1
|
Tao W, Lai Y, Zhou X, Yang G, Wu P, Yuan L. A narrative review: Ultrasound-Assisted drug delivery: Improving treatments via multiple mechanisms. ULTRASONICS 2025; 151:107611. [PMID: 40068411 DOI: 10.1016/j.ultras.2025.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 04/02/2025]
Abstract
Safe and efficient drug delivery is as important as drug development. Biological barriers, such as cell membranes, present significant challenges in drug delivery, especially for newly developed protein-, nucleic acid-, and cell-based drugs. Ultrasound-mediated drug delivery systems offer a promising strategy to overcome these challenges. Ultrasound, a mechanical wave with energy, produces thermal effects, cavitation, acoustic radiation, and other biophysical effects. Used alone or in combination with microbubbles or sonosensitizers, it breaks biological barriers, enhances targeted drug delivery, reduces adverse reactions, controls drug release, switches on/off drug functions, and ultimately improves therapeutic efficiency. Various ultrasound-mediated drug delivery methods, including transdermal drug delivery, nebulization, targeted microbubble destruction, and sonodynamic therapy, are being actively explored for the treatment of various diseases. This review article introduces the principles, advantages, and applications of ultrasound-mediated drug delivery methods for improved therapeutic outcomes and discusses future prospects in this field.
Collapse
Affiliation(s)
- Wenxin Tao
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Yubo Lai
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Xueying Zhou
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Guodong Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University Xi'an, Shaanxi 710032, China
| | - Pengying Wu
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Lijun Yuan
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China.
| |
Collapse
|
2
|
Godary T, Binkley B, Liu Z, Awoyemi O, Overby A, Yuliantoro H, Fike BJ, Anderson S, Li P. Acoustofluidics: Technology Advances and Applications from 2022 to 2024. Anal Chem 2025; 97:6847-6870. [PMID: 40133046 PMCID: PMC11983376 DOI: 10.1021/acs.analchem.4c06803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Affiliation(s)
| | | | - Zhengru Liu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown 26506-6201, West Virginia, United States
| | - Olanrewaju Awoyemi
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown 26506-6201, West Virginia, United States
| | - Amanda Overby
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown 26506-6201, West Virginia, United States
| | - Herbi Yuliantoro
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown 26506-6201, West Virginia, United States
| | - Bethany J. Fike
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown 26506-6201, West Virginia, United States
| | - Sydney Anderson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown 26506-6201, West Virginia, United States
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown 26506-6201, West Virginia, United States
| |
Collapse
|
3
|
Du S, Wen Z, Yu J, Meng Y, Liu Y, Xia X. Breath and Beyond: Advances in Nanomedicine for Oral and Intranasal Aerosol Drug Delivery. Pharmaceuticals (Basel) 2024; 17:1742. [PMID: 39770584 PMCID: PMC11677467 DOI: 10.3390/ph17121742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Designing and standardizing drug formulations are crucial for ensuring the safety and efficacy of medications. Nanomedicine utilizes nano drug delivery systems and advanced nanodevices to address numerous critical medical challenges. Currently, oral and intranasal aerosol drug delivery (OIADD) is the primary method for treating respiratory diseases worldwide. With advancements in disease understanding and the development of aerosolized nano drug delivery systems, the application of OIADD has exceeded its traditional boundaries, demonstrating significant potential in the treatment of non-respiratory conditions as well. This study provides a comprehensive overview of the applications of oral and intranasal aerosol formulations in disease treatment. It examines the key challenges limiting the development of nanomedicines in drug delivery systems, formulation processes, and aerosol devices and explores the latest advancements in these areas. This review aims to offer valuable insights to researchers involved in the development of aerosol delivery platforms.
Collapse
Affiliation(s)
- Simeng Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.D.); (Z.W.); (J.Y.); (Y.M.); (Y.L.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhiyang Wen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.D.); (Z.W.); (J.Y.); (Y.M.); (Y.L.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinghan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.D.); (Z.W.); (J.Y.); (Y.M.); (Y.L.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yingying Meng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.D.); (Z.W.); (J.Y.); (Y.M.); (Y.L.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.D.); (Z.W.); (J.Y.); (Y.M.); (Y.L.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xuejun Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.D.); (Z.W.); (J.Y.); (Y.M.); (Y.L.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
4
|
Wang Y, Li X, Meng H, Tao R, Qian J, Fu C, Luo J, Xie J, Fu Y. Acoustofluidic Diversity Achieved by Multiple Modes of Acoustic Waves Generated on Piezoelectric-Film-Coated Aluminum Sheets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45119-45130. [PMID: 39143893 PMCID: PMC11367575 DOI: 10.1021/acsami.4c06480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Excitation of multiple acoustic wave modes on a single chip is beneficial to implement diversified acoustofluidic functions. Conventional acoustic wave devices made of bulk LiNbO3 substrates generally generate few acoustic wave modes once the crystal-cut and electrode pattern are defined, limiting the realization of acoustofluidic diversity. In this paper, we demonstrated diversity of acoustofluidic behaviors using multiple modes of acoustic waves generated on piezoelectric-thin-film-coated aluminum sheets. Multiple acoustic wave modes were excited by varying the ratios between IDT pitch/wavelength and substrate thickness. Through systematic investigation of fluidic actuation behaviors and performances using these acoustic wave modes, we demonstrated fluidic actuation diversities using various acoustic wave modes and showed that the Rayleigh mode, pseudo-Rayleigh mode, and A0 mode of Lamb wave generally have better fluidic actuation performance than those of Sezawa mode and higher-order modes of Lamb wave, providing guidance for high-performance acoustofluidic actuation platform design. Additionally, we demonstrated diversified particle patterning functions, either on two sides of acoustic wave device or on a glass sheet by coupling acoustic waves into the glass using the gel. The pattern formation mechanisms were investigated through finite element simulations of acoustic pressure fields under different experimental configurations.
Collapse
Affiliation(s)
- Yong Wang
- Department
of Mechanical Engineering, Hangzhou City
University, Hangzhou 310015, China
- The
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
- Faculty
of Engineering and Environment, University
of Northumbria, Newcastle upon
Tyne NE1 8ST, United Kingdom
| | - Xianbin Li
- Anhui
Province Key Laboratory of Measuring Theory and Precision Instrument,
School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hui Meng
- Department
of Mechanical Engineering, Hangzhou City
University, Hangzhou 310015, China
| | - Ran Tao
- Faculty
of Engineering and Environment, University
of Northumbria, Newcastle upon
Tyne NE1 8ST, United Kingdom
- Shenzhen
Key Laboratory of Advanced Thin Films and Applications, College of
Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060, China
| | - Jingui Qian
- Anhui
Province Key Laboratory of Measuring Theory and Precision Instrument,
School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chen Fu
- Shenzhen
Key Laboratory of Advanced Thin Films and Applications, College of
Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060, China
| | - Jingting Luo
- Shenzhen
Key Laboratory of Advanced Thin Films and Applications, College of
Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060, China
| | - Jin Xie
- The
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Yongqing Fu
- Faculty
of Engineering and Environment, University
of Northumbria, Newcastle upon
Tyne NE1 8ST, United Kingdom
| |
Collapse
|
5
|
Huang Y, Zhang J, Wang X, Jing H, Li H. Aerosol Inhalation of Gene Delivery Therapy for Pulmonary Diseases. Biomolecules 2024; 14:904. [PMID: 39199292 PMCID: PMC11352762 DOI: 10.3390/biom14080904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Gene delivery therapy has emerged as a popular approach for the treatment of various diseases. However, it still poses the challenges of accumulation in target sites and reducing off-target effects. Aerosol gene delivery for the treatment of pulmonary diseases has the advantages of high lung accumulation, specific targeting and fewer systemic side effects. However, the key challenge is selecting the appropriate formulation for aerosol gene delivery that can overcome physiological barriers. There are numerous existing gene carriers under study, including viral vectors and non-viral vectors. With the development of biomaterials, more biocompatible substances have applied gene delivery via inhalation. Furthermore, many types of genes can be delivered through aerosol inhalation, such as DNA, mRNA, siRNA and CRISPR/Cas9. Aerosol delivery of different types of genes has proven to be efficient in the treatment of many diseases such as SARS-CoV-2, cystic fibrosis and lung cancer. In this paper, we provide a comprehensive review of the ongoing research on aerosol gene delivery therapy, including the basic respiratory system, different types of gene carriers, different types of carried genes and clinical applications.
Collapse
Affiliation(s)
| | | | | | - Hui Jing
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.H.); (J.Z.); (X.W.)
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.H.); (J.Z.); (X.W.)
| |
Collapse
|
6
|
Liu X, Rong N, Tian Z, Rich J, Niu L, Li P, Huang L, Dong Y, Zhou W, Zhang P, Chen Y, Wang C, Meng L, Huang TJ, Zheng H. Acoustothermal transfection for cell therapy. SCIENCE ADVANCES 2024; 10:eadk1855. [PMID: 38630814 PMCID: PMC11023511 DOI: 10.1126/sciadv.adk1855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Transfected stem cells and T cells are promising in personalized cell therapy and immunotherapy against various diseases. However, existing transfection techniques face a fundamental trade-off between transfection efficiency and cell viability; achieving both simultaneously remains a substantial challenge. This study presents an acoustothermal transfection method that leverages acoustic and thermal effects on cells to enhance the permeability of both the cell membrane and nuclear envelope to achieve safe, efficient, and high-throughput transfection of primary T cells and stem cells. With this method, two types of plasmids were simultaneously delivered into the nuclei of mesenchymal stem cells (MSCs) with efficiencies of 89.6 ± 1.2%. CXCR4-transfected MSCs could efficiently target cerebral ischemia sites in vivo and reduce the infarct volume in mice. Our acoustothermal transfection method addresses a key bottleneck in balancing the transfection efficiency and cell viability, which can become a powerful tool in the future for cellular and gene therapies.
Collapse
Affiliation(s)
- Xiufang Liu
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Ning Rong
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lili Niu
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Pengqi Li
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Laixin Huang
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Yankai Dong
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Zhou
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| | - Yizhao Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| | - Congzhi Wang
- National Innovation Center for Advanced Medical Devices, 385 Mintang Road, Shenzhen 518131, China
| | - Long Meng
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Hairong Zheng
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| |
Collapse
|
7
|
Neary MT, Mulder LM, Kowalski PS, MacLoughlin R, Crean AM, Ryan KB. Nebulised delivery of RNA formulations to the lungs: From aerosol to cytosol. J Control Release 2024; 366:812-833. [PMID: 38101753 DOI: 10.1016/j.jconrel.2023.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
In the past decade RNA-based therapies such as small interfering RNA (siRNA) and messenger RNA (mRNA) have emerged as new and ground-breaking therapeutic agents for the treatment and prevention of many conditions from viral infection to cancer. Most clinically approved RNA therapies are parenterally administered which impacts patient compliance and adds to healthcare costs. Pulmonary administration via inhalation is a non-invasive means to deliver RNA and offers an attractive alternative to injection. Nebulisation is a particularly appealing method due to the capacity to deliver large RNA doses during tidal breathing. In this review, we discuss the unique physiological barriers presented by the lung to efficient nebulised RNA delivery and approaches adopted to circumvent this problem. Additionally, the different types of nebulisers are evaluated from the perspective of their suitability for RNA delivery. Furthermore, we discuss recent preclinical studies involving nebulisation of RNA and analysis in in vitro and in vivo settings. Several studies have also demonstrated the importance of an effective delivery vector in RNA nebulisation therefore we assess the variety of lipid, polymeric and hybrid-based delivery systems utilised to date. We also consider the outlook for nebulised RNA medicinal products and the hurdles which must be overcome for successful clinical translation. In summary, nebulised RNA delivery has demonstrated promising potential for the treatment of several lung-related conditions such as asthma, COPD and cystic fibrosis, to which the mode of delivery is of crucial importance for clinical success.
Collapse
Affiliation(s)
- Michael T Neary
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | | | - Piotr S Kowalski
- School of Pharmacy, University College Cork, Ireland; APC Microbiome, University College Cork, Cork, Ireland
| | | | - Abina M Crean
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - Katie B Ryan
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland.
| |
Collapse
|
8
|
Qian J, Lan H, Huang L, Zheng S, Hu X, Chen M, Lee JEY, Zhang W. Acoustofluidics for simultaneous droplet transport and centrifugation facilitating ultrasensitive biomarker detection. LAB ON A CHIP 2023; 23:4343-4351. [PMID: 37718921 DOI: 10.1039/d3lc00626c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Trace biological sample detection is critical for the analysis of pathologies in biomedicine. Integration of microfluidic manipulation techniques typically strengthens biosensing performance. For instance, using isothermal amplification reactions to sense trace miRNA in peripheral circulation lacks a sufficiently complex pretreatment process that limits the sensitivity of on-chip detection. Herein we propose an orthogonal tunable acoustic tweezer (OTAT) to simultaneously actuate the transportation and centrifugation of μ-droplets on a single device. The OTAT enables diversified modes of droplet transportation such as unidirectional transport, multi-direction transport, round-trip transport, tilt angle movement, multi-droplet fusion, and continuous centrifugation of the dynamic droplets simultaneously. The multiplicity of modalities enables the focusing of a loaded analyte at the center of the droplet or constant rotation about the center axis of the droplet. We herein demonstrate the OTAT's ability to actuate transportation, fusion, and centrifugation-based pretreatment of two biological sample droplets loaded with miRNA biomarkers and multiple mixtures, as well as facilitating the increase of fluorescence detection sensitivity by an order of magnitude compared to traditional tube reaction methods. The results herein demonstrate the OTAT-based droplet acoustofluidic platform's ability to combine a wide range of biosensing mechanisms and provide a higher accuracy of detection for one-stop point-of-care disease diagnosis.
Collapse
Affiliation(s)
- Jingui Qian
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Huaize Lan
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Liang Huang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China.
| | - Xuefeng Hu
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Minghui Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China.
| | - Joshua E-Y Lee
- School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Wei Zhang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
9
|
Roudini M, Manuel Rosselló J, Manor O, Ohl CD, Winkler A. Acoustic resonance effects and cavitation in SAW aerosol generation. ULTRASONICS SONOCHEMISTRY 2023; 98:106530. [PMID: 37515911 PMCID: PMC10407539 DOI: 10.1016/j.ultsonch.2023.106530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
The interaction of surface acoustic waves (SAWs) with liquids enables the production of aerosols with adjustable droplet sizes in the micrometer range expelled from a very compact source. Understanding the nonlinear acousto-hydrodynamics of SAWs with a regulated micro-scale liquid film is essential for acousto-microfluidics platforms, particularly aerosol generators. In this study, we demonstrate the presence of micro-cavitation in a MHz-frequency SAW aerosol generation platform, which is touted as a leap in aerosol technology with versatile application fields including biomolecule inhalation therapy, micro-chromatography and spectroscopy, olfactory displays, and material deposition. Using analysis methods with high temporal and spatial resolution, we demonstrate that SAWs stabilize spatially arranged liquid micro-domes atop the generator's surface. Our experiments show that these liquid domes become acoustic resonators with highly fluctuating pressure amplitudes that can even nucleate cavitation bubbles, as supported by analytical modeling. The observed fragmentation of liquid domes indicates the participation of three droplet generation mechanisms, including cavitation and capillary-wave instabilities. During aerosol generation, the cavitation bubbles contribute to the ejection of droplets from the liquid domes and also explain observed microstructural damage patterns on the chip surface eventually caused by cavitation-based erosion.
Collapse
Affiliation(s)
- Mehrzad Roudini
- SAWLab Saxony, Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, Dresden 01069, Germany.
| | - Juan Manuel Rosselló
- Otto von Guerricke University, Institute for Physics, Universitätsplatz. 2, Magdeburg 39106, Germany
| | - Ofer Manor
- Technion-Israel Institute of Technology, Department of Chemical Engineering, Haifa 3200003, Israel
| | - Claus-Dieter Ohl
- Otto von Guerricke University, Institute for Physics, Universitätsplatz. 2, Magdeburg 39106, Germany
| | - Andreas Winkler
- SAWLab Saxony, Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, Dresden 01069, Germany
| |
Collapse
|
10
|
Ruzycki CA, Montoya D, Irshad H, Cox J, Zhou Y, McDonald JD, Kuehl PJ. Inhalation delivery of nucleic acid gene therapies in preclinical drug development. Expert Opin Drug Deliv 2023; 20:1097-1113. [PMID: 37732957 DOI: 10.1080/17425247.2023.2261369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
INTRODUCTION Inhaled gene therapy programs targeting diseases of the lung have seen increasing interest in recent years, though as of yet no product has successfully entered the market. Preclinical research to support such programs is critically important in maximizing the chances of developing successful candidates. AREAS COVERED Aspects of inhalation delivery of gene therapies are reviewed, with a focus on preclinical research in animal models. Various barriers to inhalation delivery of gene therapies are discussed, including aerosolization stresses, aerosol behavior in the respiratory tract, and disposition processes post-deposition. Important aspects of animal models are considered, including determinations of biologically relevant determinations of dose and issues related to translatability. EXPERT OPINION Development of clinically-efficacious inhaled gene therapies has proven difficult owing to numerous challenges. Fit-for-purpose experimental and analytical methods are necessary for determinations of biologically relevant doses in preclinical animal models. Further developments in disease-specific animal models may aid in improving the translatability of results in future work, and we expect to see accelerated interests in inhalation gene therapies for various diseases. Sponsors, researchers, and regulators are encouraged to engage in early and frequent discussion regarding candidate therapies, and additional dissemination of preclinical methodologies would be of immense value in avoiding common pitfalls.
Collapse
Affiliation(s)
- Conor A Ruzycki
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Derek Montoya
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Hammad Irshad
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Jason Cox
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Yue Zhou
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | | | - Philip J Kuehl
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
11
|
Komalla V, Wong CYJ, Sibum I, Muellinger B, Nijdam W, Chaugule V, Soria J, Ong HX, Buchmann NA, Traini D. Advances in soft mist inhalers. Expert Opin Drug Deliv 2023; 20:1055-1070. [PMID: 37385962 DOI: 10.1080/17425247.2023.2231850] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION Soft mist inhalers (SMIs) are propellant-free inhalers that utilize mechanical power to deliver single or multiple doses of inhalable drug aerosols in the form of a slow mist to patients. Compared to traditional inhalers, SMIs allow for a longer and slower release of aerosol with a smaller ballistic effect, leading to a limited loss in the oropharyngeal area, whilst requiring little coordination of actuation and inhalation by patients. Currently, the Respimat® is the only commercially available SMI, with several others in different stages of preclinical and clinical development. AREAS COVERED The primary purpose of this review is to critically assess recent advances in SMIs for the delivery of inhaled therapeutics. EXPERT OPINION Advanced particle formulations, such as nanoparticles which target specific areas of the lung, Biologics, such as vaccines, proteins, and antibodies (which are sensitive to aerosolization), are expected to be generally delivered by SMIs. Furthermore, repurposed drugs are expected to constitute a large share of future formulations to be delivered by SMIs. SMIs can also be employed for the delivery of formulations that target systemic diseases. Finally, digitalizing SMIs would improve patient adherence and provide clinicians with fundamental insights into patients' treatment progress.
Collapse
Affiliation(s)
- Varsha Komalla
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
| | - Chun Yuen Jerry Wong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
- Macquarie Medical School, Department of Biological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | | | | | | | - Vishal Chaugule
- Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia
| | - Julio Soria
- Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
- Macquarie Medical School, Department of Biological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | | | - D Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
- Macquarie Medical School, Department of Biological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
12
|
Chernikov IV, Staroseletz YY, Tatarnikova IS, Sen’kova AV, Savin IA, Markov AV, Logashenko EB, Chernolovskaya EL, Zenkova MA, Vlassov VV. siRNA-Mediated Timp1 Silencing Inhibited the Inflammatory Phenotype during Acute Lung Injury. Int J Mol Sci 2023; 24:ijms24021641. [PMID: 36675165 PMCID: PMC9865963 DOI: 10.3390/ijms24021641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Acute lung injury is a complex cascade process that develops in response to various damaging factors, which can lead to acute respiratory distress syndrome. Within this study, based on bioinformatics reanalysis of available full-transcriptome data of acute lung injury induced in mice and humans by various factors, we selected a set of genes that could serve as good targets for suppressing inflammation in the lung tissue, evaluated their expression in the cells of different origins during LPS-induced inflammation, and chose the tissue inhibitor of metalloproteinase Timp1 as a promising target for suppressing inflammation. We designed an effective chemically modified anti-TIMP1 siRNA and showed that Timp1 silencing correlates with a decrease in the pro-inflammatory cytokine IL6 secretion in cultured macrophage cells and reduces the severity of LPS-induced acute lung injury in a mouse model.
Collapse
|
13
|
Besford QA, Cavalieri F. Special issue on "Ultrasound-assisted engineering of materials for biomedical uses". ULTRASONICS SONOCHEMISTRY 2022; 90:106216. [PMID: 36371392 PMCID: PMC9678490 DOI: 10.1016/j.ultsonch.2022.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Quinn A Besford
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Francesca Cavalieri
- RMIT University, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|