1
|
Jiang Y, Liang J, Zhuo F, Ma H, Mofarah SS, Sorrell CC, Wang D, Koshy P. Unveiling Mechanically Driven Catalytic Processes: Beyond Piezocatalysis to Synergetic Effects. ACS NANO 2025; 19:18037-18074. [PMID: 40327800 DOI: 10.1021/acsnano.5c02660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Mechanically driven catalysis (MDC) has emerged as an effective strategy for environmental remediation, renewable energy conversion, and cancer therapy; this functions by converting mechanical forces to drive catalytic reactions. This review examines four primary mechanisms, namely, piezocatalysis, flexocatalysis, tribocatalysis, and sonocatalysis, each involving specific catalytic pathways for harnessing mechanical energy at the nanoscale. However, significant challenges arise in decoupling the effects related to each individual mechanism in order to better understand and manipulate their synergies. In this review, the fundamental principles underpinning MDC are systematically interpreted. Beyond mechanistic insights, recent advancements in performance enhancement strategies for these catalysts are highlighted. Potential applications using these mechanistic approaches in environmental remediation (pollutant and antibiotic degradation and microbial disinfection), renewable energy conversion (hydrogen production and greenhouse gas conversion), and biomedical treatments (particularly cancer therapy) are discussed. Finally, the mechanistic synergies and limiting factors are explored, addressing challenges related to the overlooked combined effects of ultrasound as the activation source, complexities in mechanical force interactions at the nanoscale, and the need for targeted application strategies. Additionally, the industrial potential of these catalytic processes with consideration to scalability and practical deployment is evaluated. While challenges remain, this review provides a roadmap for advancing mechanically driven catalyst design and implementation toward real-world applications, offering potential into its future trajectory and transformative impact across numerous fields.
Collapse
Affiliation(s)
- Yue Jiang
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Jun Liang
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Fenglin Zhuo
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Hongyang Ma
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Danyang Wang
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Liu FY, Wang X, Liu YF. Preparation of La 2(WO 4) 3/CuWO 4 composite nanomaterials with enhanced sonodynamic anti-glioma activity. Front Bioeng Biotechnol 2025; 13:1566946. [PMID: 40182993 PMCID: PMC11965641 DOI: 10.3389/fbioe.2025.1566946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Sonodynamic therapy (SDT) is an innovative way to treat tumors by activating sonosensitizers via ultrasound (US). The development of sonosensitizers with high sonodynamic activity is the key to promote the clinical application of SDT. Methods In this study, a novel sonosensitizer, La2(WO4)3/CuWO4 composite LC-10, was prepared by two-step hydrothermal method and characterized. In addition, the sonodynamic antitumor activity of La2(WO4)3/CuWO4 composite LC-10 was investigated using u251 glioma cells as a model. Results and Discussion The results showed that compared with La2(WO4)3 and CuWO4, La2(WO4)3/CuWO4 composite had better sonodynamic antitumor activity, and LC-10 had good biosafety at concentrations below 50 μg/mL. After La2(WO4)3 and CuWO4 formed La2(WO4)3/CuWO4 composite, the recombination of electron-hole (e --h +) pairs were effectively inhibited, and more strongly oxidizing ROS was produced, inducing apoptosis of u251 glioma cells. In which, singlet oxygen (1O2) and hydroxyl radical (·OH), especially the production of ⋅OH, played an important role in the La2(WO4)3/CuWO4 composite mediated SDT antitumor process. The results of this study would offer a foundation for the design of CuWO4 base nano-sonosensitizers and its further clinical application in SDT antitumor. In addition, it also provided a new strategy for the design and development of novel nano-sonosensitizers with excellent sonodynamic activity.
Collapse
Affiliation(s)
- Fang-Yu Liu
- The First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xin Wang
- Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diesases, Liaoning University, Shenyang, China
| | - Ye-Fu Liu
- Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
3
|
Tsurunishi T, Furui Y, Kawasaki H. Ultrasonic Activation of Au Nanoclusters/TiO 2: Tuning Hydroxyl Radical Production Through Frequency and Nanocluster Size. Molecules 2025; 30:541. [PMID: 39942645 PMCID: PMC11819690 DOI: 10.3390/molecules30030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
This study explores the sonocatalytic activity of gold nanoclusters (Au NCs) combined with titanium dioxide (TiO2) nanoparticles, forming Au NCs/TiO2 composites. The hybrid material significantly enhances hydroxyl radical (•OH) generation under ultrasonic conditions, attributed to high-energy cavitation bubbles formed during ultrasonication. The effects of frequency (200, 430, and 950 kHz) and power were systematically evaluated on Au144/TiO2 composites, identifying 430 kHz as optimal for •OH production due to its efficient cavitation energy. Au144 NCs function as electron traps, reducing electron-hole recombination in ultrasonically activated TiO2, thereby improving charge separation and enhancing •OH generation. Size-dependent effects were also studied, showing an efficiency trend of Au144 > Au25 > plasmonic Au nanoparticles > bare TiO2. These findings highlight the importance of ultrasonication frequency and Au NC size in optimizing sonocatalytic performance in the Au NCs/TiO2 composites, providing valuable insights for designing advanced sonocatalysts with applications in chemical synthesis, environmental remediation, and biomedical fields.
Collapse
Affiliation(s)
| | | | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita 564-8680, Osaka, Japan; (T.T.); (Y.F.)
| |
Collapse
|
4
|
Devos C, Bampouli A, Brozzi E, Stefanidis GD, Dusselier M, Van Gerven T, Kuhn S. Ultrasound mechanisms and their effect on solid synthesis and processing: a review. Chem Soc Rev 2025; 54:85-115. [PMID: 39439231 PMCID: PMC11496938 DOI: 10.1039/d4cs00148f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Indexed: 10/25/2024]
Abstract
Ultrasound proves to be an effective technique for intensifying a wide range of processes involving solids and, as such, is often used to improve control over both solids formation and post-treatment stages. The intensifying capabilities of ultrasonic processing are best interpreted in the context of the chemical, transport, and mechanical effects that occur during sonication. This review presents an overview of how ultrasound influences the processing and synthesis of solids across various material classes, contextualized within an ultrasound effect framework. By describing the mechanisms underlying the different effects of ultrasound on the solid synthesis and processing, this review aims to facilitate a deeper understanding of the current literature in the field and to promote more effective utilization of ultrasound technology in solid synthesis and processing.
Collapse
Affiliation(s)
- Cedric Devos
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ariana Bampouli
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Elena Brozzi
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Georgios D Stefanidis
- School of Chemical Engineering, Department of Process Analysis and Plant Design, National Technical University of Athens, Iroon Polytecneiou 9, Zografou 15780, Athens, Greece
| | - Michiel Dusselier
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, 3001 Heverlee, Belgium
| | - Tom Van Gerven
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Simon Kuhn
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
5
|
Guo B, Tao Y, Yang T, Su X, Tan X, Tian W, Xie L. Biomaterials based on advanced oxidation processes in tooth whitening: fundamentals, progress, and models. J Mater Chem B 2024; 12:9459-9477. [PMID: 39193628 DOI: 10.1039/d4tb01311e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The increasing desire for aesthetically pleasing teeth has resulted in the widespread use of tooth whitening treatments. Clinical tooth whitening products currently rely on hydrogen peroxide formulations to degrade dental pigments through oxidative processes. However, they usually cause side effects such as tooth sensitivity and gingival irritation due to the use of high concentrations of hydrogen peroxide or long-time contact. In recent years, various novel materials and reaction patterns have been developed to tackle the issues related to H2O2-based tooth whitening. These can be broadly classified as advanced oxidation processes (AOPs). AOPs generate free radicals that have potent oxidizing properties, which can thereby increase the oxidation power and/or reduce the exposure time and can probably minimize the side effects of tooth bleaching. While there have been several reviews on clinical tooth whitening and the application of novel nanomaterials, a review based on the concept of AOPs in tooth bleaching application has not yet been conducted. This review describes the common types and mechanisms of AOPs, summarizes the latest research progress of new tooth bleaching materials based on AOPs, and proposes a model for tooth bleaching and a rate control step at the molecular level. The paper also reviews the shortcomings and suggests future development directions.
Collapse
Affiliation(s)
- Bingyi Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610299, China
| | - Yun Tao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Tiantian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xiaofan Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xinzhi Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Li Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Rutgers School of Dental Medicine, Newark, New Jersey, USA
| |
Collapse
|
6
|
Du Y, Sun W, Li X, Hao C, Wang J, Fan Y, Joseph J, Yang C, Gu Q, Liu Y, Zhang S, Cheng Z. Mechanocatalytic Hydrogen Generation in Centrosymmetric Barium Dititanate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404483. [PMID: 39119840 PMCID: PMC11481254 DOI: 10.1002/advs.202404483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/20/2024] [Indexed: 08/10/2024]
Abstract
Novel phase of nano materials that break the traditional structural constraints are highly desirable, particularly in the field of mechanocatalysis, offering versatile applications ranging from energy to medical diagnosis and treatment. In this work, a distinct layered barium dititanate (BaTi2O5) nanocrystals using a pH-modulated hydrothermal method is successfully synthesized. These nanocrystals exhibit outstanding hydrogen generation capability (1160 µmol g-1 h-1 in pure water) and demonstrate remarkable performance in organic dye degradation using ultrasonication. The crystal structure of this newly discovered BaTi2O5 phase, is determined by a combination of synchrotron Powder Diffraction refinement and X-ray adsorption techniques, including X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS). Density Functional Theory calculations revealed that the newly-discovered BaTi2O5 phase demonstrates dipole moments along the z-axis, distributed in an antiparallel direction within a single unit cell. These inherent dipoles induce a surface polarization and a ferroelectric-flexoelectric response under mechanical stimuli when the materials go to nano dimension. With a band alignment well-suitable for hydrogen and reactive oxygen species generation, this BaTi2O5 phase demonstrates promising potential for Mechanocatalysis. The discovery of this distinct phase not only enriches the material candidates for mechanocatalysis but also provides valuable insights.
Collapse
Affiliation(s)
- Yumeng Du
- Institute for Superconducting and Electronics MaterialsFaculty of Engineering and Information ScienceUniversity of WollongongSquires WayNorth WollongongNSW2500Australia
| | - Wei Sun
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building MaterialsUniversity of JinanJinan250022China
| | - Xiaoning Li
- Institute for Superconducting and Electronics MaterialsFaculty of Engineering and Information ScienceUniversity of WollongongSquires WayNorth WollongongNSW2500Australia
| | - Chongyan Hao
- Institute for Superconducting and Electronics MaterialsFaculty of Engineering and Information ScienceUniversity of WollongongSquires WayNorth WollongongNSW2500Australia
| | - Jianli Wang
- Institute for Superconducting and Electronics MaterialsFaculty of Engineering and Information ScienceUniversity of WollongongSquires WayNorth WollongongNSW2500Australia
- Center for neutron scattering and advanced light sourcesDongguan University of TechnologyDongguan52300China
| | - Yameng Fan
- Institute for Superconducting and Electronics MaterialsFaculty of Engineering and Information ScienceUniversity of WollongongSquires WayNorth WollongongNSW2500Australia
| | - Jincymol Joseph
- Institute for Superconducting and Electronics MaterialsFaculty of Engineering and Information ScienceUniversity of WollongongSquires WayNorth WollongongNSW2500Australia
| | - Changhong Yang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building MaterialsUniversity of JinanJinan250022China
| | - Qinfen Gu
- Australia Synchrotron (ANSTO)800 Blackburn RdClaytonVIC3168Australia
| | - Yun Liu
- Research School of ChemistryAustralian National UniversityCanberraACT2601Australia
| | - Shujun Zhang
- Institute for Superconducting and Electronics MaterialsFaculty of Engineering and Information ScienceUniversity of WollongongSquires WayNorth WollongongNSW2500Australia
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronics MaterialsFaculty of Engineering and Information ScienceUniversity of WollongongSquires WayNorth WollongongNSW2500Australia
| |
Collapse
|
7
|
Li X, Tong W, Shi J, Zhang X, Chen Y, Liu X, Zhang Y. Contact-Electro-Catalysis Through Electret Behavior to Facilitate Electron Transfer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42293-42304. [PMID: 39102282 DOI: 10.1021/acsami.4c09206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Contact-electro-catalysis (CEC) usually uses polymer dielectrics as its catalysts under mechanical stimulation conditions, which although has a decent catalytic dye degradation effect still warrants performance improvement. A carrier separation promotion strategy based on an internal electric field by polarization can effectively improve ferroelectric material performance in photocatalysis and piezocatalysis. Therefore, carrier separation as a necessary process of CEC also can be promoted and is largely expected to improve CEC performance theoretically. However, the carrier separation enhancement by the internal electric field strategy has not been achieved in the CEC experiment yet, because of the difficulty of building an internal electric field in an inert polymer dielectric. Herein, a polytetrafluoroethylene (PTFE) dielectric was charged through an electret process, which was believed to establish an internal electric field for CEC catalysts proved by KPFM, XPS, and triboelectric nanogenerator voltage output analysis. The fastest degradation rate of methyl orange reached over 90% at 1.5 h, while the hydroxyl free radical (•OH) yield of the PTFE electret was nearly three times that of the original PTFE. Density functional theory (DFT) calculations verified that the potential barrier of interatomic electron transfer between PTFE and H2O was reduced by 37% under the internal electric field. The electret strategy used herein to optimize the PTFE catalyst provides a base for the use of other general plastics in CEC and facilitates the production of easily prepared, easily recyclable, and inexpensive polymer dielectric catalysts that can promote large-scale pollutant degradation via CEC.
Collapse
Affiliation(s)
- Xinnan Li
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Wangshu Tong
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Jing Shi
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Xinyue Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yunfan Chen
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Xulin Liu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yihe Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
8
|
Cyganowski P, Terefinko D, Motyka-Pomagruk A, Babinska-Wensierska W, Khan MA, Klis T, Sledz W, Lojkowska E, Jamroz P, Pohl P, Caban M, Magureanu M, Dzimitrowicz A. The Potential of Cold Atmospheric Pressure Plasmas for the Direct Degradation of Organic Pollutants Derived from the Food Production Industry. Molecules 2024; 29:2910. [PMID: 38930977 PMCID: PMC11206621 DOI: 10.3390/molecules29122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Specialized chemicals are used for intensifying food production, including boosting meat and crop yields. Among the applied formulations, antibiotics and pesticides pose a severe threat to the natural balance of the ecosystem, as they either contribute to the development of multidrug resistance among pathogens or exhibit ecotoxic and mutagenic actions of a persistent character. Recently, cold atmospheric pressure plasmas (CAPPs) have emerged as promising technologies for degradation of these organic pollutants. CAPP-based technologies show eco-friendliness and potency for the removal of organic pollutants of diverse chemical formulas and different modes of action. For this reason, various types of CAPP-based systems are presented in this review and assessed in terms of their constructions, types of discharges, operating parameters, and efficiencies in the degradation of antibiotics and persistent organic pollutants. Additionally, the key role of reactive oxygen and nitrogen species (RONS) is highlighted. Moreover, optimization of the CAPP operating parameters seems crucial to effectively remove contaminants. Finally, the CAPP-related paths and technologies are further considered in terms of biological and environmental effects associated with the treatments, including changes in antibacterial properties and toxicity of the exposed solutions, as well as the potential of the CAPP-based strategies for limiting the spread of multidrug resistance.
Collapse
Affiliation(s)
- Piotr Cyganowski
- Department of Polymer and Carbonaceous Materials, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland
| | - Dominik Terefinko
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (D.T.); (M.A.K.); (T.K.); (P.J.); (P.P.)
| | - Agata Motyka-Pomagruk
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (W.S.); (E.L.)
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824 Gdansk, Poland;
| | - Weronika Babinska-Wensierska
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824 Gdansk, Poland;
- Laboratory of Physical Biochemistry, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland
| | - Mujahid Ameen Khan
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (D.T.); (M.A.K.); (T.K.); (P.J.); (P.P.)
| | - Tymoteusz Klis
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (D.T.); (M.A.K.); (T.K.); (P.J.); (P.P.)
| | - Wojciech Sledz
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (W.S.); (E.L.)
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824 Gdansk, Poland;
| | - Ewa Lojkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (W.S.); (E.L.)
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824 Gdansk, Poland;
| | - Piotr Jamroz
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (D.T.); (M.A.K.); (T.K.); (P.J.); (P.P.)
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (D.T.); (M.A.K.); (T.K.); (P.J.); (P.P.)
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza, 80-308 Gdansk, Poland;
| | - Monica Magureanu
- National Institute for Lasers, Plasma and Radiation Physics, Department of Plasma Physics and, Nuclear Fusion, 409 Atomistilor Str., 077125 Magurele, Romania;
| | - Anna Dzimitrowicz
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (D.T.); (M.A.K.); (T.K.); (P.J.); (P.P.)
| |
Collapse
|
9
|
Saveh H, Mazloom G, Abdi J. Synthesis of magnetic layered double hydroxide (Fe 3O 4@CuCr-LDH) decorated with ZIF-8 for efficient sonocatalytic degradation of tetracycline. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121338. [PMID: 38823296 DOI: 10.1016/j.jenvman.2024.121338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/25/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
A series of Fe3O4@CuCr-LDH hybrids decorated with different amount of ZIF-8 (FLZ, 10-40 wt%) was prepared using simple methods and characterized with different techniques. The activity of the synthesized nanocomposites was investigated in the sonocatalytic degradation of tetracycline (TC) antibiotic from wastewater. When the content of ZIF-8 in the nanocomposite structure was 20 wt%, the FLZ-20 sonocatalyst exhibited the high performance in the sonocatalytic removal of TC. At optimum conditions (0.7 g/L catalyst dosage, pH of 7, 50 mg/L initial concentration of antibiotic, and 15 min sonication time) of the sonocatalytic removal of TC approached to 91.4% under ultrasonic irradiation (USI) using FLZ-20. This efficiency was much higher than those of obtained results by Fe3O4@CuCr-LDH and pristine ZIF-8. The formed ●OH and ●O2- exhibited the major roles in the sonocatalytic TC degradation process. The excellent performance of FLZ-20 can be attributed to the heterojunctions created between composite components, which could improve the electron transfer ability and effectively separate e-/h+ pairs. In addition, FLZ-20 showed the superior reusability and stability during three successive recycling. Moreover, the facile magnetically separation of the sonocatalyst from the aqueous solution was another outstanding feature, which prevents the formation of secondary pollutants. It can be concluded that the fabrication of heterojunctions is an efficient procedure to promote the sonocatalytic acting of the catalyst.
Collapse
Affiliation(s)
- Hannaneh Saveh
- Department of Chemical Engineering, Faculty of Engineering, University of Mazandaran, 47416-13534, Babolsar, Iran
| | - Golshan Mazloom
- Department of Chemical Engineering, Faculty of Engineering, University of Mazandaran, 47416-13534, Babolsar, Iran
| | - Jafar Abdi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, 3619995161, Shahrood, Iran.
| |
Collapse
|
10
|
Matyszczak G, Plocinski T, Dluzewski P, Fidler A, Jastrzebski C, Lawniczak-Jablonska K, Drzewiecka-Antonik A, Wolska A, Krawczyk K. Sonochemical synthesis of SnS and SnS 2 quantum dots from aqueous solutions, and their photo- and sonocatalytic activity. ULTRASONICS SONOCHEMISTRY 2024; 105:106834. [PMID: 38522262 PMCID: PMC10981103 DOI: 10.1016/j.ultsonch.2024.106834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/11/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
Our study reports the ultrasound-assisted synthesis of SnS and SnS2 in the form of nanoparticles using aqueous solutions of respective tin chloride and thioacetamide varying sonication time. The presence of both compounds is confirmed by powder X-ray diffraction, energy-dispersive X-ray spectroscopy, as well as Raman and FT-IR spectroscopic techniques. The existence of nanoparticles is proven by powder X-ray diffraction investigation and by high resolution transmission electron microscopy observations. The size of nanocrystallites are in the range of 3-8 nm and 30 50 nm for SnS, and 1.5-10 nm for SnS2. X-ray photoelectron spectroscopy measurements, used to investigate the chemical state of tin and sulphur atoms on the surface of nanoparticles, reveal that they are typically covered with tin on the same oxidation degree as respective bulk compound. Values of optical bandgaps of synthesized nanoparticles, according to the Tauc method, were 2.31, 1.47 and 1.05 eV for SnS (60, 90 and 120 min long synthesis, respectively), and 2.81, 2.78 and 2.70 eV for SnS2 (60, 90 and 120 min long synthesis, respectively). Obtained nanoparticles were utilized as photo- and sonocatalysts in the process of degradation of model azo-dye molecules by UV-C light or ultrasound. Quantum dots of SnS2 obtained under sonication lasting 120 min were the best photocatalyst (66.9 % color removal), while quantum dots of SnS obtained under similar sonication time were the best sonocatalyst (85.2 % color removal).
Collapse
Affiliation(s)
- Grzegorz Matyszczak
- Department of Chemical Technology, Faculty of Chemistry, Warsaw University of Technology, Noakowski street 3, 00-664 Warsaw, Poland.
| | - Tomasz Plocinski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska street 141A, 02-507 Warsaw, Poland
| | - Piotr Dluzewski
- Institute of Physics Polish Academy of Sciences, Poland, Lotników avenue 32/46, 02-668 Warsaw, Poland
| | - Aleksandra Fidler
- Institute of Physics Polish Academy of Sciences, Poland, Lotników avenue 32/46, 02-668 Warsaw, Poland
| | - Cezariusz Jastrzebski
- Faculty of Physics, Warsaw University of Technology, Koszykowa street 75, 00-662 Warsaw, Poland
| | | | | | - Anna Wolska
- Institute of Physics Polish Academy of Sciences, Poland, Lotników avenue 32/46, 02-668 Warsaw, Poland
| | - Krzysztof Krawczyk
- Department of Chemical Technology, Faculty of Chemistry, Warsaw University of Technology, Noakowski street 3, 00-664 Warsaw, Poland
| |
Collapse
|
11
|
Yeganeh M, Sobhi HR, Fallah S, Ghambarian M, Esrafili A. Sono-assisted photocatalytic degradation of ciprofloxacin in aquatic media using g-C 3N 4/MOF-based nanocomposite under visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35811-35823. [PMID: 38743329 DOI: 10.1007/s11356-024-33222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 05/16/2024]
Abstract
This research study is centered on the sono-assisted photocatalytic degradation of a well-known antibiotic (ciprofloxacin; CIP) in aquatic media using a g-C3N4/NH2-UiO-66 (Zr) catalyst under visible light irradiation. Initially, the catalyst was prepared by a simple method, and its physiochemical features were thoroughly analyzed by XRD, FT-IR, FE-SEM, EDX, EDS-Dot-Mapping, and UV-Vis analytical techniques. After that, the impact of several influential factors affecting the performance of the applied sono-assisted photocatalytic process such as the initial concentration of CIP, solution pH, catalyst dosage, light intensity, and ultrasound power was fully assessed, and the optimal conditions were established. After 75 min of the sono-assisted photocatalytic treatment, the complete degradation of CIP (10 mg/L) was accomplished under the condition as follows: g-C3N4/NH2-UiO-66 (Zr), 0.6 g/L; pH, 5.0, and ultrasound power, light intensity 75 mw/cm2, 200 W/m2. Meanwhile, the photocatalytic degradation of CIP followed the pseudo-first-order kinetic model. In addition, the scavenger experiments demonstrated that OH˚ and O2°- radicals played a key role in the sono-assisted photocatalytic degradation process. It is also acknowledged that the applied catalyst was reused for five consecutive runs with a minor loss observed in its degradation efficiency. In a further experiment, a significant synergistic effect with regard to the degradation of CIP was observed once all three major parameters (visible light, ultrasound waves, and catalyst) were used in combination compared to each used alone. To sum up, it is thought that the integration of g-C3N4/MOF-based catalyst, ultrasound waves, and visible light irradiation could be potentially applied as a promising strategy for the degradation of various pharmaceuticals on account of high degradation performance, simple operation, excellent reusability, and eco-friendly approach.
Collapse
Affiliation(s)
- Mojtaba Yeganeh
- Research Center for Environmental Health Technology Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Sevda Fallah
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshty University of Medical Science, Tehran, Iran
| | - Mahnaz Ghambarian
- Iranian Research and Development Center for Chemical Industries, ACECR, Tehran, Iran
| | - Ali Esrafili
- Research Center for Environmental Health Technology Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Ioannidi AA, Bampos G, Antonopoulou M, Oulego P, Boczkaj G, Mantzavinos D, Frontistis Z. Sonocatalytic degradation of Bisphenol A from aquatic matrices over Pd/CeO 2 nanoparticles: Kinetics study, transformation products, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170820. [PMID: 38340814 DOI: 10.1016/j.scitotenv.2024.170820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
In this work, different ratios of palladium - cerium oxide (Pd/CeO2) catalyst were synthesized and characterized, while their sonocatalytic activity was evaluated for the degradation of the xenobiotic Bisphenol A (BPA) from aqueous solutions. Sonocatalytic activity expressed as BPA decomposition exhibited a volcano-type behavior in relation to the Pd loading, and the 0.25Pd/CeO2 catalyst characterized by the maximum Pd dispersion and lower crystallite size demonstrated the higher activity. Using 500 mg/L of 0.25 % Pd/CeO2 increased the kinetic constant for BPA destruction by more than two times compared to sonolysis alone (20 kHz at 71 W/L). Meanwhile, the simultaneous use of ultrasound and a catalyst enhanced the efficiency by 50.1 % compared to the sum of the individual processes, resulting in 95 % BPA degradation in 60 min. The sonocatalytic degradation of BPA followed pseudo-first-order kinetics, and the apparent kinetic constant was increased with ultrasound power and catalyst loading, while the efficiency was decreased in bottled water and secondary effluent. From the experiments that were conducted using appropriate scavengers, it was revealed that the degradation mainly occurred on the bubble/liquid interface of the formed cavities, while the reactive species produced from the thermal or light excitation of the prepared semiconductor also participated in the reaction. Five first-stage and four late-stage transformation products were identified using UHPLC/TOF-MS, and a pathway for the sonocatalytic degradation of BPA was proposed. According to ECOSAR software prediction, most transformation by-products (TBPs) present lower ecotoxicity than the parent compound, although some remain toxic to the indicators chosen.
Collapse
Affiliation(s)
- Alexandra A Ioannidi
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Georgios Bampos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, c/ Julián Claverías, E-33071 Oviedo, Spain
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, GR-50132 Kozani, Greece.
| |
Collapse
|
13
|
Zhang K, Sun X, Hu H, Qin A, Huang H, Yao Y, Zhang Y, Ma T. Harvesting Vibration Energy for Efficient Cocatalyst-Free Sonocatalytic H 2 Production over Magnetically Separable Ultra-Low-Cost Fe 3O 4. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1463. [PMID: 38611984 PMCID: PMC11012934 DOI: 10.3390/ma17071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
The cavitation effect is an important geochemical phenomenon, which generally exists under strong hydrodynamic conditions. Therefore, developing an economical and effective sonocatalyst becomes a vital method in capitalizing on the cavitation effect for energy generation. In this study, we first report a novel Fe3O4 sonocatalyst that can be easily separated using a magnetic field and does not require any additional cocatalysts for H2 production from H2O. When subjected to ultrasonic vibration, this catalyst achieves an impressive H2 production rate of up to 175 μmol/h/USD (where USD stands for dollars), surpassing most previously reported mechanical catalytic materials. Furthermore, the ease and efficiency of separating this catalyst using an external magnetic field, coupled with its effortless recovery, highlight its significant potential for practical applications. By addressing the key limitations of conventional sonocatalysts, our study not only demonstrates the feasibility of using Fe3O4 as a highly efficient sonocatalyst but also showcases the exciting possibility of using a new class of magnetically separable sonocatalysts to productively transform mechanical energy into chemical energy.
Collapse
Affiliation(s)
- Kailai Zhang
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang 110036, China; (K.Z.); (H.H.); (A.Q.)
| | - Xiaodong Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang 110036, China; (K.Z.); (H.H.); (A.Q.)
| | - Haijun Hu
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang 110036, China; (K.Z.); (H.H.); (A.Q.)
| | - Anqi Qin
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang 110036, China; (K.Z.); (H.H.); (A.Q.)
| | - Hongwei Huang
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China;
| | - Yali Yao
- Institute for the Development of Energy for African Sustainability (IDEAS), University of South Africa, Roodepoort 1710, South Africa;
| | - Yusheng Zhang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
14
|
Zhou Q, Lei P, Cheng S, Wang H, Dong W, Pan X. Recent progress in magnetic polydopamine composites for pollutant removal in wastewater treatment. Int J Biol Macromol 2024; 262:130023. [PMID: 38340929 DOI: 10.1016/j.ijbiomac.2024.130023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Various water pollution issues pose a significant threat to human water safety. Magnetic polydopamine composites (MPCs), which can be separated by magnetic fields after the adsorption process, exhibit outstanding adsorption capacity and heterogeneous catalytic properties, making them promising materials for water treatment applications. In particular, by modifying the polydopamine (PDA) coating, MPCs can acquire enhanced high reactivity, antibacterial properties, and biocompatibility. This also provides an attractive platform for further fabrication of hybrid materials with specific adsorption, catalytic, antibacterial, and water-oil separation capabilities. To systematically provide the background knowledge and recent research advances in MPCs, this paper presents a critical review of MPCs for water treatment in terms of both structure and mechanisms of effect in applications. Firstly, the impact of different PDA positions within the composite structure is investigated to summarize the optimization of properties contributed by PDA when acting as the shell, core, or bridge. The roles of various secondary modifications of magnetic materials by PDA in addressing water pollution problems are explored. It is anticipated that this work will be a stimulus for further research and development of magnetic composite materials with real-world application potential.
Collapse
Affiliation(s)
- Qinglin Zhou
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Pengli Lei
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Siyao Cheng
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Hao Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Xihao Pan
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China.
| |
Collapse
|
15
|
Wang S, Liu Y, Quan C, Luan S, Shi H, Wang L. A metal-organic framework-integrated composite for piezocatalysis-assisted tumour therapy: design, related mechanisms, and recent advances. Biomater Sci 2024; 12:896-906. [PMID: 38234222 DOI: 10.1039/d3bm01944f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
With the growing need for more effective tumour treatment, piezocatalytic therapy has emerged as a promising approach due to its distinctive capacities to generate ROS through stress induction and regulate the hypoxic state of the TME. MOF-based piezocatalysts not only possess the benefits of piezocatalysis but also exhibit several advantages associated with MOFs, such as tunable pore size, large specific surface area, and good biocompatibility. Therefore, they are expected to become a powerful promoter of piezocatalytic therapy. This review elaborates on the fundamental principles of piezocatalysis and summarises recent advances in the piezocatalytic therapy and combination therapies of tumours, generalising the strategies for constructing piezocatalytic systems based on MOFs. Finally, the challenges confronted and future opportunities for the design and application of piezocatalytic MOF anticancer systems have been discussed.
Collapse
Affiliation(s)
- Shuteng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yifan Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chunhua Quan
- Central Laboratory, Affiliated Hospital of Yanbian University, Yanji, Jilin 133002, P. R. China.
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
16
|
Solymos K, Babcsányi I, Ariya B, Gyulavári T, Ágoston Á, Szamosvölgyi Á, Kukovecz Á, Kónya Z, Farsang A, Pap Z. Photocatalytic and surface properties of titanium dioxide nanoparticles in soil solutions. ENVIRONMENTAL SCIENCE: NANO 2024; 11:1204-1216. [DOI: 10.1039/d3en00622k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Effet of chemical compounds in soil solution to the photocatalytic activity of TiO2 NPs.
Collapse
Affiliation(s)
- Karolina Solymos
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, Szeged, Hungary
| | - Izabella Babcsányi
- Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, Szeged, Hungary
| | - Badam Ariya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Áron Ágoston
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- Department of Physical Chemistry and Materials Sciences, University of Szeged, Szeged, Hungary
| | - Ákos Szamosvölgyi
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Ákos Kukovecz
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Andrea Farsang
- Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, Szeged, Hungary
| | - Zsolt Pap
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- Nanostructured Materials and Bio-Nano-Interfaces Center, Institute for Interdisciplinary Research on Bio-Nano-Sciences, Babeş–Bolyai University, Cluj-Napoca, Romania
- Institute of Research-Development-Innovation in Applied Natural Sciences, Babeş–Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
17
|
Matyszczak G. An introductory laboratory class in sonochemistry. ULTRASONICS SONOCHEMISTRY 2023; 101:106691. [PMID: 37976564 PMCID: PMC10685300 DOI: 10.1016/j.ultsonch.2023.106691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
This article proposes a substantive scope and scenario of a laboratory class that introduces students to the field of sonochemistry. The class requires only basic laboratory equipment - typical laboratory glassware like graduated pipettes and conical flasks, as well as simple inorganic chemicals. It is designed to acquaint students with fundamental aspects of sonochemistry. In the qualitative aspect, they will conduct and observe some sonochemical reactions like a synthesis of hydrogen peroxide and ultrasound-assisted degradation of toxic chromates(VI) which will demonstrate the indirect consequences of water sonolysis which is the most basic sonochemical reaction, as well as they will illustrate the applications of sonochemistry. In the quantitative aspect, students will learn about how to measure the power of ultrasound and the sonochemical efficiency of the reaction and will conduct experiments allowing for the calculation of these parameters. Finally, an introduction to and demonstration of the sonocatalytic effect is planned. An evaluation system, consisting of a report and test, is also proposed.
Collapse
Affiliation(s)
- Grzegorz Matyszczak
- Warsaw University of Technology, Faculty of Chemistry, Noakowski Street 3, 00-664 Warsaw, Poland.
| |
Collapse
|
18
|
Siebenmorgen C, Poortinga A, van Rijn P. Sono-processes: Emerging systems and their applicability within the (bio-)medical field. ULTRASONICS SONOCHEMISTRY 2023; 100:106630. [PMID: 37826890 PMCID: PMC10582584 DOI: 10.1016/j.ultsonch.2023.106630] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Sonochemistry, although established in various fields, is still an emerging field finding new effects of ultrasound on chemical systems and are of particular interest for the biomedical field. This interdisciplinary area of research explores the use of acoustic waves with frequencies ranging from 20 kHz to 1 MHz to induce physical and chemical changes. By subjecting liquids to ultrasonic waves, sonochemistry has demonstrated the ability to accelerate reaction rates, alter chemical reaction pathways, and change physical properties of the system while operating under mild reaction conditions. It has found its way into diverse industries including food processing, pharmaceuticals, material science, and environmental remediation. This review provides an overview of the principles, advancements, and applications of sonochemistry with a particular focus on the domain of (bio-)medicine. Despite the numerous benefits sonochemistry has to offer, most of the research in the (bio-)medical field remains in the laboratory stage. Translation of these systems into clinical practice is complex as parameters used for medical ultrasound are limited and toxic side effects must be minimized in order to meet regulatory approval. However, directing attention towards the applicability of the system in clinical practice from the early stages of research holds significant potential to further amplify the role of sonochemistry in clinical applications.
Collapse
Affiliation(s)
- Clio Siebenmorgen
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, Deusinglaan 1, Groningen 9713 AV, The Netherlands.
| | - Albert Poortinga
- Technical University Eindhoven, Department of Mechanical Engineering, Gemini Zuid, de Zaale, Eindhoven 5600 MB, The Netherlands.
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, Deusinglaan 1, Groningen 9713 AV, The Netherlands.
| |
Collapse
|
19
|
Sun H, Qin P, Liang Y, Yang Y, Zhang J, Guo J, Hu X, Jiang Y, Zhou Y, Luo L, Wu Z. Sonochemically assisted the synthesis and catalytic application of bismuth-based photocatalyst: A mini review. ULTRASONICS SONOCHEMISTRY 2023; 100:106600. [PMID: 37741022 PMCID: PMC10520575 DOI: 10.1016/j.ultsonch.2023.106600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Recently, bismuth (Bi)-based photocatalysts have been a well-deserved hotspot in the field of photocatalysis owning to their photoelectrochemical properties driven by the distortion of the Bi 6 s orbital, while their narrow band gap and poor quantum efficiency still restrict their application. With the development of ultrasonic technology, it is expected to become a broom to clear the application obstacles of Bi-based photocatalysts. The special forces and environmental conditions brought by ultrasonic irradiation play beneficial roles in the preparation, modification and performance releasement of Bi-based photocatalysts. In this review, the role and influencing factors of ultrasound in the preparation and modification of Bi-based photocatalysts were introduced. Crucially, the mechanism of the improving the performance for various types of Bi-based photocatalysts by ultrasound in the whole process of photocatalysis was deeply analyzed. Then, the application of ultrasonic synergistic Bi-based photocatalysts in contaminants treatment and energy conversion was briefly introduced. Finally, based on an unambiguous understanding of ultrasonic technology in assisting Bi-based photocatalysts, the future directions and possibilities for ultrasonic synergistic Bi-based photocatalysts are explored.
Collapse
Affiliation(s)
- Haibo Sun
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Pufeng Qin
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Yunshan Liang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Jiayin Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, PR China.
| | - Xiaolong Hu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Yi Jiang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Yunfei Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| |
Collapse
|
20
|
Liu G, Song C, Huang Z, Jin X, Cao K, Chen F, Jin B, Rao L, Huang Q. Ultrasound enhanced destruction of tetracycline hydrochloride with peroxydisulfate oxidation over FeS/NBC catalyst: Governing factors, strengthening mechanism and degradation pathway. CHEMOSPHERE 2023; 338:139418. [PMID: 37414292 DOI: 10.1016/j.chemosphere.2023.139418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
In this study, FeS/N-doped biochar (NBC) derived from the co-pyrolysis of birch sawdust and Mohr's salt was applied to evaluate the efficiency of catalyzed peroxydisulfate (PDS) oxidation for tetracycline (TC) degradation. It is found that the combination of ultrasonic irradiation can distinctly enhance the removal of TC. This study investigated the effects of control factors such as PDS dose, solution pH, ultrasonic power, and frequency on TC degradation. Within the applied ultrasound intensity range, TC degradation increases with increasing frequency and power. However, excessive power can lead to a reduced efficiency. Under the optimized experimental conditions, the observed reaction kinetic constant of TC degradation increased from 0.0251 to 0.0474 min-1, with an increase of 89%. The removal ratio of TC also increased from ∼85% to ∼99% and the mineralization level from 45% to 64% within 90 min. Through the decomposition testing of PDS, reaction stoichiometric efficiency calculation, and electron paramagnetic resonance experiments, it is shown that the increase in TC degradation of the ultrasound-assisted FeS/NBC-PDS system was attributed to the increase in PDS decomposition and utilization, as well as the increase in SO4•- concentration. The radical quenching experiments showed that SO4•-, •OH, and O2•- radicals were the dominant active species in TC degradation. TC degradation pathways were speculated according to intermediates from HPLC-MS analysis. The test of simulated actual samples showed that dissolved organic matter, metal ions, and anions in waters can undercut the TC degradation in FeS/NBC-PDS system, but ultrasound can significantly reduce the negative impact of these factors.
Collapse
Affiliation(s)
- Guangrong Liu
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Chuangfu Song
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Zilin Huang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Xin Jin
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Kaihong Cao
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Fangyue Chen
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Bangheng Jin
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Li Rao
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Qiang Huang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China.
| |
Collapse
|
21
|
Shanmugam Ranjith K, Majid Ghoreishian S, Han S, Chodankar NR, Seeta Rama Raju G, Marje SJ, Huh YS, Han YK. Synergistic effects of layered Ti 3C 2T X MXene/MIL-101(Cr) heterostructure as a sonocatalyst for efficient degradation of sulfadiazine and acetaminophen in water. ULTRASONICS SONOCHEMISTRY 2023; 99:106570. [PMID: 37678067 PMCID: PMC10495666 DOI: 10.1016/j.ultsonch.2023.106570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
In this work, different mass loadings of MXene-coupled MIL-101(Cr) (MXe/MIL-101(Cr)) nanocomposites were generated through a hydrothermal process in order to investigate the potential of this nanocomposite as a novel sonocatalyst for the elimination of sulfadiazine (SD) and acetaminophen (AAP) in aqueous media. The sonocatalytic activity of different MXe/MIL-101(Cr) compositions and surface functionalities was investigated. In addition, the sonocatalytic activities at various pH values, temperatures, pollutant concentrations, catalyst dosages, initial H2O2 concentrations, and organic matter contents were investigated. The experiments on the sonocatalytic elimination of SD and AAP revealed that MXe/MIL-101(Cr) exhibited a catalytic efficiency of ∼ 98% in 80 min when the MXene loading was 30 wt% in the nanocomposite. Under optimized reaction conditions, the degradation efficiency of MXe/MIL-101(Cr) reached 91.5% for SD and 90.6% for AAP in 60 min; these values were 1.2 and 1.8 times greater than those of MXene and MIL-101(Cr), respectively. The high surface area of the MXe/MIL-101(Cr) nanocomposite increased from 4.68 m2/g to 294.21 m2/g, and the band gap of the tagged MIL-101(Cr) on the MXene surface was minimized. The superior sonocatalytic activity of MXe/MIL-101(Cr) was attributed to the effective contact interface, the effective separation rate of e- - h+ pairs through the type II heterostructure interface, and the favorable high free •OH radical production rates that promoted the degradation of SD and AAP. The solid heterointerface between MIL-101(Cr) and MXene was confirmed through Raman and FTIR analysis and was found to promote accessible •OH radical production under sonication, thus maximizing the catalytic activity of nanocomposites. The present results present an effective strategy for the design of a highly efficient, low-cost, reliable sonocatalyst that can eradicate pharmaceutical pollutants in our environment.
Collapse
Affiliation(s)
| | | | - Soobin Han
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, South Korea
| | - Nilesh R Chodankar
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Supriya J Marje
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, South Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea.
| |
Collapse
|
22
|
Mapukata S, Ntsendwana B, Mokhena T, Sikhwivhilu L. Advances on sonophotocatalysis as a water and wastewater treatment technique: efficiency, challenges and process optimisation. Front Chem 2023; 11:1252191. [PMID: 37681207 PMCID: PMC10482105 DOI: 10.3389/fchem.2023.1252191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Due to water shortage and increased water pollution, various methods are being explored to improve water quality by treating contaminants. Sonophotocatalysis is a combination of two individual water treatment processes i.e., photocatalysis and sonocatalysis. With advantages including shorter reaction times and enhanced activity, this technique shows possible futuristic applications as an efficient water treatment technology. Herein, background insight on sonophotocalysis as a water and wastewater treatment technique as well as the general mechanism of activity is explained. The commonly used catalysts for sonophotocatalytic applications as well as their synthesis pathways are also briefly discussed. Additionally, the utilisation of sonophotocatalysis for the disinfection of various microbial species as well as treatment of wastewater pollutants including organic (dyes, pharmaceuticals and pesticides) and inorganic species (heavy metals) is deliberated. This review also gives a critical analysis of the efficiency, enhancement strategies as well as challenges and outlooks in this field. It is thus intended to give insight to researchers in the context of facilitating future developments in the field of water treatment, and advancing sonophotocatalysis towards large-scale implementation and commercialization.
Collapse
Affiliation(s)
- Sivuyisiwe Mapukata
- Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Johannesburg, South Africa
| | - Bulelwa Ntsendwana
- Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Johannesburg, South Africa
| | - Teboho Mokhena
- Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Johannesburg, South Africa
| | - Lucky Sikhwivhilu
- Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Johannesburg, South Africa
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
23
|
Yekan Motlagh P, Vahid B, Akay S, Kayan B, Yoon Y, Khataee A. Ultrasonic-assisted photocatalytic degradation of various organic contaminants using ZnO supported on a natural polymer of sporopollenin. ULTRASONICS SONOCHEMISTRY 2023; 98:106486. [PMID: 37352731 PMCID: PMC10336198 DOI: 10.1016/j.ultsonch.2023.106486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/04/2023] [Accepted: 06/11/2023] [Indexed: 06/25/2023]
Abstract
Water resource pollution by organic contaminants is an environmental issue of increasing concern. Here, sporopollenin/zinc oxide (SP/ZnO) was used as an environmentally friendly and durable catalyst for sonophotocatalytic treatment of three organic compounds: direct blue 25 (DB 25), levofloxacin (LEV), and dimethylphtalate (DMPh). The resulting catalyst had a 2.65 eV bandgap value and 9.81 m2/g surface area. The crystalline structure and functional groups of SP/ZnO were confirmed by X-ray diffraction (XRD) and Fourier transforms infrared spectroscopy (FTIR) analyses. After 120 min of the sonophotocatalysis, the degradation efficiencies of DB 25, LEV, and DMPh by SP/ZnO were 86.41, 75.88, and 62.54%, respectively, which were higher than that of the other investigated processes. The role of reactive oxygen species were investigated using various scavengers, enhancers, photoluminescence, and o-phenylenediamine. Owing to its stability, the catalyst exhibited good reusability after four consecutive cycles. In addition, the high integrity of the catalyst was confirmed by scanning electron microscopy (SEM), XRD, and FTIR analyses. After four consecutive examinations, the leaching of zinc in the aqueous phase was < 3 mg/L. Moreover, gas chromatography-mass spectrometry (GC-MS) analyses indicated that the contaminants were initially converted into cyclic compounds and then into aliphatic compounds, including carboxylic acids and animated products. Thus, this study synthesized an environmentally friendly and reusable SP/ZnO composite for the degradation of various organic pollutants using a sonophotocatalytic process.
Collapse
Affiliation(s)
- Parisa Yekan Motlagh
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-1647, Tabriz, Iran
| | - Behrouz Vahid
- Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Sema Akay
- Department of Chemistry, Arts and Science Faculty, Aksaray University, Aksaray, Turkey
| | - Berkant Kayan
- Department of Chemistry, Arts and Science Faculty, Aksaray University, Aksaray, Turkey
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-1647, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey.
| |
Collapse
|
24
|
Yan J, Su C, Lou K, Gu M, Wang X, Pan D, Wang L, Xu Y, Chen C, Chen Y, Chen D, Yang M. Constructing liquid metal/metal-organic framework nanohybrids with strong sonochemical energy storage performance for enhanced pollutants removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131285. [PMID: 37027915 DOI: 10.1016/j.jhazmat.2023.131285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/05/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
With endogenous redox systems and multiple enzymes, the storage and utilization of external energy is general in living cells, especially through photo/ultrasonic synthesis/catalysis due to in-situ generation of abundant reactive oxygen species (ROS). However, in artificial systems, because of extreme cavitation surroundings, ultrashort lifetime and increased diffusion distance, sonochemical energy is rapidly dissipated via electron-hole pairs recombination and ROS termination. Here, we integrate zeolitic imidazolate framework-90 (ZIF-90) and liquid metal (LM) with opposite charges by convenient sonosynthesis, and the resultant nanohybrid (LMND@ZIF-90) can efficiently capture sonogenerated holes and electrons, and thus suppress electron-hole pairs recombination. Unexpectedly, LMND@ZIF-90 can store the ultrasonic energy for over ten days and exhibit acid-responsive release to trigger persistent generation of various ROS including superoxide (O2•-), hydroxyl radicals (•OH), and singlet oxygen (1O2), presenting significantly faster dye degradation rate (short to seconds) than previously reported sonocatalysts. Moreover, unique properties of gallium could additionally facilitate heavy metals removal through galvanic replacement and alloying. In summary, the LM/MOF nanohybrid constructed here demonstrates strong capacity for storing sonochemical energy as long-lived ROS, enabling enhanced water decontamination without energy input.
Collapse
Affiliation(s)
- Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China; School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China.
| | - Chen Su
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, PR China; Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, PR China
| | - Kequan Lou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Min Gu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Chongyang Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Yu Chen
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, PR China; Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, PR China
| | - Daozhen Chen
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, PR China; Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, PR China.
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China; School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China.
| |
Collapse
|
25
|
Wang L, Luo D, Hamdaoui O, Vasseghian Y, Momotko M, Boczkaj G, Kyzas GZ, Wang C. Bibliometric analysis and literature review of ultrasound-assisted degradation of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162551. [PMID: 36878295 DOI: 10.1016/j.scitotenv.2023.162551] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Ultrasound as a clean, efficient, and cheap technique gains special attention in wastewater treatment. Ultrasound alone or coupled with hybrid processes have been widely studied for the treatment of pollutants in wastewater. Thus, it is essential to conduct a review about the research development and trends on this emerging technique. This work presents a bibliometric analysis of the topic associated with multiple tools such as Bibliometrix package, CiteSpace, and VOSviewer. The literature sources from 2000 to 2021 were collected from Web of Science database, and the data of 1781 documents were selected for bibliometric analysis in respect to publication trends, subject categories, journals, authors, institutions, as well as countries. Detailed analysis of keywords in respect to co-occurrence network, keyword clusters, and citation bursts was conducted to reveal the research hotspot and future directions. The development of the topic can be divided into three stages, and the rapid development begins from 2014. The leading subject category is Chemistry Multidisciplinary, followed by Environmental Sciences, Engineering Chemical, Engineering Environmental, Chemistry Physical, and Acoustics, and there exists difference in the publications of different categories. Ultrasonics Sonochemistry is the most productive journal (14.75 %). China is the leading country (30.26 %), followed by Iran (15.67 %) and India (12.35 %). The top 3 authors are Parag Gogate, Oualid Hamdaoui, and Masoud Salavati-Niasari. There exists close cooperation between countries and researchers. Analysis of highly cited papers and keywords gives a better understanding of the topic. Ultrasound can be employed to assist various processes such as Fenton-like process, electrochemical process, and photocatalysis for degradation of emerging organic pollutants for wastewater treatment. Research topics in this field evolve from typical studies on ultrasonic assisted degradation to latest studies on hybrid processes including photocatalysis for pollutants degradation. Additionally, ultrasound-assisted synthesis of nanocomposite photocatalysts receives increasing attention. The potential research directions include sonochemistry in pollutant removal, hydrodynamic cavitation, ultrasound-assisted Fenton or persulfate processes, electrochemical oxidation, and photocatalytic process.
Collapse
Affiliation(s)
- Luyao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Dan Luo
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Oualid Hamdaoui
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Malwina Momotko
- Faculty of Chemistry, Department of Proccess Engineering and Chemical Technology, Gdansk University of Technology, G. Narutowicza St. 11/12, 80 - 233 Gdansk, Poland
| | - Grzegorz Boczkaj
- Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80 - 233, Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80 - 233 Gdansk, Poland
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, GR-654 04 Kavala, Greece
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
26
|
Troia A, Galati S, Vighetto V, Cauda V. Piezo/sono-catalytic activity of ZnO micro/nanoparticles for ROS generation as function of ultrasound frequencies and dissolved gases. ULTRASONICS SONOCHEMISTRY 2023; 97:106470. [PMID: 37302265 DOI: 10.1016/j.ultsonch.2023.106470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
We report an accurate study on sonocatalytic properties of different ZnO micro and nanoparticles to enhance OH radical production activated by cavitation. In order to investigate some of the still unsolved aspects related to the piezocatalytic effect, the degradation of Methylene Blue and quantification of radicals production have been evaluated as function of different ultrasonic frequencies (20 kHz and 858 kHz) and dissolved gases (Ar, N2 and air). The results shown that at low frequency the catalytic effect of ZnO particles is well evident and influenced by particle dimension while at high frequency a reduction of the degradation efficiency have been observed using larger particles. An increase of radical production have been observed for all ZnO particles tested while the different saturating gases have poor influence. In both ultrasonic set-up the ZnO nanoparticles resulted the most efficient on MB degradation revealing that the enhanced radical production may arise more from bubbles collapse on particles surface than the discharge mechanism activate by mechanical stress on piezoelectric particles. An interpretation of these effects and a possible mechanism which rules the sonocatalytic activity of ZnO will be proposed and discussed.
Collapse
Affiliation(s)
- A Troia
- Ultrasounds and Chemistry Lab, Advanced Metrology for Quality of Life, Istituto Nazionale di Ricerca Metrologica, Turin, Italy.
| | - S Galati
- Ultrasounds and Chemistry Lab, Advanced Metrology for Quality of Life, Istituto Nazionale di Ricerca Metrologica, Turin, Italy
| | - V Vighetto
- Department of Applied Science and Technology, Polytechnic of Turin, Italy
| | - V Cauda
- Department of Applied Science and Technology, Polytechnic of Turin, Italy
| |
Collapse
|
27
|
Dhull P, Sudhaik A, Raizada P, Thakur S, Nguyen VH, Van Le Q, Kumar N, Parwaz Khan AA, Marwani HM, Selvasembian R, Singh P. An overview on ZnO-based sonophotocatalytic mitigation of aqueous phase pollutants. CHEMOSPHERE 2023; 333:138873. [PMID: 37164195 DOI: 10.1016/j.chemosphere.2023.138873] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Over the past several decades, the increase in industrialization provoked the discharge of harmful pollutants into the environment, affecting human beings and ecosystems. ZnO-based photocatalysts seem to be the most promising photocatalysts for treating harmful pollutants. However, fast charge carrier recombination, photo corrosion, and long reaction time are the significant factors that reduce the photoactivity of ZnO-based photocatalysts. In order to enhance the photoactivity of such photocatalysts, a combined process i.e., sonocatalysis + photocatalysis = sonophotocatalysis was used. Sonophotocatalysis is one of several different AOP methods that have recently drawn considerable interest, as it produces high reactive oxygen species (ROS) which helps in the oxidation of pollutants by acoustic cavitation. This combined technique enhanced the overall efficiency of the individual method by overcoming its limiting factors. The current review aims to present the theoretical and fundamental aspects of sonocatalysis and photocatalysis along with a detailed discussion on the benefits that can be obtained by the combined process i.e., US + UV (sonophotocatalysis). Also, we have provided a comparison of the excellent performance of ZnO to that of the other metal oxides. The purpose of this study is to discuss the literature concerning the potential applications of ZnO-based sonophotocatalysts for the degradation of pollutants i.e., dyes, antibiotics, pesticides, phenols, etc. That are carried out for future developments. The role of the produced ROS under light and ultrasound stimulation and the degradation mechanisms that are based on published literature are also discussed. In the end, future perspectives are suggested, that are helpful in the development of the sonophotocatalysis process for the remediation of wastewater containing various pollutants.
Collapse
Affiliation(s)
- Priya Dhull
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 8 173229, India
| | - Anita Sudhaik
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 8 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 8 173229, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram District, 603103, Tamil Nadu, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam13 Ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Naveen Kumar
- Department of Chemistry Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 8 173229, India.
| |
Collapse
|
28
|
Wang G, Cheng H. Application of Photocatalysis and Sonocatalysis for Treatment of Organic Dye Wastewater and the Synergistic Effect of Ultrasound and Light. Molecules 2023; 28:molecules28093706. [PMID: 37175115 PMCID: PMC10180204 DOI: 10.3390/molecules28093706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Organic dyes play vital roles in the textile industry, while the discharge of organic dye wastewater in the production and utilization of dyes has caused significant damage to the aquatic ecosystem. This review aims to summarize the mechanisms of photocatalysis, sonocatalysis, and sonophotocatalysis in the treatment of organic dye wastewater and the recent advances in catalyst development, with a focus on the synergistic effect of ultrasound and light in the catalytic degradation of organic dyes. The performance of TiO2-based catalysts for organic dye degradation in photocatalytic, sonocatalytic, and sonophotocatalytic systems is compared. With significant synergistic effect of ultrasound and light, sonophotocatalysis generally performs much better than sonocatalysis or photocatalysis alone in pollutant degradation, yet it has a much higher energy requirement. Future research directions are proposed to expand the fundamental knowledge on the sonophotocatalysis process and to enhance its practical application in degrading organic dyes in wastewater.
Collapse
Affiliation(s)
- Guowei Wang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
29
|
Moradi S, Rodriguez-Seco C, Hayati F, Ma D. Sonophotocatalysis with Photoactive Nanomaterials for Wastewater Treatment and Bacteria Disinfection. ACS NANOSCIENCE AU 2023; 3:103-129. [PMID: 37096232 PMCID: PMC10119989 DOI: 10.1021/acsnanoscienceau.2c00058] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 04/26/2023]
Abstract
Sonophotocatalysis is described as a combination of two individual processes of photocatalysis and sonocatalysis. It has proven to be highly promising in degrading dissolved contaminants in wastewaters as well as bacteria disinfection applications. It eliminates some of the main disadvantages observed in each individual technique such as high costs, sluggish activity, and prolonged reaction times. The review has accomplished a critical analysis of sonophotocatalytic reaction mechanisms and the effect of the nanostructured catalyst and process modification techniques on the sonophotocatalytic performance. The synergistic effect between the mentioned processes, reactor design, and the electrical energy consumption has been discussed due to their importance when implementing this novel technology in practical applications, such as real industrial or municipal wastewater treatment plants. The utilization of sonophotocatalysis in disinfection and inactivation of bacteria has also been reviewed. In addition, we further suggest improvements to promote this technology from the lab-scale to large-scale applications. We hope this up-to-date review will advance future research in this field and push this technology toward widespread adoption and commercialization.
Collapse
Affiliation(s)
- Sina Moradi
- Institut
National de la Recherche Scientifique (INRS)-Centre Énergie
Materiaux et Telécommunications, 1650 Boulevard Lionel-Boulet, VarennesJ3X 1P7, Québec, Canada
| | - Cristina Rodriguez-Seco
- Institut
National de la Recherche Scientifique (INRS)-Centre Énergie
Materiaux et Telécommunications, 1650 Boulevard Lionel-Boulet, VarennesJ3X 1P7, Québec, Canada
| | - Farzan Hayati
- Department
of Chemical and Biological Engineering, University of Saskatchewan, SaskatoonS7N 5A9, SK, Canada
| | - Dongling Ma
- Institut
National de la Recherche Scientifique (INRS)-Centre Énergie
Materiaux et Telécommunications, 1650 Boulevard Lionel-Boulet, VarennesJ3X 1P7, Québec, Canada
| |
Collapse
|
30
|
Hassanzadeh S, Farhadi S, Moradifard F. Synthesis of magnetic graphene-like carbon nitride-cobalt ferrite (g-C 3N 4/CoFe 2O 4) nanocomposite for sonocatalytic remediation of toxic organic dyes. RSC Adv 2023; 13:10940-10955. [PMID: 37033431 PMCID: PMC10077340 DOI: 10.1039/d3ra00057e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023] Open
Abstract
A novel magnetic g-C3N4/CoFe2O4 nanocomposite was successfully synthesized by a simple hydrothermal method and applied as a new graphene-like carbon nitride-based sonocatalyst for sonodegradation of pollutant dyes. The as-prepared samples were characterized by using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflectance spectroscopy (DRS), BET surface area measurements and photoluminescence (PL) spectroscopy. The results indicate that the nanocomposite sample is composed of spherical CoFe2O4 nanoparticles adhered to g-C3N4 naosheets. The g-C3N4/CoFe2O4 nanocomposites were used as a new magnetically separable sonocatalyst in H2O2-assisted sonodegradation of methylene blue (MB), rhodamine B (RhB) and methyl orange (MO) dyes in aqueous media. The results showed complete degradation (ca. 100%) of dyes within short times (30-35 min). The sonocatalytic activity of graphitic carbon nitride (g-C3N4) was greatly enhanced with CoFe2O4 modification. Trapping experiments indicated that the g-C3N4/CoFe2O4 nanocomposites serves as a generator of hydroxyl radical (˙OH) via activation of H2O2 for degradation of dyes under ultrasound irradiation. Furthermore, the magnetic sonocatalyst can be separated from solution by an external magnet and reused several times without observable loss of activity. The possible mechanism of sonocatalytic activity was also proposed according to experimental results.
Collapse
Affiliation(s)
- Saeedeh Hassanzadeh
- Department of Chemistry, Lorestan University Khorramabad 68151-44316 Iran +986633120618 +986633120611
| | - Saeed Farhadi
- Department of Chemistry, Lorestan University Khorramabad 68151-44316 Iran +986633120618 +986633120611
| | - Farzaneh Moradifard
- Department of Chemistry, Lorestan University Khorramabad 68151-44316 Iran +986633120618 +986633120611
| |
Collapse
|
31
|
Bößl F, Menzel VC, Chatzisymeon E, Comyn TP, Cowin P, Cobley AJ, Tudela I. Effect of frequency and power on the piezocatalytic and sonochemical degradation of dyes in water. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
32
|
Ayagh K, Farrokhi M, Yang JK, Shirzad-Siboni M. Facile provision of CuO-Kaolin nanocomposite for boosted sonocatalytic removal of Cr(VI) from hydrous media. ENVIRONMENTAL TECHNOLOGY 2023; 44:342-353. [PMID: 34407739 DOI: 10.1080/09593330.2021.1970822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, nanoscale materials have been widely applied in the removal of contaminants from the water system. Reduction of Cr(VI) (as a poisonous species) to Cr(III) (as a slight toxic species) was performed using CuO-Kaolin with ultrasound (US) irradiation. The CuO-Kaolin nanocomposite was synthesized via a facile co-precipitation method. Then X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope and Energy dispersive X-ray spectroscopy analyses were performed to identify the structural features of CuO-Kaolin. The role of influential parameters for the reduction of Cr(VI) was investigated in sonocatalytic advanced oxidation system. About 89.35% of Cr(VI) was removed via US/CuO-Kaolin process after 90 min at optimum conditions (pH = 3, sonocatalyst dosage = 1 g L-1 and [Cr (VI)]0 = 20 mg L-1). This outstanding result was due to the synergistic effect of the increased electron delivery to conduction band on CuO-Kaolin nanocomposite and the increased reactive surface region of nanoparticles by sonication. The presence of H2O2 as an amplifier improved the removal efficiency of Cr(VI) from 89.35% to 100% after 20 min. Kinetic experimental results were well described by a pseudo-first-order kinetic model. Desorption experiments showed excellent stability of sonocatalyst during the reaction and maintenance of the catalytic activity up to 10 sequential cycles.
Collapse
Affiliation(s)
- Kobra Ayagh
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehrdad Farrokhi
- Health in Emergencies and Disasters Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Jae-Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul, Korea
| | - Mehdi Shirzad-Siboni
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran
- Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
33
|
Pourrahmati-Shiraz M, Mohagheghian A, Shirzad-Siboni M. Synthesis of ZnO immobilized on recycled polyethylene terephtalate for sonocatalytic removal of Cr(VI) from synthetic, drinking waters and electroplating wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116395. [PMID: 36352728 DOI: 10.1016/j.jenvman.2022.116395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In this study, Cr(VI) was removed sonocatalytically by the zinc oxide nanoparticle coated with polyethylene terephthalate (PET) fabricated through a facile co-precipitation method. The crystal structure, functional groups on the surface, morphology, surface composition and oxidation states of the nanomaterials were investigated by XRD, FTIR, SEM, EDX and XPS techniques. Environmental parameters including solution pH, catalyst dose, hexavalent chromium concentration, H2O2 content, purging gases, organic compounds and type and anions strength on the sonotocatalytic removal of Cr(VI) were also investigated. Additionally, the contribution of each process, reusability, Cr(VI) reduction from actual water and electroplating wastewater were evaluated. Under the optimal conditions, [Cr(VI)]0=20 mg/L, nanocomposite loading=1.6 g/L and pH=5, 99.92% of Cr(VI) was removed within 60 min. By increaing, Cr(VI) concentration (5-50 mg/L), kobs decreased to values between 0.1498 and 0.0063 min-1 and the calculated electrical energy per order (EEo) increased from 148.68 to 3535.24 kWh.m-3, respectively. The presence of purging gases, organic compounds and ionic strength negatively affected Cr(VI) reduction. Examination of radical scavengers showed that the most active radicals in Cr(VI) removal were O2•- and h+. The removal of the Cr(VI) using the US/ZnO-PET method (99.92%) was higher than that of the US/ZnO method (70.78%). The catalyst activity was well maintained up to eight consecutive cycles. In addition, the removal efficiency was approximately 72.23 and 68.55% for drinking water and real electroplating wastewater samples, respectively. The results of toxicity in the sonotocatalytic removal of Cr(VI) by Daphnia magna showed LC50 and toxicity unit (TU) 48 h, which was equal to 81.46 and 1.227 vol percent.
Collapse
Affiliation(s)
- Mahsa Pourrahmati-Shiraz
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Azita Mohagheghian
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran; Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehdi Shirzad-Siboni
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran; Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
34
|
Liu BD, Dong HT, Rong HW, Zhang RJ. Effects and mechanism of ultrasound treatment on Chironomus kiiensis eggs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85482-85491. [PMID: 35796928 DOI: 10.1007/s11356-022-21856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Chironomids are abundant insects in freshwater ecosystems and lay in still or slow-moving water. The walls of sedimentation tanks in drinking water treatment plants (DWTP) provide such laying habitat, which can lead to larval outbreaks in plant effluent. While chironomid larvae are often associated with poor hygiene, effective methods to control outbreaks are needed. Here, we assessed the effect of ultrasound treatment on Chironomus kiiensis' eggs. The mortality rate of eggs was examined after ultrasound treatment, and the protein content (heat shock protein 70 and hemoglobin) and enzymatic activities of acetylcholinesterase, cytochrome P450, and glutathione S-transferases involved in the ultrasound-induced stress response were analyzed before and after treatment. COMSOL software was also used to examine the characteristics of the ultrasonic field, including frequency, power, exposure distance, and time. Higher egg mortality was observed at lower frequencies. At 28 kHz, 450 W, 15-mm exposure distance, and 75-s exposure time, 72.4% of eggs showed apoptosis after exposure. At higher frequencies (68 kHz), mortality decreased to 50.9%. Exposure time and distance also significantly affected egg mortality. From the geometric models, it could be seen that C. kiiensis' eggs sustained much greater acoustic pressure (2379 Pa) with 28-kHz exposure than that with 68-kHz exposure (422 Pa); however, the propagation distance was greater at the higher frequency. The hydraulic shear force effect of the ultrasonic radiation appeared to be the primary factor in egg mortality. We expected that array of ultrasonic transducers embedded in the walls of water treatment plants could be effective in killing Chironomus' eggs and highlight the potential for ultrasound as an effective treatment for the prevention of Chironomus outbreaks in treatment plant effluents.
Collapse
Affiliation(s)
- Bo-Dong Liu
- Research Center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
- International Department, The Affiliated High School of South China Normal University, Guangzhou, 510630, China
| | - Hao-Tao Dong
- Research Center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China.
| | - Hong-Wei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou, 510060, China
| | - Rui-Jian Zhang
- Research Center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| |
Collapse
|
35
|
Sonophotocatalytic degradation of malachite green in aqueous solution using six competitive metal oxides as a benchmark. Photochem Photobiol Sci 2022; 22:579-594. [PMID: 36434430 DOI: 10.1007/s43630-022-00336-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/28/2022] [Indexed: 11/26/2022]
Abstract
AbstractA comparison study examines six different metal oxides (CuO, ZnO, Fe3O4, Co3O4, NiO, and α-MnO2) for the degradation of malachite green dye using four distinct processes. These processes are as follows: sonocatalysis (US/metal oxide), sonocatalysis under ultra-violet irradiation (US/metal oxide/UV), sonocatalysis in the presence of hydrogen peroxide (US/metal oxide/H2O2), and a combination of all these processes (US/metal oxide/UV/H2O2). The effective operating parameters, such as the dosage of metal oxide nanoparticles (MONPs), the type of the process, and the metal oxides’ efficiency order, were studied. At the same reaction conditions, the sonophotocatalytic is the best process for all six MOsNPs, CuO was the better metal oxide than other MOsNPs, and at the sonocatalysis process, ZnO was the best metal oxide in other processes. It was found that the metal oxide order for sonocatalytic process is CuO > α-MnO2 ≥ ZnO > NiO ≥ Fe3O4 ≥ Co3O4 within 15–45 min. The order of (US/metal oxide/UV) process is ZnO ≥ NiO ≥ α-MnO2 > Fe3O4 ≥ CuO ≥ Co3O4 within 5–40 min. The order of (US/ MOsNPs/ H2O2) process is ZnO ≥ CuO ≥ α-MnO2 ≥ NiO > Co3O4 > Fe3O4 within 5–20 min. The maximum removal efficiency order of the sonophotocatalytic process is ZnO ≥ CuO > α-MnO2 > NiO > Fe3O4 ≥ Co3O4 within 2–8 min. The four processes degradation efficiency was in the order US/MOsNPs ˂ US/MOsNPs/UV ˂ US/MOsNPs/H2O2 ˂ (UV/Ultrasonic/MOsNPs/H2O2). Complete degradation of MG was obtained at 0.05 g/L MONPs and 1 mM of H2O2 using 296 W/L ultrasonic power and 15 W ultra-violet lamp (UV-C) within a reaction time of 8 min according to the MOsNPs type at the same sonophotocatalytic/H2O2 reaction conditions. The US/metal oxide/UV/H2O2 process is inexpensive, highly reusable, and efficient for degrading dyes in colored wastewater.
Graphical abstract
Collapse
|
36
|
Hu X, Qiao J, Zhou J, Bao J, He W. Enhanced Sonocatalytic Performance of Polyethylene Glycol Modified Hierarchical Cu2ZnSnS4 Microspheres in Methylene Blue Decolorization. Catal Letters 2022. [DOI: 10.1007/s10562-022-04204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Xu L, Liu NP, An HL, Ju WT, Liu B, Wang XF, Wang X. Preparation of Ag 3PO 4/CoWO 4 S-scheme heterojunction and study on sonocatalytic degradation of tetracycline. ULTRASONICS SONOCHEMISTRY 2022; 89:106147. [PMID: 36087545 PMCID: PMC9465027 DOI: 10.1016/j.ultsonch.2022.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 05/12/2023]
Abstract
In this study, 0.6Ag3PO4/CoWO4 composites were synthesized by hydrothermal method. The prepared materials were systematically characterized by techniques of scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption, and UV-vis diffuse reflectance spectrum (DRS). Furthermore, the sonocatalytic degradation performance of 0.6Ag3PO4/CoWO4 composites towards tetracycline (TC) was investigated under ultrasonic radiation. The results showed that, combined with potassium persulfate (K2S2O8), the 0.6Ag3PO4/CoWO4 composites achieved a high sonocatalytic degradation efficiency of 97.89 % within 10 min, which was much better than bare Ag3PO4 or CoWO4. By measuring the electrochemical properties, it was proposed that the degradation mechanism of 0.6Ag3PO4/CoWO4 is the formation of S-scheme heterojunction, which increases the separation efficiency of electron-hole pairs (e--h+) and generates more electrons and holes, thereby enhancing the degradation activity. The scavenger experiments confirmed that hole (h+) was the primary active substance in degrading TC, and free radicals (OH) and superoxide anion radical (O2-) were auxiliary active substances. The results indicated that 0.6Ag3PO4/CoWO4 nanocomposites could be used as an efficient and reliable sonocatalyst for wastewater treatment.
Collapse
Affiliation(s)
- Liang Xu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Ni-Ping Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Hui-Li An
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Wan-Ting Ju
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Bin Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Xiao-Fang Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
38
|
Fan G, Cai C, Yang S, Du B, Luo J, Chen Y, Lin X, Li X, Wang Y. Sonophotocatalytic degradation of ciprofloxacin by Bi2MoO6/FeVO4 heterojunction: Insights into performance, mechanism and pathway. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
39
|
Bustos E, Sandoval-González A, Martínez-Sánchez C. Detection and Treatment of Persistent Pollutants in Water: General Review of Pharmaceutical Products. ChemElectroChem 2022. [DOI: 10.1002/celc.202200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Erika Bustos
- Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Centro de Investigación y Desarrollo Tecnológico en Electroq76703México 76703 Pedro Escobedo MEXICO
| | - Antonia Sandoval-González
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Parque Tecnológico Querétaro s/nSanfandila 76703 Pedro Escobedo MEXICO
| | - Carolina Martínez-Sánchez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Parque Tecnológico Querétaro s/nSanfandila 76703 Pedro Escobedo MEXICO
| |
Collapse
|
40
|
Shelke HD, Machale AR, Survase AA, Pathan HM, Lokhande CD, Lokhande AC, Shaikh SF, Rana AUHS, Palaniswami M. Multifunctional Cu 2SnS 3 Nanoparticles with Enhanced Photocatalytic Dye Degradation and Antibacterial Activity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3126. [PMID: 35591460 PMCID: PMC9104045 DOI: 10.3390/ma15093126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 01/27/2023]
Abstract
We present a simplistic, ultrafast, and facile hydrothermal deposition of ternary Cu2SnS3 nanoparticles (CTS NPs). The fabricated CTS NPs show superior antimicrobial and photocatalytic activities. In the presence of UV-Visible illumination, methylene blue (MB) dye was studied for photocatalytic dye degradation activity of CTS NPs. Excellent efficiency is shown by incorporating CTS NPs to degrade MB dye. There is a ~95% decrease in the absorbance peak of the dye solution within 120 min. Similarly, CTS NPs tested against three bacterial strains, i.e., B. subtilis, S. aureus, P. vulgaris, and one fungal strain C. albicans, defining the lowest inhibitory concentration and zone of inhibition, revealed greater antimicrobial activity. Hence, it is concluded that the CTS NPs are photocatalytically and antimicrobially active and have potential in biomedicine.
Collapse
Affiliation(s)
- Harshad D. Shelke
- Advanced Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra, India; (H.D.S.); (H.M.P.)
| | - Archana R. Machale
- Solid State Physics Laboratory, Department of Physics, Yashwantrao Chavan Institute of Science, Satara 415001, Maharashtra, India;
| | - Avinash A. Survase
- Rayat Institute of Research and Development Center, Satara 415001, Maharashtra, India;
| | - Habib M. Pathan
- Advanced Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra, India; (H.D.S.); (H.M.P.)
| | - Chandrakant D. Lokhande
- Centre for Interdisciplinary Research, D. Y. Patil Educational Society, Kolhapur 416006, Maharashtra, India
| | - Abhishek C. Lokhande
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Shoyebmohamad F. Shaikh
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Abu ul Hassan S. Rana
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Marimuthu Palaniswami
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
41
|
A metal-free, dual catalyst for the removal of Rhodamine B using novel carbon quantum dots from muskmelon peel under sunlight and ultrasonication: A green way to clean the environment. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Fan G, Yang S, Du B, Luo J, Lin X, Li X. Sono-photo hybrid process for the synergistic degradation of levofloxacin by FeVO 4/BiVO 4: Mechanisms and kinetics. ENVIRONMENTAL RESEARCH 2022; 204:112032. [PMID: 34516980 DOI: 10.1016/j.envres.2021.112032] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
A novel FeVO4/BiVO4 heterojunction photocatalyst was synthesized by hydrothermal method. The FeVO4/BiVO4 nanostructures were characterized by XRD, SEM, XPS, UV-vis, and photoluminescence spectroscopy. The effects of catalyst dosage, contaminant concentration, initial hydrogen peroxide (H2O2) concentration, and pH value on the degradation of levofloxacin were investigated and several repeated experiments were conducted to evaluate the stability and reproducibility. The optimized process parameters were used for mineralization experiments. Reactive oxygen species, degradation intermediates, and possible catalytic mechanisms were also investigated. The results showed that the sonophotocatalytic performance of the FeVO4/BiVO4 heterojunction catalyst was better than that of sonocatalysis and photocatalysis. In addition, the Type II heterojunction formed by the material still had good stability in the degradation of levofloxacin after 5 cycles. The possible degradation pathway and mechanism of levofloxacin by sonophotocatalysis were put forward. This work develops new sono-photo hybrid process for potential application in the field of wastewater treatment.
Collapse
Affiliation(s)
- Gongduan Fan
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350002, Fujian, China; Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 350002, Fujian, China.
| | - Shangwu Yang
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Banghao Du
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Jing Luo
- Fujian Jinhuang Environmental Sci-Tech Co., Ltd, 350002, Fujian, China
| | - Xin Lin
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Xia Li
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| |
Collapse
|
43
|
Vasseghian Y, Dragoi EN, Almomani F, Le VT. A comprehensive review on MXenes as new nanomaterials for degradation of hazardous pollutants: Deployment as heterogeneous sonocatalysis. CHEMOSPHERE 2022; 287:132387. [PMID: 34600004 DOI: 10.1016/j.chemosphere.2021.132387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
MXene-based nanomaterials (MBNs) are two-dimensional materials that exhibit a series of sought after properties, including rich surface chemistry, adjustable bandgap structures, high electrical conductivity, hydrophobicity, thermal stability, and large specific surface area. MBNs have an exemplar performance when applied for the degradation of hazardous pollutants with various advanced oxidation processes such as heterogeneous sonocatalysis. As such, this work focuses on the sonocatalytic degradation of various hazardous pollutants using MXene-based catalysts. First, the general principles of sonocatalysis are examined, followed by an analysis of the main components of the MXene-based sonocatalysts and their application for pollutant degradation. Lastly, ongoing challenges are highlighted with recommendations to address the issues.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron no 73, 700050, Romania.
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Viet Nam; The Faculty of Environment and Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Viet Nam.
| |
Collapse
|
44
|
Qayyum A, Giannakoudakis DA, LaGrow AP, Bondarchuk O, Łomot D, Colmenares JC. High-frequency sonication for the synthesis of nanocluster-decorated titania nanorods: Making a better photocatalyst for the selective oxidation of monoaromatic alcohol. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
45
|
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021; 122:2981-3121. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.
Collapse
Affiliation(s)
- Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania
| | - Florence Epron
- Université de Poitiers, CNRS UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Universitat Politecnica de Valencia-Consejo Superior de Investigaciones Científicas, Universitat Politencia de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascal Granger
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
46
|
He LL, Zhu Y, Qi Q, Li XY, Bai JY, Xiang Z, Wang X. Synthesis of CaMoO4 microspheres with enhanced sonocatalytic performance for the removal of Acid Orange 7 in the aqueous environment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Liu SL, Liu B, Xiang Z, Xu L, Wang XF, Liu Y, Wang X. Fabrication of CaWO4 microspheres with enhanced sonocatalytic performance for ciprofloxacin removal in aqueous solution. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Xu L, Wang XF, Liu B, Sun T, Wang X. Fabrication of ferrous tungstate with enhanced sonocatalytic performance for meloxicam removal. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Kawamura K, Ikeda A, Inui A, Yamamoto K, Kawasaki H. TiO 2-supported Au 144 nanoclusters for enhanced sonocatalytic performance. J Chem Phys 2021; 155:124702. [PMID: 34598558 DOI: 10.1063/5.0055933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The production of reactive oxygen species (ROS), such as hydroxyl radicals, by ultrasonic activation of semiconductor nanoparticles (NPs), including TiO2, has excellent potential for use in sonodynamic therapy and for the sonocatalytic degradation of pollutants. However, TiO2 NPs have limitations including low yields of generated ROS that result from fast electron-hole recombination. In this study, we first investigated the sonocatalytic activity of TiO2-supported Au nanoclusters (NCs) (Au NCs/TiO2) by monitoring the production of hydroxyl radicals (•OH) under ultrasonication conditions. The deposition of Au144 NCs on TiO2 NPs was found to enhance sonocatalytic activity for •OH production by approximately a factor of 2. Electron-hole recombination in ultrasonically excited TiO2 NPs is suppressed by Au144 NCs acting as an electron trap; this charge separation resulted in enhanced •OH production. In contrast, the deposition of Au25 NCs on TiO2 NPs resulted in lower sonocatalytic activity due to less charge separation, which highlights the effectiveness of combining Au144 NCs with TiO2 NPs for enhancing sonocatalytic activity. The sonocatalytic action that forms electron-hole pairs on the Au144/TiO2 catalyst is due to both heat and sonoluminescence from the implosive collapse of cavitation bubbles. Consequently, the ultrasonically excited Au144 (3 wt. %)/TiO2 catalyst exhibited higher catalytic activity for the production of •OH because of less light shadowing effect, in contrast to the lower catalytic activity when irradiated with only external light.
Collapse
Affiliation(s)
- Kouhei Kawamura
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita-shi, Osaka 564-8680, Japan
| | - Atsuya Ikeda
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita-shi, Osaka 564-8680, Japan
| | - Ayaka Inui
- Department of Pure and Applied Physics, The Faculty of Engineering Science, Kansai University, Suita-shi, Osaka 564-8680, Japan
| | - Ken Yamamoto
- Department of Pure and Applied Physics, The Faculty of Engineering Science, Kansai University, Suita-shi, Osaka 564-8680, Japan
| | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita-shi, Osaka 564-8680, Japan
| |
Collapse
|
50
|
Bößl F, Comyn TP, Cowin PI, García-García FR, Tudela I. Piezocatalytic degradation of pollutants in water: Importance of catalyst size, poling and excitation mode. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|