1
|
Koltai T, Fliegel L. Exploring monocarboxylate transporter inhibition for cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:135-169. [PMID: 38464385 PMCID: PMC10918235 DOI: 10.37349/etat.2024.00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 03/12/2024] Open
Abstract
Cells are separated from the environment by a lipid bilayer membrane that is relatively impermeable to solutes. The transport of ions and small molecules across this membrane is an essential process in cell biology and metabolism. Monocarboxylate transporters (MCTs) belong to a vast family of solute carriers (SLCs) that facilitate the transport of certain hydrophylic small compounds through the bilipid cell membrane. The existence of 446 genes that code for SLCs is the best evidence of their importance. In-depth research on MCTs is quite recent and probably promoted by their role in cancer development and progression. Importantly, it has recently been realized that these transporters represent an interesting target for cancer treatment. The search for clinically useful monocarboxylate inhibitors is an even more recent field. There is limited pre-clinical and clinical experience with new inhibitors and their precise mechanism of action is still under investigation. What is common to all of them is the inhibition of lactate transport. This review discusses the structure and function of MCTs, their participation in cancer, and old and newly developed inhibitors. Some suggestions on how to improve their anticancer effects are also discussed.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| |
Collapse
|
2
|
Guo Z, Hu L, Wang Q, Wang Y, Liu XP, Chen C, Li S, Hu W. Molecular Characterization and Prognosis of Lactate-Related Genes in Lung Adenocarcinoma. Curr Oncol 2023; 30:2845-2861. [PMID: 36975430 PMCID: PMC10047707 DOI: 10.3390/curroncol30030217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Objective: To explore the lactate-related genes (LRGs) in lung adenocarcinoma (LUAD) by various methods, construct a prognostic model, and explore the relationship between lactate subtypes and the immune tumor microenvironment (TME). Methods: 24 LRGs were collected. The mutation landscape and the prognosis value of LRGs were explored by using The Cancer Genome Atlas (TCGA) data. Consensus clustering analysis was used for different lactate subtype identification. Based on the lactate subtypes, we explore the landscape of TME cell infiltration. A risk-score was calculated by using the LASSO-Cox analysis. A quantitative real-time PCR assay was utilized to validate the expression of characteristic genes in clinical cancer tissues and paracarinoma tissues from LUAD patients. Results: Comparing the normal samples, 18 LRGs were differentially expressed in tumor samples, which revealed that the differential expression of LRGs may be related to Copy Number Variation (CNV) alterations. The two distinct lactate subtypes were defined. Compared to patients in the LRGcluster A group, LUAD patients in the LRGcluster B group achieved better survival. The prognostic model was constructed based on differentially expressed genes (DEGs) via the LASSO-Cox analysis, which showed the accuracy of predicting the prognosis of LUAD patients using the ROC curve. A high-risk score was related to a high immune score, stromal score, and tumor mutation burden (TMB). Patients had better OS with low risk compared with those with high risk. The sensitivities of different risk groups to chemotherapeutic drugs were explored. Finally, the expression of characteristic genes in clinical cancer tissues and paracarinoma tissues from LUAD patients was verified via qRT-PCR. Conclusions: The lactate subtypes were independent prognostic biomarkers in LUAD. Additionally, the difference in the lactate subtypes was an indispensable feature for the individual TME. The comprehensive evaluation of the lactate subtypes in the single tumor would help us to understand the infiltration characteristics of TME and guide immunotherapy strategies.
Collapse
Affiliation(s)
- Zixin Guo
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liwen Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Qingwen Wang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Yujin Wang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Xiao-Ping Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chen Chen
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Human Genetics Resource Preservation Center of Hubei Province, Wuhan 430071, China
| | - Sheng Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Human Genetics Resource Preservation Center of Hubei Province, Wuhan 430071, China
- Correspondence: (S.L.); (W.H.)
| | - Weidong Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan 430071, China
- Correspondence: (S.L.); (W.H.)
| |
Collapse
|
3
|
Yang RN, Zhou FR, Wang HY, Wang QH, Ji JL, Huang T, Guo C, Dong Z, Cao YW. Antitumor activity of RUNX3: Upregulation of E-cadherin and downregulation of the epithelial–mesenchymal transition in clear-cell renal cell carcinoma. Open Life Sci 2022; 17:1579-1590. [DOI: 10.1515/biol-2022-0494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/12/2022] Open
Abstract
Abstract
RUNX3 is a transcription factor and tumor suppressor that is silenced or inactivated in diverse tumors. The effect of RUNX3 on the epithelial–mesenchymal transition in clear-cell renal cell carcinoma (CCRCC) remains unclear. We determined the expression of RUNX3 and E-cadherin in tumor tissues and adjacent normal tissues of 30 CCRCC patients; established cultured CCRCC cells with the overexpression of RUNX3; and examined the in vivo tumorigenic function of RUNX3 in a nude mouse xenograft model of CCRCC. RUNX3 and E-cadherin were downregulated in human CCRCC samples. Cell lines with RUNX3 overexpression had reduced cell proliferation, invasion, and migration, a prolonged cell cycle, increased apoptosis, and increased expression of E-cadherin. In the nude mouse xenograft model of CCRCC, tumors with the overexpression of RUNX3 had smaller volumes and weights and had increased expression of E-cadherin. In conclusion, RUNX3 overexpression increased the level of E-cadherin and inhibited the proliferation, invasion, and migration of CCRCC in vitro and in vivo. RUNX3 has potential use as a biomarker for prognostic monitoring of CCRCC and as a therapeutic target for the treatment of this cancer.
Collapse
Affiliation(s)
- Ruo-Nan Yang
- Department of Renal Transplantation and Urology, The Affiliated Hospital of Qingdao University , No. 59 Haier Road , Qingdao , Shandong , China
| | - Fu-Rong Zhou
- Department of Pharmacy, Yantai Yuhuangding Hospital , Yantai , Shandong , China
| | - Hong-Yang Wang
- Department of Renal Transplantation and Urology, The Affiliated Hospital of Qingdao University , No. 59 Haier Road , Qingdao , Shandong , China
| | - Qing-Hai Wang
- Department of Renal Transplantation and Urology, The Affiliated Hospital of Qingdao University , No. 59 Haier Road , Qingdao , Shandong , China
| | - Jian-Lei Ji
- Department of Renal Transplantation and Urology, The Affiliated Hospital of Qingdao University , No. 59 Haier Road , Qingdao , Shandong , China
| | - Tao Huang
- Department of Renal Transplantation and Urology, The Affiliated Hospital of Qingdao University , No. 59 Haier Road , Qingdao , Shandong , China
| | - Chen Guo
- Department of Renal Transplantation and Urology, The Affiliated Hospital of Qingdao University , No. 59 Haier Road , Qingdao , Shandong , China
| | - Zhen Dong
- Department of Renal Transplantation and Urology, The Affiliated Hospital of Qingdao University , No. 59 Haier Road , Qingdao , Shandong , China
| | - Yan-Wei Cao
- Department of Renal Transplantation and Urology, The Affiliated Hospital of Qingdao University , No. 59 Haier Road , Qingdao , Shandong , China
| |
Collapse
|
4
|
Upregulation of PARG in prostate cancer cells suppresses their malignant behavior and downregulates tumor-promoting genes. Biomed Pharmacother 2022; 153:113504. [PMID: 36076593 DOI: 10.1016/j.biopha.2022.113504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 02/03/2023] Open
Abstract
Post-translational modification of nuclear proteins through the addition of poly(ADP-ribose) (pADPr) moieties is upregulated in many metastatic cancers, where the high levels of pADPr have often been associated with poor cancer prognosis. Although the inhibitors of poly(ADP-ribose) polymerases (PARPs) have been utilized as potent anti-cancer agents, their efficacy in clinical trials varied among patient groups and has often been unpredictable. Such outcome cannot be interpreted solely by the inability to keep PARP-driven DNA repair in check. The focus of studies on PARP-driven tumorigenesis have recently been shifted toward PARP-dependent regulation of transcription. Here we utilized the controlled overexpression of poly(ADP-ribose) glycohydrolase (PARG), a sole pADPr-degrading enzyme, to investigate pADPr-dependent gene regulation in prostate cancer PC-3 cells. We demonstrated that PARG upregulation reduces pADPr levels and inhibits the expression of genes in key tumor-promoted pathways, including TNFα/NF-kB, IL6/STAT3, MYC, and KRAS signaling, the genes involved in inflammation response, especially chemokines, and endothelial-mesenchymal transition. The observed effect of PARG on transcription was consistent across all tested prostate cancer cell lines and correlates with PARG-induced reduction of clonogenic potential of PC-3 cells in vitro and a significant growth inhibition of PC-3-derived tumors in nude mice in vivo.
Collapse
|
5
|
Wang N, Zhou Y, Zuo Z, Wang R, Li J, Han T, Yang B. Construction of a competing endogenous RNA network related to the prognosis of cholangiocarcinoma and comprehensive analysis of the immunological correlation. J Gastrointest Oncol 2021; 12:2287-2309. [PMID: 34790393 DOI: 10.21037/jgo-21-619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is a malignant tumor of the digestive system, with occult onset in the early stage, a high degree of malignancy in the late stage, and poor prognosis. At present, the pathogenesis of CCA is not clear, and there is a lack of effective immunotherapy. The purpose of this study was to identify the potential regulatory mechanism of CCA and analyze the possibility of its related immunotherapy. Methods The circular RNAs (circRNAs) expression profile data of CCA was downloaded from the Gene Expression Omnibus (GEO) database; the miRNA and mRNA expression profile data of CCA were downloaded from The Cancer Genome Atlas (TCGA) database. Prognostic factors were screened by univariate Cox regression analysis, and the competing endogenous RNA (ceRNA) network was constructed via survival analysis. Multivariate Cox analysis was used to screen the independent prognostic factors and construct a prognostic correlation subnetwork. Analyzing the tumor microenvironment of CCA and survival analysis were performed according to the score of the microenvironment, and the distribution of tumor infiltrating immune cells (TICs) in CCA was calculated using the CIBERSORT algorithm. We explored the expression pattern of the target genes in pan-cancer, and the correlation between the key genes in the ceRNA subnetwork, TICs and immune checkpoints was analyzed using an online database. Finally, the expression levels of target genes were validated based on the Human Protein Atlas (HPA) databases. Results We screened four circRNAs, 10 miRNAs, and 17 mRNAs with significant differences, and constructed the ceRNA network. Independent prognostic factors were screened by multivariate Cox regression analysis, and a subnetwork containing five nodes (hsa_circ_0002073→hsa-mir-4524a-3p→SLC16A3/SLC35E4/DDX4) was constructed. Further analysis showed that SLC16A3 was not only an independent posterior factor of CCA, but was also closely correlated with immune cells, immune checkpoints, and immunotherapy, and had a certain regulatory effect on the tumor microenvironment. Conclusions Our study identified a novel prognostic marker of CCA, SLC16A3, and revealed the regulatory role of SLC16A3 in the tumor microenvironment, which is expected to provide new insights for the early diagnosis, prognosis, and targeted therapy of CCA.
Collapse
Affiliation(s)
- Ning Wang
- Department of Oncology, the Second Affiliated Hospital of Liaoning Traditional Chinese Medicine University, Shenyang, China
| | - Yinghui Zhou
- Jinzhou Medical University, General Hospital of Northern Theater Command Training Base for Graduate, Shenyang, China.,Department of Hepatobiliary surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhifan Zuo
- Department of Oncology, the First Hospital of China Medical University, Shenyang, China
| | - Ruoyu Wang
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jing Li
- Liaoning Academy of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Tao Han
- Department of Oncology, the First Hospital of China Medical University, Shenyang, China
| | - Bin Yang
- Department of General Surgery, 967 Hospital of PLA, Dalian, China
| |
Collapse
|
6
|
de Carvalho PA, Bonatelli M, Cordeiro MD, Coelho RF, Reis S, Srougi M, Nahas WC, Pinheiro C, Leite KRM. MCT1 expression is independently related to shorter cancer-specific survival in clear cell renal cell carcinoma. Carcinogenesis 2021; 42:1420-1427. [PMID: 34668521 DOI: 10.1093/carcin/bgab100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 11/15/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) has been considered a metabolic disease, with loss of von Hippel-Lindau (VHL) gene and consequent overexpression of hypoxia-inducible factor 1 alpha (HIF-1α), which is central for tumor development and progression. Among other effects, HIF-1α is involved in the metabolic reprogramming of cancer cells towards the Warburg effect involved in tumor cell proliferation, migration and survival. In this context, several proteins are expressed by cancer cells, including glucose and lactate transporters as well as different pH regulators. Among them, monocarboxylate transporters (MCTs) can be highlighted. Our aim is to comprehensively analyze the immunoexpression of MCT1, MCT2, MCT4, CD147, CD44, HIF-1α, GLUT1 and CAIX in ccRCC surgical specimens correlating with classical prognostic factors and survival of patients with long follow up. Surgical specimens from 207 patients with ccRCC who underwent radical or partial nephrectomy were used to build a tissue microarray. Immunostaining was categorized into absent/weak or moderate/strong and related to all classic ccRCC prognostic parameters. Kaplan-Meier curves were generated to assess overall and cancer-specific survival, and multivariate analysis was performed to identify independent prognostic factors of survival. Multivariate analysis showed that MCT1 together with tumor size and TNM staging, were independently related to cancer-specific survival. MCT1, CD147, CD44 and GLUT1 expression were significantly associated with poor prognostic factors. We show that MCT1 is an independent prognostic factor for cancer-specific survival in ccRCC justifying the use of new target therapies already being tested in clinical trials.
Collapse
Affiliation(s)
- Paulo Afonso de Carvalho
- Faculdade de Medicina da Universidade de Sao Paulo, Laboratory of Medical Investigation (LIM55)-Urology Department, Sao Paulo, Brazil
- Instituto do Câncer do Estado de Sao Paulo (ICESP), Sao Paulo, Brazil
| | - Murilo Bonatelli
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil
| | | | | | - Sabrina Reis
- Faculdade de Medicina da Universidade de Sao Paulo, Laboratory of Medical Investigation (LIM55)-Urology Department, Sao Paulo, Brazil
| | - Miguel Srougi
- Faculdade de Medicina da Universidade de Sao Paulo, Laboratory of Medical Investigation (LIM55)-Urology Department, Sao Paulo, Brazil
- Instituto do Câncer do Estado de Sao Paulo (ICESP), Sao Paulo, Brazil
| | - Willian Carlos Nahas
- Faculdade de Medicina da Universidade de Sao Paulo, Laboratory of Medical Investigation (LIM55)-Urology Department, Sao Paulo, Brazil
- Instituto do Câncer do Estado de Sao Paulo (ICESP), Sao Paulo, Brazil
| | - Celine Pinheiro
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil
- Barretos School of Health Sciences Dr. Paulo Prata-FACISB, Barretos, Sao Paulo, Brazil
| | - Katia Ramos Moreira Leite
- Faculdade de Medicina da Universidade de Sao Paulo, Laboratory of Medical Investigation (LIM55)-Urology Department, Sao Paulo, Brazil
| |
Collapse
|
7
|
Petitprez F, Ayadi M, de Reyniès A, Fridman WH, Sautès-Fridman C, Job S. Review of Prognostic Expression Markers for Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:643065. [PMID: 33996558 PMCID: PMC8113694 DOI: 10.3389/fonc.2021.643065] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Context: The number of prognostic markers for clear cell renal cell carcinoma (ccRCC) has been increasing regularly over the last 15 years, without being integrated and compared. Objective: Our goal was to perform a review of prognostic markers for ccRCC to lay the ground for their use in the clinics. Evidence Acquisition: PubMed database was searched to identify RNA and protein markers whose expression level was reported as associated with survival of ccRCC patients. Relevant studies were selected through cross-reading by two readers. Evidence Synthesis: We selected 249 studies reporting an association with prognostic of either single markers or multiple-marker models. Altogether, these studies were based on a total of 341 distinct markers and 13 multiple-marker models. Twenty percent of these markers were involved in four biological pathways altered in ccRCC: cell cycle, angiogenesis, hypoxia, and immune response. The main genes (VHL, PBRM1, BAP1, and SETD2) involved in ccRCC carcinogenesis are not the most relevant for assessing survival. Conclusion: Among single markers, the most validated markers were KI67, BIRC5, TP53, CXCR4, and CA9. Of the multiple-marker models, the most famous model, ClearCode34, has been highly validated on several independent datasets, but its clinical utility has not yet been investigated. Patient Summary: Over the years, the prognosis studies have evolved from single markers to multiple-marker models. Our review highlights the highly validated prognostic markers and multiple-marker models and discusses their clinical utility for better therapeutic care.
Collapse
Affiliation(s)
- Florent Petitprez
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Mira Ayadi
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Wolf H. Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Inflammation, Complément et Cancer, Paris, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Inflammation, Complément et Cancer, Paris, France
| | - Sylvie Job
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
8
|
Kobayashi M, Narumi K, Furugen A, Iseki K. Transport function, regulation, and biology of human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4). Pharmacol Ther 2021; 226:107862. [PMID: 33894276 DOI: 10.1016/j.pharmthera.2021.107862] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022]
Abstract
Human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4) are involved in the proton-dependent transport of monocarboxylates such as L-lactate, which play an essential role in cellular metabolism and pH regulation. hMCT1 and 4 are overexpressed in a number of cancers, and polymorphisms in hMCT1 have been reported to be associated with the prognosis of some cancers. Accordingly, recent advances have focused on the inhibition of these transporters as a novel therapeutic strategy in cancers. To screen for MCT inhibitors for clinical application, it is important to study MCT function and regulation, and the effect of compounds on them, using human-derived cells. In this review, we focus on the transport function, regulation, and biology of hMCT1 and hMCT4, and the effects of genetic variation in these transporters in humans.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan; Education Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan.
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
9
|
Tang S, Meng MV, Slater JB, Gordon JW, Vigneron DB, Stohr BA, Larson PEZ, Wang ZJ. Metabolic imaging with hyperpolarized 13 C pyruvate magnetic resonance imaging in patients with renal tumors-Initial experience. Cancer 2021; 127:2693-2704. [PMID: 33844280 DOI: 10.1002/cncr.33554] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Optimal treatment selection for localized renal tumors is challenging because of their variable biologic behavior and limitations in the preoperative assessment of tumor aggressiveness. The authors investigated the emerging hyperpolarized (HP) 13 C magnetic resonance imaging (MRI) technique to noninvasively assess tumor lactate production, which is strongly associated with tumor aggressiveness. METHODS Eleven patients with renal tumors underwent HP 13 C pyruvate MRI before surgical resection. Tumor 13 C pyruvate and 13 C lactate images were acquired dynamically. Five patients underwent 2 scans on the same day to assess the intrapatient reproducibility of HP 13 C pyruvate MRI. Tumor metabolic data were compared with histopathology findings. RESULTS Eight patients had tumors with a sufficient metabolite signal-to-noise ratio for analysis; an insufficient tumor signal-to-noise ratio was noted in 2 patients, likely caused by poor tumor perfusion and, in 1 patient, because of technical errors. Of the 8 patients, 3 had high-grade clear cell renal cell carcinoma (ccRCC), 3 had low-grade ccRCC, and 2 had chromophobe RCC. There was a trend toward a higher lactate-to-pyruvate ratio in high-grade ccRCCs compared with low-grade ccRCCs. Both chromophobe RCCs had relatively high lactate-to-pyruvate ratios. Good reproducibility was noted across the 5 patients who underwent 2 HP 13 C pyruvate MRI scans on the same day. CONCLUSIONS The current results demonstrate the feasibility of HP 13 C pyruvate MRI for investigating the metabolic phenotype of localized renal tumors. The initial data indicate good reproducibility of metabolite measurements. In addition, the metabolic data indicate a trend toward differentiating low-grade and high-grade ccRCCs, the most common subtype of renal cancer. LAY SUMMARY Renal tumors are frequently discovered incidentally because of the increased use of medical imaging, but it is challenging to identify which aggressive tumors should be treated. A new metabolic imaging technique was applied to noninvasively predict renal tumor aggressiveness. The imaging results were compared with tumor samples taken during surgery and showed a trend toward differentiating between low-grade and high-grade clear cell renal cell carcinomas, which are the most common type of renal cancers.
Collapse
Affiliation(s)
- Shuyu Tang
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California
| | - Maxwell V Meng
- Department of Urology, University of California-San Francisco, San Francisco, California
| | - James B Slater
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California
| | - Bradley A Stohr
- Department of Pathology, University of California-San Francisco, San Francisco, California
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California
| |
Collapse
|
10
|
Sadeghzadeh M, Wenzel B, Gündel D, Deuther-Conrad W, Toussaint M, Moldovan RP, Fischer S, Ludwig FA, Teodoro R, Jonnalagadda S, Jonnalagadda SK, Schüürmann G, Mereddy VR, Drewes LR, Brust P. Development of Novel Analogs of the Monocarboxylate Transporter Ligand FACH and Biological Validation of One Potential Radiotracer for Positron Emission Tomography (PET) Imaging. Molecules 2020; 25:molecules25102309. [PMID: 32423056 PMCID: PMC7288138 DOI: 10.3390/molecules25102309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Monocarboxylate transporters 1-4 (MCT1-4) are involved in several metabolism-related diseases, especially cancer, providing the chance to be considered as relevant targets for diagnosis and therapy. [18F]FACH was recently developed and showed very promising preclinical results as a potential positron emission tomography (PET) radiotracer for imaging of MCTs. Given that [18F]FACH did not show high blood-brain barrier permeability, the current work is aimed to investigate whether more lipophilic analogs of FACH could improve brain uptake for imaging of gliomas, while retaining binding to MCTs. The 2-fluoropyridinyl-substituted analogs 1 and 2 were synthesized and their MCT1 inhibition was estimated by [14C]lactate uptake assay on rat brain endothelial-4 (RBE4) cells. While compounds 1 and 2 showed lower MCT1 inhibitory potencies than FACH (IC50 = 11 nM) by factors of 11 and 25, respectively, 1 (IC50 = 118 nM) could still be a suitable PET candidate. Therefore, 1 was selected for radiosynthesis of [18F]1 and subsequent biological evaluation for imaging of the MCT expression in mouse brain. Regarding lipophilicity, the experimental log D7.4 result for [18F]1 agrees pretty well with its predicted value. In vivo and in vitro studies revealed high uptake of the new radiotracer in kidney and other peripheral MCT-expressing organs together with significant reduction by using specific MCT1 inhibitor α-cyano-4-hydroxycinnamic acid. Despite a higher lipophilicity of [18F]1 compared to [18F]FACH, the in vivo brain uptake of [18F]1 was in a similar range, which is reflected by calculated BBB permeabilities as well through similar transport rates by MCTs on RBE4 cells. Further investigation is needed to clarify the MCT-mediated transport mechanism of these radiotracers in brain.
Collapse
Affiliation(s)
- Masoud Sadeghzadeh
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
- Correspondence: ; Tel.: +49-341-2341794630; Fax: +49-341-2341794699
| | - Barbara Wenzel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Daniel Gündel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Magali Toussaint
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Rareş-Petru Moldovan
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Steffen Fischer
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Friedrich-Alexander Ludwig
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Rodrigo Teodoro
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Shirisha Jonnalagadda
- Department of Chemistry and Biochemistry, Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA; (S.J.); (S.K.J.); (V.R.M.)
| | - Sravan K. Jonnalagadda
- Department of Chemistry and Biochemistry, Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA; (S.J.); (S.K.J.); (V.R.M.)
| | - Gerrit Schüürmann
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany;
- Institute of Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Venkatram R. Mereddy
- Department of Chemistry and Biochemistry, Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA; (S.J.); (S.K.J.); (V.R.M.)
| | - Lester R. Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, 251 SMed, 1035 University Drive, Duluth, MN 55812, USA;
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| |
Collapse
|
11
|
Baltazar F, Afonso J, Costa M, Granja S. Lactate Beyond a Waste Metabolite: Metabolic Affairs and Signaling in Malignancy. Front Oncol 2020; 10:231. [PMID: 32257942 PMCID: PMC7093491 DOI: 10.3389/fonc.2020.00231] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
To sustain their high proliferation rates, most cancer cells rely on glycolytic metabolism, with production of lactic acid. For many years, lactate was seen as a metabolic waste of glycolytic metabolism; however, recent evidence has revealed new roles of lactate in the tumor microenvironment, either as metabolic fuel or as a signaling molecule. Lactate plays a key role in the different models of metabolic crosstalk proposed in malignant tumors: among cancer cells displaying complementary metabolic phenotypes and between cancer cells and other tumor microenvironment associated cells, including endothelial cells, fibroblasts, and diverse immune cells. This cell metabolic symbiosis/slavery supports several cancer aggressiveness features, including increased angiogenesis, immunological escape, invasion, metastasis, and resistance to therapy. Lactate transport is mediated by the monocarboxylate transporter (MCT) family, while another large family of G protein-coupled receptors (GPCRs), not yet fully characterized in the cancer context, is involved in lactate/acidosis signaling. In this mini-review, we will focus on the role of lactate in the tumor microenvironment, from metabolic affairs to signaling, including the function of lactate in the cancer-cancer and cancer-stromal shuttles, as well as a signaling oncometabolite. We will also review the prognostic value of lactate metabolism and therapeutic approaches designed to target lactate production and transport.
Collapse
Affiliation(s)
- Fátima Baltazar
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
| | - Julieta Afonso
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
| | - Marta Costa
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
| | - Sara Granja
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
12
|
Payen VL, Mina E, Van Hée VF, Porporato PE, Sonveaux P. Monocarboxylate transporters in cancer. Mol Metab 2019; 33:48-66. [PMID: 31395464 PMCID: PMC7056923 DOI: 10.1016/j.molmet.2019.07.006] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023] Open
Abstract
Background Tumors are highly plastic metabolic entities composed of cancer and host cells that can adopt different metabolic phenotypes. For energy production, cancer cells may use 4 main fuels that are shuttled in 5 different metabolic pathways. Glucose fuels glycolysis that can be coupled to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in oxidative cancer cells or to lactic fermentation in proliferating and in hypoxic cancer cells. Lipids fuel lipolysis, glutamine fuels glutaminolysis, and lactate fuels the oxidative pathway of lactate, all of which are coupled to the TCA cycle and OXPHOS for energy production. This review focuses on the latter metabolic pathway. Scope of review Lactate, which is prominently produced by glycolytic cells in tumors, was only recently recognized as a major fuel for oxidative cancer cells and as a signaling agent. Its exchanges across membranes are gated by monocarboxylate transporters MCT1-4. This review summarizes the current knowledge about MCT structure, regulation and functions in cancer, with a specific focus on lactate metabolism, lactate-induced angiogenesis and MCT-dependent cancer metastasis. It also describes lactate signaling via cell surface lactate receptor GPR81. Major conclusions Lactate and MCTs, especially MCT1 and MCT4, are important contributors to tumor aggressiveness. Analyses of MCT-deficient (MCT+/- and MCT−/-) animals and (MCT-mutated) humans indicate that they are druggable, with MCT1 inhibitors being in advanced development phase and MCT4 inhibitors still in the discovery phase. Imaging lactate fluxes non-invasively using a lactate tracer for positron emission tomography would further help to identify responders to the treatments. In cancer, hypoxia and cell proliferation are associated to lactic acid production. Lactate exchanges are at the core of tumor metabolism. Transmembrane lactate trafficking depends on monocarboxylate transporters (MCTs). MCTs are implicated in tumor development and aggressiveness. Targeting MCTs is a therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Valéry L Payen
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium; Pole of Pediatrics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium; Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Erica Mina
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Vincent F Van Hée
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Paolo E Porporato
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
13
|
Javaeed A, Ghauri SK. MCT4 has a potential to be used as a prognostic biomarker - a systematic review and meta-analysis. Oncol Rev 2019; 13:403. [PMID: 31410246 PMCID: PMC6661531 DOI: 10.4081/oncol.2019.403] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
The role of several metabolic changes, such as hypoxia and acidosis, in the tumour environment has caught the attention of researchers in cancer progression and invasion. Lactate transport is one of the acidosis-enhancing processes that are mediated via monocarboxylate transporters (MCTs). We conducted a systematic review and meta-analysis to investigate the expression of two cancer-relevant MCTs (MCT1 and MCT4) and their potential prognostic significance in patients with metastasis of different types of cancer. Studies were included if they reported the number of metastatic tissue samples expressing either low or high levels of MCT1 and/or MCT4 or those revealing the hazard ratios (HRs) of the overall survival (OS) or disease-free survival (DFS) as prognostic indicators. During the period between 2010 and 2018, a total of 20 articles including 3831 patients (56.3% males) were identified. There was a significant association between MCT4 expression (high versus low) and lymph node metastasis [odds ratio (OR)=1.87, 95% confidence interval (CI)=1.10-3.17, P=0.02] and distant metastasis (OR=2.18, 95%CI=1.65-2.86, P<0.001) and the correlation remained significant for colorectal and hepatic cancer in subgroup analysis. For survival analysis, patients with shorter OS periods exhibited a higher MCT4 expression [hazard ratio (HR)=1.78, 95%CI=1.49-2.13, P<0.001], while DFS was shorter in patients with high MCT1 (HR=1.48, 95%CI=1.04-2.10, P=0.03) and MCT4 expression (HR=1.70, 95%CI=1.19-2.42, P=0.003) when compared to their counterparts with low expression levels. Future research studies should consider the pharmacologic inhibition of MCT4 to effectively inhibit cancer progression to metastasis.
Collapse
Affiliation(s)
| | - Sanniya Khan Ghauri
- Department of Emergency Medicine, Shifa International Hospital, Islamabad, Pakistan
| |
Collapse
|
14
|
Guo C, Huang T, Wang QH, Li H, Khanal A, Kang EH, Zhang W, Niu HT, Dong Z, Cao YW. Monocarboxylate transporter 1 and monocarboxylate transporter 4 in cancer-endothelial co-culturing microenvironments promote proliferation, migration, and invasion of renal cancer cells. Cancer Cell Int 2019; 19:170. [PMID: 31297034 PMCID: PMC6599352 DOI: 10.1186/s12935-019-0889-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
Background The Warburg effect demonstrates the importance of glycolysis in the development of primary and metastatic cancers. We aimed to explore the role of monocarboxylate transporter 1 (MCT1) and MCT4, two essential transporters of lactate, in renal cancer progression during cancer-endothelial cell co-culturing. Methods Renal cancer cells (786-O) and human vascular endothelial cells (HUVECs) were single-cultured or co-cultured in transwell membranes in the presence or absence of a MCT-1/MCT-4 specific blocker, 7ACC1. Cell proliferation was evaluated with the CCK-8 kit, while cell migration, after a scratch and invasion in transwell chambers, was evaluated under a microscope. Real-time qPCR and western blot were employed to determine the mRNA and protein levels of MCT1 and MCT4, respectively. The concentration of lactic acid in the culture medium was quantified with an l-Lactic Acid Assay Kit. Results 786-O cells and HUVECs in the co-culturing mode exhibited significantly enhanced proliferation and migration ability, compared with the cells in the single-culturing mode. The expression of MCT1 and MCT4 was increased in both 786-O cells and HUVECs in the co-culturing mode. Co-culturing promoted the invasive ability of 786-O cells, and markedly increased extracellular lactate. Treatments with 7ACC1 attenuated cell proliferation, migration, and invasion, and down-regulated the levels of MCT1/MCT4 expression and extracellular lactate. Conclusions The Warburg effect accompanied with high MCT1/MCT4 expression in the cancer-endothelial microenvironments contributed significantly to renal cancer progression, which sheds new light on targeting MCT1/MCT4 and glycolytic metabolism in order to effectively treat patients with renal cancers.
Collapse
Affiliation(s)
- Chen Guo
- 1Department of Urology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266071 Shandong China
| | - Tao Huang
- 1Department of Urology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266071 Shandong China
| | - Qing-Hai Wang
- 1Department of Urology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266071 Shandong China
| | - Hong Li
- 1Department of Urology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266071 Shandong China
| | - Aashish Khanal
- 1Department of Urology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266071 Shandong China
| | - En-Hao Kang
- 2Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong China
| | - Wei Zhang
- Department of Pathology, 401 Hospital of People's Liberation Army, Qingdao, Shandong China
| | - Hai-Tao Niu
- 1Department of Urology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266071 Shandong China
| | - Zhen Dong
- 1Department of Urology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266071 Shandong China
| | - Yan-Wei Cao
- 1Department of Urology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266071 Shandong China
| |
Collapse
|
15
|
Hutterer GC, Posch F, Buser L, Zigeuner R, Morshäuser L, Otto W, Wild PJ, Burger M, May M, Pichler M, Brookman-May SD. BioScore (B7-H1, survivin, and Ki-67) does not predict cancer-specific mortality in surgically treated patients with renal cell carcinoma: An external validation study. Urol Oncol 2019; 37:510-518. [PMID: 31060796 DOI: 10.1016/j.urolonc.2019.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/09/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND To externally validate' BioScore', a biomarker-based scoring system using immunohistochemical tumor expression levels of B7-H1, survivin, and Ki-67, in a single-center cohort of renal cell carcinoma (RCC) patients. Additionally, we investigated the potential benefit of BioScore as compared to the Mayo Clinic stage, size, grade, and necrosis (SSIGN) score. MATERIALS AND METHODS The validation cohort comprised 393 nonmetastatic RCC patients treated with radical nephrectomy or nephron-sparing surgery from 1999 to 2004. Kaplan-Meier estimators, the log-rank test, uni- and multivariable Cox regression models, and measures of discrimination were used to quantify the prognostic performance of BioScore regarding cancer-specific mortality (CSM). RESULTS During a median follow-up of 7.8 years, 69/132 (52%) deaths were adjudicated to progressive disease. BioScore was weakly associated with CSM in univariable analysis (hazard ratio per 1 point increase = 1.12, 95% confidence interval = 1.02-1.23, P = 0.023). However, this association did not prevail after adjusting for other adverse prognostic factors as represented by the SSIGN score. The discriminative performance of BioScore was very modest (Harrell's C-Index = 0.60) and did not improve the SSIGN score (P = 0.341), which already showed an excellent discrimination, as evidenced by Harrell's C-Index of 0.81. In a sensitivity analysis regarding clear cell RCC patients only, B7-H1 positivity did not emerge as a statistically significant predictor of CSM. CONCLUSION Although a higher BioScore was significantly associated with a higher CSM, the magnitude of this association was weak and not independent from other prognosticators. Moreover, BioScore did not improve the prognostic accuracy of the SSIGN score.
Collapse
Affiliation(s)
- Georg C Hutterer
- Department of Urology, Medical University of Graz, Graz, Austria.
| | - Florian Posch
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Lorenz Buser
- Institute of Pathology and Molecular Pathology, University of Zurich, Zurich, Switzerland
| | - Richard Zigeuner
- Department of Urology, Medical University of Graz, Graz, Austria
| | - Laura Morshäuser
- Department of Urology, Ludwig-Maximilians University (LMU) Munich, Munich, Germany
| | - Wolfgang Otto
- Department of Urology, University of Regensburg, Caritas St. Josef Medical Center, Regensburg, Germany
| | - Peter J Wild
- Institute of Pathology and Molecular Pathology, University of Zurich, Zurich, Switzerland
| | - Maximilian Burger
- Department of Urology, University of Regensburg, Caritas St. Josef Medical Center, Regensburg, Germany
| | - Matthias May
- Department of Urology, St. Elisabeth-Hospital Straubing, Straubing, Germany
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|