1
|
Jones R, Robinson AT, Beach LB, Lindsey ML, Kirabo A, Hinton A, Erlandson KM, Jenkins ND. Exercise to Prevent Accelerated Vascular Aging in People Living With HIV. Circ Res 2024; 134:1607-1635. [PMID: 38781293 PMCID: PMC11126195 DOI: 10.1161/circresaha.124.323975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Given advances in antiretroviral therapy, the mortality rate for HIV infection has dropped considerably over recent decades. However, people living with HIV (PLWH) experience longer life spans coupled with persistent immune activation despite viral suppression and potential toxicity from long-term antiretroviral therapy use. Consequently, PLWH face a cardiovascular disease (CVD) risk more than twice that of the general population, making it the leading cause of death among this group. Here, we briefly review the epidemiology of CVD in PLWH highlighting disparities at the intersections of sex and gender, age, race/ethnicity, and the contributions of social determinants of health and psychosocial stress to increased CVD risk among individuals with marginalized identities. We then overview the pathophysiology of HIV and discuss the primary factors implicated as contributors to CVD risk among PLWH on antiretroviral therapy. Subsequently, we highlight the functional evidence of premature vascular dysfunction as an early pathophysiological determinant of CVD risk among PLWH, discuss several mechanisms underlying premature vascular dysfunction in PLWH, and synthesize current research on the pathophysiological mechanisms underlying accelerated vascular aging in PLWH, focusing on immune activation, chronic inflammation, and oxidative stress. We consider understudied aspects such as HIV-related changes to the gut microbiome and psychosocial stress, which may serve as mechanisms through which exercise can abrogate accelerated vascular aging. Emphasizing the significance of exercise, we review various modalities and their impacts on vascular health, proposing a holistic approach to managing CVD risks in PLWH. The discussion extends to critical future study areas related to vascular aging, CVD, and the efficacy of exercise interventions, with a call for more inclusive research that considers the diversity of the PLWH population.
Collapse
Affiliation(s)
- Raymond Jones
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Lauren B. Beach
- Department of Medical Social Sciences, Northwestern, Chicago, IL
- Department of Preventive Medicine, Northwestern, Chicago, IL
| | - Merry L. Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, TN
- Research Service, Nashville VA Medical Center, Nashville, TN
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Nashville, TN
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN
- Vanderbilt Institute for Global Health, Nashville, TN
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | | | - Nathaniel D.M. Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| |
Collapse
|
2
|
Şevgin Ö, Özer S. Effect of physical exercise on inactivated COVID-19 vaccine antibody response in the elderly. Hum Antibodies 2024; 32:19-24. [PMID: 38339926 DOI: 10.3233/hab-230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
BACKGROUND Physical exercise has been proposed as a new alternative to chemical adjuvants. OBJECTIVE To investigate the relationship between regular exercise and post-vaccination antibody response in the elderly. METHODS The study was conducted with the elderly over the age of 65. 30 participants we randomized into 2 groups and divided into exercise and control groups. The experimental group received a 12-week exercise program. The control group was followed up without any exercise. The day on which the second dose of the vaccine was administered to all participants was considered day 0. The antibody level in the serum samples was taken 15 days and 12 weeks after the vaccination. The antibody concentration was measured after the second dose of vaccination. RESULTS The mean antibody level in the control group was 69.4 U/ml and 56.4 U/ml 15 days and 12 weeks after the second vaccination. The mean antibody level in the exercise group was 74 U/ml and 71.6 U/ml 15 days and 12 weeks after the second vaccination. CONCLUSIONS Regular exercise of light to moderate intensity may increase post-vaccination antibody response in the elderly. Therefore, exercise can be used as a behavioral adjuvant to improve the vaccine efficacy in the elderly.
Collapse
Affiliation(s)
- Ömer Şevgin
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Üsküdar University, Istanbul, Turkey
| | - Songül Özer
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Üsküdar University, Istanbul, Turkey
| |
Collapse
|
3
|
Nehar-Belaid D, Sokolowski M, Ravichandran S, Banchereau J, Chaussabel D, Ucar D. Baseline immune states (BIS) associated with vaccine responsiveness and factors that shape the BIS. Semin Immunol 2023; 70:101842. [PMID: 37717525 DOI: 10.1016/j.smim.2023.101842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Vaccines are among the greatest inventions in medicine, leading to the elimination or control of numerous diseases, including smallpox, polio, measles, rubella, and, most recently, COVID-19. Yet, the effectiveness of vaccines varies among individuals. In fact, while some recipients mount a robust response to vaccination that protects them from the disease, others fail to respond. Multiple clinical and epidemiological factors contribute to this heterogeneity in responsiveness. Systems immunology studies fueled by advances in single-cell biology have been instrumental in uncovering pre-vaccination immune cell types and genomic features (i.e., the baseline immune state, BIS) that have been associated with vaccine responsiveness. Here, we review clinical factors that shape the BIS, and the characteristics of the BIS associated with responsiveness to frequently studied vaccines (i.e., influenza, COVID-19, bacterial pneumonia, malaria). Finally, we discuss potential strategies to enhance vaccine responsiveness in high-risk groups, focusing specifically on older adults.
Collapse
Affiliation(s)
| | - Mark Sokolowski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | | | | | - Damien Chaussabel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA; Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
4
|
Whittaker AC, De Nys L, Brindle RC, Drayson MT. Physical activity and sleep relate to antibody maintenance following naturalistic infection and/or vaccination in older adults. Brain Behav Immun Health 2023; 32:100661. [PMID: 37456624 PMCID: PMC10344668 DOI: 10.1016/j.bbih.2023.100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Health behaviours such as being physically active and having good quality sleep have been associated with decreased susceptibility to infection and stronger antibody responses to vaccination. Less is known about how such factors might influence the maintenance of immunity following naturalistic infection and/or prior vaccination, particularly among older adults who may have formed initial antibodies some time ago. This analysis explored antibody levels against a range of common infectious diseases in 104 older adults (60 women) aged 65+ years, and whether these relate to self-reported physical activity (PA) and sleep. PA and sleep were measured subjectively through standardized questions. Antibody levels to a range of common pathogens, including pneumococcal (Pn) and meningococcal (Men) serotypes, Haemophilus influenza type b, diphtheria, and tetanus were assayed using Multiplex technology. Higher PA at baseline related to higher antibody levels against three Pn serotypes and MenY, and higher PA at one month with higher levels against six Pn serotypes. Longer time in bed related to higher antibody levels against Pn4, and longer sleep related to higher levels against Pn19f. More difficulty staying awake in the day related to lower antibodies against Pn19a, Pn19f, MenA and MenY, and more frequent daytime napping related to lower levels against three Pn serotypes and MenY. Using clinically protective antibody thresholds as an outcome showed similar results for PA, but effects for sleep became non-significant, with the exception of time in bed. This extends beyond existing literature demonstrating associations between PA and sleep and peak antibody response to vaccination to antibody maintenance. Longitudinal research with objective measures of health behaviours is warranted.
Collapse
Affiliation(s)
| | - Len De Nys
- Faculty of Health Sciences and Sport, University of Stirling, UK
| | - Ryan C. Brindle
- Department of Cognitive and Behavioural Science & Neuroscience Program, Washington and Lee University, USA
| | - Mark T. Drayson
- Institute of Immunology and Immunotherapy, University of Birmingham, UK
| |
Collapse
|
5
|
Brummer C, Pukrop T, Wiskemann J, Bruss C, Ugele I, Renner K. Can Exercise Enhance the Efficacy of Checkpoint Inhibition by Modulating Anti-Tumor Immunity? Cancers (Basel) 2023; 15:4668. [PMID: 37760634 PMCID: PMC10526963 DOI: 10.3390/cancers15184668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Immune checkpoint inhibition (ICI) has revolutionized cancer therapy. However, response to ICI is often limited to selected subsets of patients or not durable. Tumors that are non-responsive to checkpoint inhibition are characterized by low anti-tumoral immune cell infiltration and a highly immunosuppressive tumor microenvironment. Exercise is known to promote immune cell circulation and improve immunosurveillance. Results of recent studies indicate that physical activity can induce mobilization and redistribution of immune cells towards the tumor microenvironment (TME) and therefore enhance anti-tumor immunity. This suggests a favorable impact of exercise on the efficacy of ICI. Our review delivers insight into possible molecular mechanisms of the crosstalk between muscle, tumor, and immune cells. It summarizes current data on exercise-induced effects on anti-tumor immunity and ICI in mice and men. We consider preclinical and clinical study design challenges and discuss the role of cancer type, exercise frequency, intensity, time, and type (FITT) and immune sensitivity as critical factors for exercise-induced impact on cancer immunosurveillance.
Collapse
Affiliation(s)
- Christina Brummer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany;
- Comprehensive Cancer Center Ostbayern (CCCO), 93053 Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany;
- Comprehensive Cancer Center Ostbayern (CCCO), 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Joachim Wiskemann
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Christina Bruss
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany;
| | - Ines Ugele
- Department of Otorhinolaryngology, University Hospital Regensburg, 93053 Regensburg, Germany; (I.U.); (K.R.)
| | - Kathrin Renner
- Comprehensive Cancer Center Ostbayern (CCCO), 93053 Regensburg, Germany
- Department of Otorhinolaryngology, University Hospital Regensburg, 93053 Regensburg, Germany; (I.U.); (K.R.)
| |
Collapse
|
6
|
Cadar AN, Martin DE, Bartley JM. Targeting the hallmarks of aging to improve influenza vaccine responses in older adults. Immun Ageing 2023; 20:23. [PMID: 37198683 PMCID: PMC10189223 DOI: 10.1186/s12979-023-00348-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Age-related declines in immune response pose a challenge in combating diseases later in life. Influenza (flu) infection remains a significant burden on older populations and often results in catastrophic disability in those who survive infection. Despite having vaccines designed specifically for older adults, the burden of flu remains high and overall flu vaccine efficacy remains inadequate in this population. Recent geroscience research has highlighted the utility in targeting biological aging to improve multiple age-related declines. Indeed, the response to vaccination is highly coordinated, and diminished responses in older adults are likely not due to a singular deficit, but rather a multitude of age-related declines. In this review we highlight deficits in the aged vaccine responses and potential geroscience guided approaches to overcome these deficits. More specifically, we propose that alternative vaccine platforms and interventions that target the hallmarks of aging, including inflammation, cellular senescence, microbiome disturbances, and mitochondrial dysfunction, may improve vaccine responses and overall immunological resilience in older adults. Elucidating novel interventions and approaches that enhance immunological protection from vaccination is crucial to minimize the disproportionate effect of flu and other infectious diseases on older adults.
Collapse
Affiliation(s)
- Andreia N Cadar
- UConn Center On Aging and Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Dominique E Martin
- UConn Center On Aging and Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Jenna M Bartley
- UConn Center On Aging and Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| |
Collapse
|
7
|
Choi JP, Ayoub G, Ham J, Huh Y, Choi SE, Hwang YK, Noh JY, Kim SH, Song JY, Kim ES, Chang YS. Exercise With a Novel Digital Device Increased Serum Anti-influenza Antibody Titers After Influenza Vaccination. Immune Netw 2023; 23:e18. [PMID: 37179746 PMCID: PMC10166655 DOI: 10.4110/in.2023.23.e18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 05/15/2023] Open
Abstract
It has been reported that some exercise could enhance the anti-viral antibody titers after vaccination including influenza and coronavirus disease 2019 vaccines. We developed SAT-008, a novel digital device, consists of physical activities and activities related to the autonomic nervous system. We assessed the feasibility of SAT-008 to boost host immunity after an influenza vaccination by a randomized, open-label, and controlled study on adults administered influenza vaccines in the previous year. Among 32 participants, the SAT-008 showed a significant increase in the anti-influenza antibody titers assessed by hemagglutination-inhibition test against antigen subtype B Yamagata lineage after 4 wk of vaccination and subtype B Victoria lineage after 12 wk (p<0.05). There was no difference in the antibody titers against subtype "A." The SAT-008 also showed significant increase in the plasma cytokine levels of IL-10, IL-1β, and IL-6 at weeks 4 and 12 after the vaccination (p<0.05). A new approach using the digital device may boost host immunity against virus via vaccine adjuvant-like effects. Trial Registration ClinicalTrials.gov Identifier: NCT04916145.
Collapse
Affiliation(s)
- Jun-Pyo Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea
| | | | - Jarang Ham
- S-Alpha Therapeutics, Inc., Seoul 06628, Korea
| | | | | | - Yu-Kyoung Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea
| | - Sae-Hoon Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea
| | - Eu Suk Kim
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea
| |
Collapse
|
8
|
Slusher AL, Acevedo EO. Stress induced proinflammatory adaptations: Plausible mechanisms for the link between stress and cardiovascular disease. Front Physiol 2023; 14:1124121. [PMID: 37007994 PMCID: PMC10065149 DOI: 10.3389/fphys.2023.1124121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Initiating from Hans Selye’s conceptualization of stress physiology, to our present understanding of allostatic load as the cumulative burden of chronic psychological stress and life events, investigators have sought to identify the physiological mechanisms that link stress to health and disease. Of particular interest has been the link between psychological stress and cardiovascular disease (CVD), the number one cause of death in the United States. In this regard, attention has been directed toward alterations in the immune system in response to stress that lead to increased levels of systemic inflammation as a potential pathway by which stress contributes to the development of CVD. More specifically, psychological stress is an independent risk factor for CVD, and as such, mechanisms that explain the connection of stress hormones to systemic inflammation have been examined to gain a greater understanding of the etiology of CVD. Research on proinflammatory cellular mechanisms that are activated in response to psychological stress demonstrates that the ensuing low-grade inflammation mediates pathways that contribute to the development of CVD. Interestingly, physical activity, along with its direct benefits to cardiovascular health, has been shown to buffer against the harmful consequences of psychological stress by “toughening” the SAM system, HPA axis, and immune system as “cross-stressor adaptations” that maintain allostasis and prevent allostatic load. Thus, physical activity training reduces psychological stress induced proinflammation and attenuates the activation of mechanisms associated with the development of cardiovascular disease. Finally, COVID-19 associated psychological stress and its associated health risks has provided another model for examining the stress-health relationship.
Collapse
Affiliation(s)
- Aaron L. Slusher
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
- Department of Athletics, Yale University, New Haven, CT, United States
- *Correspondence: Aaron L. Slusher,
| | - Edmund O. Acevedo
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
9
|
Barni L, Carrasco-Vega E, Olivieri M, Galán-Mercant A, Guiducci S, Picariello F, González-Sánchez M. Does Physical Exercise Enhance the Immune Response after Vaccination? A Systematic Review for Clinical Indications of COVID-19 Vaccine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5183. [PMID: 36982095 PMCID: PMC10049110 DOI: 10.3390/ijerph20065183] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Stimulating protective immunity with vaccines appears to be the most promising option for providing widespread moderate to high protection against COVID-19 in people over the age of 18. Regular exercise improves the immune response, transmitting possible benefits against virus infections. The aim of this review is to study the effects of physical activity on vaccine injections, helping to develop new recommendations for COVID-19 vaccination campaigns. METHODS A comprehensive review of the existing literature was undertaken using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The internal quality of the studies was assessed according to the Physiotherapy Evidence Database (PEDro) scale. The outcomes analyzed were antibody titer, the level of lymphocytes CD4, CD8, InterLeukin 6 (IL6), leukocytes level, the visual analogue scale (VAS) for overall pain rating, arm and forearm circumferences and volume of oxygen (VO2) peak. RESULTS Fourteen articles were selected for the analysis. The majority of studies were randomized controlled trials (RCT) (n = 8) and controlled trials (CT) (n = 6). According to PEDro, the 'fair' category (n = 7) was the most represented, followed by 'good' (n = 6) and 'excellent' (n = 1). Physical training showed a positive effect on antibody titers of the vaccine; yet, different variables seem to influence antibody titers: higher new vs. old antigen in the vaccine, higher in younger vs. older individuals, and higher in females vs. males. After exercise, when analyzing variables of direct response to the vaccine, such as the amount of CD4, IL-6 and leukocytes, higher levels were observed in the patients who performed physical exercise compared to the control group. In the same way, better results were observed in physiological variables such as VO2 and limb circumferences, or subjective variables such as pain, which showed better results than the control group. CONCLUSIONS The immune response (antibody titers) depends on age, gender and the intensity of physical activity: long-term protocols at moderate intensity are the most recommended. All of these aspects also have to be carefully considered for the COVID-19 vaccination.
Collapse
Affiliation(s)
- Luca Barni
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain; (L.B.); (E.C.-V.); (M.G.-S.)
| | - Elio Carrasco-Vega
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain; (L.B.); (E.C.-V.); (M.G.-S.)
| | | | - Alejandro Galán-Mercant
- Institute of Biomedicine of Cádiz (INIBICA), 11009 Cádiz, Spain
- MOVE-IT Research Group, Department of Nursing and Physiotherapy, Faculty of Health Sciences, University of Cádiz, 11009 Cádiz, Spain
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, Divisions of Internal Medicine and Rheumatology AOUC, University of Florence, 50134 Florence, Italy;
| | - Felice Picariello
- Department of Public Health, University Federico II of Naples, 80131 Naples, Italy;
| | - Manuel González-Sánchez
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain; (L.B.); (E.C.-V.); (M.G.-S.)
- Institute of Biomedicine of Málaga (IBIMA), 29010 Málaga, Spain
| |
Collapse
|
10
|
Baker FL, Zúñiga TM, Smith KA, Batatinha H, Kulangara TS, Seckeler MD, Burgess SC, Katsanis E, Simpson RJ. Exercise mobilizes diverse antigen specific T-cells and elevates neutralizing antibodies in humans with natural immunity to SARS CoV-2. Brain Behav Immun Health 2023; 28:100600. [PMID: 36743994 PMCID: PMC9886396 DOI: 10.1016/j.bbih.2023.100600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023] Open
Abstract
Epidemiological data suggest that physical activity protects against severe COVID-19 and improves clinical outcomes, but how exercise augments the SARS-CoV-2 viral immune response has yet to be elucidated. Here we determine the antigen-specific CD4 and CD8 T-cell and humoral immunity to exercise in non-vaccinated individuals with natural immunity to SARS CoV-2, using whole-blood SARS-CoV-2 peptide stimulation assays, IFN-γ ELISPOT assays, 8-color flow cytometry, deep T-cell receptor (TCR) β sequencing, and anti-RBD-1 neutralizing antibody serology. We found that acute exercise reliably mobilized (∼2.5-fold increase) highly functional SARS-CoV-2-specific T-cells to the blood compartment in those with natural immunity to the virus. The mobilized cells reacted with spike protein (including alpha (α) and delta (δ)-variants), membrane, and nucleocapsid peptides in those previously infected but not in controls. Both groups reliably mobilized T-cells reacting with Epstein-Barr viral peptides. Exercise mobilized SARS-CoV-2 specific T-cells maintained broad TCR-β diversity with no impact on CDR3 length or V and J family gene usage. Exercise predominantly mobilized MHC I restricted (i.e. CD8+) SARS-CoV-2 specific T-cells that recognized ORF1ab, surface, ORF7b, nucleocapsid, and membrane proteins. SARS-CoV-2 neutralizing antibodies were transiently elevated ∼1.5-fold during exercise after infection. In conclusion, we provide novel data on a potential mechanism by which exercise could increase SARS-CoV-2 immunosurveillance via the mobilization and redistribution of antigen-specific CD8 T-cells and neutralizing antibodies. Further research is needed to define the tissue specific disease protective effects of exercise as SARS-CoV-2 continues to evolve, as well as the impact of COVID-19 vaccination on this response.
Collapse
Affiliation(s)
- Forrest L. Baker
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States,Department of Pediatrics, The University of Arizona, Tucson, AZ, United States,Corresponding author. School of Nutritional Sciences and Wellness, The University of Arizona, 1177 E. Fourth Street Shantz Building Room 308, Tucson, AZ, 85721, United States
| | - Tiffany M. Zúñiga
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
| | - Kyle A. Smith
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
| | - Helena Batatinha
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
| | - Terese S. Kulangara
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
| | - Michael D. Seckeler
- Department of Pediatrics (Cardiology), The University of Arizona, Tucson, AZ, United States
| | - Shane C. Burgess
- Department of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States,Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
| | - Emmanuel Katsanis
- Department of Pediatrics, The University of Arizona, Tucson, AZ, United States,Department of Immunobiology, The University of Arizona, Tucson, AZ, United States,The University of Arizona Cancer Center, Tucson, AZ, United States,Department of Medicine, The University of Arizona, Tucson, AZ, United States,Department of Pathology, The University of Arizona, Tucson, AZ, United States
| | - Richard J. Simpson
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States,Department of Pediatrics, The University of Arizona, Tucson, AZ, United States,Department of Immunobiology, The University of Arizona, Tucson, AZ, United States,The University of Arizona Cancer Center, Tucson, AZ, United States
| |
Collapse
|
11
|
Qiu Y, Fernández-García B, Lehmann HI, Li G, Kroemer G, López-Otín C, Xiao J. Exercise sustains the hallmarks of health. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:8-35. [PMID: 36374766 PMCID: PMC9923435 DOI: 10.1016/j.jshs.2022.10.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 05/23/2023]
Abstract
Exercise has long been known for its active role in improving physical fitness and sustaining health. Regular moderate-intensity exercise improves all aspects of human health and is widely accepted as a preventative and therapeutic strategy for various diseases. It is well-documented that exercise maintains and restores homeostasis at the organismal, tissue, cellular, and molecular levels to stimulate positive physiological adaptations that consequently protect against various pathological conditions. Here we mainly summarize how moderate-intensity exercise affects the major hallmarks of health, including the integrity of barriers, containment of local perturbations, recycling and turnover, integration of circuitries, rhythmic oscillations, homeostatic resilience, hormetic regulation, as well as repair and regeneration. Furthermore, we summarize the current understanding of the mechanisms responsible for beneficial adaptations in response to exercise. This review aimed at providing a comprehensive summary of the vital biological mechanisms through which moderate-intensity exercise maintains health and opens a window for its application in other health interventions. We hope that continuing investigation in this field will further increase our understanding of the processes involved in the positive role of moderate-intensity exercise and thus get us closer to the identification of new therapeutics that improve quality of life.
Collapse
Affiliation(s)
- Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Benjamin Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33011, Spain; Department of Morphology and Cell Biology, Anatomy, University of Oviedo, Oviedo 33006, Spain
| | - H Immo Lehmann
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75231, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris 75015, France.
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo 33006, Spain; Centro de Investigación Biomédica en Red Enfermedades Cáncer (CIBERONC), Oviedo 33006, Spain.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
12
|
Green I, Merzon E, Vinker S, Golan-Cohen A, Israel A, Scheinowitz M, Ishai R, Ashkenazi S, Magen E. A higher frequency of physical activity is associated with reduced rates of SARS-CoV-2 infection. Eur J Gen Pract 2022:1-7. [PMID: 36342205 DOI: 10.1080/13814788.2022.2138855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Physical activity (PA) is associated with health benefits. Previous studies have shown that regular PA decreases the incidence of viral respiratory tract infections, but data on severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection are unavailable. OBJECTIVES The objective of this study is to examine the association between PA frequency and SARS-CoV-2 infection. METHODS A population-based cross-sectional study was conducted on data from 1 February 2020 to 31 December 2020, using the registry of Leumit Health Services (LHS), a national health maintenance organisation in Israel. All LHS patients aged 18 to 80 years who underwent at least one RT-PCR test for SARS-CoV-2 during the study period were included. We examined the association between PA frequency (hours per week) and being tested positive for SARS-CoV-2. RESULTS Of 113,075 subjects tested for SARS-CoV-2 by RT-PCR (mean age 41.6 years, 54.4% female), 17,465 (15%) were positive. In the SARS-CoV-2-negative group, significantly more subjects were engaged with PA than in the SARS-CoV-2-positive group [crude odds ratio (OR) for any PA 0.75 (95% confidence interval (CI) 0.72-0.77)]. After adjusting for possible confounders, PA frequency had a significant negative association with the likelihood of being SARS-CoV-2 positive (adjusted OR 0.67, 95% CI 0.64-0.68). Moreover, as the frequency of PA increased, the ORs of being SARS-CoV-2-positive decreased (occasional PA: OR 0.71, 95% CI 0.67-0.74; PA 1-3 times/week: OR 0.62, 95% CI 0.58-0.65 and PA > 3 times/week: OR 0.54, 95% CI 0.49 - 0.59). CONCLUSION Our large population-based study in patients undergoing SARS-CoV-2 RT-PCR testing showed that a higher frequency of PA is associated with a lower rate of positive test results.
Collapse
Affiliation(s)
- Ilan Green
- Leumit Health Services, Tel Aviv, Israel
- Department of Family Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eugene Merzon
- Leumit Health Services, Tel Aviv, Israel
- The Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Shlomo Vinker
- Leumit Health Services, Tel Aviv, Israel
- Department of Family Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avivit Golan-Cohen
- Leumit Health Services, Tel Aviv, Israel
- Department of Family Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Mickey Scheinowitz
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel
- Sylvan Adams Sports Institute, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Neufeld Cardiac Research Institute, Sheba Medical Center, Tel-Hashomer, Israel
| | - Reuven Ishai
- Department of Ear, Nose and Throat, and Head & Surgery, Rambam Medical Center, Haifa, Israel
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Shai Ashkenazi
- The Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Eli Magen
- Leumit Health Services, Tel Aviv, Israel
- Medicine C Department, Clinical Immunology and Allergy Division, Barzilai University Medical Center, Ben-Gurion University of the Negev, Ashkelon, Israel
| |
Collapse
|
13
|
Crescioli C. Vitamin D, exercise, and immune health in athletes: A narrative review. Front Immunol 2022; 13:954994. [PMID: 36211340 PMCID: PMC9539769 DOI: 10.3389/fimmu.2022.954994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Vitamin D exerts important extra-skeletal effects, exhibiting an exquisite immune regulatory ability, affecting both innate and adaptive immune responses through the modulation of immunocyte function and signaling. Remarkably, the immune function of working skeletal muscle, which is fully recognized to behave as a secretory organ with immune capacity, is under the tight control of vitamin D as well. Vitamin D status, meaning hormone sufficiency or insufficiency, can push toward strengthening/stabilization or decline of immune surveillance, with important consequences for health. This aspect is particularly relevant when considering the athletic population: while exercising is, nowadays, the recommended approach to maintain health and counteract inflammatory processes, “too much” exercise, often experienced by athletes, can increase inflammation, decrease immune surveillance, and expose them to a higher risk of diseases. When overexercise intersects with hypovitaminosis D, the overall effects on the immune system might converge into immune depression and higher vulnerability to diseases. This paper aims to provide an overview of how vitamin D shapes human immune responses, acting on the immune system and skeletal muscle cells; some aspects of exercise-related immune modifications are addressed, focusing on athletes. The crossroad where vitamin D and exercise meet can profile whole-body immune response and health.
Collapse
|
14
|
Gualano B, Lemes ÍR, da Silva RP, Pinto AJ, Mazzolani BC, Smaira FI, Sieczkowska SM, Aikawa NE, Pasoto S, Medeiros-Ribeiro AC, Saad C, Yuk E, Silva C, Swinton P, Hallal PC, Roschel H, Bonfa E. Physical activity and antibody persistence 6 months after the second dose of CoronaVac in immunocompromised patients. Scand J Med Sci Sports 2022; 32:1510-1515. [PMID: 35844042 DOI: 10.1111/sms.14213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/17/2022]
Abstract
This prospective cohort study within an open-label, single-arm, phase 4 vaccination trial (clinicaltrials.gov #NCT04754698) aimed to investigate the association between physical activity and persistent anti-SARS-CoV-2 antibodies 6 months after two-dose schedule of CoronaVac in autoimmune rheumatic diseases (ARD) patients (n = 748). Persistent immunogenicity 6 months after the full-course vaccination was assessed using seroconversion rates of total anti-SARS-CoV-2 S1/S2 IgG, geometric mean titers of anti-S1/S2 IgG (GMT), and frequency of positive neutralizing antibodies (NAb). Physical activity was assessed trough questionnaire. Adjusted point estimates from logistic regression models indicated that physically active patients had greater odds of seroconversion rates (OR: 1.5 [95%CI: 1.1 to 2.1]) and NAb positivity (OR: 1.5 [95%CI: 1.0 to 2.1]), and approximately 43% greater GMT (42.8% [95%CI: 11.9 to 82.2]) than inactive ones. In conclusion, among immunocompromised patients, being physically active was associated with an increment in antibody persistence through 6 months after a full-course of an inactivated SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Bruno Gualano
- Applied Physiology & Nutrition Research Group, University of São Paulo, São Paulo, Brazil.,Food Research Center, University of São Paulo, São Paulo, Brazil
| | - Ítalo Ribeiro Lemes
- Applied Physiology & Nutrition Research Group, University of São Paulo, São Paulo, Brazil
| | - Rafael Pires da Silva
- Applied Physiology & Nutrition Research Group, University of São Paulo, São Paulo, Brazil
| | - Ana Jéssica Pinto
- Applied Physiology & Nutrition Research Group, University of São Paulo, São Paulo, Brazil.,Division of Endocrinology, Metabolism, and Diabetes and Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bruna Caruso Mazzolani
- Applied Physiology & Nutrition Research Group, University of São Paulo, São Paulo, Brazil
| | - Fabiana Infante Smaira
- Applied Physiology & Nutrition Research Group, University of São Paulo, São Paulo, Brazil
| | | | - Nádia Emi Aikawa
- Rheumatology Division, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Sandra Pasoto
- Rheumatology Division, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Cristina Medeiros-Ribeiro
- Rheumatology Division, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Carla Saad
- Rheumatology Division, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Emily Yuk
- Rheumatology Division, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Clovis Silva
- Rheumatology Division, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil.,Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Pedro Curi Hallal
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group, University of São Paulo, São Paulo, Brazil
| | - Eloisa Bonfa
- Rheumatology Division, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Dinas PC, Koutedakis Y, Ioannou LG, Metsios G, Kitas GD. Effects of Exercise and Physical Activity Levels on Vaccination Efficacy: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2022; 10:769. [PMID: 35632525 PMCID: PMC9146578 DOI: 10.3390/vaccines10050769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023] Open
Abstract
Objective: We examined whether different intensities of exercise and/or physical activity (PA) levels affected and/or associated with vaccination efficacy. Methods: A systematic review and meta-analysis was conducted and registered with PROSPERO (CRD42021230108). The PubMed, EMBASE, Cochrane Library (trials), SportDiscus, and CINAHL databases were searched up to January 2022. Results: In total, 38 eligible studies were included. Chronic exercise increased influenza antibodies (standardized mean difference (SMD) = 0.49, confidence interval (CI) = 0.25−0.73, Z = 3.95, I2 = 90%, p < 0.01), which was mainly driven by aerobic exercise (SMD = 0.39, CI = 0.19−0.58, Z = 3.96, I2 = 77%, p < 0.01) as opposed to combined (aerobic + resistance; p = 0.07) or other exercise types (i.e., taiji and qigong, unspecified; p > 0.05). PA levels positively affected antibodies in response to influenza vaccination (SMD = 0.18, CI = 0.02−0.34, Z = 2.21, I2 = 76%, p = 0.03), which was mainly driven by high PA levels compared to moderate PA levels (Chi2 = 10.35, I2 = 90.3%, p < 0.01). Physically active individuals developed influenza antibodies in response to vaccination in >4 weeks (SMD = 0.64, CI = 0.30−0.98, Z = 3.72, I2 = 83%, p < 0.01) as opposed to <4 weeks (p > 0.05; Chi2 = 13.40, I2 = 92.5%, p < 0.01) post vaccination. Conclusion: Chronic aerobic exercise or high PA levels increased influenza antibodies in humans more than vaccinated individuals with no participation in exercise/PA. The evidence regarding the effects of exercise/PA levels on antibodies in response to vaccines other than influenza is extremely limited.
Collapse
Affiliation(s)
- Petros C. Dinas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece;
| | - Yiannis Koutedakis
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece;
- Faculty of Education Health & Wellbeing, University of Wolverhampton, Walsall WS1 3BD, UK;
| | - Leonidas G. Ioannou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece;
| | - George Metsios
- Faculty of Education Health & Wellbeing, University of Wolverhampton, Walsall WS1 3BD, UK;
- Department of Nutrition and Dietetics, University of Thessaly, 42100 Trikala, Greece
- Dudley Group NHS Foundation Trust and School of Sports and Exercise Science, University of Birmingham, Birmingham B15 2TT, UK;
| | - George D. Kitas
- Dudley Group NHS Foundation Trust and School of Sports and Exercise Science, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
16
|
Niemiro GM, Coletta AM, Agha NH, Mylabathula PL, Baker FL, Brewster AM, Bevers TB, Fuentes-Mattei E, Basen-Engquist K, Katsanis E, Gilchrist SC, Simpson RJ. Salutary effects of moderate but not high intensity aerobic exercise training on the frequency of peripheral T-cells associated with immunosenescence in older women at high risk of breast cancer: a randomized controlled trial. Immun Ageing 2022; 19:17. [PMID: 35321743 PMCID: PMC8941789 DOI: 10.1186/s12979-022-00266-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/31/2022] [Indexed: 12/20/2022]
Abstract
Background Immunosenescence is described as age-associated changes within the immune system that are responsible for decreased immunity and increased cancer risk. Physically active individuals have fewer ‘senescent’ and more naïve T-cells compared to their sedentary counterparts, but it is not known if exercise training can rejuvenate ‘older looking’ T-cell profiles. We determined the effects of 12-weeks supervised exercise training on the frequency of T-cell subtypes in peripheral blood and their relationships with circulating levels of the muscle-derived cytokines (i.e. ‘myokines’) IL-6, IL-7, IL-15 and osteonectin in older women at high risk of breast cancer. The intervention involved 3 sessions/week of either high intensity interval exercise (HIIT) or moderate intensity continuous exercise (MICT) and were compared to an untrained control (UC) group. Results HIIT decreased total granulocytes, CD4+ T-cells, CD4+ naïve T-cells, CD4+ recent thymic emigrants (RTE) and the CD4:CD8 ratio after training, whereas MICT increased total lymphocytes and CD8 effector memory (EM) T-cells. The change in total T-cells, CD4+ naïve T-cells, CD4+ central memory (CM) T-cells and CD4+ RTE was elevated after MICT compared to HIIT. Changes in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \dot{\mathrm{V}}{\mathrm{O}}_{2\max } $$\end{document}V˙O2max after training, regardless of exercise prescription, was inversely related to the change in highly differentiated CD8+ EMRA T-cells and positively related to changes in β2-adrenergic receptor (β2-AR) expression on CM CD4+ and CM CD8+ T-cells. Plasma myokine levels did not change significantly among the groups after training, but individual changes in IL-7 were positively related to changes in the number of β2-AR expressing CD4 naïve T cells in both exercise groups but not controls. Further, CD4 T-cells and CD4 naive T-cells were negatively related to changes in IL-6 and osteonectin after HIIT but not MICT, whereas CD8 EMRA T-cells were inversely related to changes in IL-15 after MICT but not HIIT. Conclusions Aerobic exercise training alters the frequency of peripheral T-cells associated with immunosenescence in middle aged/older women at high risk of breast cancer, with HIIT (pro-senescent) and MICT (anti-senescent) evoking divergent effects. Identifying the underlying mechanisms and establishing whether exercise-induced changes in peripheral T-cell numbers can alter the risk of developing breast cancer warrants investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-022-00266-z.
Collapse
Affiliation(s)
- Grace M Niemiro
- Department of Pediatrics, The University of Arizona, Tucson, Arizona, USA.,The University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Adriana M Coletta
- Department of Health and Kinesiology, The University of Utah, Salt Lake City, Utah, USA.,Cancer Control and Population Sciences Program, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Nadia H Agha
- Department of Health and Human Performance, University of Houston, Houston, Texas, USA
| | - Preteesh Leo Mylabathula
- Department of Pediatrics, The University of Arizona, Tucson, Arizona, USA.,Department of Health and Human Performance, University of Houston, Houston, Texas, USA.,School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, Arizona, USA
| | - Forrest L Baker
- Department of Pediatrics, The University of Arizona, Tucson, Arizona, USA.,Department of Health and Human Performance, University of Houston, Houston, Texas, USA.,School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, Arizona, USA
| | - Abenaa M Brewster
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Therese B Bevers
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Enrique Fuentes-Mattei
- Department of Radiation Oncology Clinical Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Karen Basen-Engquist
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emmanuel Katsanis
- Department of Pediatrics, The University of Arizona, Tucson, Arizona, USA.,The University of Arizona Cancer Center, Tucson, Arizona, USA.,Department of Immunobiology, The University of Arizona, Tucson, Arizona, USA
| | - Susan C Gilchrist
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard J Simpson
- Department of Pediatrics, The University of Arizona, Tucson, Arizona, USA. .,The University of Arizona Cancer Center, Tucson, Arizona, USA. .,Department of Health and Human Performance, University of Houston, Houston, Texas, USA. .,School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, Arizona, USA. .,Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA. .,Department of Immunobiology, The University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
17
|
Gualano B, Lemes IR, Silva RP, Pinto AJ, Mazzolani BC, Smaira FI, Sieczkowska SM, Aikawa NE, Pasoto SG, Medeiros-Ribeiro AC, Saad CG, Yuki EF, Silva CA, Swinton P, Hallal PC, Roschel H, Bonfa E. Association between physical activity and immunogenicity of an inactivated virus vaccine against SARS-CoV-2 in patients with autoimmune rheumatic diseases. Brain Behav Immun 2022; 101:49-56. [PMID: 34954325 PMCID: PMC8697420 DOI: 10.1016/j.bbi.2021.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES To investigate whether physical activity is associated with enhanced immunogenicity of a SARS-CoV-2 inactivated vaccine (Coronavac) in patients with autoimmune rheumatic diseases (ARD) (n = 898) and in non-ARD (n = 197) individuals without pre-existing immunogenicity to SARS-CoV-2. METHODS This was a prospective cohort study within an open-label, single-arm, phase 4 vaccination trial. Immunogenicity was assessed after vaccination by measuring seroconversion rates of total anti-SARS-CoV-2 S1/S2 IgG (SC), geometric mean titers of anti-S1/S2 IgG (GMT), factor-increase in GMT (FI-GMT), frequency of neutralizing antibody (NAb), and median neutralizing activity. Physical activity (active being defined as ≥ 150 min/week) and sedentary behavior (>8h/day) were assessed by questionnaire. RESULTS Physically active ARD patients (n = 494) were younger and less frequently used prednisone/biologics than inactive patients (n = 404). After controlling for covariates, active patients exhibited greater SC (OR: 1.4 [95%CI: 1.1-2.0]), GMT (32% [95%CI: 8.8-60) and FI-GMT (33% [95%CI: 9.6-63%]) vs. inactive. Cluster analysis (physical activity/sedentary status) revealed greater GMT (43.0% [95% CI: 11.0-84.0%) and FI-GMT (48.0% [95%CI: 14.0-92.0%]) in active/non-sedentary vs. inactive/sedentary ARD patients. A dose-response was observed, with greater benefits for the group of patients performing ≥ 350 min/week of physical activity (OR: 1.6 [95%CI: 1.1-2.4]; 41% [95%CI: 10-80%]; 35% [95%CI: 4.3-74], for SC, GMT, and FI-GMT, respectively) vs. the least active group (≤30 min/week). Greater SC (OR: 9.9 [95%CI: 1.1-89.0]) and GMT (26% [95%CI: 2.2-56.0%]) were observed in active vs. inactive non-ARD. CONCLUSIONS A physically active lifestyle may enhance SARS-CoV-2 vaccine immunogenicity, a finding of particular clinical relevance for immunocompromised patients. TRIAL REGISTRATION Clinicaltrials.gov #NCT04754698.
Collapse
Affiliation(s)
- Bruno Gualano
- Applied Physiology & Nutrition Research Group, University of São Paulo, Sao Paulo, Brazil; Food Research Center, University of São Paulo, Sao Paulo, Brazil.
| | - Italo R. Lemes
- Applied Physiology & Nutrition Research Group, University of São Paulo, Sao Paulo, Brazil
| | - Rafael P. Silva
- Applied Physiology & Nutrition Research Group, University of São Paulo, Sao Paulo, Brazil
| | - Ana J. Pinto
- Applied Physiology & Nutrition Research Group, University of São Paulo, Sao Paulo, Brazil,Division of Endocrinology, Metabolism, and Diabetes and Anschutz Health and Wellness Center, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Bruna C. Mazzolani
- Applied Physiology & Nutrition Research Group, University of São Paulo, Sao Paulo, Brazil
| | - Fabiana I. Smaira
- Applied Physiology & Nutrition Research Group, University of São Paulo, Sao Paulo, Brazil
| | - Sofia M. Sieczkowska
- Applied Physiology & Nutrition Research Group, University of São Paulo, Sao Paulo, Brazil
| | - Nadia E. Aikawa
- Pediatric Rheumatology Unit, Instituto da Criança, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sandra G. Pasoto
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana C. Medeiros-Ribeiro
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carla G.S. Saad
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Emily F.N. Yuki
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Clovis A. Silva
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil,Pediatric Rheumatology Unit, Instituto da Criança, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Paul Swinton
- Robert Gordon University, Garthdee Road, Aberdeen, UK
| | - Pedro C. Hallal
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group, University of São Paulo, Sao Paulo, Brazil
| | - Eloisa Bonfa
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
18
|
Gualano B, Saad CGS, Sieczkowska SM, Lemes IR, da Silva RP, Pinto AJ, Mazzolani BC, Smaira FI, Gil S, de Oliveira Júnior GN, Aikawa NE, Ribeiro ACM, Silva CA, Yuki EFN, Pasoto SG, Rodrigues Pereira RM, Shinjo SK, de Andrade DCO, Sampaio-Barros PD, Roschel H, Bonfa E. Effect of an Exercise Bout Prior to the Booster Dose of an Inactivated SARS-CoV-2 Vaccine on Immunogenicity in Immunocompromised Patients. J Appl Physiol (1985) 2022; 132:682-688. [PMID: 35142560 PMCID: PMC8897009 DOI: 10.1152/japplphysiol.00015.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This randomized controlled study aimed to investigate whether a single bout of exercise before the homologous booster dose of a SARS-CoV-2 inactivated vaccine could enhance immunogenicity in patients with spondyloarthritis. We selected 60 consecutive patients with spondyloarthritis (SpA). Patients assigned to the intervention group performed an exercise bout comprising three exercises. Then, they remained at rest for 1 h before vaccination. The control group remained at rest before vaccination. Immunogenicity was assessed before (Pre) and 1 mo after (Post) the booster using seropositivity rates of total anti-SARS-CoV-2 S1/S2 IgG, geometric mean titers of anti-S1/S2 IgG (GMT), frequency of neutralizing antibodies (NAb) positivity, and NAb activity. At Pre, 16 patients from the exercise group and 16 patients from the control group exhibited seropositivity for IgG (59% vs. 57.1%), and 1 mo after the booster dose, seropositivity occurred in 96% versus 100% of the cases. Only 10 patients from the exercise group and 12 patients from the control group showed positive NAb serology at Pre (37% vs. 42.8%). One month following the booster, NAb positivity was 96% versus 93%. GMT was comparable between groups at Pre. At Post, GMT increased similarly in both groups. Likewise, NAb activity was similar between groups at Pre and increased similarly in both of them as a result of the booster (47.5% vs. 39.9%). In conclusion, a single bout of exercise did not enhance immunogenicity to a homologous booster dose of an inactivated SARS-CoV-2 vaccine among patients with spondyloarthritis. NEW & NOTEWORTHY We tested the role of exercise as an adjuvant to a booster of a COVID-19 vaccine. Immunocompromised patients were immunized after an acute bout of exercise or not. Patients exhibited an excellent immunogenicity in response to the booster dose. Exercise did not add to the vaccine effects on IgG or neutralizing antibodies.
Collapse
Affiliation(s)
- Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Division of Rheumatology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.,Food Research Center, University of São Paulo, Sao Paulo, Brazil
| | - Carla Golçalves S Saad
- Division of Rheumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sofia Mendes Sieczkowska
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Division of Rheumatology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Italo Ribeiro Lemes
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Division of Rheumatology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Rafael Pires da Silva
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Division of Rheumatology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana J Pinto
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Division of Rheumatology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.,Division of Endocrinology, Metabolism, and Diabetes and Anschutz Health and Wellness Center, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Bruna C Mazzolani
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Division of Rheumatology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Fabiana I Smaira
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Division of Rheumatology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Saulo Gil
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Division of Rheumatology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Gersiel Nascimento de Oliveira Júnior
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Division of Rheumatology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Nadia Emi Aikawa
- Division of Rheumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana Cristina Medeiros Ribeiro
- Division of Rheumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Clovis Artur Silva
- Division of Rheumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.,Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Emily F N Yuki
- Division of Rheumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sandra G Pasoto
- Division of Rheumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Rosa Maria Rodrigues Pereira
- Division of Rheumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Samuel K Shinjo
- Division of Rheumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Percival D Sampaio-Barros
- Division of Rheumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Division of Rheumatology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Eloisa Bonfa
- Division of Rheumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
19
|
Detraining Effects of COVID-19 Pandemic on Physical Fitness, Cytokines, C-Reactive Protein and Immunocytes in Men of Various Age Groups. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031845. [PMID: 35162870 PMCID: PMC8835692 DOI: 10.3390/ijerph19031845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023]
Abstract
Background and Objectives: Since the start of the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus II, levels of physical inactivity have become more severe and widespread than ever before. Physical inactivity is known to have a negative effect on the human body, but the extent to which reduced physical fitness has effected immune function before and after the current pandemic has not yet been uncovered. The aim of this study was to investigate the detraining effects of the COVID-19 confinement period on physical fitness, immunocytes, inflammatory cytokines, and proteins in various age groups. The participants of this study included sixty-four male adults who did not exercise during the pandemic, although they had exercised regularly before. Materials and Methods: Participants were classified by age group, which included the 20s group (20s’G, n = 14), 30s group (30s’G, n = 12), 40s group (40s’G, n = 12), 50s group (50s’G, n = 12), and 60s group (60s’G, n = 14). Results: Regarding body composition, muscle mass significantly decreased, whereas fat mass, fat percentage, and waist/hip ratio significantly increased in most groups. Cardiopulmonary endurance and strength significantly decreased in all groups, while muscle endurance and flexibility decreased in some groups compared to the pre-COVID-19 pandemic. This study confirmed the immunocytopenia and enhanced inflammation due to physical inactivity during the COVID-19 pandemic, and a greater detrimental decrease mainly after the age of 50. Conclusion: This study confirmed a decrease in physical fitness after the start of the COVID-19 pandemic, characterized by an increase in fat mass and a decrease in muscle mass, thereby increasing cytokines and reducing immunocytes in the body. While social distancing is important during the pandemic, maintaining physical fitness should also be a top priority.
Collapse
|
20
|
Domaszewska K, Boraczyński M, Tang YY, Gronek J, Wochna K, Boraczyński T, Wieliński D, Gronek P. Protective Effects of Exercise Become Especially Important for the Aging Immune System in The Covid-19 Era. Aging Dis 2022; 13:129-143. [PMID: 35111366 PMCID: PMC8782560 DOI: 10.14336/ad.2021.1219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/01/2022] [Indexed: 12/11/2022] Open
Abstract
Aging is a complex, multietiological process and a major risk factor for most non-genetic, chronic diseases including geriatric syndromes that negatively affect healthspan and longevity. In the scenario of "healthy or good aging", especially during the COVID-19 era, the proper implementation of exercise as "adjuvant" or "polypill" to improve disease-related symptoms and comorbidities in the general population is a top priority. However, there is still a gap concerning studies analyzing influence of exercise training to immune system in older people. Therefore, the aim of this review is to provide a brief summary of well-established findings in exercise immunology and immunogerontology, but with a focus on the main exercise-induced mechanisms associated with aging of the immune system (immunosenescence). The scientific data strongly supports the notion that regular exercise as a low-cost and non-pharmacological treatment approach, when adjusted on an individual basis in elderly, induce multiple rejuvenating mechanisms: (1) affects the telomere-length dynamics (a "telo-protective" effect), (2) promote short- and long-term anti-inflammatory effects (via e.g., triggering the anti-inflammatory phenotype), 3) stimulates the adaptive immune system (e.g., helps to offset diminished adaptive responses) and in parallel inhibits the accelerated immunosenescence process, (4) increases post-vaccination immune responses, and (5) possibly extends both healthspan and lifespan.
Collapse
Affiliation(s)
- Katarzyna Domaszewska
- Department of Physiology and Biochemistry, Poznan University of Physical Education, Poland.
| | - Michał Boraczyński
- Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Poland.
| | - Yi-Yuan Tang
- College of Health Solutions, Arizona State University, USA.
| | - Joanna Gronek
- Laboratory of Genetics, Department of Dance and Gymnastics, Poznan University of Physical Education, Poland.
| | - Krystian Wochna
- Laboratory of Swimming and Water Lifesaving, Faculty of Sport Sciences, Poznan University of Physical Education, Poland.
| | | | - Dariusz Wieliński
- Department of Anthropology and Biometry, Poznan University of Physical Education, Poland.
| | - Piotr Gronek
- Laboratory of Genetics, Department of Dance and Gymnastics, Poznan University of Physical Education, Poland.
| |
Collapse
|
21
|
Systemic Response of Antioxidants, Heat Shock Proteins, and Inflammatory Biomarkers to Short-Lasting Exercise Training in Healthy Male Subjects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1938492. [PMID: 34853628 PMCID: PMC8629640 DOI: 10.1155/2021/1938492] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Regular physical activity can enhance immune function and effectively prevents the spread of the cytokine response, thus reducing systemic low-grade inflammation and improving various immune markers. Moreover, regular exercise maintains redox homeostasis in skeletal muscle and other tissues, including immune cells, but the interconnection between the anti-inflammatory effects of exercise with the redox status of immune cells is still poorly understood. With the aim to verify the overall beneficial effect of regular training on the immune system, we have examined the acute and short-term effect of a 5-day exercise program on the modulation of protein and lipid oxidation, antioxidants (i.e., superoxide dismutase-1 (SOD1) and superoxide dismutase-2 (SOD2), glutathione peroxide 1 (GPx1), thioredoxin reductase-1 (TrxR1), and catalase (CAT)), and heat shock protein expression (i.e., heat shock protein-70 (HSP70) and heat shock protein-27 (HSP27)), at both mRNA and protein levels, as well as the activation of the nuclear factor kappa light chain enhancer of activated B cells (NFκB) in peripheral blood mononuclear cells (PBMCs). Moreover, plasmatic markers of oxidative stress, inflammation, and stress response (i.e., protein carbonyl content, interleukin-6 (IL6), interleukin-8 (IL8), interleukin-10 (IL10), interleukin-17E (IL17E), interleukin-17F (IL17F), interleukin-21 (IL21), interleukin-22 (IL22), and interleukin-23 (IL23)) were analyzed in active untrained young adult subjects. Even in the absence of an increased amount of protein or lipid oxidation, we confirmed a PBMC upregulation of SOD1 (1.26 ± 0.07 fold change, p < 0.05), HSP70 (1.59 ± 0.28 fold change, p < 0.05), and HSP27 gene expression (1.49 ± 0.09 fold change, p < 0.05) after 3 hours from the first bout of exercise, followed by an increase in proteins' amount at 24 hours (SOD1, 1.80 ± 0.34 fold change; HSP70, 3.40 ± 0.58 fold change; and HSP27, 1.81 ± 0.20 fold change, p < 0.05) and return to basal levels after the 5 days of aerobic training. Indeed, the posttraining basal levels of oxidized molecules in plasma and PBMCs were statistically lower than the pretraining levels (carbonyl content, 0.50 ± 0.05 fold change, p < 0.01), paralleled by a lower expression of SOD2, Gpx1, and TrxR1, at mRNA (SOD2, 0.63 ± 0.06; GPx1, 0.69 ± 0.07; and TrxR1, 0.69 ± 0.12 fold change, p < 0.05) and protein (TrxR1, 0.49 ± 0.11 fold change, p < 0.05) levels. These results verified the existence of an early phase of redox adaptation to physical exercise already achievable after 5 days of moderate, regular aerobic training. More interestingly, this phenomenon was paralleled by the degree of NFκB activation in PBMCs and the decrease of plasmatic proinflammatory cytokines IL8, IL21, and IL22 in the posttraining period, suggesting an interconnected, short-term efficacy of aerobic exercise towards systemic oxidative stress and inflammation.
Collapse
|
22
|
Arazi H, Falahati A, Suzuki K. Moderate Intensity Aerobic Exercise Potential Favorable Effect Against COVID-19: The Role of Renin-Angiotensin System and Immunomodulatory Effects. Front Physiol 2021; 12:747200. [PMID: 34867452 PMCID: PMC8634264 DOI: 10.3389/fphys.2021.747200] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic is caused by a novel coronavirus (CoV) named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As the angiotensin converting enzyme 2 (ACE2) is the cellular receptor of SARS-CoV-2, it has a strong interaction with the renin angiotensin system (RAS). Experimental studies have shown that the higher levels of ACE2 or increasing ACE2/ACE1 ratio improve COVID-19 outcomes through lowering inflammation and death. Aerobic moderate intensity physical exercise fights off infections by two mechanisms, the inhibition of ACE/Ang II/AT1-R pathway and the stimulation of ACE2/Ang-(1-7)/MasR axis. Exercise can also activate the anti-inflammatory response so that it can be a potential therapeutic strategy against COVID-19. Here, we summarize and focus the relation among COVID-19, RAS, and immune system and describe the potential effect of aerobic moderate intensity physical exercise against CoV as a useful complementary tool for providing immune protection against SARS-CoV-2 virus infection, which is a novel intervention that requires further investigation.
Collapse
Affiliation(s)
- Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | - Akram Falahati
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | | |
Collapse
|
23
|
Armstrong WJ, Dayal NN, Braun WA. Beyond COVID-19: Preparing Fitness Centers for the Next Pandemic. Strength Cond J 2021. [DOI: 10.1519/ssc.0000000000000626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Simpson RJ, Boßlau TK, Weyh C, Niemiro GM, Batatinha H, Smith KA, Krüger K. Exercise and adrenergic regulation of immunity. Brain Behav Immun 2021; 97:303-318. [PMID: 34302965 DOI: 10.1016/j.bbi.2021.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/07/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
Exercise training has a profound impact on immunity, exerting a multitude of positive effects in indications such as immunosenescence, cancer, viral infections and inflammatory diseases. The immune, endocrine and central nervous systems work in a highly synergistic manner and it has become apparent that catecholamine signaling through leukocyte β-adrenergic receptors (β-ARs) is a key mechanism by which exercise mediates improvements in immune function to help mitigate numerous disease conditions. Central to this is the preferential mobilization and redistribution of effector lymphocytes with potent anti-viral and anti-tumor activity, their interaction with muscle-derived cytokines, and the effects of catecholamine signaling on mitochondrial biogenesis, immunometabolism and the resulting inflammatory response. Here, we review the impact of acute and chronic exercise on adrenergic regulation of immunity in the context of aging, cancer, viral infections and inflammatory disease. We also put forth our contention that exercise interventions designed to improve immunity, prevent disease and reduce inflammation should consider the catecholamine-AR signaling axis as a therapeutic target and ask whether or not the adrenergic signaling machinery can be 'trained' to improve immune responses to stress, disease or during the normal physiological process of aging. Finally, we discuss potential strategies to augment leukocyte catecholamine signaling to boost the effects of exercise on immunity in individuals with desensitized β-ARs or limited exercise tolerance.
Collapse
Affiliation(s)
- Richard J Simpson
- University of Arizona, Department of Nutritional Sciences, Tucson, AZ, USA; University of Arizona, Department of Pediatrics, Tucson, AZ, USA; University of Arizona, Department of Immunobiology, Tucson, AZ, USA; University of Arizona Cancer Center, Tucson, AZ, USA.
| | - Tim K Boßlau
- University of Gießen, Department of Exercise Physiology and Sports Therapy, Gießen, Germany
| | - Christopher Weyh
- University of Gießen, Department of Exercise Physiology and Sports Therapy, Gießen, Germany
| | - Grace M Niemiro
- University of Arizona, Department of Pediatrics, Tucson, AZ, USA; University of Arizona Cancer Center, Tucson, AZ, USA
| | - Helena Batatinha
- University of Arizona, Department of Pediatrics, Tucson, AZ, USA
| | - Kyle A Smith
- University of Arizona, Department of Nutritional Sciences, Tucson, AZ, USA; University of Arizona, Department of Pediatrics, Tucson, AZ, USA
| | - Karsten Krüger
- University of Gießen, Department of Exercise Physiology and Sports Therapy, Gießen, Germany.
| |
Collapse
|
25
|
Ducloux D, Legendre M, Bamoulid J, Saas P, Courivaud C, Crepin T. End-Stage Renal Disease-Related Accelerated Immune Senescence: Is Rejuvenation of the Immune System a Therapeutic Goal? Front Med (Lausanne) 2021; 8:720402. [PMID: 34540869 PMCID: PMC8446427 DOI: 10.3389/fmed.2021.720402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023] Open
Abstract
End-stage renal disease (ESRD) patients exhibit clinical features of premature ageing, including frailty, cardiovascular disease, and muscle wasting. Accelerated ageing also concerns the immune system. Patients with ESRD have both immune senescence and chronic inflammation that are resumed in the so-called inflammaging syndrome. Immune senescence is particularly characterised by premature loss of thymic function that is associated with hyporesponsiveness to vaccines, susceptibility to infections, and death. ESRD-related chronic inflammation has multiple causes and participates to accelerated cardiovascular disease. Although, both characterisation of immune senescence and its consequences are relatively well-known, mechanisms are more uncertain. However, prevention of immune senescence/inflammation or/and rejuvenation of the immune system are major goal to ameliorate clinical outcomes of ESRD patients.
Collapse
Affiliation(s)
- Didier Ducloux
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Mathieu Legendre
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France
| | - Jamal Bamoulid
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Philippe Saas
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, CIC 1431/UMR1098, Besançon, France
| | - Cécile Courivaud
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Thomas Crepin
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| |
Collapse
|
26
|
Jakobsson J, Cotgreave I, Furberg M, Arnberg N, Svensson M. Potential Physiological and Cellular Mechanisms of Exercise That Decrease the Risk of Severe Complications and Mortality Following SARS-CoV-2 Infection. Sports (Basel) 2021; 9:121. [PMID: 34564326 PMCID: PMC8472997 DOI: 10.3390/sports9090121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has unmasked mankind's vulnerability to biological threats. Although higher age is a major risk factor for disease severity in COVID-19, several predisposing risk factors for mortality are related to low cardiorespiratory and metabolic fitness, including obesity, cardiovascular disease, diabetes, and hypertension. Reaching physical activity (PA) guideline goals contribute to protect against numerous immune and inflammatory disorders, in addition to multi-morbidities and mortality. Elevated levels of cardiorespiratory fitness, being non-obese, and regular PA improves immunological function, mitigating sustained low-grade systemic inflammation and age-related deterioration of the immune system, or immunosenescence. Regular PA and being non-obese also improve the antibody response to vaccination. In this review, we highlight potential physiological, cellular, and molecular mechanisms that are affected by regular PA, increase the host antiviral defense, and may determine the course and outcome of COVID-19. Not only are the immune system and regular PA in relation to COVID-19 discussed, but also the cardiovascular, respiratory, renal, and hormonal systems, as well as skeletal muscle, epigenetics, and mitochondrial function.
Collapse
Affiliation(s)
- Johan Jakobsson
- Section of Sports Medicine, Department of Community Medicine and Rehabilitation, Umeå University, 901 87 Umeå, Sweden;
| | - Ian Cotgreave
- Division of Biomaterials and Health, Department of Pharmaceutical and Chemical Safety, Research Institutes of Sweden, 151 36 Södertälje, Sweden;
| | - Maria Furberg
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden; (M.F.); (N.A.)
| | - Niklas Arnberg
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden; (M.F.); (N.A.)
| | - Michael Svensson
- Section of Sports Medicine, Department of Community Medicine and Rehabilitation, Umeå University, 901 87 Umeå, Sweden;
| |
Collapse
|
27
|
Elzayat MT, Markofski MM, Simpson RJ, Laughlin M, LaVoy EC. No Effect of Acute Eccentric Resistance Exercise on Immune Responses to Influenza Vaccination in Older Adults: A Randomized Control Trial. Front Physiol 2021; 12:713183. [PMID: 34456752 PMCID: PMC8388854 DOI: 10.3389/fphys.2021.713183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Older adults are at elevated risk for morbidity and mortality caused by influenza. Vaccination is the primary means of prophylaxis, but protection is often compromised in older adults. As resistance exercise mobilizes immune cells into muscle, it may enhance vaccination response. PURPOSE Compare antibody and cell mediated immune responses to influenza vaccination in older adults who performed eccentric resistance exercise immediately prior to vaccination to those who did not exercise. METHODS Twenty nine resistance training-naive older adults (20 women, 73.9 ± 5.3 years) were randomized to 1 of 3 groups: vaccination in the same arm that exercised (Ex-S), vaccination in the opposite arm that exercised (Ex-Op), and seated rest (No-Ex). Exercise consisted of 10 sets of 5 eccentric unilateral repetitions at 80% of the pre-determined concentric one repetition maximum. Lateral raises were alternated with bicep curls. No-Ex sat quietly for 25 min. Following exercise or rest, all received the 2018 quadrivalent influenza vaccine (Seqirus Afluria) in the non-dominant deltoid. Antibody titers against each influenza vaccine strain were determined by hemagglutinin inhibition assays at baseline, 6-, and 24-weeks post-vaccination. Influenza-specific T cells were quantified after stimulation with the vaccine by intracellular cytokine staining. RESULTS No significant group x time effects were found in antibody responses to any strain (interaction for A/H1N1: p = 0.682; A/H3N2: p = 0.644; B/Colorado/06/2017: p = 0.262; B/Phuket/3073/2013: p = 0.851). Groups did not differ in fold-increase of antibody titers 6- and 24-weeks post-vaccination. Influenza-specific T-cells did not differ between groups at any time (comparison at baseline: p = 0.985; 6-weeks: p = 0.889; 24 weeks: p = 0.857). One subject (Ex-S) reported flu-like symptoms 18 weeks post-vaccination. CONCLUSION Acute arm eccentric exercise did not influence antibody titers or cell mediated immune responses to the influenza vaccine delivered post-exercise in older adults. More strenuous exercise may be required for exercise to act as an adjuvant. ClinicalTrials.gov Identifier: NCT03736759.
Collapse
Affiliation(s)
- Mahmoud T. Elzayat
- Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Melissa M. Markofski
- Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Richard J. Simpson
- Department of Health and Human Performance, University of Houston, Houston, TX, United States
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, United States
| | - Mitzi Laughlin
- Department of Health and Human Performance, University of Houston, Houston, TX, United States
- Fondren Orthopedic Research Institute, Houston, TX, United States
| | - Emily C. LaVoy
- Department of Health and Human Performance, University of Houston, Houston, TX, United States
| |
Collapse
|
28
|
Vetrano DL, Triolo F, Maggi S, Malley R, Jackson TA, Poscia A, Bernabei R, Ferrucci L, Fratiglioni L. Fostering healthy aging: The interdependency of infections, immunity and frailty. Ageing Res Rev 2021; 69:101351. [PMID: 33971332 PMCID: PMC9588151 DOI: 10.1016/j.arr.2021.101351] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022]
Abstract
Untangling the interdependency of infections, immunity and frailty may help to clarify their roles in the maintenance of health in aging individuals, and the recent COVID-19 pandemic has further highlighted such priority. In this scoping review we aimed to systematically collect the evidence on 1) the impact of common infections such as influenza, pneumonia and varicella zoster on frailty development, and 2) the role played by frailty in the response to immunization of older adults. Findings are discussed under a unifying framework to identify knowledge gaps and outline their clinical and public health implications to foster a healthier aging. Twenty-nine studies (113,863 participants) selected to answer the first question provided a moderately strong evidence of an association between infections and physical as well as cognitive decline - two essential dimensions of frailty. Thirteen studies (34,520 participants) investigating the second aim, showed that frailty was associated with an impaired immune response in older ages, likely due to immunosenescence. However, the paucity of studies, the absence of tools to predict vaccine efficacy, and the lack of studies investigating the efficacy of newer vaccines in presence of frailty, strongly limit the formulation of more personalized immunization strategies for older adults. The current evidence suggests that infections and frailty repeatedly cross each other pathophysiological paths and accelerate the aging process in a vicious circle. Such evidence opens to several considerations. First, the prevention of both conditions pass through a life course approach, which includes several individual and societal aspects. Second, the maintenance of a well-functioning immune system may be accomplished by preventing frailty, and vice versa. Third, increasing the adherence to immunization may delay the onset of frailty and maintain the immune system homeostasis, beyond preventing infections.
Collapse
Affiliation(s)
- Davide L Vetrano
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Centro Medicina dell'Invecchiamento, Fondazione Policlinico "A- Gemelli" IRCCS and Catholic University of Rome, Italy.
| | - Federico Triolo
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Stefania Maggi
- National Research Council, Neuroscience Institute, Padua, Italy
| | - Richard Malley
- Division of Infectious Diseases, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas A Jackson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; Department of Geriatrics, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Roberto Bernabei
- Centro Medicina dell'Invecchiamento, Fondazione Policlinico "A- Gemelli" IRCCS and Catholic University of Rome, Italy
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, USA
| | - Laura Fratiglioni
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden
| |
Collapse
|
29
|
Strasser B, Wolters M, Weyh C, Krüger K, Ticinesi A. The Effects of Lifestyle and Diet on Gut Microbiota Composition, Inflammation and Muscle Performance in Our Aging Society. Nutrients 2021; 13:nu13062045. [PMID: 34203776 PMCID: PMC8232643 DOI: 10.3390/nu13062045] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023] Open
Abstract
Living longer is associated with an increased risk of chronic diseases, including impairments of the musculoskeletal and immune system as well as metabolic disorders and certain cancers, each of which can negatively affect the relationship between host and microbiota up to the occurrence of dysbiosis. On the other hand, lifestyle factors, including regular physical exercise and a healthy diet, can affect skeletal muscle and immune aging positively at all ages. Accordingly, health benefits could partly depend on the effect of such interventions that influence the biodiversity and functionality of intestinal microbiota. In the present review, we first discuss the physiological effects of aging on the gut microbiota, immune system, and skeletal muscle. Secondly, we describe human epidemiological evidence about the associations between physical activity and fitness and the gut microbiota composition in older adults. The third part highlights the relevance and restorative mechanisms of immune protection through physical activity and specific exercise interventions during aging. Fourth, we present important research findings on the effects of exercise and protein as well as other nutrients on skeletal muscle performance in older adults. Finally, we provide nutritional recommendations to prevent malnutrition and support healthy active aging with a focus on gut microbiota. Key nutrition-related concerns include the need for adequate energy and protein intake for preventing low muscle mass and a higher demand for specific nutrients (e.g., dietary fiber, polyphenols and polyunsaturated fatty acids) that can modify the composition, diversity, and metabolic capacity of the gut microbiota, and may thus provide a practical means of enhancing gut and systemic immune function.
Collapse
Affiliation(s)
- Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, 1020 Vienna, Austria
- Correspondence:
| | - Maike Wolters
- Leibniz Institute for Prevention Research and Epidemiology–BIPS, 28359 Bremen, Germany;
| | - Christopher Weyh
- Department of Exercise Physiology and Sports Therapy, University of Giessen, 35394 Giessen, Germany; (C.W.); (K.K.)
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, 35394 Giessen, Germany; (C.W.); (K.K.)
| | - Andrea Ticinesi
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
30
|
Ghram A, Bragazzi NL, Briki W, Jenab Y, Khaled M, Haddad M, Chamari K. COVID-19 Pandemic and Physical Exercise: Lessons Learnt for Confined Communities. Front Psychol 2021; 12:618585. [PMID: 34025498 PMCID: PMC8131539 DOI: 10.3389/fpsyg.2021.618585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
The novel pandemic called "Coronavirus Disease 2019" (COVID-19), as a global public health emergency and global threat, has affected many countries in unpredictable ways and impacted on physical activity (PA) behaviors to various extents. Specific populations including refugees, asylum seekers, and prisoners, are vulnerable groups with multiple complex health needs and worse health outcomes with respect to the general population worldwide and at high risk of death from the "Severe Acute Respiratory Syndrome-related Coronavirus type 2" (SARS-CoV-2). Governments around the world have been implementing preventive healthcare policies, including physical and social distancing, isolation, and confinement, to mitigate against the burden imposed by the COVID-19 outbreak. This pandemic period is characterized by reduced or lack of movement. During this period of lockdown, PA can represent an immunotherapy and a preventative approach to avoid the harmful effects of inactivity due to the pandemic. Moreover, PA could be prescribed to improve the immune system of specific populations (refugees, asylum seekers, and prisoners), which particularly experience the condition of being confined. The present narrative review discusses the potential impacts of COVID-19 pandemic on these specific populations' health status and the importance of performing PA/exercise to reduce the deleterious effects of COVID-19 pandemic. In addition, we aim to provide useful recommendations on PA/exercise for these specific populations to maintain their level of independence, physical, and mental health as well as their wellbeing.
Collapse
Affiliation(s)
- Amine Ghram
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
- Department of Cardiac Rehabilitation, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| | - Walid Briki
- Department of Physical Education, College of Education, Qatar University, Doha, Qatar
| | - Yaser Jenab
- Department of Interventional Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khaled
- Independent Physician (Internal Medicine), Singapore, Singapore
| | - Monoem Haddad
- Department of Physical Education, College of Education, Qatar University, Doha, Qatar
| | - Karim Chamari
- Aspetar, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
31
|
Furtado GE, Letieri RV, Caldo‐Silva A, Sardão VA, Teixeira AM, de Barros MP, Vieira RP, Bachi ALL. Sustaining efficient immune functions with regular physical exercise in the COVID-19 era and beyond. Eur J Clin Invest 2021; 51:e13485. [PMID: 33393082 PMCID: PMC7883243 DOI: 10.1111/eci.13485] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
The new coronavirus (SARS-CoV-2) appearance in Wuhan, China, did rise the new virus disease (COVID-19), which spread globally in a short time, leading the World Health Organization to declare a new global pandemic. To contain and mitigate the spread of SARS-CoV-2, specific public health procedures were implemented in virtually all countries, with a significant impact on society, making it difficult to keep the regular practice of physical activity. It is widely accepted that an active lifestyle contributes to the improvement of general health and preservation of cardiovascular, respiratory, osteo-muscular and immune system capacities. The positive effects of regular physical activity on the immune system have emerged as a pivotal trigger of general health, underlying the beneficial effects of physical activity on multiple physiological systems. Accordingly, recent studies have already pointed out the negative impact of physical inactivity caused by the social isolation imposed by the public sanitary authorities due to COVID-19. Nevertheless, there are still no current narrative reviews evaluating the real impact of COVID-19 on active lifestyle or even discussing the possible beneficial effects of exercise-promoted immune upgrade against the severity or progression of COVID-19. Based on the consensus in the scientific literature, in this review, we discuss how an exercise adherence could adequately improve immune responses in times of the 'COVID-19 Era and beyond'.
Collapse
Affiliation(s)
- Guilherme Eustáquio Furtado
- Health Sciences Research Unit, Nursing (UICISA:E)Nursing School of Coimbra (ESEnfC)CoimbraPortugal
- N2i – Polytechnic Institute of MaiaMaiaPortugal
- University of Coimbra‐Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF‐UC)Portugal
| | - Rubens Vinícius Letieri
- Post‐doctoral ResearcherRehabilitation Sciences ProgramRua Gabriel Monteiro da SilvaFederal University of Alfenas (UNIFAL)AlfenasBrazil
- Multidisciplinary Research Nucleus in Physical Education (NIMEF)Physical Education DepartmentFederal University of Tocantins (UFT)TocantinópolisBrazil
| | - Adriana Caldo‐Silva
- University of Coimbra‐Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF‐UC)Portugal
| | - Vilma A. Sardão
- Center for Neuroscience and Cell Biology (CNC)UC_BiotechUniversity of CoimbraCantanhedePortugal
| | - Ana Maria Teixeira
- Multidisciplinary Research Nucleus in Physical Education (NIMEF)Physical Education DepartmentFederal University of Tocantins (UFT)TocantinópolisBrazil
| | - Marcelo Paes de Barros
- Center for Neuroscience and Cell Biology (CNC)UC_BiotechUniversity of CoimbraCantanhedePortugal
| | - Rodolfo Paula Vieira
- Institute of Physical Activity Sciences and Sports (ICAFE)MSc/PhD Interdisciplinary Program in Health SciencesCruzeiro do Sul UniversitySão PauloBrazil
- Federal University of Sao Paulo (UNIFESP)Post‐graduation Program in Sciences of Human Movement and RehabilitationSantosBrazil
- Post‐Graduation Program in Bioengineering and in Biomedical EngineeringUniversity BrazilSão PauloBrazil
- School of MedicineAnhembi Morumbi UniversitySão José dos CamposBrazil
| | - André Luís Lacerda Bachi
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise ImmunologySão José dos CamposBrazil
- Department of OtorhinolaryngologyENT LabFederal University of São Paulo (UNIFESP)São PauloBrazil
- Post‐Graduation Program in Health SciencesSanto Amaro University (UNISA)São PauloBrazil
| |
Collapse
|
32
|
Effects of Regular Physical Activity on the Immune System, Vaccination and Risk of Community-Acquired Infectious Disease in the General Population: Systematic Review and Meta-Analysis. Sports Med 2021; 51:1673-1686. [PMID: 33877614 PMCID: PMC8056368 DOI: 10.1007/s40279-021-01466-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Background Regular physical activity is the prime modality for the prevention of numerous non-communicable diseases and has also been advocated for resilience against COVID-19 and other infectious diseases. However, there is currently no systematic and quantitative evidence synthesis of the association between physical activity and the strength of the immune system. Objective To examine the association between habitual physical activity and (1) the risk of community-acquired infectious disease, (2) laboratory‐assessed immune parameters, and (3) immune response to vaccination. Methods We conducted a systemic review and meta-analysis according to PRISMA guidelines. We searched seven databases (MEDLINE, Embase, Cochrane CENTRAL, Web of Science, CINAHL, PsycINFO, and SportDiscus) up to April 2020 for randomised controlled trials and prospective observational studies were included if they compared groups of adults with different levels of physical activity and reported immune system cell count, the concentration of antibody, risk of clinically diagnosed infections, risk of hospitalisation and mortality due to infectious disease. Studies involving elite athletes were excluded. The quality of the selected studies was critically examined following the Cochrane guidelines using ROB2 and ROBINS_E. Data were pooled using an inverse variance random-effects model. Results Higher level of habitual physical activity is associated with a 31% risk reduction (hazard ratio 0.69, 95% CI 0.61–0.78, 6 studies, N = 557,487 individuals) of community-acquired infectious disease and 37% risk reduction (hazard ratio 0.64, 95% CI 0.59–0.70, 4 studies, N = 422,813 individuals) of infectious disease mortality. Physical activity interventions resulted in increased CD4 cell counts (32 cells/µL, 95% CI 7–56 cells/µL, 24 studies, N = 1112 individuals) and salivary immunoglobulin IgA concentration (standardised mean difference 0.756, 95% CI 0.146–1.365, 7 studies, N = 435 individuals) and decreased neutrophil counts (704 cells/µL, 95% CI 68–1340, 6 studies, N = 704 individuals) compared to controls. Antibody concentration after vaccination is higher with an adjunct physical activity programme (standardised mean difference 0.142, 95% CI 0.021–0.262, 6 studies, N = 497 individuals). Conclusion Regular, moderate to vigorous physical activity is associated with reduced risk of community-acquired infectious diseases and infectious disease mortality, enhances the first line of defence of the immune system, and increases the potency of vaccination. Protocol registration The original protocol was prospectively registered with PROSPERO (CRD42020178825). Supplementary Information The online version contains supplementary material available at 10.1007/s40279-021-01466-1.
Collapse
|
33
|
Tokunbo O, Abayomi T, Adekomi D, Oyeyipo I. COVID-19: sitting is the new smoking; the role of exercise in augmenting the immune system among the elderly. Afr Health Sci 2021; 21:189-193. [PMID: 34394297 PMCID: PMC8356589 DOI: 10.4314/ahs.v21i1.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction Like smoking, sedentary lifestyle is an issue of great concern because of its deleterious health challenges and implications. Given the global spread of the new coronavirus (COVID-19), social isolation regulations and laws have been implemented in many countries to contain the spread of the virus and this has caused a drastic shift from the usual physically demanding life to a sedentary lifestyle characterized by significantly reduced physical activities and prolong sitting. Methods/Data Source Human and nonhuman primate literature was examined to compare experimental and clinical modulation of inflammatory cytokines by exercised-induced myokines. Data synthesis Experimental and clinical evidence was used to examine whether exercised-induced myokines can prime the immune system of the elderly population during the COVID-19 pandemic. Conclusion The immune system changes with advancement in age which increases the likelihood of infectious disease morbidity and mortality in older adults. Several epidemiological studies have also shown that physical inactivity among geriatric population impacts negatively on the immune system. Evidences on the importance of exercise in priming the immune system of elderly individuals could be an effective therapeutic strategy in combating the virus as it may well be a case of “let those with the best immune system win”.
Collapse
|
34
|
Ghram A, Briki W, Mansoor H, Al-Mohannadi AS, Lavie CJ, Chamari K. Home-based exercise can be beneficial for counteracting sedentary behavior and physical inactivity during the COVID-19 pandemic in older adults. Postgrad Med 2020; 133:469-480. [PMID: 33275479 DOI: 10.1080/00325481.2020.1860394] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The novel pandemic called coronavirus disease 2019 (COVID-19), as a global public health emergency, seems to be having a major impact on physical activity (PA) behaviors. Older adults are at high risk of death from the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2). Health authorities around the world have been implementing preventive health measures, including quarantine and self-isolation, to mitigate the COVID-19 outbreak. This period is characterized by the cessation of outdoor exercising. During this period of lockdown, PA has been one of the rare reasons for going out in some countries. To avoid the harmful effects of periods of exercise cessation, PA could be prescribed to older adults, which is of great importance for breaking their sedentary lifestyle and improving their immunity. The present review discusses the potential impacts of the COVID-19 pandemic on sedentary behavior and physical inactivity in older adults. The importance of performing PA to reduce the harmful effects of the COVID-19 pandemic is discussed, and useful recommendations on home-based exercise for the older adults to maintain their level of independence, physical and mental health as well as their well-being are provided.
Collapse
Affiliation(s)
- Amine Ghram
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran.,Department of Cardiac Rehabilitation, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Walid Briki
- Sport Science Program, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Hend Mansoor
- College of Health and Life Sciences,Hamad Bin Khalifa University, Doha, Qatar
| | - Abdulla Saeed Al-Mohannadi
- Research and Scientific Support Department, Aspetar Orthopaedic and Sports Medicine Hospital, Qatar.,World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar
| | - Carl J Lavie
- Department of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School the University of Queensland School of Medicine, New Orleans, Louisiana, USA
| | - Karim Chamari
- Aspetar, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
35
|
Kirwan R, McCullough D, Butler T, Perez de Heredia F, Davies IG, Stewart C. Sarcopenia during COVID-19 lockdown restrictions: long-term health effects of short-term muscle loss. GeroScience 2020; 42:1547-1578. [PMID: 33001410 PMCID: PMC7528158 DOI: 10.1007/s11357-020-00272-3] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
The COVID-19 pandemic is an extraordinary global emergency that has led to the implementation of unprecedented measures in order to stem the spread of the infection. Internationally, governments are enforcing measures such as travel bans, quarantine, isolation, and social distancing leading to an extended period of time at home. This has resulted in reductions in physical activity and changes in dietary intakes that have the potential to accelerate sarcopenia, a deterioration of muscle mass and function (more likely in older populations), as well as increases in body fat. These changes in body composition are associated with a number of chronic, lifestyle diseases including cardiovascular disease (CVD), diabetes, osteoporosis, frailty, cognitive decline, and depression. Furthermore, CVD, diabetes, and elevated body fat are associated with greater risk of COVID-19 infection and more severe symptomology, underscoring the importance of avoiding the development of such morbidities. Here we review mechanisms of sarcopenia and their relation to the current data on the effects of COVID-19 confinement on physical activity, dietary habits, sleep, and stress as well as extended bed rest due to COVID-19 hospitalization. The potential of these factors to lead to an increased likelihood of muscle loss and chronic disease will be discussed. By offering a number of home-based strategies including resistance exercise, higher protein intakes and supplementation, we can potentially guide public health authorities to avoid a lifestyle disease and rehabilitation crisis post-COVID-19. Such strategies may also serve as useful preventative measures for reducing the likelihood of sarcopenia in general and in the event of future periods of isolation.
Collapse
Affiliation(s)
- Richard Kirwan
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.
| | - Deaglan McCullough
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Tom Butler
- Department of Clinical Sciences and Nutrition, University of Chester, Chester, UK.
| | - Fatima Perez de Heredia
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Ian G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Claire Stewart
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
36
|
Vedhara K, Royal S, Sunger K, Caldwell DM, Halliday V, Taylor CM, Fairclough L, Avery A, Welton NJ. Effects of non-pharmacological interventions as vaccine adjuvants in humans: a systematic review and network meta-analysis. Health Psychol Rev 2020; 15:245-271. [PMID: 33222621 DOI: 10.1080/17437199.2020.1854050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Psychological and behavioural may enhance vaccine effectiveness. We conducted a systematic review and network meta-analysis (NMA) to examine the effects of non-pharmacological adjuvants on vaccine effectiveness, as measured by antibody responses to vaccination. AREAS COVERED Electronic databases (EMBASE, Medline, PsychINFO, CINAHL) were searched from inception to 6th February 2018. This yielded 100 eligible papers, reporting 106 trials: 79 interventions associated with diet and/or nutrition; 12 physical activity interventions and 9 psychological interventions.Over half (58/106) of trials reported evidence of an enhanced antibody response to vaccination across one or more outcomes. The NMA considered the comparative effects between all intervention types, control and placebo for antibody titres (48 studies), seroconversion (25 studies) and seroprotection (23 studies) separately. The NMA provided weak evidence in support of nutritional formulae and probiotics in increasing antibody titres. EXPERT OPINION This review offers a comprehensive summary of the literature on non-pharmacological interventions as vaccine adjuvants. The evidence is characterised by considerable heterogeneity but provides early evidence in support of nutritional formulae and probiotic interventions. Psychological and exercise-based interventions were characterised by limited and unreliable evidence. Large, well-designed studies including consistent core outcomes and measures of intervention adherence and fidelity are required.
Collapse
Affiliation(s)
- Kavita Vedhara
- Division of Primary Care, University of Nottingham, Nottingham, UK
| | - Simon Royal
- University of Nottingham Health Service, Cripps Health Centre, Nottingham, UK
| | - Kanchan Sunger
- Division of Primary Care, University of Nottingham, Nottingham, UK
| | - Deborah M Caldwell
- School of Social & Community Medicine, University of Bristol, Bristol, UK.,NIHR Health Protection Research Unit in Behavioural Science and Evaluation, University of Bristol, Bristol, UK
| | - Vanessa Halliday
- School of Health & Related Research, University of Sheffield, Sheffield, UK
| | - Caroline M Taylor
- Centre for Academic Child Health, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lucy Fairclough
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Anthony Avery
- Division of Primary Care, University of Nottingham, Nottingham, UK
| | - Nicky J Welton
- School of Social & Community Medicine, University of Bristol, Bristol, UK.,NIHR Health Protection Research Unit in Behavioural Science and Evaluation, University of Bristol, Bristol, UK
| |
Collapse
|
37
|
Fernández-Lázaro D, González-Bernal JJ, Sánchez-Serrano N, Navascués LJ, Ascaso-del-Río A, Mielgo-Ayuso J. Physical Exercise as a Multimodal Tool for COVID-19: Could It Be Used as a Preventive Strategy? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228496. [PMID: 33212762 PMCID: PMC7697788 DOI: 10.3390/ijerph17228496] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19) is a novel coronavirus not previously recognized in humans until late 2019. On 31 December 2019, a cluster of cases of pneumonia of unspecified etiology was reported to the World Health Organization in China. The availability of adequate SARS-CoV-2 drugs is also limited, and the efficacy and safety of these drugs for COVID-2019 pneumonia patients need to be assessed by further clinical trials. For these reasons, there is a need for other strategies against COVID-19 that are capable of prevention and treatment. Physical exercise has proven to be an effective therapy for most chronic diseases and microbial infections with preventive/therapeutic benefits, considering that exercise involves primary immunological mediators and/or anti-inflammatory properties. This review aimed to provide an insight into how the implementation of a physical exercise program against COVID-19 may be a useful complementary tool for prevention, which can also enhance recovery, improve quality of life, and provide immune protection against SARS-CoV-2 virus infection in the long term. In summary, physical exercise training exerts immunomodulatory effects, controls the viral gateway, modulates inflammation, stimulates nitric oxide synthesis pathways, and establishes control over oxidative stress.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, Campus of Soria, University of Valladolid, 42003 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- Correspondence: ; Tel.: +34-975-129-185
| | | | - Nerea Sánchez-Serrano
- Microbiology Unit of the Santa Bárbara Hospital, Castilla-Léon Health (SACyL), 42003 Soria, Spain;
| | - Lourdes Jiménez Navascués
- Department of Nursing, Faculty of Health Sciences, Campus of Soria, University of Valladolid, 42003 Soria, Spain;
| | - Ana Ascaso-del-Río
- Clinical Pharmacology Service, IdISSC, San Carlos Clinical Hospital, 28040 Madrid, Spain;
| | - Juan Mielgo-Ayuso
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, Campus of Soria, University of Valladolid, 42003 Soria, Spain;
| |
Collapse
|
38
|
Hurwitz B, Issa O. Management and Treatment of Myocarditis in Athletes. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2020; 22:65. [PMID: 33169059 PMCID: PMC7609375 DOI: 10.1007/s11936-020-00875-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 12/22/2022]
Abstract
Purpose of review Myocarditis is an inflammation of the myocardium that can often be associated with cardiac dysfunction and arrhythmias, and is even one of the leading causes for sudden cardiac death (SCD) in athletes. This review aims to summarize the current evidence and treatment guidelines for the management of myocarditis in the active population. Recent findings Physical exertion is likely a trigger for dangerous arrythmias and further propagates myocardial damage in athletes with myocarditis. For this reason, abstinence from sports is a critical facet of management in the initial inflammatory period. The use of cardiac magnetic resonance imaging, specifically late gadolinium enhancement, to guide return to play decisions is becoming more common in clinical practice. Summary Establishing a stepwise approach for proper diagnosis and risk stratification, with an emphasis on contemporary cardiac magnetic resonance (CMR) imaging techniques, in myocarditis is critical. After a diagnosis of myocarditis is made, it is imperative for any athlete or highly active individual to refrain from physical exercise. Additionally, therapy for heart failure should be applied in cases of myocarditis with cardiac dysfunction. Undoubtedly, COVID 19, and its potential to cause myocarditis, is sure to change the landscape of management of this disease.
Collapse
Affiliation(s)
- Benjamin Hurwitz
- Department of Cardiology, Mount Sinai-Miami, Miami Beach, FL USA
| | - Omar Issa
- Department of Cardiology, Mount Sinai-Miami, Miami Beach, FL USA
| |
Collapse
|
39
|
Silva Filho E, Xavier J, Cezarino L, Sales H, Albuquerque J. Comment on "The importance of physical exercise during the coronavirus (COVID-19) pandemic". ACTA ACUST UNITED AC 2020; 66:1311-1313. [PMID: 33027466 DOI: 10.1590/1806-9282.66.9.1311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022]
Abstract
Currently, many people have been infected by the Coronavirus disease (COVID-19) and presented cardiorespiratory symptoms caused mainly by the host immune system response and respiratory tract inflammation. So far, there is no effective treatment to fight off COVID-19 and, despite many daily speculations about new treatments and vaccines, in this article, we discuss the effectiveness of a cheap and scientific proven technique to treat and prevent several diseases. Many studies have shown the benefits of physical exercise in individuals who have practiced it routinely. This approach is a great strategy to improve people's cardiorespiratory capacity, inflammation system, and immune response. Due to the quarantine period, the practice of physical exercise at home can also be used to fight off COVID-19 and must be inserted into people's routines.
Collapse
Affiliation(s)
- Edson Silva Filho
- Fisioterapeuta e Professor de Educação Física, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - Jairo Xavier
- Fisioterapeuta, Centro Universitário Estácio de Sá, Recife, PE, Brasil
| | - Leandro Cezarino
- Fisioterapeuta, Universidade Federal do Rio Grande do Norte, Santa Cruz, RN, Brasil
| | - Histênio Sales
- Doutor, Hospital Regional José Fernandes Salsa, Limoeiro, PE, Brasil
| | | |
Collapse
|
40
|
Cornejo-Pareja IM, Gómez-Pérez AM, Fernández-García JC, Barahona San Millan R, Aguilera Luque A, de Hollanda A, Jiménez A, Jimenez-Murcia S, Munguia L, Ortega E, Fernandez-Aranda F, Fernández Real JM, Tinahones F. Coronavirus disease 2019 (COVID-19) and obesity. Impact of obesity and its main comorbidities in the evolution of the disease. EUROPEAN EATING DISORDERS REVIEW 2020; 28:799-815. [PMID: 32974994 DOI: 10.1002/erv.2770] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic is posing a great challenge worldwide. Its rapid progression has caused thousands of deaths worldwide. Although multiple aspects remain to be clarified, some risk factors associated with a worse prognosis have been identified. These include obesity and some of its main complications, such as diabetes and high blood pressure. Furthermore, although the possible long-term complications and psychological effects that may appear in survivors of COVID-19 are not well known yet, there is a concern that those complications may be greater in obese patients. In this manuscript, we review some of the data published so far and the main points that remain to be elucidated are emphasized.
Collapse
Affiliation(s)
- Isabel M Cornejo-Pareja
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria University Hospital, Málaga, Spain
| | - Ana M Gómez-Pérez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria University Hospital, Málaga, Spain
| | - José C Fernández-García
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria University Hospital, Málaga, Spain
| | - Rebeca Barahona San Millan
- Unit of Diabetes, Endocrinology and Nutrition, Hospital de Girona Dr. Josep Trueta, 17007, Institut d'Investigació Biomèdica de Girona (IDIBGI) Girona, and Department of Medical Sciences, University of Girona, Girona, Spain
| | - Alexandre Aguilera Luque
- Unit of Diabetes, Endocrinology and Nutrition, Hospital de Girona Dr. Josep Trueta, 17007, Institut d'Investigació Biomèdica de Girona (IDIBGI) Girona, and Department of Medical Sciences, University of Girona, Girona, Spain
| | - Ana de Hollanda
- Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute-IDIBAPS, Hospital Clínic of Barcelona, Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
| | - Amanda Jiménez
- Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute-IDIBAPS, Hospital Clínic of Barcelona, Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
| | - Susana Jimenez-Murcia
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain.,Department of Psychiatry, University Hospital of Bellvitge-IDIBELL and Department of Clinical Sciences, School of Medicine and Health Sciences. University of Barcelona, Barcelona, Spain
| | - Lucero Munguia
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL and Department of Clinical Sciences, School of Medicine and Health Sciences. University of Barcelona, Barcelona, Spain
| | - Emilio Ortega
- Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute-IDIBAPS, Hospital Clínic of Barcelona, Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
| | - Fernando Fernandez-Aranda
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain.,Department of Psychiatry, University Hospital of Bellvitge-IDIBELL and Department of Clinical Sciences, School of Medicine and Health Sciences. University of Barcelona, Barcelona, Spain
| | - José M Fernández Real
- Unit of Diabetes, Endocrinology and Nutrition, Hospital de Girona Dr. Josep Trueta, 17007, Institut d'Investigació Biomèdica de Girona (IDIBGI) Girona, and Department of Medical Sciences, University of Girona, Girona, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
| | - Francisco Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria University Hospital, Málaga, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
| |
Collapse
|
41
|
Nieman DC. Coronavirus disease-2019: A tocsin to our aging, unfit, corpulent, and immunodeficient society. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:293-301. [PMID: 32389882 PMCID: PMC7205734 DOI: 10.1016/j.jshs.2020.05.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 05/07/2023]
Abstract
Acute and chronic respiratory illnesses cause widespread morbidity and mortality, and this class of illness now includes the novel coronavirus severe acute respiratory syndrome that is causing coronavirus disease-2019 (COVID-19). The world is experiencing a major demographic shift toward an older, obese, and physically inactive populace. Risk factor assessments based on pandemic data indicate that those at higher risk for severe illness from COVID-19 include older males, and people of all ages with obesity and related comorbidities such as hypertension and type 2 diabetes. Aging in and of itself leads to negative changes in innate and adaptive immunity, a process termed immunosenescence. Obesity causes systemic inflammation and adversely impacts immune function and host defense in a way that patterns immunosenescence. Two primary prevention strategies to reduce the risk for COVID-19 at both the community and individual levels include mitigation activities and the adoption of lifestyle practices consistent with good immune health. Animal and human studies support the idea that, in contrast to high exercise workloads, regular moderate-intensity physical activity improves immunosurveillance against pathogens and reduces morbidity and mortality from viral infection and respiratory illnesses including the common cold, pneumonia, and influenza. The odds are high that infectious disease pandemics spawned by novel pathogens will continue to inflict morbidity and mortality as the world's population becomes older and more obese. COVID-19 is indeed a wake-up call, a tocsin, to the world that primary prevention countermeasures focused on health behaviors and hygiene demand our full attention and support.
Collapse
Affiliation(s)
- David C Nieman
- Department of Biology, College of Arts and Sciences, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| |
Collapse
|
42
|
Jee YS. Influences of acute and/or chronic exercise on human immunity: third series of scientific evidence. J Exerc Rehabil 2020; 16:205-206. [PMID: 32724776 PMCID: PMC7365731 DOI: 10.12965/jer.2040414.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Yong-Seok Jee
- Research Institute of Sports and Industry Science, Hanseo University, 46 Hanseo 1-ro, Haemimyeon, Seosan 31962, Korea, E-mail:
| |
Collapse
|
43
|
Song Y, Ren F, Sun D, Wang M, Baker JS, István B, Gu Y. Benefits of Exercise on Influenza or Pneumonia in Older Adults: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2655. [PMID: 32294922 PMCID: PMC7215850 DOI: 10.3390/ijerph17082655] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
A coronavirus pandemic has recently become one of the greatest threats the world is facing. Older adults are under a high risk of infection because of weaker immune systems. Therefore, the purpose of this review is to summarize the recent scientific evidence that outlines the effects of exercise on influenza or pneumonia in older adults. An electronic literature search was conducted using the WEB OF SCIENCE, SCIENCEDIRECT and GOOGLE SCHOLAR databases using the following keywords, "Exercise," "Older adult," "Influenza," and "Pneumonia." Any randomized control trials, cross-sectional and observational studies that related to this topic were all included. Twenty studies met the eligibility criteria for this review. Thirteen randomized control trials investigated the effects of exercise on the immune responses to influenza or pneumonia vaccination: seven trials employed moderate aerobic exercise, three employed resistance exercise, and the remaining three used Asian martial arts or special home-based exercises. Five cross-sectional and two observational studies examined the associations between exercise/physical condition and influenza/pneumonia. Most of the current studies suggested that prolonged moderate aerobic exercise may help to reduce the risk of influenza-related infection and improve the immune responses to influenza or pneumonia vaccination in older adults. In addition, training in traditional Asian martial arts was also found to be beneficial. Future research should focus on the different effects of moderate and vigorous exercise on influenza-related diseases.
Collapse
Affiliation(s)
- Yang Song
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - Feng Ren
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - Dong Sun
- Faculty of Engineering, University of Pannonia Veszeprem, 8200 Veszprém, Hungary; (D.S.); (M.W.)
| | - Meizi Wang
- Faculty of Engineering, University of Pannonia Veszeprem, 8200 Veszprém, Hungary; (D.S.); (M.W.)
| | - Julien S. Baker
- Department of Sport and Physical Education, Hong Kong Baptist University, Hong Kong 999077, China;
| | - Bíró István
- Faculty of Engineering, University of Szeged, 6724 Szeged, Hungary;
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
44
|
Weyh C, Krüger K, Strasser B. Physical Activity and Diet Shape the Immune System during Aging. Nutrients 2020; 12:nu12030622. [PMID: 32121049 PMCID: PMC7146449 DOI: 10.3390/nu12030622] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
With increasing age, the immune system undergoes a remodeling process, termed immunosenescence, which is accompanied by considerable shifts in leukocyte subpopulations and a decline in various immune cell functions. Clinically, immunosenescence is characterized by increased susceptibility to infections, a more frequent reactivation of latent viruses, decreased vaccine efficacy, and an increased prevalence of autoimmunity and cancer. Physiologically, the immune system has some adaptive strategies to cope with aging, while in some settings, maladaptive responses aggravate the speed of aging and morbidity. While a lack of physical activity, decreased muscle mass, and poor nutritional status facilitate immunosenescence and inflammaging, lifestyle factors such as exercise and dietary habits affect immune aging positively. This review will discuss the relevance and mechanisms of immunoprotection through physical activity and specific exercise interventions. In the second part, we will focus on the effect of dietary interventions through the supplementation of the essential amino acid tryptophan, n-3 polyunsaturated fatty acids, and probiotics (with a special focus on the kynurenine pathway).
Collapse
Affiliation(s)
- Christopher Weyh
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany;
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany;
- Correspondence:
| | - Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, A-1020 Vienna, Austria;
| |
Collapse
|
45
|
Pitanga FJG, Pitanga CPS, Beck CC. Can physical activity influence the effect of the COVID-19 vaccine on older adults? REVISTA BRASILEIRA DE CINEANTROPOMETRIA E DESEMPENHO HUMANO 2020. [DOI: 10.1590/1980-0037.2020v22e76586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Studies have shown reductions in the immune response capacity with the aging process (immunosenescence). Lifestyle factors (physical activity and diet) have been investigated as possible adjuvants to improve the effect of vaccines on the immune system in the elderly. The aim of this opinion article is to analyze studies on physical activity and the effect of influenza vaccines in an attempt to suggest that their results can also be found in future studies on physical activity and vaccines against COVID-19. Considering the results of the studies analyzed, it could be suggested that the practice of physical activity improves responses to the influenza vaccine. Thus, it could be assumed that, when transferring these findings to COVID-19, the importance of regular physical activity in the specific elderly population becomes extremely relevant during the COVID-19 pandemic.
Collapse
|
46
|
Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nat Rev Immunol 2019; 19:563-572. [DOI: 10.1038/s41577-019-0177-9] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Nieman DC, Wentz LM. The compelling link between physical activity and the body's defense system. JOURNAL OF SPORT AND HEALTH SCIENCE 2019; 8:201-217. [PMID: 31193280 PMCID: PMC6523821 DOI: 10.1016/j.jshs.2018.09.009] [Citation(s) in RCA: 685] [Impact Index Per Article: 114.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/26/2018] [Accepted: 09/25/2018] [Indexed: 05/05/2023]
Abstract
This review summarizes research discoveries within 4 areas of exercise immunology that have received the most attention from investigators: (1) acute and chronic effects of exercise on the immune system, (2) clinical benefits of the exercise-immune relationship, (3) nutritional influences on the immune response to exercise, and (4) the effect of exercise on immunosenescence. These scientific discoveries can be organized into distinctive time periods: 1900-1979, which focused on exercise-induced changes in basic immune cell counts and function; 1980-1989, during which seminal papers were published with evidence that heavy exertion was associated with transient immune dysfunction, elevated inflammatory biomarkers, and increased risk of upper respiratory tract infections; 1990-2009, when additional focus areas were added to the field of exercise immunology including the interactive effect of nutrition, effects on the aging immune system, and inflammatory cytokines; and 2010 to the present, when technological advances in mass spectrometry allowed system biology approaches (i.e., metabolomics, proteomics, lipidomics, and microbiome characterization) to be applied to exercise immunology studies. The future of exercise immunology will take advantage of these technologies to provide new insights on the interactions between exercise, nutrition, and immune function, with application down to the personalized level. Additionally, these methodologies will improve mechanistic understanding of how exercise-induced immune perturbations reduce the risk of common chronic diseases.
Collapse
Affiliation(s)
- David C. Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Corresponding author.
| | - Laurel M. Wentz
- Department of Nutrition and Health Care Management, Appalachian State University, Boone, NC 28608, USA
| |
Collapse
|
48
|
Sun YI, Pence BD, Wang SS, Woods JA. Effects of Exercise on Stress-induced Attenuation of Vaccination Responses in Mice. Med Sci Sports Exerc 2019; 51:1635-1641. [PMID: 30829964 DOI: 10.1249/mss.0000000000001971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Studies suggest that exercise can improve vaccination responses in humans. Chronic stress can lead to immunosuppression, and there may be a role for exercise in augmenting immune responses. PURPOSE To investigate the effects of acute eccentric exercise (ECC) and voluntary wheel exercise training (VWR) on antibody and cell-mediated immune responses to vaccination in chronically stressed mice. We hypothesized that both ECC and VWR would attenuate chronic stress-induced reductions in vaccination responses. METHODS Mice were randomized into four groups: control (CON), stress (S)-ECC, S-VWR, and S-sedentary (SED). Stressed groups received chronic restraint stress for 6 h·d, 5 d·wk for 3 wk. After the first week of stress, S-ECC were exercised at 17 m·min speed at -20% grade for 45 min on a treadmill and then intramuscularly injected with 100 μg of ovalbumin (OVA) and 200 μg of alum adjuvant. All other groups were also vaccinated at this time. Stress-VWR mice voluntarily ran on a wheel for the entire experiment. Plasma was collected before, and at 1, 2, and 4 wk postvaccination. Enzyme-linked immunosorbent assay was performed to analyze anti-OVA IgG and IgM antibodies. After 3 wk of chronic stress, all mice were injected with OVA into the ear to determine the delayed-type hypersensitivity. RESULTS We found that chronic restraint stress significantly reduced body weight and caused adrenal hypertrophy. We also found both S-ECC and S-VWR groups had significantly elevated anti-OVA IgG (P < 0.05), whereas no significant differences between the two exercise groups. Neither S-ECC nor S-VWR altered anti-OVA IgM or delayed-type hypersensitivity responses compared with S-SED group. CONCLUSIONS Acute eccentric exercise and voluntary exercise training alleviated the chronic stress-induced anti-OVA IgG reductions in vaccination responses.
Collapse
Affiliation(s)
- Y I Sun
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL.,Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Brandt D Pence
- School of Health Studies, University of Memphis, Memphis, TN
| | - Selena Shiyue Wang
- Interdisciplinary Health Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Jeffrey A Woods
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL.,Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
49
|
Lombardi G, Ziemann E, Banfi G. Physical Activity and Bone Health: What Is the Role of Immune System? A Narrative Review of the Third Way. Front Endocrinol (Lausanne) 2019; 10:60. [PMID: 30792697 PMCID: PMC6374307 DOI: 10.3389/fendo.2019.00060] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
Bone tissue can be seen as a physiological hub of several stimuli of different origin (e.g., dietary, endocrine, nervous, immune, skeletal muscle traction, biomechanical load). Their integration, at the bone level, results in: (i) changes in mineral and protein composition and microarchitecture and, consequently, in shape and strength; (ii) modulation of calcium and phosphorous release into the bloodstream, (iii) expression and release of hormones and mediators able to communicate the current bone status to the rest of the body. Different stimuli are able to act on either one or, as usual, more levels. Physical activity is the key stimulus for bone metabolism acting in two ways: through the biomechanical load which resolves into a direct stimulation of the segment(s) involved and through an indirect load mediated by muscle traction onto the bone, which is the main physiological stimulus for bone formation, and the endocrine stimulation which causes homeostatic adaptation. The third way, in which physical activity is able to modify bone functions, passes through the immune system. It is known that immune function is modulated by physical activity; however, two recent insights have shed new light on this modulation. The first relies on the discovery of inflammasomes, receptors/sensors of the innate immunity that regulate caspase-1 activation and are, hence, the tissue triggers of inflammation in response to infections and/or stressors. The second relies on the ability of certain tissues, and particularly skeletal muscle and adipose tissue, to synthesize and secrete mediators (namely, myokines and adipokines) able to affect, profoundly, the immune function. Physical activity is known to act on both these mechanisms and, hence, its effects on bone are also mediated by the immune system activation. Indeed, that immune system and bone are tightly connected and inflammation is pivotal in determining the bone metabolic status is well-known. The aim of this narrative review is to give a complete view of the exercise-dependent immune system-mediated effects on bone metabolism and function.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Physiology and Pharmacology, Faculty of Rehabilitation and Kinesiology, Gdansk University of Physical Education and Sport, Gdansk, Poland
- *Correspondence: Giovanni Lombardi
| | - Ewa Ziemann
- Department of Physiology and Pharmacology, Faculty of Rehabilitation and Kinesiology, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
50
|
Jones AW, Davison G. Exercise, Immunity, and Illness. MUSCLE AND EXERCISE PHYSIOLOGY 2019. [PMCID: PMC7149380 DOI: 10.1016/b978-0-12-814593-7.00015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
It is generally accepted that moderate amounts of exercise improve immune system functions and hence reduce the risk of infection whereas athletes engaged in regular prolonged and/or intensive training have a higher than “normal” incidence of minor infections, especially of the upper respiratory tract (URT, e.g., common cold and influenza). This is likely related to regular acute (and possibly chronic) periods of exercise-induced changes in immune function. URT infections can compromise performance directly if suffered shortly before or during competition or indirectly if suffered at other times via effects on training and/or physiological adaptations. This chapter covers the effects of exercise (acute and chronic), both positive and negative, on immune function and consequent infection risk, and considers the current state-of-the-art for monitoring and assessing this in athletes.
Collapse
|