1
|
Kuo CH, Nargotra P, Lin TH, Shieh CJ, Liu YC. Ultrasonication-assisted lipase-catalyzed esterification of chlorogenic acid: A comparative study using fatty alcohol and acids in solvent and solvent-free conditions. ULTRASONICS SONOCHEMISTRY 2025; 113:107218. [PMID: 39754845 PMCID: PMC11755015 DOI: 10.1016/j.ultsonch.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Chlorogenic acid, a well-known antioxidant, has potential applications in health care, food, and cosmetic sectors. However, its low solubility hinders its application at the industrial scale. The primary goal of the present study was to increase the lipophilic property of chlorogenic acid through esterification using an ultrasonication approach and Novozym® 435 as the catalyst. The esterification was executed in two ways. In the first method, chlorogenic acid was converted to chlorogenic acid ester using octanol in a solvent-free reaction. Catalytic factors such as reaction time (12 h ∼ 36 h), enzyme dosage (10 ∼ 50 mg), and ultrasonication power (90 ∼ 150 W) were optimized using Box-Behnken design (BBD) while temperature (60 ℃) and molar ration (chlorogenic acid/octanol, 1:500) were kept constant. A maximum conversion rate of 95.3 % was achieved when the esterification was performed for 12 h at 120 W ultrasonication power and 50 mg enzyme dosage. Contrary to the first method, when esterification was done using caprylic acid in the presence of 2-methyl-2-butanol as a solvent, the conversion rate was relatively low. Despite optimization of factors including molar ratio, enzyme dosage, and reaction time, the highest conversion rate achieved was of only 36.8 %. Moreover, molecular docking results revealed that the lowest binding energy was between lipase and octanol. The finding of the study clearly stated that the esterification of chlorogenic acid was more effective in a solvent-free condition as compared to in the presence of solvent.
Collapse
Affiliation(s)
- Chia-Hung Kuo
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan; Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan.
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan.
| | - Tsung-Han Lin
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| | - Chwen-Jen Shieh
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Oh WY, Liu S, Lee J. Revisiting polar paradox: antioxidant activity in bulk oil using selected phenol lipids. Food Sci Biotechnol 2024; 33:3491-3499. [PMID: 39493389 PMCID: PMC11525363 DOI: 10.1007/s10068-024-01605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/30/2024] [Accepted: 05/16/2024] [Indexed: 11/05/2024] Open
Abstract
The purpose of this work was to re-evaluate the polar paradox theory (PPT) that explains the relationships between the efficacy of antioxidants, their polarity, and their environments. In this study, ascorbic acid (AA), ascorbyl palmitate (AP), gallic acid (GA), gallyl palmitate (GP), Trolox (TR), α-tocopherol (TO), resveratrol (R), and resveratryl palmitate (RP) were employed to assess conjugated dienoic acid (CDA), the p-anisidine value (p-AV), headspace oxygen content, and hexanal formation in a bulk oil system. TR, TO, R, and RP showed better antioxidant activities in CDA and p-AV and higher headspace oxygen content than AA, AP, GA, and GP. AA showed lower hexanal formation than AP, whereas GP, TO, and RP had better antioxidant activity than their derivatives. These findings suggest that the PPT might be useful to explain the oxidation that occurs at the air-oil interface/association colloids but applying it to other assays might not appropriate.
Collapse
Affiliation(s)
- Won Young Oh
- College of Pharmacy, Dongduk Women’s University, 60, Hwarang‑ro 13‑gil, Seongbuk‑gu, Seoul, 02748 Republic of Korea
| | - Sookyung Liu
- Department of Food Science and Biotechnology, Sungkyunkwan University, 300 Cheonchoen-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746 Republic of Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, 300 Cheonchoen-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746 Republic of Korea
| |
Collapse
|
3
|
Zhou D, Yu W, Wu A, Shu W, Zhang Y. Optimization of preparation conditions of medium and highly substituted carboxymethyl inulin through response surface methodology. Carbohydr Res 2024; 536:109009. [PMID: 38211450 DOI: 10.1016/j.carres.2023.109009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/13/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024]
Abstract
This article introduces the synthesis optimization of carboxymethyl inulin using response surface methodology. The important factors affecting the degree of substitution (DS) were determined by Plackett-Burman design, including sodium hydroxide concentration, monochloroacetic concentration, and etherification temperature. Further optimization was conducted using the Box-Behnken response surface design. The coefficient of determination (R2) of the response surface model was 0.9827, and the adjusted R2 value was 0.9516, which proved the significance of the model. The optimized results of the predicted response showed that the molar ratios of sodium hydroxide to monochloroacetic acid and fructose to furan were 3.67 and 2.21, respectively. The maximum DS of 1.67 was obtained at 30 °C alkalization for 30 min and 50.30 °C etherification for 4 h, and the reaction efficiency (RE) reached 76.01 %. Under the optimized conditions, the Experimental DS was 1.68, suggesting that the experimental and predicted values of DS were in good agreement. The characterization results confirmed the synthesis of CMI. In this work, we have provided an effective method for the preparation of moderately to highly substituted CMI in 95 % ethanol.
Collapse
Affiliation(s)
- Dongkui Zhou
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Weichu Yu
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, Hubei, China.
| | - Aibin Wu
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Wenming Shu
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Ying Zhang
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, Hubei, China
| |
Collapse
|
4
|
Luo Z, Xu Y, Qiu L, Lv S, Zeng C, Tan A, Ou D, Song X, Yang J. Optimization of ultrasound-assisted extraction based on response surface methodology using HPLC-DAD for the analysis of red clover ( Trifolium pretense L.) isoflavones and its anti-inflammatory activities on LPS-induced 3D4/2 cell. Front Vet Sci 2023; 10:1279178. [PMID: 37854095 PMCID: PMC10580807 DOI: 10.3389/fvets.2023.1279178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Trifolium pratense L. has anti-inflammatory, antioxidant, cardiovascular disease prevention, and estrogen-like effects. The existing method for the assay of effective components is commonly based on a spectrophotometer, which could not meet the requirement of quality control. Furthermore, although there have been many studies on the anti-inflammation effect of red clover, a few have been reported on the regulatory effect of red clover isoflavones (RCI) on lipopolysaccharide (LPS)-induced inflammatory response in porcine alveolar macrophages (3D4/2 cells), and its mechanism of action is still unclear. Methods The main components of RCI including daidzein, genistein, and biochanin A were accurately quantified by high-performance liquid chromatography coupled with diode array detection (HPLC-DAD) after optimizing the extraction process through response surface methodology. The anti-inflammatory potential of RCI was carried out by detecting the level of inflammatory cytokines and mRNA expression of related genes. Furthermore, its anti-inflammatory mechanism was explored by investigating two signaling pathways (NF-κB and MAPK). Results The optimal extraction conditions of RCI were as follows: the concentration of ethanol is 86% and the solid-liquid ratio is 1:29, with the herb particle size of 40 mesh sieve. Under the optimal conditions, the total extraction of target components of RCI was 2,641.469 μg/g. The RCI could significantly suppress the production and expression of many pro-inflammatory cytokines. The results of the Western blot revealed that RCI dramatically reduced the expression of p65, p-p65, IκB-α, p38, and p-p38. These results are associated with the suppression of the signal pathway of p38 MAPK, and on the contrary, activating the NF-κB pathway. Collectively, our data demonstrated that RCI reversed the transcription of inflammatory factors and inhibited the expression of p65, p-p65, IκB-α, and p38, indicating that RCI had excellent anti-inflammatory properties through disturbing the activation of p38 MAPK and NF-κB pathways. Conclusion The extraction conditions of RCI were optimized by HPLC-DAD combined with response surface methodology, which will contribute to the quality control of RCI. RCI had anti-inflammatory effects on the LPS-induced 3D4/2 cells. Its mechanism is to control the activation of NF-κB and p38 MAPK pathways, thereby reducing the expression of inflammatory-related genes and suppressing the release of cytokines.
Collapse
Affiliation(s)
- Zhengqin Luo
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Yidan Xu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Longxin Qiu
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology in Fujian Province, Longyan University, Longyan, Fujian, China
| | - Shiming Lv
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Cheng Zeng
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Aijuan Tan
- College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Deyuan Ou
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Xuqin Song
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Jian Yang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Tsai MF, Huang SM, Huang HY, Tsai SW, Kuo CH, Shieh CJ. Ultrasound Plus Vacuum-System-Assisted Biocatalytic Synthesis of Octyl Cinnamate and Response Surface Methodology Optimization. Molecules 2022; 27:molecules27217148. [PMID: 36363974 PMCID: PMC9657652 DOI: 10.3390/molecules27217148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Cinnamic acid is one of the phenolic compounds that is isolated from cinnamon, or other natural plants, and has a wide range of physiological activities. However, the application of cinnamic acid is limited due to its poor solubility and low oral bioavailability. In this study, the feasibility of producing octyl cinnamate by ultrasonic assistance, combined with a rotary evaporation under vacuum, was studied using methyl cinnamate and octanol as the starting materials. A Box–Behnken design (BBD) was employed to evaluate the effects of the operation parameters, including reaction temperature (55–75 °C), reaction time (4–12 h), and ultrasonic power (90–150 W) on the production of octyl cinnamate. Meanwhile, the synthesis process was further optimized by the modeling response surface methodology (RSM). The data indicated that octyl cinnamate was efficiently synthesized from methyl cinnamate and octanol using the ultrasound plus vacuum system; further, this system was superior to the conventional method. According to the RSM model for the actual experiments, a reaction temperature of 74.6 °C, a reaction time of 11.1 h, and an ultrasound power of 150 W were determined to be the best conditions for the maximum molar conversion of octyl cinnamate (93.8%). In conclusion, the highly efficient synthesis of octyl cinnamate by a rotary evaporator with an ultrasound plus vacuum system was achieved via RSM optimization.
Collapse
Affiliation(s)
- Ming-Fang Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Shang-Ming Huang
- Department of Nutrition, China Medical University, Taichung 406, Taiwan
| | - Hsin-Yi Huang
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Shuo-Wen Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-W.T.); (C.-H.K.); (C.-J.S.)
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
- Center for Aquatic Products Inspection Service, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
- Correspondence: (S.-W.T.); (C.-H.K.); (C.-J.S.)
| | - Chwen-Jen Shieh
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-W.T.); (C.-H.K.); (C.-J.S.)
| |
Collapse
|
6
|
Chien HI, Tsai YH, David Wang HM, Dong CD, Huang CY, Kuo CH. Extrusion puffing pretreated cereals for rapid production of high-maltose syrup. Food Chem X 2022; 15:100445. [PMID: 36211773 PMCID: PMC9532787 DOI: 10.1016/j.fochx.2022.100445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
Abstract
Extrusion puffing of cereals improved their water solubility and gelatinization. FTIR-ATR study revealed structural differences between native and puffed cereals. Extrusion puffing highly enhanced the efficiency of saccharification. The extruded-puffed cereals had a higher Vmax/Km value as compared to native. Extruded-puffed cereals showed potential for high-maltose syrup production.
In this study, cereals with high starch content, including brown rice, corn, and buckwheat were pretreated by extrusion. The physicochemical properties of extruded-puffed cereals obtained from different extrusion conditions were analyzed herein. The puffed extrudates exhibited lower bulk density, higher water solubility and gelatinization as compared to untreated cereals. The FTIR-ATR results confirmed a decrease in the crystalline structure of extruded-puffed cereals. A higher Vmax/Km value was observed in the enzymatic saccharification of puffed extrudates that significantly improved hydrolysis rate and yield. Finally, the high-maltose syrup was produced via the enzymatic hydrolysis of extruded-puffed cereals at high substrate concentrations (20 %). After hydrolysis for 180 min at an enzyme substrate ratio (E/S ratio) of 0.2, the syrup with dextrose equivalent (DE) value of 63, 62, and 61 were obtained from extruded-puffed brown rice, corn, and buckwheat, respectively. Our results showed the potential of using extruded-puffed cereals for producing high-maltose syrup.
Collapse
Affiliation(s)
- Hung-I Chien
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Road, Nan-Tzu District, Kaohsiung 811, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Yung-Hsiang Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Road, Nan-Tzu District, Kaohsiung 811, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Road, Nan-Tzu District, Kaohsiung 811, Taiwan
- Corresponding authors at: Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Road, Nan-Tzu District, Kaohsiung 811, Taiwan.
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Road, Nan-Tzu District, Kaohsiung 811, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
- Center for Aquatic Products Inspection Service, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
- Corresponding authors at: Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Road, Nan-Tzu District, Kaohsiung 811, Taiwan.
| |
Collapse
|
7
|
Enzymes and Biocatalysis. Catalysts 2022. [DOI: 10.3390/catal12090993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enzymes, also known as biocatalysts, are proteins produced by living cells and found in a wide range of species, including animals, plants, and microorganisms [...]
Collapse
|
8
|
Continuous Production of DHA and EPA Ethyl Esters via Lipase-Catalyzed Transesterification in an Ultrasonic Packed-Bed Bioreactor. Catalysts 2022. [DOI: 10.3390/catal12040404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ethyl esters of omega-3 fatty acids are active pharmaceutical ingredients used for the reduction in triglycerides in the treatment of hyperlipidemia. Herein, an ultrasonic packed-bed bioreactor was developed for continuous production of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) ethyl esters from DHA+EPA concentrate and ethyl acetate (EA) using an immobilized lipase, Novozym® 435, as a biocatalyst. A three-level–two-factor central composite design combined with a response surface methodology (RSM) was employed to evaluate the packed-bed bioreactor with or without ultrasonication on the conversion of DHA + EPA ethyl ester. The highest conversion of 99% was achieved with ultrasonication at the condition of 1 mL min−1 flow rate and 100 mM DHA + EPA concentration. Our results also showed that the ultrasonic packed-bed bioreactor has a higher external mass transfer coefficient and a lower external substrate concentration on the surface of the immobilized enzyme. The effect of ultrasound was also demonstrated by a kinetic model in the batch reaction that the specificity constant (V′max/K2) in the ultrasonic bath was 8.9 times higher than that of the shaking bath, indicating the ultrasonication increased the affinity between enzymes and substrates and, therefore, increasing reaction rate. An experiment performed under the highest conversion conditions showed that the enzyme in the bioreactor remained stable at least for 5 days and maintained a 98% conversion.
Collapse
|
9
|
The Effects of Acyl Chain Length on Antioxidant Efficacy of Mono- and Multi-Acylated Resveratrol: A Comparative Assessment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031001. [PMID: 35164266 PMCID: PMC8839368 DOI: 10.3390/molecules27031001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Abstract
Acylated derivatives of the dietary phenolic, resveratrol, were prepared via enzymatic and chemical transesterification modification with selected vinyl fatty acids to expand the potential application of resveratrol and its acylated derivatives in functional supplement, cosmetic/skincare, and pharmaceutical fields. The acylation was implemented using eight vinyl fatty acids with varying chain lengths (C2:0-C18:0). Eight monoesters enzymatically prepared, eight diesters and four triesters, chemically prepared, were isolated and purified and identified via MS (mass spectra) or/and NMR (nuclear magnetic resonance). The lipophilicity of resveratrol and its acylated derivatives was calculated using ALOGPS 2.1. Compared with related acylated products, resveratrol itself rendered higher antioxidant efficacy in all the antioxidant assays, namely DPPH, ABTS, FRAP, and ferrous chelation tests. Within various ester derivatives of resveratrol, short-chain fatty acid mono- and di-substituted resveratrols, especially the resveratrol monoacetate/diacetate, exhibited higher antioxidant efficacy in DPPH and ABTS assays than the rest of resveratrol derivatives, but the medium-chain monoesters of resveratrol, including caproate, caprylate, caprate, and laurate, showed a higher metal ion chelation ability compared to other acylated resveratrols. These results imply that resveratrol derivatives may be used in lipidic media as health-beneficial antioxidants.
Collapse
|
10
|
Xu LJ, Yang T, Wang J, Huang FH, Zheng MM. Immobilized Lipase Based on Hollow Mesoporous Silicon Spheres for Efficient Enzymatic Synthesis of Resveratrol Ester Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9067-9075. [PMID: 33560828 DOI: 10.1021/acs.jafc.0c07501] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enzymatic esterification of resveratrol is crucial for its potential application in lipophilic foods and drugs. However, the poor activity of the free enzyme hinders the reaction. In this work, the highly efficient enzymatic synthesis of resveratrol ester derivatives was achieved by immobilized lipase on hydrophobic modified hollow mesoporous silicon spheres (HMSS-C8). We preliminarily explored the use of Candida sp. 99-125 lipase (CSL) for the acylation of resveratrol, with a regioselectivity toward 3-OH- over 4'-OH-acylation. HMSS-C8 provided ideal accommodation for CSL with a loading capacity of up to 652 mg/g. The catalytic efficiency of CSL@HMSS-C8 was 15 times higher than that of free CSL, and the conversion of resveratrol reached 98.7% within only 2 h, which is the fastest value recorded in the current literature. After 10 cycles, the conversion remained up to 86.3%. Benefiting from better lipid solubility, the relative oxidation stability index values of oil containing monoester derivatives were 43.1%-68.8% and 23.9%-33.2% higher than that of refined oil and oil containing resveratrol, respectively. This research provides a new pathway for efficient enzymatic synthesis of resveratrol ester derivatives and demonstrates the potential application of resveratrol monoester derivatives as a group of excellent lipid-soluble antioxidants.
Collapse
Affiliation(s)
- Liu-Jia Xu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Tao Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Jing Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Feng-Hong Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Ming-Ming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| |
Collapse
|
11
|
Yan L, Zhang Z, Zhang Y, Yang H, Qiu G, Wang D, Lian Y. Improvement of tacrolimus production in Streptomyces tsukubaensis by mutagenesis and optimization of fermentation medium using Plackett-Burman design combined with response surface methodology. Biotechnol Lett 2021; 43:1765-1778. [PMID: 34021830 DOI: 10.1007/s10529-021-03144-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 04/30/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study was conducted to enhance the production of tacrolimus in Streptomyces tsukubaensis by strain mutagenesis and optimization of the fermentation medium. RESULTS A high tacrolimus producing strain S. tsukubaensis FIM-16-06 was obtained by ultraviolet mutagenesis coupled with atmospheric and room temperature plasma mutagenesis.Then, nine variables were screened using Plackett-Burman experimental design, in which soluble starch, peptone and Tween 80 showed significantly affected tacrolimus production. Further studies were carried out employing central composite design to elucidate the mutual interaction between the variables and to work out optimal fermentation medium composition for tacrolimus production. The optimum fermentation medium was found to contain 61.61 g/L of soluble starch, 20.61 g/L of peptone and 30.79 g/L of Tween 80. In the optimized medium, the production of tacrolimus reached 1293 mg/L in shake-flask culture, and reached 1522 mg/L while the scaled-up fermentation was conducted in a 1000 L fermenter, which was about 3.7 times higher than that in the original medium. CONCLUSIONS Combining compound mutation with rational medium optimization is an effective approach for improving tacrolimus production, and the optimized fermentation medium could be efficiently used for industrial production.
Collapse
Affiliation(s)
- Lingbin Yan
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, 350007, China
| | - Zhulan Zhang
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, 350007, China.
| | - Yin Zhang
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, 350007, China
| | - Huangjian Yang
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, 350007, China
| | - Guanrong Qiu
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, 350007, China
| | - Desen Wang
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, 350007, China
| | - Yunyang Lian
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, 350007, China.
| |
Collapse
|
12
|
Status of the application of exogenous enzyme technology for the development of natural plant resources. Bioprocess Biosyst Eng 2020; 44:429-442. [PMID: 33146790 DOI: 10.1007/s00449-020-02463-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
Exogenous enzymes are extraneous enzymes that are not intrinsic to the subject. The exogenous enzyme industry has been rapidly developing recently. Successful application of recombinant DNA amplification, high-efficiency expression, and immobilization technology to genetically engineered bacteria provides a rich source of enzymes. Amylase, cellulase, protease, pectinase, glycosidase, tannase, and polyphenol oxidase are among the most widely used such enzymes. Currently, the application of exogenous enzyme technology in the development of natural plant resources mainly focuses on improving the taste and flavor of the product, enriching the active ingredient contents, deriving and transforming the structure of a chosen compound, and enhancing the biological activity and utilization of the functional ingredient. In this review, we discuss the application status of exogenous enzyme technology for the development of natural plant resources using typical natural active ingredients from plant, such as resveratrol, steviosides, catechins, mogrosides, and ginsenosides, as examples, to provide basis for further exploitation and utilization of exogenous enzyme technology.
Collapse
|
13
|
Du KZ, Li J, Wang L, Hao J, Yang XJ, Gao XM, Chang YX. Biosurfactant trehalose lipid-enhanced ultrasound-assisted micellar extraction and determination of the main antioxidant compounds from functional plant tea. J Sep Sci 2019; 43:799-807. [PMID: 31769594 DOI: 10.1002/jssc.201900910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 01/21/2023]
Abstract
Hydrosoluble trehalose lipid (a biosurfactant) was employed for the first time as a green extraction solution to extract the main antioxidant compounds (geniposidic acid, chlorogenic acid, caffeic acid, and rutin) from functional plant tea (Eucommia ulmoides leaves). Single-factor tests and response surface methodology were employed to optimize the extraction conditions for ultrasound-assisted micellar extraction combined with ultra-high-performance liquid chromatography in succession. A Box-Behnken design (three-level, three-factorial) was used to determine the effects of extraction solvent concentration (1-5 mg/mL), extraction solvent volume (5-15 mL), and extraction time (20-40 min) at a uniform ultrasonic power and temperature. In consequence, the best analyte extraction yields could be attained when the trehalose lipid solution concentration was prepared at 3 mg/mL, the trehalose lipid solution volume was 10 mL and the extraction time was set to 35 min. In addition, the recoveries of the antioxidants from Eucommia ulmoides leaves analyzed by this analytical method ranged from 98.2 to 102%. These results indicated that biosurfactant-enhanced ultrasound-assisted micellar extraction coupled with a simple ultra-high-performance liquid chromatography method could be effectively applied in the extraction and analysis of antioxidants from Eucommia ulmoides leaf samples.
Collapse
Affiliation(s)
- Kun-Ze Du
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Lanhui Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Jia Hao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Xue-Jing Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, P. R. China
| | - Xiu-Mei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yan-Xu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
14
|
Kuo CH, Shieh CJ, Huang SM, David Wang HM, Huang CY. The effect of extrusion puffing on the physicochemical properties of brown rice used for saccharification and Chinese rice wine fermentation. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Optimization of Degradation Conditions with PRG, a Polysaccharide from Phellinus ribis, by RSM and the Neuroprotective Activity in PC12 Cells Damaged by Aβ 25-35. Molecules 2019; 24:molecules24163010. [PMID: 31434196 PMCID: PMC6720797 DOI: 10.3390/molecules24163010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
In the previous work, we found PRG, a polysaccharide from Phellinus ribis, exhibited neurotrophic activity. To obtain an active structural unit with lower molecular weight, PRG was degraded to prepare the degraded PRG (DPRG) using ascorbic acid and H2O2. The aim of the paper was to obtain DPRG by optimizing the degradation conditions using response surface methodology (RSM) and to study its protective effects of PC12 cells induced by Aβ25–35. The optimum conditions were as follows; the concentration of H2O2-Vc was 17 mM and degradation temperature was 50 °C; when degradation time was 1.6 h, the experimental response value of PC12 cell viability was 83.4 ± 0.15%, which was in accordance with the predicted value (83.5%). We also studied the protective effects of DPRG against the Aβ25–35-induced neurotoxicity and explored the underlying mechanism. The results showed that treatment with DPRG could attenuate PC12 cells death. The mechanism was relative to the inhibition of cell apoptosis by increasing the MMP level and decreasing the protein expression of cytochrome C (Cytc) in PC12 cells. In conclusion, DPRG with lower molecular weight was obtained successfully. It possessed neuroprotective properties and might be a candidate for neurodegenerative disease treatment.
Collapse
|
16
|
Optimization of Fermentation Condition for Echinacoside Yield Improvement with Penicillium sp. H1, an Endophytic Fungus Isolated from Ligustrum lucidum Ait Using Response Surface Methodology. Molecules 2018; 23:molecules23102586. [PMID: 30308945 PMCID: PMC6222407 DOI: 10.3390/molecules23102586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 01/02/2023] Open
Abstract
(1) Background: Application of echinacoside has become increasingly important for its significant biological activities. However, there are many disadvantages in existing synthesis methods such as contaminating the environment, harsh reaction conditions and so on. Therefore, it is urgent to invent a novel alternative method that can increase the yield of echinacoside. (2) Methods: In this study, we isolated and purified an endophyte from the leaves of Ligustrum lucidum Ait. Then, we improved the yield of echinacoside by optimizing the fermentation condition with an endophytic fungus. Penicillium sp. H1 was isolated from Ligustrum lucidum Ait. In addition, response surface methodology was used to optimize the fermentation condition. (3) Results: The results indicate that the maximal yield of echinacoside (37.16 mg/L) was obtained when inoculation rate, temperature and days were 13.98%, 27.85 °C and 26.06 days, respectively. The yield of echinacoside was 150.47 times higher under the optimal conditions than under the control conditions. The results indicate that the yield of echinacoside could be improved with endophytic fermentation by optimizing the fermentation condition. We provide an alternative method for echinacoside production by endophytic fermentation in this paper. It may have a profound effect on the application of echinacoside.
Collapse
|
17
|
Peiran L, Ying L, Mingzhuo Z, Ye Y, Xiuming C. The development of a Panax notoginseng medicinal liquor processing technology using the response surface method and a study of its antioxidant activity and its effects on mouse melanoma B16 cells. Food Funct 2018; 8:4251-4264. [PMID: 29051954 DOI: 10.1039/c7fo00880e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Panax notoginseng medicinal liquor (PML) has a long history of use in the function of blood circulation. However, the processing of PML is currently dependent on experience, which results in low efficiency and unstable quality of PML. A variety of substances of P. notoginseng have a strong ability to scavenge free radicals and antioxidant activity, but the antioxidant activity of PML has not been formally researched. The aim of the present study was to optimize the processing technology of PML and to verify the anti-oxidation and anti-deposition of melanin functions of PML. Based on the Box-Behnken design of response surface method, the PML processing parameters were established as follows: the ratio of liquid to solid 32 : 1, 53% of alcohol, and soaking time of 35 d. With elevating concentration of PML extract, the reducing force and scavenging rates of DPPH, superoxide anion, hydroxyl radical and ABTS+ were increased, and the inhibition rate of tyrosinase activity and the melanin synthesis ability were increased in mice melanoma B16 cells. Thus, the optimal processing technology not only shortened the processing time but also decreased the material costs. PML may be developed as food or beauty products for the functions of anti-oxidation and anti-deposition of melanin.
Collapse
Affiliation(s)
- Liao Peiran
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China.
| | | | | | | | | |
Collapse
|
18
|
Xu C, Zhang H, Shi J, Zheng M, Xiang X, Huang F, Xiao J. Ultrasound irradiation promoted enzymatic alcoholysis for synthesis of monoglyceryl phenolic acids in a solvent-free system. ULTRASONICS SONOCHEMISTRY 2018; 41:120-126. [PMID: 29137734 DOI: 10.1016/j.ultsonch.2017.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Monoglyceryl phenolic acids (MPAs) were known as the natural hydrophilic antioxidants which could be used in different fields such as food, pharmaceutical, cosmetic etc. A novel enzymatic route of MPAs synthesis by the alcoholysis of phenolic acid ethyl esters with glycerol under ultrasound irradiation in solvent free system was developed. Optimization of reaction parameters shows that a high conversion of above 97.4% can be obtained under the following conditions: phenolic acid ethyl esters to glycerol molar ratio of 1:10, with 6% catalyst (Novozym 435), at 60°C and 200rpm, with ultrasound input of 250W, at 20kHz frequency. Compared to the conventional stirring method, the activation energy for phenolic acid ethyl esters conversion was decreased from 65.0kJ/mol to 32.1kJ/mol under ultrasound promotion; the apparent kinetic constant (Vm/Km) increased above 1.2-folds; the lipase amount decreased to 50%; the time required for the maximum conversion reduced up to 3-folds without damaging the lipase activity, which is the fastest report for enzymatic synthesis of MPAs.
Collapse
Affiliation(s)
- Chunfang Xu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Haiping Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Jie Shi
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; Functional Oil Laboratory Associated By Oil Crops Research Institute, Chinese Academy of Agricultural Sciences and Infinite (China) Co. LTD, Guangzhou 51000, China.
| | - Xia Xiang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; Functional Oil Laboratory Associated By Oil Crops Research Institute, Chinese Academy of Agricultural Sciences and Infinite (China) Co. LTD, Guangzhou 51000, China
| | - Fenghong Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Junyong Xiao
- Functional Oil Laboratory Associated By Oil Crops Research Institute, Chinese Academy of Agricultural Sciences and Infinite (China) Co. LTD, Guangzhou 51000, China
| |
Collapse
|
19
|
Xia EQ, Chen Y, Lu Q, Li Y, Hang Y, Su J, Liu Y, Li HB. Optimization and Application of Ultrasound Assisted QuEChERS and Ionic Liquid Dispersive Liquid–liquid Microextraction Followed by HPLC for Determination of BBP and DBP in Packaging Food. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- En-Qin Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University
| | | | - Qin Lu
- Guangdong International Travel Healthcare Center
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University
| | - Ying Hang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University
| | - Jiewen Su
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University
| | - Yuting Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University
| |
Collapse
|
20
|
An Efficient Approach for Lipase-Catalyzed Synthesis of Retinyl Laurate Nutraceutical by Combining Ultrasound Assistance and Artificial Neural Network Optimization. Molecules 2017; 22:molecules22111972. [PMID: 29140274 PMCID: PMC6150370 DOI: 10.3390/molecules22111972] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/13/2017] [Indexed: 12/04/2022] Open
Abstract
Although retinol is an important nutrient, retinol is highly sensitive to oxidation. At present, some ester forms of retinol are generally used in nutritional supplements because of its stability and bioavailability. However, such esters are commonly synthesized by chemical procedures which are harmful to the environment. Thus, this study utilized a green method using lipase as a catalyst with sonication assistance to produce a retinol derivative named retinyl laurate. Moreover, the process was optimized by an artificial neural network (ANN). First, a three-level-four-factor central composite design (CCD) was employed to design 27 experiments, which the highest relative conversion was 82.64%. Further, the optimal architecture of the CCD-employing ANN was developed, including the learning Levenberg-Marquardt algorithm, the transfer function (hyperbolic tangent), iterations (10,000), and the nodes of the hidden layer (6). The best performance of the ANN was evaluated by the root mean squared error (RMSE) and the coefficient of determination (R2) from predicting and observed data, which displayed a good data-fitting property. Finally, the process performed with optimal parameters actually obtained a relative conversion of 88.31% without long-term reactions, and the lipase showed great reusability for biosynthesis. Thus, this study utilizes green technology to efficiently produce retinyl laurate, and the bioprocess is well established by ANN-mediated modeling and optimization.
Collapse
|
21
|
Green Synthesis of Ultraviolet Absorber 2-Ethylhexyl Salicylate: Experimental Design and Artificial Neural Network Modeling. Catalysts 2017. [DOI: 10.3390/catal7110342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
22
|
Wu Y, Wang X, Xue J, Fan E. Plant Phenolics Extraction from Flos Chrysanthemi: Response Surface Methodology Based Optimization and the Correlation Between Extracts and Free Radical Scavenging Activity. J Food Sci 2017; 82:2726-2733. [PMID: 29023721 DOI: 10.1111/1750-3841.13916] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 12/01/2022]
Abstract
Huaiju is one of the most famous and widely used Flos Chrysanthemi (FC) for medicinal purposes in China. Although various investigations aimed at phenolics extraction from other FC have been reported, a thorough optimization of the phenolics extraction conditions from Huaiju has not been achieved. This work applied the widely used response surface methodology (RSM) to investigate the effects of 3 independent variables including ethanol concentration (%), extraction time (min), and solvent-to-material ratio (mL/g) on the ultrasound-assisted extraction (UAE) of phenolics from FC. The data suggested the optimal UAE condition was an ethanol concentration of 75.3% and extraction time of 43.5 min, whereas the ratio of solvent to material has no significant effect. When the free radical scavenging ability was used as an indicator for a successful extraction, a similar optimal extraction was achieved with an ethanol concentration of 72.8%, extraction time of 44.3 min, and the ratio of solvent to material was 29.5 mL/g. Furthermore, a moderate correlation between the antioxidant activity of TP extract and the content of extracted phenolic compounds was observed. Moreover, a well consistent of the experimental values under optimal conditions with those predicted values suggests RSM successfully optimized the UAE conditions for phenolics extraction from FC. PRACTICAL APPLICATION The work of the research investigated the plant phenolics in Flos Chrysanthemi and antioxidant capacities. These results of this study can support the development of antioxidant additive and relative food.
Collapse
Affiliation(s)
- Yanfang Wu
- Pharmaceutical School, Xinxiang Medical Univ., Xinxiang 453003, Henan, China
| | - Xinsheng Wang
- Chemical and Pharmaceutical School, Henan Univ. of Science and Technology, Luoyang 471003, Henan, China
| | - Jintao Xue
- Pharmaceutical School, Xinxiang Medical Univ., Xinxiang 453003, Henan, China
| | - Enguo Fan
- Pharmaceutical School, Xinxiang Medical Univ., Xinxiang 453003, Henan, China.,Dept. of Microbiology, Inst. of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
23
|
Bansode SR, Rathod VK. An investigation of lipase catalysed sonochemical synthesis: A review. ULTRASONICS SONOCHEMISTRY 2017. [PMID: 28633854 DOI: 10.1016/j.ultsonch.2017.02.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ultrasonic irradiation has recently gained attention of researchers for its process intensification in numerous reactions. Earlier ultrasound was known for its application either to deactivate enzyme activity or to disrupt the cell. However, in recent years, practice of ultrasonic irradiation began to emerge as a tool for the activation of the enzymes under mild frequency conditions. The incorporation of ultrasound in any of enzymatic reactions not only increases yield but also accelerates the rate of reaction in the presence of mild conditions with better yield and less side-products. To attain maximum yield, it is crucial to understand the mechanism and effect of sonication on reaction especially for the lipase enzyme. Thus, the influence of ultrasound irradiation on reaction yield for different parameters including temperature, enzyme concentration, mole ratio of substrates, solvents ultrasonic frequency and power was reviewed and discussed. The physical effect of cavitation determined by bubble dynamics and rate of reaction through kinetic modelling also needs to be assessed for complete investigation and scale up of synthesis. Thus, prudish utilisation of ultrasound for enzymatic synthesis can serve better future for sustainable and green chemistry.
Collapse
Affiliation(s)
- Sneha R Bansode
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| | - Virendra K Rathod
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India.
| |
Collapse
|
24
|
Sancheti SV, Gogate PR. A review of engineering aspects of intensification of chemical synthesis using ultrasound. ULTRASONICS SONOCHEMISTRY 2017; 36:527-543. [PMID: 27567541 DOI: 10.1016/j.ultsonch.2016.08.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 08/06/2016] [Accepted: 08/06/2016] [Indexed: 05/25/2023]
Abstract
Cavitation generated using ultrasound can enhance the rates of several chemical reactions giving better selectivity based on the physical and chemical effects. The present review focuses on overview of the different reactions that can be intensified using ultrasound followed by the discussion on the chemical kinetics for ultrasound assisted reactions, engineering aspects related to reactor designs and effect of operating parameters on the degree of intensification obtained for chemical synthesis. The cavitational effects in terms of magnitudes of collapse temperatures and collapse pressure, number of free radicals generated and extent of turbulence are strongly dependent on the operating parameters such as ultrasonic power, frequency, duty cycle, temperature as well as physicochemical parameters of liquid medium which controls the inception of cavitation. Guidelines have been presented for the optimum selection based on the critical analysis of the existing literature so that maximum process intensification benefits can be obtained. Different reactor designs have also been analyzed with guidelines for efficient scale up of the sonochemical reactor, which would be dependent on the type of reaction, controlling mechanism of reaction, catalyst and activation energy requirements. Overall, it has been established that sonochemistry offers considerable potential for green and sustainable processing and efficient scale up procedures are required so as to harness the effects at actual commercial level.
Collapse
Affiliation(s)
- Sonam V Sancheti
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| | - Parag R Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India.
| |
Collapse
|
25
|
Abstract
Over the past 15 years, sustainable chemistry has emerged as a new paradigm in the development of chemistry. In the field of organic synthesis, green chemistry rhymes with relevant choice of starting materials, atom economy, methodologies that minimize the number of chemical steps, appropriate use of benign solvents and reagents, efficient strategies for product isolation and purification and energy minimization. In that context, unconventional methods, and especially ultrasound, can be a fine addition towards achieving these green requirements. Undoubtedly, sonochemistry is considered as being one of the most promising green chemical methods (Cravotto et al. Catal Commun 63: 2-9, 2015). This review is devoted to the most striking results obtained in green organic sonochemistry between 2006 and 2016. Furthermore, among catalytic transformations, oxidation reactions are the most polluting reactions in the chemical industry; thus, we have focused a part of our review on the very promising catalytic activity of ultrasound for oxidative purposes.
Collapse
|
26
|
Efficient Regioselective Synthesis of the Crotonyl Polydatin Prodrug by Thermomyces lanuginosus Lipase: a Kinetics Study in Eco-friendly 2-Methyltetrahydrofuran. Appl Biochem Biotechnol 2016; 179:1011-22. [DOI: 10.1007/s12010-016-2047-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/07/2016] [Indexed: 12/18/2022]
|
27
|
|
28
|
Alves JS, Garcia-Galan C, Danelli D, Paludo N, Barbosa O, Rodrigues RC, Fernandez-Lafuente R. Use of Lecitase-Ultra immobilized on styrene-divinylbenzene beads as catalyst of esterification reactions: Effects of ultrasounds. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Delgado-Povedano M, Luque de Castro M. A review on enzyme and ultrasound: A controversial but fruitful relationship. Anal Chim Acta 2015; 889:1-21. [DOI: 10.1016/j.aca.2015.05.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
|
30
|
Vlachogianni IC, Fragopoulou E, Kostakis IK, Antonopoulou S. In vitro assessment of antioxidant activity of tyrosol, resveratrol and their acetylated derivatives. Food Chem 2015; 177:165-73. [PMID: 25660873 DOI: 10.1016/j.foodchem.2014.12.092] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/23/2014] [Accepted: 12/22/2014] [Indexed: 02/07/2023]
Abstract
Consumption of phenolic compounds is associated with beneficial effects in humans even though many of them are poorly absorbed. The aim of this study was to investigate the in vitro antioxidant activity of tyrosol (T), resveratrol (R) and their acetylated derivatives (AcD), as increased lipophilicity has been reported to improve absorption. The chemically synthesized AcDs were evaluated by their ability to scavenge DPPH radicals, inhibit non-enzymatic linoleic acid peroxidation, inhibit human serum oxidation in the presence of copper ions and inhibit lipoxygenase activity. T showed an inhibitory effect only in serum oxidation, where the T-acetylated at aromatic-OH was the most active. The T-acetylated at aliphatic-OH and 3,5-diacetyl-R exhibited the most powerful effect in non-enzymatic linoleic acid peroxidation with IC50 values 2.4 mM ± 0.21 and 0.055 mM ± 0.0018, respectively. In all other tests R was the most potent among all its AcD and T. Increasing lipophilicity by acetylation improves antioxidant activity of phenolic compounds in non-enzymatic lipid peroxidation assays.
Collapse
Affiliation(s)
- Ioanna C Vlachogianni
- Department of Nutritional Science and Dietetics, Harokopio University, Athens, Greece
| | - Elizabeth Fragopoulou
- Department of Nutritional Science and Dietetics, Harokopio University, Athens, Greece
| | - Ioannis K Kostakis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Smaragdi Antonopoulou
- Department of Nutritional Science and Dietetics, Harokopio University, Athens, Greece.
| |
Collapse
|
31
|
Liu SL, Dong XY, Wei F, Wang X, Lv X, Zhong J, Wu L, Quek SY, Chen H. Ultrasonic pretreatment in lipase-catalyzed synthesis of structured lipids with high 1,3-dioleoyl-2-palmitoylglycerol content. ULTRASONICS SONOCHEMISTRY 2015; 23:100-108. [PMID: 25453210 DOI: 10.1016/j.ultsonch.2014.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/10/2014] [Accepted: 10/11/2014] [Indexed: 06/04/2023]
Abstract
Production of structured lipid 1,3-dioleoyl-2-palmitoylglycerol (OPO), from tripalmitin (PPP) and oleic acid (OA) using lipases and ultrasonic pretreatment was conducted. Factors influencing both the ultrasonic conditions and enzymatic reaction were investigated. Optimum conditions could be attained with 6 min pretreatment time, 50% ultrasonic power, 3 s/9 s (work/pause) cycle of ultrasonic pulse, 1:8 PPP/OA molar ratio, 12% enzyme dosage and 50 °C temperature of. At the optimum conditions, the OPO yield of 51.8% could be achieved in 4h. Studies showed that the OPO content increased to 35.9% in 1h with ultrasonic pretreatment, in comparison to 4h without ultrasonic pretreatment. Reuse of Lipozyme RM IM for 10 cycles under ultrasonic irradiation did not cause essential damage to its lipase activity. Reaction kinetic model fitted well with the proposed Ping-Pong mechanism. The apparent kinetic constant (Vm'/K₂) of ultrasound pretreatment reaction was 2.52 times higher than the conventional mechanical stirring, indicating that ultrasound pretreatment enhanced the substrates affinity to the enzyme. This study confirmed that ultrasonic pretreatment was more efficient in OPO production than conventional mechanical agitation.
Collapse
Affiliation(s)
- Si-lei Liu
- Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, The Key Lab for Biological Sciences of Oil Crops, Ministry of Agriculture - Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei 430062, PR China
| | - Xu-yan Dong
- Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, The Key Lab for Biological Sciences of Oil Crops, Ministry of Agriculture - Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei 430062, PR China.
| | - Fang Wei
- Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, The Key Lab for Biological Sciences of Oil Crops, Ministry of Agriculture - Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei 430062, PR China
| | - Xiang Wang
- Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, The Key Lab for Biological Sciences of Oil Crops, Ministry of Agriculture - Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei 430062, PR China
| | - Xin Lv
- Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, The Key Lab for Biological Sciences of Oil Crops, Ministry of Agriculture - Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei 430062, PR China
| | - Juan Zhong
- Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, The Key Lab for Biological Sciences of Oil Crops, Ministry of Agriculture - Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei 430062, PR China
| | - Lin Wu
- Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, The Key Lab for Biological Sciences of Oil Crops, Ministry of Agriculture - Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei 430062, PR China
| | - Siew-young Quek
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Hong Chen
- Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, The Key Lab for Biological Sciences of Oil Crops, Ministry of Agriculture - Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei 430062, PR China.
| |
Collapse
|
32
|
Zhang DN, Guo XY, Yang QH, Chen ZG, Tao LJ. An efficient enzymatic modification of cordycepin in ionic liquids under ultrasonic irradiation. ULTRASONICS SONOCHEMISTRY 2014; 21:1682-1687. [PMID: 24631444 DOI: 10.1016/j.ultsonch.2014.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
A comparative study of the immobilized Candida antarctica lipase B (Novozym 435)-catalyzed acylation of cordycepin with vinyl acetate in ionic liquids (ILs) under ultrasonic irradiation and shaking was conducted. The application of ultrasonic irradiation instead of shaking during acylation resulted in an enhanced reaction rate and a higher level of substrate conversion. Among the various ILs examined, 1-butyl-3-methylimidazolium tetrafluorobrate ([C4MIm][BF4]) was the best medium for the reaction because it produced the highest substrate conversion. In [C4MIm][BF4], the optimal ultrasonic power, water activity, and reaction temperature were 120 W, 0.33, and 50 °C, respectively. The acylation of cordycepin in [C4MIm][BF4] proved to be regioselective under both conditions: the C5'-OH was acylated. Novozym 435 exhibited a much higher operational stability in [C4MIm][BF4], and 58.0% of its original activity was maintained after ten reuse cycles under ultrasonic irradiation. Compared with the cordycepin, the rate of adenosine deaminase-catalyzed deamination was greatly reduced when the 5'-OH was substituted by acetyl group. These results demonstrated that the combined application of ultrasonic irradiation and IL as a medium was an efficient approach for the enzymatic modification of cordycepin.
Collapse
Affiliation(s)
- Dan-Ni Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiao-Yu Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qiu-Huizi Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhi-Gang Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Li-Jia Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
33
|
Ghasemzadeh A, Jaafar HZE, Karimi E, Rahmat A. Optimization of ultrasound-assisted extraction of flavonoid compounds and their pharmaceutical activity from curry leaf (Murraya koenigii L.) using response surface methodology. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:318. [PMID: 25169626 PMCID: PMC4177047 DOI: 10.1186/1472-6882-14-318] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/21/2014] [Indexed: 12/04/2022]
Abstract
Background Extraction prior to component analysis is the primary step in the recovery and isolation of bioactive phytochemicals from plant materials. Methods Response surface methodology was applied to optimize ultrasound-assisted extraction conditions followed by ultra high performance liquid chromatography (UHPLC) to achieve high catechin, myricetin, and quercetin contents, and high antioxidant and anticancer activities in the curry leaf extracts. The antioxidant and anticancer activities of the leaf extracts were determined by the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. The central composite experimental design (3-level, 3-factorial) was employed to consider the effects of ultrasonic power (80–150 W), temperature (40–80°C), and methanol dilution (40–80%) on the properties of the curry leaf extracts. Results It was found that ultrasonic power of 145.49 W at 55.9°C with 80% methanol was the most appropriate set of conditions for the extraction of catechin, myricetin, and quercetin from curry leaves with the consequent high antioxidant activity. Using the optimum extraction conditions, the extraction yields of catechin, myricetin, and quercetin were 0.482, 0.517, and 0.394 mg/g DW, respectively, and the antioxidant activity was enhanced to 83%. The optimized extract showed more distinct anticancer activity against HeLa cancer cells in a concentration of 67.2 μg/mL (P < 0.01) without toxicity to normal cells. Conclusions The results indicated that the pharmaceutical quality of curry leaves could be improved significantly by optimizing the extraction process using response surface methodology.
Collapse
|
34
|
Optimization of reflux conditions for total flavonoid and total phenolic extraction and enhanced antioxidant capacity in Pandan (Pandanus amaryllifolius Roxb.) using response surface methodology. ScientificWorldJournal 2014; 2014:523120. [PMID: 25147852 PMCID: PMC4132310 DOI: 10.1155/2014/523120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/06/2014] [Accepted: 07/03/2014] [Indexed: 11/18/2022] Open
Abstract
Response surface methodology was applied to optimization of the conditions for reflux extraction of Pandan (Pandanus amaryllifolius Roxb.) in order to achieve a high content of total flavonoids (TF), total phenolics (TP), and high antioxidant capacity (AC) in the extracts. Central composite experimental design with three factors and three levels was employed to consider the effects of the operation parameters, including the methanol concentration (MC, 40%–80%), extraction temperature (ET, 40–70°C), and liquid-to-solid ratio (LS ratio, 20–40 mL/g) on the properties of the extracts. Response surface plots showed that increasing these operation parameters induced the responses significantly. The TF content and AC could be maximized when the extraction conditions (MC, ET, and LS ratio) were 78.8%, 69.5°C, and 32.4 mL/g, respectively, whereas the TP content was optimal when these variables were 75.1%, 70°C, and 31.8 mL/g, respectively. Under these optimum conditions, the experimental TF and TP content and AC were 1.78, 6.601 mg/g DW, and 87.38%, respectively. The optimized model was validated by a comparison of the predicted and experimental values. The experimental values were found to be in agreement with the predicted values, indicating the suitability of the model for optimizing the conditions for the reflux extraction of Pandan.
Collapse
|
35
|
Alves JS, Garcia-Galan C, Schein MF, Silva AM, Barbosa O, Ayub MAZ, Fernandez-Lafuente R, Rodrigues RC. Combined effects of ultrasound and immobilization protocol on butyl acetate synthesis catalyzed by CALB. Molecules 2014; 19:9562-76. [PMID: 25004067 PMCID: PMC6271129 DOI: 10.3390/molecules19079562] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 11/16/2022] Open
Abstract
It is well established that the performance of lipase B from Candidaantarctica (CALB) as catalyst for esterification reactions may be improved by the use of ultrasound technology or by its immobilization on styrene-divinylbenzene beads (MCI-CALB). The present research evaluated the synthesis of butyl acetate using MCI-CALB under ultrasonic energy, comparing the results against those obtained using the commercial preparation, Novozym 435. The optimal conditions were determined using response surface methodology (RSM) evaluating the following parameters: reaction temperature, substrate molar ratio, amount of biocatalyst, and added water. The optimal conditions for butyl acetate synthesis catalyzed by MCI-CALB were: temperature, 48.8 °C; substrate molar ratio, 3.46:1 alcohol:acid; amount of biocatalyst, 7.5%; and added water 0.28%, both as substrate mass. Under these conditions, 90% of conversion was reached in 1.5 h. In terms of operational stability, MCI-CALB was reused in seven cycles while keeping 70% of its initial activity under ultrasonic energy. The support pore size and resistance are key points for the enzyme activity and stability under mechanical stirring. The use of ultrasound improved both activity and stability because of better homogeneity and reduced mechanical stress to the immobilized system.
Collapse
Affiliation(s)
- Joana S Alves
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul State, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre ZC 91501-970, RS, Brazil.
| | - Cristina Garcia-Galan
- Department of Biocatalysis, ICP-CSIC. Campus UAM-CSIC. Cantoblanco, ZC 28049, Madrid, Spain.
| | - Mirela F Schein
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul State, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre ZC 91501-970, RS, Brazil.
| | - Alexandre M Silva
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul State, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre ZC 91501-970, RS, Brazil.
| | - Oveimar Barbosa
- Department of Biocatalysis, ICP-CSIC. Campus UAM-CSIC. Cantoblanco, ZC 28049, Madrid, Spain.
| | - Marco A Z Ayub
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul State, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre ZC 91501-970, RS, Brazil.
| | | | - Rafael C Rodrigues
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul State, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre ZC 91501-970, RS, Brazil.
| |
Collapse
|
36
|
Kuo CH, Liu TA, Chen JH, Chang CMJ, Shieh CJ. Response surface methodology and artificial neural network optimized synthesis of enzymatic 2-phenylethyl acetate in a solvent-free system. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Lerin LA, Loss RA, Remonatto D, Zenevicz MC, Balen M, Netto VO, Ninow JL, Trentin CM, Oliveira JV, de Oliveira D. A review on lipase-catalyzed reactions in ultrasound-assisted systems. Bioprocess Biosyst Eng 2014; 37:2381-94. [PMID: 24906428 DOI: 10.1007/s00449-014-1222-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/13/2014] [Indexed: 11/24/2022]
Abstract
The named "green chemistry" has been receiving increasing prominence due to its environmentally friendly characteristics. The use of enzymes as catalysts in processes of synthesis to replace the traditional use of chemical catalysts present as main advantage the fact of following the principles of the green chemistry. However, processes of enzymatic nature generally provide lower yields when compared to the conventional chemical processes. Therefore, in the last years, the ultrasound has been extensively used in enzymatic processes, such as the production of esters with desirable characteristics for the pharmaceutical, cosmetics, and food industry, for the hydrolysis and glycerolysis of vegetable oils, production of biodiesel, etc. Several works found in the open literature suggest that the energy released by the ultrasound during the cavitation phenomena can be used to enhance mass transfer (substrate/enzyme), hence increasing the rate of products formation, and also contributing to enhance the enzyme catalytic activity. Furthermore, the ultrasound is considered a "green" technology due to its high efficiency, low instrumental requirement and significant reduction of the processing time in comparison to other techniques. The main goal of this review was to summarize studies available to date regarding the application of ultrasound in enzyme-catalyzed esterification, hydrolysis, glycerolysis and transesterification reactions.
Collapse
Affiliation(s)
- Lindomar A Lerin
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, UFSC, Campus Universitário, Bairro Trindade, Caixa Postal 476, Florianópolis, Santa Catarina, 88040-900, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kuo CH, Chen BY, Liu YC, Chang CMJ, Deng TS, Chen JH, Shieh CJ. Optimized ultrasound-assisted extraction of phenolic compounds from Polygonum cuspidatum. Molecules 2013; 19:67-77. [PMID: 24362626 PMCID: PMC6271919 DOI: 10.3390/molecules19010067] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/14/2013] [Accepted: 11/26/2013] [Indexed: 11/20/2022] Open
Abstract
In this study the phenolic compounds piceid, resveratrol and emodin were extracted from P. cuspidatum roots using ultrasound-assisted extraction. Multiple response surface methodology was used to optimize the extraction conditions of these phenolic compounds. A three-factor and three-level Box-Behnken experimental design was employed to evaluate the effects of the operation parameters, including extraction temperature (30-70 °C), ethanol concentration (40%-80%), and ultrasonic power (90-150 W), on the extraction yields of piceid, resveratrol, and emodin. The statistical models built from multiple response surface methodology were developed for the estimation of the extraction yields of multi-phenolic components. Based on the model, the extraction yields of piceid, resveratrol, and emodin can be improved by controlling the extraction parameters. Under the optimum conditions, the extraction yields of piceid, resveratrol and emodin were 10.77 mg/g, 3.82 mg/g and 11.72 mg/g, respectively.
Collapse
Affiliation(s)
- Chia-Hung Kuo
- College of Tea and Food Science, Wuyi University, Fujian 354300, China; E-Mail:
| | - Bao-Yuan Chen
- Graduate Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; E-Mail:
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; E-Mails: (Y.-C.L.); (C.-M.J.C.)
| | - Chieh-Ming J. Chang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; E-Mails: (Y.-C.L.); (C.-M.J.C.)
| | - Tzu-Shing Deng
- Department of Agronomy, National Chung Hsing University, Taichung 402, Taiwan; E-Mail:
| | - Jiann-Hwa Chen
- Graduate Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; E-Mail:
| | - Chwen-Jen Shieh
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
39
|
Wang F, Chen ZG, Zhu HJ. An efficient enzymatic modification of lily polysaccharide in ionic liquid under ultrasonic irradiation. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|