapse
|
11
|
Wen Z, Liu C, Teng Z, Jin Q, Liao Z, Zhu X, Huo S. Ultrasound meets the cell membrane: for enhanced endocytosis and drug delivery. NANOSCALE 2023; 15:13532-13545. [PMID: 37548587 DOI: 10.1039/d3nr02562d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Endocytosis plays a crucial role in drug delivery for precision therapy. As a non-invasive and spatiotemporal-controllable stimulus, ultrasound (US) has been utilized for improving drug delivery efficiency due to its ability to enhance cell membrane permeability. When US meets the cell membrane, the well-known cavitation effect generated by US can cause various biophysical effects, facilitating the delivery of various cargoes, especially nanocarriers. The comprehension of recent progress in the biophysical mechanism governing the interaction between ultrasound and cell membranes holds significant implications for the broader scientific community, particularly in drug delivery and nanomedicine. This review will summarize the latest research results on the biological effects and mechanisms of US-enhanced cellular endocytosis. Moreover, the latest achievements in US-related biomedical applications will be discussed. Finally, challenges and opportunities of US-enhanced endocytosis for biomedical applications will be provided.
Collapse
Affiliation(s)
- Zihao Wen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zihao Teng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Quanyi Jin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhihuan Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
12
|
Song WS, Hung TH, Liu SH, Zheng YT, Lin HM, Yang FY. Neuroprotection by Abdominal Ultrasound in Lipopolysaccharide-Induced Systemic Inflammation. Int J Mol Sci 2023; 24:ijms24119329. [PMID: 37298275 DOI: 10.3390/ijms24119329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Systemic inflammation is associated with intestinal inflammation and neuroinflammation by imbalancing the gut-brain axis. Low-intensity pulsed ultrasound (LIPUS) has neuroprotective and anti-inflammatory effects. This study explored LIPUS's neuroprotective effects against lipopolysaccharide (LPS)-induced neuroinflammation through transabdominal stimulation. Male C57BL/6J mice were intraperitoneally injected with LPS (0.75 mg/kg) daily for seven days, and abdominal LIPUS was applied to the abdominal area for 15 min/day during the last six days. One day after the last LIPUS treatment, biological samples were collected for microscopic and immunohistochemical analysis. Histological examination showed that LPS administration leads to tissue damage in the colon and brain. Transabdominal LIPUS stimulation attenuated colonic damage, reducing histological score, colonic muscle thickness, and villi shortening. Furthermore, abdominal LIPUS reduced hippocampal microglial activation (labeled by ionized calcium-binding adaptor molecule-1 [Iba-1]) and neuronal cell loss (labeled by microtubule-associated protein 2 [MAP2]). Moreover, abdominal LIPUS attenuated the number of apoptotic cells in the hippocampus and cortex. Altogether, our results indicate that abdominal LIPUS stimulation attenuates LPS-induced colonic inflammation and neuroinflammation. These findings provide new insights into the treatment strategy for neuroinflammation-related brain disorders and may facilitate method development through the gut-brain axis pathway.
Collapse
Affiliation(s)
- Wen-Shin Song
- Division of Neurosurgery, Cheng Hsin General Hospital, Taipei 112, Taiwan
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 106, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Yin-Ting Zheng
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hsin-Mei Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
13
|
Qin Y, Geng X, Sun Y, Zhao Y, Chai W, Wang X, Wang P. Ultrasound nanotheranostics: Toward precision medicine. J Control Release 2023; 353:105-124. [PMID: 36400289 DOI: 10.1016/j.jconrel.2022.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022]
Abstract
Ultrasound (US) is a mechanical wave that can penetrate biological tissues and trigger complex bioeffects. The mechanisms of US in different diagnosis and treatment are different, and the functional application of commercial US is also expanding. In particular, recent developments in nanotechnology have led to a wider use of US in precision medicine. In this review, we focus on US in combination with versatile micro and nanoparticles (NPs)/nanovesicles for tumor theranostics. We first introduce US-assisted drug delivery as a stimulus-responsive approach that spatiotemporally regulates the deposit of nanomedicines in target tissues. Multiple functionalized NPs and their US-regulated drug-release curves are analyzed in detail. Moreover, as a typical representative of US therapy, sonodynamic antitumor strategy is attracting researchers' attention. The collaborative efficiency and mechanisms of US and various nano-sensitizers such as nano-porphyrins and organic/inorganic nanosized sensitizers are outlined in this paper. A series of physicochemical processes during ultrasonic cavitation and NPs activation are also discussed. Finally, the new applications of US and diagnostic NPs in tumor-monitoring and image-guided combined therapy are summarized. Diagnostic NPs contain substances with imaging properties that enhance US contrast and photoacoustic imaging. The development of such high-resolution, low-background US-based imaging methods has contributed to modern precision medicine. It is expected that the integration of non-invasive US and nanotechnology will lead to significant breakthroughs in future clinical applications.
Collapse
Affiliation(s)
- Yang Qin
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaorui Geng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yitong Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Wenyu Chai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
14
|
Chapla R, Huynh KT, Schutt CE. Microbubble–Nanoparticle Complexes for Ultrasound-Enhanced Cargo Delivery. Pharmaceutics 2022; 14:pharmaceutics14112396. [PMID: 36365214 PMCID: PMC9698658 DOI: 10.3390/pharmaceutics14112396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
Targeted delivery of therapeutics to specific tissues is critically important for reducing systemic toxicity and optimizing therapeutic efficacy, especially in the case of cytotoxic drugs. Many strategies currently exist for targeting systemically administered drugs, and ultrasound-controlled targeting is a rapidly advancing strategy for externally-stimulated drug delivery. In this non-invasive method, ultrasound waves penetrate through tissue and stimulate gas-filled microbubbles, resulting in bubble rupture and biophysical effects that power delivery of attached cargo to surrounding cells. Drug delivery capabilities from ultrasound-sensitive microbubbles are greatly expanded when nanocarrier particles are attached to the bubble surface, and cargo loading is determined by the physicochemical properties of the nanoparticles. This review serves to highlight and discuss current microbubble–nanoparticle complex component materials and designs for ultrasound-mediated drug delivery. Nanocarriers that have been complexed with microbubbles for drug delivery include lipid-based, polymeric, lipid–polymer hybrid, protein, and inorganic nanoparticles. Several schemes exist for linking nanoparticles to microbubbles for efficient nanoparticle delivery, including biotin–avidin bridging, electrostatic bonding, and covalent linkages. When compared to unstimulated delivery, ultrasound-mediated cargo delivery enables enhanced cell uptake and accumulation of cargo in target organs and can result in improved therapeutic outcomes. These ultrasound-responsive delivery complexes can also be designed to facilitate other methods of targeting, including bioactive targeting ligands and responsivity to light or magnetic fields, and multi-level targeting can enhance therapeutic efficacy. Microbubble–nanoparticle complexes present a versatile platform for controlled drug delivery via ultrasound, allowing for enhanced tissue penetration and minimally invasive therapy. Future perspectives for application of this platform are also discussed in this review.
Collapse
Affiliation(s)
- Rachel Chapla
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
| | - Katherine T. Huynh
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Carolyn E. Schutt
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
15
|
Effect of ultrasonic parameters on gene transfection efficiency and cell viability of the multifunctional microbubble in vitro. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Barzegar-Fallah A, Gandhi K, Rizwan SB, Slatter TL, Reynolds JNJ. Harnessing Ultrasound for Targeting Drug Delivery to the Brain and Breaching the Blood–Brain Tumour Barrier. Pharmaceutics 2022; 14:pharmaceutics14102231. [PMID: 36297666 PMCID: PMC9607160 DOI: 10.3390/pharmaceutics14102231] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Despite significant advances in developing drugs to treat brain tumours, achieving therapeutic concentrations of the drug at the tumour site remains a major challenge due to the presence of the blood–brain barrier (BBB). Several strategies have evolved to enhance brain delivery of chemotherapeutic agents to treat tumours; however, most approaches have several limitations which hinder their clinical utility. Promising studies indicate that ultrasound can penetrate the skull to target specific brain regions and transiently open the BBB, safely and reversibly, with a high degree of spatial and temporal specificity. In this review, we initially describe the basics of therapeutic ultrasound, then detail ultrasound-based drug delivery strategies to the brain and the mechanisms by which ultrasound can improve brain tumour therapy. We review pre-clinical and clinical findings from ultrasound-mediated BBB opening and drug delivery studies and outline current therapeutic ultrasound devices and technologies designed for this purpose.
Collapse
Affiliation(s)
- Anita Barzegar-Fallah
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Kushan Gandhi
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Shakila B. Rizwan
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand
| | - Tania L. Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - John N. J. Reynolds
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- Correspondence: ; Tel.: +64-3-479-5781; Fax: +64-3-479-7254
| |
Collapse
|
17
|
Przystupski D, Ussowicz M. Landscape of Cellular Bioeffects Triggered by Ultrasound-Induced Sonoporation. Int J Mol Sci 2022; 23:ijms231911222. [PMID: 36232532 PMCID: PMC9569453 DOI: 10.3390/ijms231911222] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Sonoporation is the process of transient pore formation in the cell membrane triggered by ultrasound (US). Numerous studies have provided us with firm evidence that sonoporation may assist cancer treatment through effective drug and gene delivery. However, there is a massive gap in the body of literature on the issue of understanding the complexity of biophysical and biochemical sonoporation-induced cellular effects. This study provides a detailed explanation of the US-triggered bioeffects, in particular, cell compartments and the internal environment of the cell, as well as the further consequences on cell reproduction and growth. Moreover, a detailed biophysical insight into US-provoked pore formation is presented. This study is expected to review the knowledge of cellular effects initiated by US-induced sonoporation and summarize the attempts at clinical implementation.
Collapse
|
18
|
Sun C, Zhang M, Huang G, Zhang P, Lin R, Wang X, You H. A Microfluidic System of Gene Transfer by Ultrasound. MICROMACHINES 2022; 13:1126. [PMID: 35888943 PMCID: PMC9318161 DOI: 10.3390/mi13071126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 01/29/2023]
Abstract
Ultrasonic gene transfer has advantages beyond other cell transfer techniques because ultrasound does not directly act on cells, but rather pushes the gene fragments around the cells into cells through an acoustic hole effect. Most examples reported were carried out in macro volumes with conventional ultrasonic equipment. In the present study, a MEMS focused ultrasonic transducer based on piezoelectric thin film with flexible substrate was integrated with microchannels to form a microfluidic system of gene transfer. The core part of the system is a bowl-shaped curved piezoelectric film structure that functions to focus ultrasonic waves automatically. Therefore, the low input voltage and power can obtain the sound pressure exceeding the cavitation threshold in the local area of the microchannel in order to reduce the damage to cells. The feasibility of the system is demonstrated by finite element simulation and an integrated system of MEMS ultrasonic devices and microchannels are developed to successfully carry out the ultrasonic gene transfection experiments for HeLa cells. The results show that having more ultrasonic transducers leads a higher transfection rate. The system is of great significance to the development of single-cell biochip platforms for early cancer diagnosis and assessment of cancer treatment.
Collapse
Affiliation(s)
- Cuimin Sun
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China; (C.S.); (M.Z.)
- Guangxi Colleges and Universities Key Laboratory of Multimedia Communications and Information Processing, Nanning 530004, China
| | - Menghua Zhang
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China; (C.S.); (M.Z.)
| | - Guangyong Huang
- Department of Mechanical Engineering, Guangxi University, Nanning 530004, China;
| | - Ping Zhang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China; (P.Z.); (R.L.); (X.W.)
| | - Ronghui Lin
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China; (P.Z.); (R.L.); (X.W.)
| | - Xiangjun Wang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China; (P.Z.); (R.L.); (X.W.)
| | - Hui You
- Department of Mechanical Engineering, Guangxi University, Nanning 530004, China;
| |
Collapse
|
19
|
Ouyang J, Xie A, Zhou J, Liu R, Wang L, Liu H, Kong N, Tao W. Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem Soc Rev 2022; 51:4996-5041. [PMID: 35616098 DOI: 10.1039/d1cs01148k] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traditional treatments such as chemotherapy and surgery usually cause severe side effects and excruciating pain. The emergence of nanomedicines and minimally invasive therapies (MITs) has brought hope to patients with malignant diseases. Especially, minimally invasive nanomedicines (MINs), which combine the advantages of nanomedicines and MITs, can effectively target pathological cells/tissues/organs to improve the bioavailability of drugs, minimize side effects and achieve painless treatment with a small incision or no incision, thereby acquiring good therapeutic effects. In this review, we provide a comprehensive review of the research status and challenges of MINs, which generally refers to the medical applications of nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Additionally, we also discuss their combined application in various fields including cancers, cardiovascular diseases, tissue engineering, neuro-functional diseases, and infectious diseases. The prospects, and potential bench-to-bedside translation of MINs are also presented in this review. We expect that this review can inspire the broad interest for a wide range of readers working in the fields of interdisciplinary subjects including (but not limited to) chemistry, nanomedicine, bioengineering, nanotechnology, materials science, pharmacology, and biomedicine.
Collapse
Affiliation(s)
- Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Angel Xie
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Runcong Liu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong 519000, China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haijun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Jia C, Shi J, Han T, Yu ACH, Qin P. Spatiotemporal Dynamics and Mechanisms of Actin Cytoskeletal Re-modeling in Cells Perforated by Ultrasound-Driven Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:760-777. [PMID: 35190224 DOI: 10.1016/j.ultrasmedbio.2021.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
To develop new strategies for improving the efficacy and biosafety of sonoporation-based macromolecule delivery, it is essential to understand the mechanisms underlying plasma membrane re-sealing and function recovery of the cells perforated by ultrasound-driven microbubbles. However, we lack a clear understanding of the spatiotemporal dynamics of the disrupted actin cytoskeleton and its role in the re-sealing of sonoporated cells. Here we used a customized experimental setup for single-pulse ultrasound (133.33-µs duration and 0.70-MPa peak negative pressure) exposure to microbubbles and for real-time recording of single-cell (human umbilical vein endothelial cell) responses by laser confocal microscopic imaging. We found that in reversibly sonoporated cells, the locally disrupted actin cytoskeleton, which was spatially correlated with the perforated plasma membrane, underwent three successive phases (expansion; contraction and re-sealing; and recovery) to re-model and that each phase of the disrupted actin cytoskeleton was approximately synchronized with that of the perforated plasma membrane. Moreover, compared with the closing time of the perforated plasma membrane, the same time was used for the re-sealing of the actin cytoskeleton in mildly sonoporated cells and a longer time was required in moderately sonoporated cells. Further, the generation, directional migration, accumulation and re-polymerization of globular actin polymers during the three phases drove the re-modeling of the actin cytoskeleton. However, in irreversibly sonoporated cells, the actin cytoskeleton, which underwent expansion and no contraction, was progressively de-polymerized and could not be re-sealed. Finally, we found that intracellular calcium transients were essential for the recruitment of globular actin and the re-modeling of the actin cytoskeleton. These results provide new insight into the role of actin cytoskeleton dynamics in the re-sealing of sonoporated cells and serve to guide the design of new strategies for sonoporation-based delivery.
Collapse
Affiliation(s)
- Caixia Jia
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianmin Shi
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Han
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Alfred C H Yu
- Schlegel Research Institute for Aging, University of Waterloo, Waterloo, Ontario, Canada
| | - Peng Qin
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
21
|
Haghi H, Kolios MC. The role of primary and secondary delays in the effective resonance frequency of acoustically interacting microbubbles. ULTRASONICS SONOCHEMISTRY 2022; 86:106033. [PMID: 35597129 PMCID: PMC9120953 DOI: 10.1016/j.ultsonch.2022.106033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/17/2022] [Accepted: 05/08/2022] [Indexed: 06/06/2023]
Abstract
Acoustically excited microbubbles (MBs) are known to be nonlinear oscillators with complex dynamics. This has enabled their use in a wide range of applications from medicine to industry and underwater acoustics. To better utilize their potential in applications and possibly invent new ones a comprehensive understanding of their dynamics is required. In this work, we explore the effect of bubble-bubble interactions on the resonance frequency of MB suspensions. MBs oscillate in response to an external acoustic wave and since bubbles in a cluster are at different locations compared to the excitation source, they are excited at different times. In this work we refer to these delays as primary delays. Interactions between the scattered pressure fields from adjacent bubbles have also been shown to alter the dynamics of MBs that exist within clusters. These secondary waves generated by MBs reach MBs in their proximity at different times that depend on their spatial location in the cluster. Here we refer to these delays as secondary delays. Inclusion of the secondary delays modifies the class of the differential equations governing the oscillations of interacting MBs in a cluster from ordinary differential equations to neutral delay differential equations. Previous work has not considered the all the delays associated with the bubble distances when modeling the interactions between bubbles. In this work we investigate the effect of both the primary and secondary delays on the effective resonance frequency of MB clusters. It is shown that primary delays cause spreading the resonance frequency of identical MBs within a range where the closest MB to the acoustic source exhibits the lowest resonance frequency and the furthest MB resonates at the highest frequency. This range has been shown to be up to 0.12 MHz for the examples investigated in this work. The effect of secondary delays is shown to be very significant. In the absence of secondary delays, the ordinary differential equation model predicts a decrease of up to 26% in the resonance frequency of 4 identical interacting MBs as the inter-bubble distances are decreased. However, we show that inclusion of the secondary delays result in the increase of the resonance frequency of MBs if they are situated close to each other. This increase is shown to be significant and for the case of 4 identical interacting MBs we show an increase of 58% in the resonance frequency.
Collapse
Affiliation(s)
- Hossein Haghi
- Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital and Ryerson University, 209 Victoria St, Toronto, Ontario, Canada.
| | - Michael C Kolios
- Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital and Ryerson University, 209 Victoria St, Toronto, Ontario, Canada
| |
Collapse
|
22
|
An Overview of Cell Membrane Perforation and Resealing Mechanisms for Localized Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14040886. [PMID: 35456718 PMCID: PMC9031838 DOI: 10.3390/pharmaceutics14040886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 01/04/2023] Open
Abstract
Localized and reversible plasma membrane disruption is a promising technique employed for the targeted deposition of exogenous therapeutic compounds for the treatment of disease. Indeed, the plasma membrane represents a significant barrier to successful delivery, and various physical methods using light, sound, and electrical energy have been developed to generate cell membrane perforations to circumvent this issue. To restore homeostasis and preserve viability, localized cellular repair mechanisms are subsequently triggered to initiate a rapid restoration of plasma membrane integrity. Here, we summarize the known emergency membrane repair responses, detailing the salient membrane sealing proteins as well as the underlying cytoskeletal remodeling that follows the physical induction of a localized plasma membrane pore, and we present an overview of potential modulation strategies that may improve targeted drug delivery approaches.
Collapse
|
23
|
Tu J, Yu ACH. Ultrasound-Mediated Drug Delivery: Sonoporation Mechanisms, Biophysics, and Critical Factors. BME FRONTIERS 2022; 2022:9807347. [PMID: 37850169 PMCID: PMC10521752 DOI: 10.34133/2022/9807347] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2023] Open
Abstract
Sonoporation, or the use of ultrasound in the presence of cavitation nuclei to induce plasma membrane perforation, is well considered as an emerging physical approach to facilitate the delivery of drugs and genes to living cells. Nevertheless, this emerging drug delivery paradigm has not yet reached widespread clinical use, because the efficiency of sonoporation is often deemed to be mediocre due to the lack of detailed understanding of the pertinent scientific mechanisms. Here, we summarize the current observational evidence available on the notion of sonoporation, and we discuss the prevailing understanding of the physical and biological processes related to sonoporation. To facilitate systematic understanding, we also present how the extent of sonoporation is dependent on a multitude of factors related to acoustic excitation parameters (ultrasound frequency, pressure, cavitation dose, exposure time), microbubble parameters (size, concentration, bubble-to-cell distance, shell composition), and cellular properties (cell type, cell cycle, biochemical contents). By adopting a science-backed approach to the realization of sonoporation, ultrasound-mediated drug delivery can be more controllably achieved to viably enhance drug uptake into living cells with high sonoporation efficiency. This drug delivery approach, when coupled with concurrent advances in ultrasound imaging, has potential to become an effective therapeutic paradigm.
Collapse
Affiliation(s)
- Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, China
| | - Alfred C. H. Yu
- Schlegel Research Institute for Aging, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
24
|
Aghaamoo M, Chen Y, Li X, Garg N, Jiang R, Yun JT, Lee AP. High-Throughput and Dosage-Controlled Intracellular Delivery of Large Cargos by an Acoustic-Electric Micro-Vortices Platform. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102021. [PMID: 34716688 PMCID: PMC8728830 DOI: 10.1002/advs.202102021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/23/2021] [Indexed: 05/20/2023]
Abstract
A high-throughput non-viral intracellular delivery platform is introduced for the transfection of large cargos with dosage-control. This platform, termed Acoustic-Electric Shear Orbiting Poration (AESOP), optimizes the delivery of intended cargo sizes with poration of the cell membranes via mechanical shear followed by the modulated expansion of these nanopores via electric field. Furthermore, AESOP utilizes acoustic microstreaming vortices wherein up to millions of cells are trapped and mixed uniformly with exogenous cargos, enabling the delivery of cargos into cells with targeted dosages. Intracellular delivery of a wide range of molecule sizes (<1 kDa to 2 MDa) with high efficiency (>90%), cell viability (>80%), and uniform dosages (<60% coefficient of variation (CV)) simultaneously into 1 million cells min-1 per single chip is demonstrated. AESOP is successfully applied to two gene editing applications that require the delivery of large plasmids: i) enhanced green fluorescent protein (eGFP) plasmid (6.1 kbp) transfection, and ii) clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-mediated gene knockout using a 9.3 kbp plasmid DNA encoding Cas9 protein and single guide RNA (sgRNA). Compared to alternative platforms, this platform offers dosage-controlled intracellular delivery of large plasmids simultaneously to large populations of cells while maintaining cell viability at comparable delivery efficiencies.
Collapse
Affiliation(s)
- Mohammad Aghaamoo
- Department of Biomedical EngineeringUniversity of California IrvineIrvineCA92697USA
- Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM)University of California IrvineIrvineCA92697USA
| | - Yu‐Hsi Chen
- Department of Biomedical EngineeringUniversity of California IrvineIrvineCA92697USA
- Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM)University of California IrvineIrvineCA92697USA
| | - Xuan Li
- Department of Biomedical EngineeringUniversity of California IrvineIrvineCA92697USA
- Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM)University of California IrvineIrvineCA92697USA
| | - Neha Garg
- Department of Biomedical EngineeringUniversity of California IrvineIrvineCA92697USA
- Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM)University of California IrvineIrvineCA92697USA
| | - Ruoyu Jiang
- Department of Biomedical EngineeringUniversity of California IrvineIrvineCA92697USA
- Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM)University of California IrvineIrvineCA92697USA
| | - Jeremy Tian‐Hao Yun
- Department of Biomedical EngineeringUniversity of California IrvineIrvineCA92697USA
- Palo Alto Senior High SchoolPalo AltoCA94301USA
| | - Abraham Phillip Lee
- Department of Biomedical EngineeringUniversity of California IrvineIrvineCA92697USA
- Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM)University of California IrvineIrvineCA92697USA
- Department of Mechanical & Aerospace EngineeringUniversity of California IrvineIrvineCA92697USA
| |
Collapse
|
25
|
Giantulli S, Tortorella E, Brasili F, Scarpa S, Cerroni B, Paradossi G, Bedini A, Morrone S, Silvestri I, Domenici F. Effect of 1-MHz ultrasound on the proinflammatory interleukin-6 secretion in human keratinocytes. Sci Rep 2021; 11:19033. [PMID: 34561481 PMCID: PMC8463532 DOI: 10.1038/s41598-021-98141-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/02/2021] [Indexed: 02/08/2023] Open
Abstract
Keratinocytes, the main cell type of the skin, are one of the most exposed cells to environmental factors, providing a first defence barrier for the host and actively participating in immune response. In fact, keratinocytes express pattern recognition receptors that interact with pathogen associated molecular patterns and damage associated molecular patterns, leading to the production of cytokines and chemokines, including interleukin (IL)-6. Herein, we investigated whether mechanical energy transported by low intensity ultrasound (US) could generate a mechanical stress able to induce the release of inflammatory cytokine such IL-6 in the human keratinocyte cell line, HaCaT. The extensive clinical application of US in both diagnosis and therapy suggests the need to better understand the related biological effects. Our results point out that US promotes the overexpression and secretion of IL-6, associated with the activation of nuclear factor-κB (NF-κB). Furthermore, we observed a reduced cell viability dependent on exposure parameters together with alterations in membrane permeability, paving the way for further investigating the molecular mechanisms related to US exposure.
Collapse
Affiliation(s)
- Sabrina Giantulli
- grid.7841.aDepartment of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Tortorella
- grid.7841.aDepartment of Molecular Medicine, Sapienza University of Rome, Rome, Italy ,grid.6530.00000 0001 2300 0941Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Brasili
- grid.6530.00000 0001 2300 0941Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy ,grid.7841.aDepartment of Physics, Sapienza University of Rome, Rome, Italy ,grid.5326.20000 0001 1940 4177CNR-NANOTEC, Institute of Nanotechnology, Soft and Living Matter Laboratory, Rome, Italy
| | - Susanna Scarpa
- grid.7841.aDepartment of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Barbara Cerroni
- grid.6530.00000 0001 2300 0941Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Gaio Paradossi
- grid.6530.00000 0001 2300 0941Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Angelico Bedini
- grid.425425.00000 0001 2218 2472INAIL, Italian Worker’s Compensation Authority, Rome, Italy
| | - Stefania Morrone
- grid.7841.aDepartment of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ida Silvestri
- grid.7841.aDepartment of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Fabio Domenici
- grid.6530.00000 0001 2300 0941Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
26
|
Ho YJ, Huang CC, Fan CH, Liu HL, Yeh CK. Ultrasonic technologies in imaging and drug delivery. Cell Mol Life Sci 2021; 78:6119-6141. [PMID: 34297166 PMCID: PMC11072106 DOI: 10.1007/s00018-021-03904-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Ultrasonic technologies show great promise for diagnostic imaging and drug delivery in theranostic applications. The development of functional and molecular ultrasound imaging is based on the technical breakthrough of high frame-rate ultrasound. The evolution of shear wave elastography, high-frequency ultrasound imaging, ultrasound contrast imaging, and super-resolution blood flow imaging are described in this review. Recently, the therapeutic potential of the interaction of ultrasound with microbubble cavitation or droplet vaporization has become recognized. Microbubbles and phase-change droplets not only provide effective contrast media, but also show great therapeutic potential. Interaction with ultrasound induces unique and distinguishable biophysical features in microbubbles and droplets that promote drug loading and delivery. In particular, this approach demonstrates potential for central nervous system applications. Here, we systemically review the technological developments of theranostic ultrasound including novel ultrasound imaging techniques, the synergetic use of ultrasound with microbubbles and droplets, and microbubble/droplet drug-loading strategies for anticancer applications and disease modulation. These advancements have transformed ultrasound from a purely diagnostic utility into a promising theranostic tool.
Collapse
Affiliation(s)
- Yi-Ju Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
27
|
Rapid Magneto-Sonoporation of Adipose-Derived Cells. MATERIALS 2021; 14:ma14174877. [PMID: 34500968 PMCID: PMC8432646 DOI: 10.3390/ma14174877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/03/2023]
Abstract
By permeabilizing the cell membrane with ultrasound and facilitating the uptake of iron oxide nanoparticles, the magneto-sonoporation (MSP) technique can be used to instantaneously label transplantable cells (like stem cells) to be visualized via magnetic resonance imaging in vivo. However, the effects of MSP on cells are still largely unexplored. Here, we applied MSP to the widely applicable adipose-derived stem cells (ASCs) for the first time and investigated its effects on the biology of those cells. Upon optimization, MSP allowed us to achieve a consistent nanoparticle uptake (in the range of 10 pg/cell) and a complete membrane resealing in few minutes. Surprisingly, this treatment altered the metabolic activity of cells and induced their differentiation towards an osteoblastic profile, as demonstrated by an increased expression of osteogenic genes and morphological changes. Histological evidence of osteogenic tissue development was collected also in 3D hydrogel constructs. These results point to a novel role of MSP in remote biophysical stimulation of cells with focus application in bone tissue repair.
Collapse
|
28
|
Grisanti G, Caprini D, Sinibaldi G, Scognamiglio C, Silvani G, Peruzzi G, Casciola CM. A Microfluidic Platform for Cavitation-Enhanced Drug Delivery. MICROMACHINES 2021; 12:mi12060658. [PMID: 34204968 PMCID: PMC8229805 DOI: 10.3390/mi12060658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022]
Abstract
An endothelial-lined blood vessel model is obtained in a PDMS (Polydimethylsiloxane) microfluidic system, where vascular endothelial cells are grown under physiological shear stress, allowing -like maturation. This experimental model is employed for enhanced drug delivery studies, aimed at characterising the increase in endothelial permeability upon microbubble-enhanced ultrasound-induced (USMB) cavitation. We developed a multi-step protocol to couple the optical and the acoustic set-ups, thanks to a 3D-printed insonation chamber, provided with direct optical access and a support for the US transducer. Cavitation-induced interendothelial gap opening is then analysed using a customised code that quantifies gap area and the relative statistics. We show that exposure to US in presence of microbubbles significantly increases endothelial permeability and that tissue integrity completely recovers within 45 min upon insonation. This protocol, along with the versatility of the microfluidic platform, allows to quantitatively characterise cavitation-induced events for its potential employment in clinics.
Collapse
Affiliation(s)
- Giulia Grisanti
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00186 Roma, Italy; (G.G.); (G.S.); (G.S.)
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Via Regina Elena 291, 00161 Roma, Italy; (D.C.); (C.S.)
| | - Davide Caprini
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Via Regina Elena 291, 00161 Roma, Italy; (D.C.); (C.S.)
| | - Giorgia Sinibaldi
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00186 Roma, Italy; (G.G.); (G.S.); (G.S.)
| | - Chiara Scognamiglio
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Via Regina Elena 291, 00161 Roma, Italy; (D.C.); (C.S.)
| | - Giulia Silvani
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00186 Roma, Italy; (G.G.); (G.S.); (G.S.)
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Via Regina Elena 291, 00161 Roma, Italy; (D.C.); (C.S.)
- School of Biomedical Engineering, Faculty of Engineering & Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Via Regina Elena 291, 00161 Roma, Italy; (D.C.); (C.S.)
- Correspondence: (G.P.); (C.M.C.)
| | - Carlo Massimo Casciola
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00186 Roma, Italy; (G.G.); (G.S.); (G.S.)
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Via Regina Elena 291, 00161 Roma, Italy; (D.C.); (C.S.)
- Correspondence: (G.P.); (C.M.C.)
| |
Collapse
|
29
|
Wang Y, Sun S, Yu L, Hu S, Fan W, Leng F, Ma J. Optimization and mechanism exploration for Escherichia coli transformed with plasmid pUC19 by the combination with ultrasound treatment and chemical method. ULTRASONICS SONOCHEMISTRY 2021; 74:105552. [PMID: 33887660 PMCID: PMC8091046 DOI: 10.1016/j.ultsonch.2021.105552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
As a basic technique of molecular cloning, bio-transformation has been successfully used in the fields of biomedicine and food processing. In this study, we established a transformation system of exogenous DNA into E. coli cells mediated by ultrasound. Under the optimal conditions (i.e. 35 °C, 40 W, 25 s, OD600 = 0.4-0.6) optimized by RSM, the transformation efficiency reached at 1.006 × 107 CFU/μg DNA. The results of membrane permeability, macromolecular substance and cell structure analysis before and after ultrasound treatment showed that the damage of host cells induced by lower (40 W) ultrasound and shorter ultrasound time (25 s) was reversible, and the transformation efficiency and cell survival rate were not significantly affected under this condition. In brief, proper changes in cell membrane and cell wall were the basic conditions for host cells to uptake exogenous DNA, while, whether exogenous DNA could be replicated and expressed in cells depends on the viability of host cells.
Collapse
Affiliation(s)
- Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Shangchen Sun
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Linmiao Yu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Shu Hu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Wenguang Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Jianzhong Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| |
Collapse
|
30
|
Deprez J, Lajoinie G, Engelen Y, De Smedt SC, Lentacker I. Opening doors with ultrasound and microbubbles: Beating biological barriers to promote drug delivery. Adv Drug Deliv Rev 2021; 172:9-36. [PMID: 33705877 DOI: 10.1016/j.addr.2021.02.015] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Apart from its clinical use in imaging, ultrasound has been thoroughly investigated as a tool to enhance drug delivery in a wide variety of applications. Therapeutic ultrasound, as such or combined with cavitating nuclei or microbubbles, has been explored to cross or permeabilize different biological barriers. This ability to access otherwise impermeable tissues in the body makes the combination of ultrasound and therapeutics very appealing to enhance drug delivery in situ. This review gives an overview of the most important biological barriers that can be tackled using ultrasound and aims to provide insight on how ultrasound has shown to improve accessibility as well as the biggest hurdles. In addition, we discuss the clinical applicability of therapeutic ultrasound with respect to the main challenges that must be addressed to enable the further progression of therapeutic ultrasound towards an effective, safe and easy-to-use treatment tailored for drug delivery in patients.
Collapse
Affiliation(s)
- J Deprez
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - G Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Y Engelen
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - S C De Smedt
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - I Lentacker
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
31
|
Jia C, Shi J, Han T, Yu ACH, Qin P. Plasma Membrane Blebbing Dynamics Involved in the Reversibly Perforated Cell by Ultrasound-Driven Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:733-750. [PMID: 33358511 DOI: 10.1016/j.ultrasmedbio.2020.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
The perforation of plasma membrane by ultrasound-driven microbubbles (i.e., sonoporation) provides a temporary window for transporting macromolecules into the cytoplasm that is promising with respect to drug delivery and gene therapy. To improve the efficacy of delivery while ensuring biosafety, membrane resealing and cell recovery are required to help sonoporated cells defy membrane injury and regain their normal function. Blebs are found to accompany the recovery of sonoporated cells. However, the spatiotemporal characteristics of blebs and the underlying mechanisms remain unclear. With a customized platform for ultrasound exposure and 2-D/3-D live single-cell imaging, localized membrane perforation was induced with ultrasound-driven microbubbles, and the cellular responses were monitored using multiple fluorescent probes. The results indicated that localized blebs undergoing four phases (nucleation, expansion, pausing and retraction) on a time scale of tens of seconds to minutes were specifically involved in the reversibly sonoporated cells. The blebs spatially correlated with the membrane perforation site and temporally lagged (about tens of seconds to minutes) the resealing of perforated membrane. Their diameter (about several microns) and lifetime (about tens of seconds to minutes) positively correlated with the degree of sonoporation. Further studies revealed that intracellular calcium transients might be an upstream signal for triggering blebbing nucleation; exocytotic lysosomes not only contributed to resealing of the perforated membrane, but also to the increasing bleb volume during expansion; and actin components accumulation facilitated bleb retraction. These results provide new insight into the short-term strategies that the sonoporated cell employs to recover on membrane perforation and to remodel membrane structure and a biophysical foundation for sonoporation-based therapy.
Collapse
Affiliation(s)
- Caixia Jia
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianmin Shi
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Han
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Alfred C H Yu
- Schlegel Research Institute for Aging, University of Waterloo, Waterloo, ON, Canada
| | - Peng Qin
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
32
|
Sudden Cell Death Induced by Ca 2+ Delivery via Microbubble Cavitation. Biomedicines 2021; 9:biomedicines9010032. [PMID: 33406593 PMCID: PMC7823641 DOI: 10.3390/biomedicines9010032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023] Open
Abstract
Intracellular calcium ion delivery via sonoporation has been validated to be a substitute for classical chemotherapy. However, the mechanism behind calcium sonoporation remains unclear to this day. To elucidate the role of calcium in the process of sonoporation, we aimed to investigate the influence of different calcium concentration on cell membrane permeabilization and cell viability after sonoporation. In this study, we present experimental evidence that extracellular calcium plays a major role in cell membrane molecular transport after applying ultrasound pulses. Ultrasound-microbubble cavitation in the presence of different calcium concentration affects fundamental cell bio-physio-chemical conditions: cell membrane integrity, metabolic activity, and colony formation. Corresponding vital characteristics were evaluated using three independent viability tests: propidium iodide assay (20 min–3 h), MTT assay (48 h), and cell clonogenic assay (6 d). The results indicate instant cell death, as the level of cell viability was determined to be similar within a 20 min–48 h–6 d period. Inertial cavitation activities have been determined to be directly involved in calcium delivery via sonoporation according to high correlation (R2 > 0.85, p < 0.01) of inertial cavitation dose with change in either cell membrane permeabilization, metabolic activity, and colony formation efficiency. In general, calcium delivery via sonoporation induces rapid cell death, occurring within 20 min after treatment, that is the result of ultrasound mediated microbubble cavitation.
Collapse
|
33
|
Dai J, Bai M, Li C, Cui H, Lin L. Advances in the mechanism of different antibacterial strategies based on ultrasound technique for controlling bacterial contamination in food industry. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Visualization and quantification of dynamic intercellular coupling in human embryonic stem cells using single cell sonoporation. Sci Rep 2020; 10:18253. [PMID: 33106521 PMCID: PMC7589565 DOI: 10.1038/s41598-020-75347-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022] Open
Abstract
Gap junctions (GJs), which are proteinaceous channels, couple adjacent cells by permitting direct exchange of intracellular molecules with low molecular weights. GJ intercellular communication (GJIC) plays a critical role in regulating behaviors of human embryonic stem cells (hESCs), affecting their proliferation and differentiation. Here we report a novel use of sonoporation that enables single cell intracellular dye loading and dynamic visualization/quantification of GJIC in hESC colonies. By applying a short ultrasound pulse to excite single microbubbles tethered to cell membranes, a transient pore on the cell membrane (sonoporation) is generated which allows intracellular loading of dye molecules and influx of Ca2+ into single hESCs. We employ live imaging for continuous visualization of intercellular dye transfer and Ca2+ diffusion in hESC colonies. We quantify cell–cell permeability based on dye diffusion using mass transport models. Our results reveal heterogeneous intercellular connectivity and a variety of spatiotemporal characteristics of intercellular Ca2+ waves in hESC colonies induced by sonoporation of single cells.
Collapse
|
35
|
Yang Y, Li Q, Guo X, Tu J, Zhang D. Mechanisms underlying sonoporation: Interaction between microbubbles and cells. ULTRASONICS SONOCHEMISTRY 2020; 67:105096. [PMID: 32278246 DOI: 10.1016/j.ultsonch.2020.105096] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 05/04/2023]
Abstract
The past several decades have witnessed great progress in "smart drug delivery", an advance technology that can deliver genes or drugs into specific locations of patients' body with enhanced delivery efficiency. Ultrasound-activated mechanical force induced by the interactions between microbubbles and cells, which can stimulate so-called "sonoporation" process, has been regarded as one of the most promising candidates to realize spatiotemporal-controllable drug delivery to selected regions. Both experimental and numerical studies were performed to get in-depth understanding on how the microbubbles interact with cells during sonoporation processes, under different impact parameters. The current work gives an overview of the general mechanism underlying microbubble-mediated sonoporation, and the possible impact factors (e.g., the properties of cavitation agents and cells, acoustical driving parameters and bubble/cell micro-environment) that could affect sonoporation outcomes. Finally, current progress and considerations of sonoporation in clinical applications are reviewed also.
Collapse
Affiliation(s)
- Yanye Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Qunying Li
- Department of Ultrasound in Medicine, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China
| |
Collapse
|
36
|
Decker RE, Lamantia ZE, Emrick TS, Figueiredo ML. Sonodelivery in Skeletal Muscle: Current Approaches and Future Potential. Bioengineering (Basel) 2020; 7:E107. [PMID: 32916815 PMCID: PMC7552685 DOI: 10.3390/bioengineering7030107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
There are currently multiple approaches to facilitate gene therapy via intramuscular gene delivery, such as electroporation, viral delivery, or direct DNA injection with or without polymeric carriers. Each of these methods has benefits, but each method also has shortcomings preventing it from being established as the ideal technique. A promising method, ultrasound-mediated gene delivery (or sonodelivery) is inexpensive, widely available, reusable, minimally invasive, and safe. Hurdles to utilizing sonodelivery include choosing from a large variety of conditions, which are often dependent on the equipment and/or research group, and moderate transfection efficiencies when compared to some other gene delivery methods. In this review, we provide a comprehensive look at the breadth of sonodelivery techniques for intramuscular gene delivery and suggest future directions for this continuously evolving field.
Collapse
Affiliation(s)
- Richard E. Decker
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| | - Zachary E. Lamantia
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| | - Todd S. Emrick
- Department of Polymer Science & Engineering, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA;
| | - Marxa L. Figueiredo
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| |
Collapse
|
37
|
Beekers I, Mastik F, Beurskens R, Tang PY, Vegter M, van der Steen AFW, de Jong N, Verweij MD, Kooiman K. High-Resolution Imaging of Intracellular Calcium Fluctuations Caused by Oscillating Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2017-2029. [PMID: 32402676 DOI: 10.1016/j.ultrasmedbio.2020.03.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/11/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Ultrasound insonification of microbubbles can locally enhance drug delivery, but the microbubble-cell interaction remains poorly understood. Because intracellular calcium (Cai2+) is a key cellular regulator, unraveling the Cai2+ fluctuations caused by an oscillating microbubble provides crucial insight into the underlying bio-effects. Therefore, we developed an optical imaging system at nanometer and nanosecond resolution that can resolve Cai2+ fluctuations and microbubble oscillations. Using this system, we clearly distinguished three Cai2+ uptake profiles upon sonoporation of endothelial cells, which strongly correlated with the microbubble oscillation amplitude, severity of sonoporation and opening of cell-cell contacts. We found a narrow operating range for viable drug delivery without lethal cell damage. Moreover, adjacent cells were affected by a calcium wave propagating at 15 μm/s. With the unique optical system, we unraveled the microbubble oscillation behavior required for drug delivery and Cai2+ fluctuations, providing new insight into the microbubble-cell interaction to aid clinical translation.
Collapse
Affiliation(s)
- Inés Beekers
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Frits Mastik
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert Beurskens
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Phoei Ying Tang
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Merel Vegter
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Martin D Verweij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
38
|
Yan P, Liu LH, Wang P. Sonodynamic Therapy (SDT) for Cancer Treatment: Advanced Sensitizers by Ultrasound Activation to Injury Tumor. ACS APPLIED BIO MATERIALS 2020; 3:3456-3475. [DOI: 10.1021/acsabm.0c00156] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ping Yan
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou 510515, P. R. China
| | - Li-Han Liu
- School of Pharmaceutical Sciences, Guangdong Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ping Wang
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou 510515, P. R. China
| |
Collapse
|
39
|
Al Daccache M, Koubaa M, Salameh D, Maroun RG, Louka N, Vorobiev E. Ultrasound-assisted fermentation for cider production from Lebanese apples. ULTRASONICS SONOCHEMISTRY 2020; 63:104952. [PMID: 31945563 DOI: 10.1016/j.ultsonch.2019.104952] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
The present work studies the impact of low-intensity ultrasound (US) on Hanseniaspora sp. yeast fermentations. The effect of pulse duration and growth phase on US application was first evaluated using a synthetic medium. The optimal conditions were then applied to apple juice US-assisted fermentation. An US treatment chamber was first designed to allow the recycling of the culture medium. The optimal US pulse duration on the yeast growth rate was of 0.5 s followed by 6 s rest period, and during 6 h of both Lag and Log phases. These US parameters led to a faster consumption of glucose in the medium during the fermentation, compared to the untreated culture. The impact of US was also depending on the growth phase, showing higher sensitivity of the yeast to US during the Lag phase rather than the Log phase. US-assisted fermentation of apple juice showed a significant increase in biomass growth and glucose consumption, along with a significant decrease in the ethanol yield. The fastest growth kinetic (by 52%), and the highest ethanol reduction (by 0.55% (v, v)) were obtained for the treatment during the first 12 h of fermentation, thereby, the stationary phase was reached faster, and the maximum biomass growth rate was 10 folds higher compared to the untreated culture. The results obtained in this study demonstrated the promising efficiency of US-assisted fermentation in stimulating the biomass growth and reducing the ethanol content in alcoholic beverages.
Collapse
Affiliation(s)
- Marina Al Daccache
- Sorbonne University, Université de technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu, CS 60319, 60203 Compiègne cedex, France; Faculté des Sciences, Centre d'Analyses et de Recherche, UR TVA, Laboratoire CTA, Université Saint-Joseph, Beyrouth, Lebanon
| | - Mohamed Koubaa
- ESCOM, UTC, EA 4297 TIMR, 1 allée du réseau Jean-Marie Buckmaster, 60200 Compiègne, France.
| | - Dominique Salameh
- Faculté des Sciences, Centre d'Analyses et de Recherche, UR TVA, Laboratoire CTA, Université Saint-Joseph, Beyrouth, Lebanon
| | - Richard G Maroun
- Faculté des Sciences, Centre d'Analyses et de Recherche, UR TVA, Laboratoire CTA, Université Saint-Joseph, Beyrouth, Lebanon
| | - Nicolas Louka
- Faculté des Sciences, Centre d'Analyses et de Recherche, UR TVA, Laboratoire CTA, Université Saint-Joseph, Beyrouth, Lebanon
| | - Eugène Vorobiev
- Sorbonne University, Université de technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu, CS 60319, 60203 Compiègne cedex, France
| |
Collapse
|
40
|
Jat SK, Bhattacharya J, Sharma MK. Nanomaterial based gene delivery: a promising method for plant genome engineering. J Mater Chem B 2020; 8:4165-4175. [PMID: 32285905 DOI: 10.1039/d0tb00217h] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomaterials have attracted considerable attention from researchers in recent years due to their unique architecture and small dimensions. Significant progress has been made in the therapeutics, diagnostics, and delivery of biomolecules in animal cells. However, nanotechnology is still in its infancy in plant science. Nanotechnology offers tremendous opportunities for crop improvement and would make significant contributions to increase agricultural productivity. There are several reports where nanomaterial-induced improvement of the agronomic traits has been successfully achieved. However, very little is known about the interactions of nanomaterials with plant cells and the mechanism of internalization and delivery of biomolecules using nanoparticles as a carrier. Due to the presence of the cell wall, the delivery of biomolecules such as nucleic acids is a major challenge, which limits the application of nanomaterials in genetic engineering-mediated crop improvement. However, in recent years, the use of various nanomaterials like carbon nanotubes, magnetic nanoparticles, mesoporous silica nanoparticles, etc. for nucleic acid delivery in plant cells has been reported as proof of concept. Here, we intend to update researchers about the use of various nanomaterials as a novel gene delivery tool for plant genetic engineering. This review also explores the progress made in nanoparticle-mediated nucleic acid delivery in plant cells and their role in plant genome engineering.
Collapse
Affiliation(s)
- Sanjeev K Jat
- Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | | | | |
Collapse
|
41
|
Zou P, Li M, Wang Z, Zhang G, Jin L, Pang Y, Du L, Duan Y, Liu Z, Shi Q. Micro-Particle Image Velocimetry Investigation of Flow Fields of SonoVue Microbubbles Mediated by Ultrasound and Their Relationship With Delivery. Front Pharmacol 2020; 10:1651. [PMID: 32116672 PMCID: PMC7025580 DOI: 10.3389/fphar.2019.01651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/16/2019] [Indexed: 12/04/2022] Open
Abstract
The flow fields generated by the acoustic behavior of microbubbles can significantly increase cell permeability. This facilitates the cellular uptake of external molecules in a process known as ultrasound-mediated drug delivery. To promote its clinical translation, this study investigated the relationships among the ultrasound parameters, acoustic behavior of microbubbles, flow fields, and delivery results. SonoVue microbubbles were activated by 1 MHz pulsed ultrasound with 100 Hz pulse repetition frequency, 1:5 duty cycle, and 0.20/0.35/0.70 MPa peak rarefactional pressure. Micro-particle image velocimetry was used to detect the microbubble behavior and the resulting flow fields. Then HeLa human cervical cancer cells were treated with the same conditions for 2, 4, 10, 30, and 60 s, respectively. Fluorescein isothiocyanate and propidium iodide were used to quantitate the rates of sonoporated cells with a flow cytometer. The results indicate that (1) microbubbles exhibited different behavior in ultrasound fields of different peak rarefactional pressures. At peak rarefactional pressures of 0.20 and 0.35 MPa, the dispersed microbubbles clumped together into clusters, and the clusters showed no apparent movement. At a peak rarefactional pressure of 0.70 MPa, the microbubbles were partially broken, and the remainders underwent clustering and coalescence to form bubble clusters that exhibited translational oscillation. (2) The flow fields were unsteady before the unification of the microbubbles. After that, the flow fields showed a clear pattern. (3)The delivery efficiency improved with the shear stress of the flow fields increased. Before the formation of the microbubble/bubble cluster, the maximum shear stresses of the 0.20, 0.35, and 0.70 MPa groups were 56.0, 87.5 and 406.4 mPa, respectively, and the rates of the reversibly sonoporated cells were 2.4% ± 0.4%, 5.5% ± 1.3%, and 16.6% ± 0.2%. After the cluster formation, the maximum shear stresses of the three groups were 9.1, 8.7, and 71.7 mPa, respectively. The former two could not mediate sonoporation, whereas the last one could. These findings demonstrate the critical role of flow fields in ultrasound-mediated drug delivery and contribute to its clinical applications.
Collapse
Affiliation(s)
- Penglin Zou
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengqi Li
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing, China
| | - Ziqi Wang
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoxiu Zhang
- Department of Emergency, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Lifang Jin
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Pang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing, China
| | - Lianfang Du
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaomiao Liu
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing, China
| | - Qiusheng Shi
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Haghi H, Sojahrood AJ, Kolios MC. Collective nonlinear behavior of interacting polydisperse microbubble clusters. ULTRASONICS SONOCHEMISTRY 2019; 58:104708. [PMID: 31450322 DOI: 10.1016/j.ultsonch.2019.104708] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 05/09/2023]
Abstract
Acoustically excited microbubbles (MBs) have shown to exhibit rich dynamics, enabling them to be employed in various applications ranging from chemistry to medicine. Exploiting the full potential of MBs for applications requires a good understanding of their complex dynamics. Improved understanding of MB oscillations can lead to further enhancement in optimizing their efficacy in many applications and also invent new ones. Oscillating MBs have been shown to generate secondary pressure waves that modify the dynamics of the MBs in their proximity. A modified Keller-Miksis equation is used to account for inter-bubble interactions. The oscillatory dynamics of each MB within clusters was computed by numerically solving the resulting system of coupled nonlinear second order differential equations in potential fluid flow. Frequency response analysis and bifurcation diagrams were employed to track the dynamics of interacting MBs. We start with investigating the effect of inter-bubble interactions for cases of three and four MBs over a wide range of acoustic and geometric parameters. Emergent collective behavior was observed which are dominated by the dynamics of the largest MB within the cluster. The emergent dynamics of smaller MBs within clusters can be characterized by constructive and destructive inter-bubble interactions. In constructive interactions, the radial oscillations of smaller MBs matched those of the largest MB and their oscillations are amplified. In destructive interactions, the oscillations of smaller bubbles are suppressed so that their oscillations match those of the largest MB. Furthermore, a special case of constructive interactions is presented where dominant MB (largest) can force smaller MBs into period doubling and subharmonic oscillations. The collective behavior is further investigated in large MB cluster and it is shown that largest MBs, even in small numbers can force smaller ones into period doubling and subharmonic oscillations.
Collapse
Affiliation(s)
- H Haghi
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering and Science Technology, A Partnership Between Ryerson University and St. Michael's Hospital, Toronto, Canada; Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada.
| | - A J Sojahrood
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering and Science Technology, A Partnership Between Ryerson University and St. Michael's Hospital, Toronto, Canada; Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
| | - Michael C Kolios
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering and Science Technology, A Partnership Between Ryerson University and St. Michael's Hospital, Toronto, Canada; Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
| |
Collapse
|
43
|
Wang Y, Li X, Liu L, Liu B, Wang F, Chen C. Tissue Targeting and Ultrasound-Targeted Microbubble Destruction Delivery of Plasmid DNA and Transfection In Vitro. Cell Mol Bioeng 2019; 13:99-112. [PMID: 32030111 DOI: 10.1007/s12195-019-00597-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/27/2019] [Indexed: 02/03/2023] Open
Abstract
Introduction Ultrasound-targeted microbubble destruction (UTMD) has been shown a promising approach for target-specific gene delivery and treatment of many diseases in the past decade. To improve the therapeutic potential of UTMD, the gene carrier of microbubbles should possess adequate DNA condensation capability and (or) specific cell or tissue selectivity. The tissue-targeted and ultrasound-targeted cationic microbubbles were developed to meet gene therapy. Methods A tissue-targeted stearic acid-inserted cationic microbubbles (SCMBs) were prepared for ultrasound-targeted gene delivery. Branched PEI was modified with stearic acid and further mixed with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and biot-1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (ammonium salt) (Biot-DSPE-PEG2000), intercellular adhesion molecule-1 (ICAM-1) antibody and plasmid DNA to prepare cationic microbubbles through ultrasonic hydration. The ICAM-1 antibody and plasmid DNA were expected to assemble to the surface of SCMBs via biotin-avidin interaction and electrostatic interaction, respectively. Results It was found that the SCMBs had higher zeta potential compared with neutral microbubbles (NMBs) and cationic microbubbles (CMBs). In contrast, DNA incorporated SCMBs4 showed negative potential, exhibiting good DNA-binding capacity. Confocal images showed that the HeLa cells were attached around by the SCMBs4 from the view of green fluorescence of fluorescein isothiocyanate-loaded IgG which conjugated to ICAM-1 antibody on their surface. After ultrasound treatment, HeLa cells treated with SCMBs exhibited slightly stronger red fluorescence under confocal laser scanning microscope, indicating a synergistic promotion for transfection efficiency. Conclusions This tissue- and ultrasound-targeted cationic microbubble demonstrated here showed a promising strategy for improving gene therapy in the future.
Collapse
Affiliation(s)
- Yue Wang
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518035 People's Republic of China
| | - Xiaoli Li
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Nanshan Hi-new Technology and Industry Park, Shenzhen, 518057 Guangzhou People's Republic of China
| | - Lanlan Liu
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Nanshan Hi-new Technology and Industry Park, Shenzhen, 518057 Guangzhou People's Republic of China
| | - Bingruo Liu
- Division of Engineering Science, University of Toronto, Toronto, M5S2E8 Canada
| | - Feng Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, 603 Jinsui Road, Xinxiang, 453002 Henan People's Republic of China
- Shenzhen Kangning Hospital & Shenzhen Mental Health Center, Shenzhen, 518003 People's Republic of China
| | - Changsheng Chen
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Nanshan Hi-new Technology and Industry Park, Shenzhen, 518057 Guangzhou People's Republic of China
| |
Collapse
|
44
|
Escoffre JM, Bouakaz A. Minireview: Biophysical Mechanisms of Cell Membrane Sonopermeabilization. Knowns and Unknowns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10151-10165. [PMID: 30525655 DOI: 10.1021/acs.langmuir.8b03538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microbubble-assisted ultrasound has emerged as a promising method for the delivery of low-molecular-weight chemotherapeutic molecules, nucleic acids, therapeutic peptides, and antibodies in vitro and in vivo. Its clinical applications are under investigation for local delivery drug in oncology and neurology. However, the biophysical mechanisms supporting the acoustically mediated membrane permeabilization are not fully established. This review describes the present state of the investigations concerning the acoustically mediated stimuli (i.e., mechanical, chemical, and thermal stimuli) as well as the molecular and cellular actors (i.e., membrane pores and endocytosis) involved in the reversible membrane permeabilization process. The different hypotheses, which were proposed to give a biophysical description of the membrane permeabilization, are critically discussed.
Collapse
Affiliation(s)
- Jean-Michel Escoffre
- UMR 1253, iBrain, Université de Tours, Inserm , 10 bd Tonnellé , 37032 Tours Cedex 1, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm , 10 bd Tonnellé , 37032 Tours Cedex 1, France
| |
Collapse
|
45
|
Abstract
Cellular analysis is a central concept for both biology and medicine. Over the past two decades, acoustofluidic technologies, which marry acoustic waves with microfluidics, have significantly contributed to the development of innovative approaches for cellular analysis. Acoustofluidic technologies enable precise manipulations of cells and the fluids that confine them, and these capabilities have been utilized in many cell analysis applications. In this review article, we examine various applications where acoustofluidic methods have been implemented, including cell imaging, cell mechanotyping, circulating tumor cell phenotyping, sample preparation in clinics, and investigation of cell-cell interactions and cell-environment responses. We also provide our perspectives on the technological advantages, limitations, and potential future directions for this innovative field of methods.
Collapse
Affiliation(s)
- Yuliang Xie
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hunter Bachman
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27707, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27707, USA
| |
Collapse
|
46
|
Lai B, Zhu P, Li H, Hu L, Wang J. Effect of docetaxel-loaded lipid microbubble in combination with ultrasound-triggered microbubble destruction on the growth of a gastric cancer cell line. Oncol Lett 2019; 18:442-448. [PMID: 31289515 DOI: 10.3892/ol.2019.10289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/03/2019] [Indexed: 12/16/2022] Open
Abstract
Although gastric cancer therapy has been improved, more efficient treatment strategies still need to be developed. In the present study, a docetaxel (DOC)-loaded lipid microbubble (DLLD) was prepared and the effect of DLLD combined with ultrasound-triggered microbubble destruction (UTMD) on the growth of a gastric cancer cell line was investigated. The following four groups were included in the present study: Control, DOC, DLLD and DLLD plus UTMD. The determined entrapment efficiency of DLLD is 76±3.5%. The present study demonstrated that treatment with DLLD plus UTMD could significantly inhibit the growth of the cultured gastric cancer cell line BGC-823 via arresting the cell cycle in G2/M phase, inhibiting cell DNA synthesis, promoting cell apoptosis and disrupting mitochondrial membrane potential, as compared with treatment with DOC or DLLD alone. Furthermore, the expression of p53, p21 and Bax were identified to be significantly upregulated, while that of Bcl-2 was significantly downregulated in the DLLD plus UTMD group. Therefore, treatment with DLLD plus UTMD was more efficient in inhibiting cell proliferation and inducing cell apoptosis in the gastric cancer cell line, when compared with treatment with DOC or DLLD alone, suggesting that DLLD plus UTMD could serve as a promising strategy for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Bin Lai
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Peiqian Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Honglang Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lin Hu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiwei Wang
- Department of Ultrasonography, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
47
|
White BD, Duan C, Townley HE. Nanoparticle Activation Methods in Cancer Treatment. Biomolecules 2019; 9:E202. [PMID: 31137744 PMCID: PMC6572460 DOI: 10.3390/biom9050202] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/25/2022] Open
Abstract
In this review, we intend to highlight the progress which has been made in recent years around different types of smart activation nanosystems for cancer treatment. Conventional treatment methods, such as chemotherapy or radiotherapy, suffer from a lack of specific targeting and consequent off-target effects. This has led to the development of smart nanosystems which can effect specific regional and temporal activation. In this review, we will discuss the different methodologies which have been designed to permit activation at the tumour site. These can be divided into mechanisms which take advantage of the differences between healthy cells and cancer cells to trigger activation, and those which activate by a mechanism extrinsic to the cell or tumour environment.
Collapse
Affiliation(s)
- Benjamin D White
- Department of Engineering Science, Oxford University, Parks Road, OX1 3PJ, Oxford, UK.
| | - Chengchen Duan
- Nuffield department of Women's and Reproductive Health, Oxford University John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.
| | - Helen E Townley
- Department of Engineering Science, Oxford University, Parks Road, OX1 3PJ, Oxford, UK.
- Nuffield department of Women's and Reproductive Health, Oxford University John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.
| |
Collapse
|
48
|
Koda R, Origasa T, Nakajima T, Yamakoshi Y. Observing Bubble Cavitation by Back-Propagation of Acoustic Emission Signals. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:823-833. [PMID: 30735990 DOI: 10.1109/tuffc.2019.2897983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Temporal- and spatial-resolved observations of microbubble cavitation generated through high-intensity ultrasound irradiation are key in improving both the efficiency and efficacy of ultrasound-assisted drug delivery systems. A method of measuring bubble cavitation applying an image-reconstruction technique of back-propagation of an acoustic cavitation emission (ACE) signal is proposed. A high-intensity focused ultrasound wave (pump wave) irradiates the bubble synchronously using ultrasound recording equipment to acquire the timing of the RF signal, which is produced when the bubble radiates a secondary wave during bubble cavitation. The ACE signal source is reconstructed through ultrasound-wave back-propagation followed by amplitude deconvolution. The proposed method was applied to microbubbles of an ultrasound contrast agent by changing the sound pressure of the pump wave. The method reliability of the temporal resolution was verified by simulating the amplitude-modulated signal of the virtual sound source. The temporal transition of the ACE signal exhibited sub-microsecond-order fluctuations in the signal intensity. From the amplitude signal image and the instantaneous frequency image reconstruction of the proposed method, two different ACE phenomena were visualized. One is the periodic pattern by the beat signals from the harmonic and ultraharmonic component of nonlinear oscillation under low-intensity ultrasound conditions. The other is the nonperiodic temporal and spatial distributions of this irradiation under high-intensity ultrasound conditions.
Collapse
|
49
|
Zachs DP, Offutt SJ, Graham RS, Kim Y, Mueller J, Auger JL, Schuldt NJ, Kaiser CRW, Heiller AP, Dutta R, Guo H, Alford JK, Binstadt BA, Lim HH. Noninvasive ultrasound stimulation of the spleen to treat inflammatory arthritis. Nat Commun 2019; 10:951. [PMID: 30862842 PMCID: PMC6414603 DOI: 10.1038/s41467-019-08721-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
Targeted noninvasive control of the nervous system and end-organs may enable safer and more effective treatment of multiple diseases compared to invasive devices or systemic medications. One target is the cholinergic anti-inflammatory pathway that consists of the vagus nerve to spleen circuit, which has been stimulated with implantable devices to improve autoimmune conditions such as rheumatoid arthritis. Here we report that daily noninvasive ultrasound (US) stimulation targeting the spleen significantly reduces disease severity in a mouse model of inflammatory arthritis. Improvements are observed only with specific parameters, in which US can provide both protective and therapeutic effects. Single cell RNA sequencing of splenocytes and experiments in genetically-immunodeficient mice reveal the importance of both T and B cell populations in the anti-inflammatory pathway. These findings demonstrate the potential for US stimulation of the spleen to treat inflammatory diseases.
Collapse
Affiliation(s)
- Daniel P Zachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, 55455, MN, USA.
| | - Sarah J Offutt
- Restorative Therapies Group, Medtronic plc, Minneapolis, 55432, MN, USA
| | - Rachel S Graham
- Center for Immunology and Department of Pediatrics, University of Minnesota, Minneapolis, 55455, MN, USA
| | - Yohan Kim
- Restorative Therapies Group, Medtronic plc, Minneapolis, 55432, MN, USA
| | - Jerel Mueller
- Restorative Therapies Group, Medtronic plc, Minneapolis, 55432, MN, USA
| | - Jennifer L Auger
- Center for Immunology and Department of Pediatrics, University of Minnesota, Minneapolis, 55455, MN, USA
| | - Nathaniel J Schuldt
- Center for Immunology and Department of Pediatrics, University of Minnesota, Minneapolis, 55455, MN, USA
| | - Claire R W Kaiser
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, 55455, MN, USA
| | - Abigail P Heiller
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, 55455, MN, USA
| | - Raini Dutta
- Center for Immunology and Department of Pediatrics, University of Minnesota, Minneapolis, 55455, MN, USA
| | - Hongsun Guo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, 55455, MN, USA
| | - Jamu K Alford
- Restorative Therapies Group, Medtronic plc, Minneapolis, 55432, MN, USA
| | - Bryce A Binstadt
- Center for Immunology and Department of Pediatrics, University of Minnesota, Minneapolis, 55455, MN, USA
| | - Hubert H Lim
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, 55455, MN, USA.
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, 55455, MN, USA.
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, 55455, MN, USA.
| |
Collapse
|
50
|
Alford A, Tucker B, Kozlovskaya V, Chen J, Gupta N, Caviedes R, Gearhart J, Graves D, Kharlampieva E. Encapsulation and Ultrasound-Triggered Release of G-Quadruplex DNA in Multilayer Hydrogel Microcapsules. Polymers (Basel) 2018; 10:E1342. [PMID: 30961267 PMCID: PMC6401949 DOI: 10.3390/polym10121342] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023] Open
Abstract
Nucleic acid therapeutics have the potential to be the most effective disease treatment strategy due to their intrinsic precision and selectivity for coding highly specific biological processes. However, freely administered nucleic acids of any type are quickly destroyed or rendered inert by a host of defense mechanisms in the body. In this work, we address the challenge of using nucleic acids as drugs by preparing stimuli responsive poly(methacrylic acid)/poly(N-vinylpyrrolidone) (PMAA/PVPON)n multilayer hydrogel capsules loaded with ~7 kDa G-quadruplex DNA. The capsules are shown to release their DNA cargo on demand in response to both enzymatic and ultrasound (US)-triggered degradation. The unique structure adopted by the G-quadruplex is essential to its biological function and we show that the controlled release from the microcapsules preserves the basket conformation of the oligonucleotide used in our studies. We also show that the (PMAA/PVPON) multilayer hydrogel capsules can encapsulate and release ~450 kDa double stranded DNA. The encapsulation and release approaches for both oligonucleotides in multilayer hydrogel microcapsules developed here can be applied to create methodologies for new therapeutic strategies involving the controlled delivery of sensitive biomolecules. Our study provides a promising methodology for the design of effective carriers for DNA vaccines and medicines for a wide range of immunotherapies, cancer therapy and/or tissue regeneration therapies in the future.
Collapse
Affiliation(s)
- Aaron Alford
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Brenna Tucker
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jun Chen
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Nirzari Gupta
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Racquel Caviedes
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jenna Gearhart
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - David Graves
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Center of Nanoscale Materials and Biointegration, Birmingham, AL 35294, USA.
| |
Collapse
|