1
|
Banerjee S, Halder P, Das S, Maiti S, Withey JH, Mitobe J, Chowdhury G, Kitahara K, Miyoshi SI, Mukhopadhyay AK, Dutta S, Koley H. Trivalent outer membrane vesicles-based combination vaccine candidate induces protective immunity against Campylobacter and invasive non-typhoidal Salmonella in adult mice. Med Microbiol Immunol 2024; 213:21. [PMID: 39407046 DOI: 10.1007/s00430-024-00805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 10/07/2024] [Indexed: 12/28/2024]
Abstract
Campylobacter and invasive non-typhoidal Salmonella (iNTS) are among the most common causative agents of gastroenteritis worldwide. As of now, no single combination licensed vaccine is available for public health use against both iNTS and Campylobacter species. Outer-membrane vesicles (OMVs) are nanoscale proteoliposomes released from the surface of gram-negative bacteria during log phase and harbor a variety of immunogenic proteins. Based on epidemiology of infections, we formulated a novel trivalent outer membrane vesicles (TOMVs)-based vaccine candidate against Campylobacter jejuni (CJ), Salmonella Typhimurium (ST) and Salmonella Enteritidis (SE). Isolated OMVs from CJ, ST and SE were combined in equal ratios for formulation of TOMVs and 5 µg of the developed vaccine candidate was used for intraperitoneal immunization of adult BALB/c mice. Immunization with TOMVs significantly activated both the humoral and cellular arm of adaptive immune response. Robust bactericidal effect was elicited by TOMVs immunized adult mice sera. TOMVs immunization induced long-term protective efficacy against CJ, ST and SE infections in mice. The study illustrates the ability of TOMVs-based combination immunogen in eliciting broad-spectrum protective immunity against prevalent Campylobacter and iNTS pathogens. According to the findings, TOMVs can work as a potent combination-based acellular vaccine candidate for amelioration of Campylobacter and iNTS-mediated gastroenteritis.
Collapse
Affiliation(s)
- Soumalya Banerjee
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Sanjib Das
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Suhrid Maiti
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Jeffrey H Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jiro Mitobe
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Kei Kitahara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India.
| |
Collapse
|
2
|
Lei EK, Azmat A, Henry KA, Hussack G. Outer membrane vesicles as a platform for the discovery of antibodies to bacterial pathogens. Appl Microbiol Biotechnol 2024; 108:232. [PMID: 38396192 PMCID: PMC10891261 DOI: 10.1007/s00253-024-13033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Bacterial outer membrane vesicles (OMVs) are nanosized spheroidal particles shed by gram-negative bacteria that contain biomolecules derived from the periplasmic space, the bacterial outer membrane, and possibly other compartments. OMVs can be purified from bacterial culture supernatants, and by genetically manipulating the bacterial cells that produce them, they can be engineered to harbor cargoes and/or display molecules of interest on their surfaces including antigens that are immunogenic in mammals. Since OMV bilayer-embedded components presumably maintain their native structures, OMVs may represent highly useful tools for generating antibodies to bacterial outer membrane targets. OMVs have historically been utilized as vaccines or vaccine constituents. Antibodies that target bacterial surfaces are increasingly being explored as antimicrobial agents either in unmodified form or as targeting moieties for bactericidal compounds. Here, we review the properties of OMVs, their use as immunogens, and their ability to elicit antibody responses against bacterial antigens. We highlight antigens from bacterial pathogens that have been successfully targeted using antibodies derived from OMV-based immunization and describe opportunities and limitations for OMVs as a platform for antimicrobial antibody development. KEY POINTS: • Outer membrane vesicles (OMVs) of gram-negative bacteria bear cell-surface molecules • OMV immunization allows rapid antibody (Ab) isolation to bacterial membrane targets • Review and analysis of OMV-based immunogens for antimicrobial Ab development.
Collapse
Affiliation(s)
- Eric K Lei
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Aruba Azmat
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.
| |
Collapse
|
3
|
A homopolymeric adenosine tract in the promoter region of nspA influences factor H-mediated serum resistance in Neisseria meningitidis. Sci Rep 2019; 9:2736. [PMID: 30804422 PMCID: PMC6389960 DOI: 10.1038/s41598-019-39231-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/18/2019] [Indexed: 01/18/2023] Open
Abstract
Although usually asymptomatically colonizing the human nasopharynx, the Gram-negative bacterium Neisseria meningitidis (meningococcus) can spread to the blood stream and cause invasive disease. For survival in blood, N. meningitidis evades the complement system by expression of a polysaccharide capsule and surface proteins sequestering the complement regulator factor H (fH). Meningococcal strains belonging to the sequence type (ST-) 41/44 clonal complex (cc41/44) cause a major proportion of serogroup B meningococcal disease worldwide, but they are also common in asymptomatic carriers. Proteome analysis comparing cc41/44 isolates from invasive disease versus carriage revealed differential expression levels of the outer membrane protein NspA, which binds fH. Deletion of nspA reduced serum resistance and NspA expression correlated with fH sequestration. Expression levels of NspA depended on the length of a homopolymeric tract in the nspA promoter: A 5-adenosine tract dictated low NspA expression, whereas a 6-adenosine motif guided high NspA expression. Screening German cc41/44 strain collections revealed the 6-adenosine motif in 39% of disease isolates, but only in 3.4% of carriage isolates. Thus, high NspA expression is associated with disease, but not strictly required. The 6-adenosine nspA promoter is most common to the cc41/44, but is also found in other hypervirulent clonal complexes.
Collapse
|
4
|
Norheim G, Sanders H, Mellesdal JW, Sundfør I, Chan H, Brehony C, Vipond C, Dold C, Care R, Saleem M, Maiden MCJ, Derrick JP, Feavers I, Pollard AJ. An OMV Vaccine Derived from a Capsular Group B Meningococcus with Constitutive FetA Expression: Preclinical Evaluation of Immunogenicity and Toxicity. PLoS One 2015; 10:e0134353. [PMID: 26390123 PMCID: PMC4577077 DOI: 10.1371/journal.pone.0134353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/09/2015] [Indexed: 11/26/2022] Open
Abstract
Following the introduction of effective protein-polysaccharide conjugate vaccines against capsular group C meningococcal disease in Europe, meningococci of capsular group B remain a major cause of death and can result in debilitating sequelae. The outer membrane proteins PorA and FetA have previously been shown to induce bactericidal antibodies in humans. Despite considerable antigenic variation among PorA and FetA OMPs in meningococci, systematic molecular epidemiological studies revealed this variation is highly structured so that a limited repertoire of antigenic types is congruent with the hyperinvasive meningococcal lineages that have caused most of the meningococcal disease in Europe in recent decades. Here we describe the development of a prototype vaccine against capsular group B meningococcal infection based on a N. meningitidis isolate genetically engineered to have constitutive expression of the outer membrane protein FetA. Deoxycholate outer membrane vesicles (dOMVs) extracted from cells cultivated in modified Frantz medium contained 21.8% PorA protein, 7.7% FetA protein and 0.03 μg LPS per μg protein (3%). The antibody response to the vaccine was tested in three mouse strains and the toxicological profile of the vaccine was tested in New Zealand white rabbits. Administration of the vaccine, MenPF-1, when given by intramuscular injection on 4 occasions over a 9 week period, was well tolerated in rabbits up to 50 μg/dose, with no evidence of systemic toxicity. These data indicated that the MenPF-1 vaccine had a toxicological profile suitable for testing in a phase I clinical trial.
Collapse
Affiliation(s)
- Gunnstein Norheim
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Norwegian Institute of Public Health, Oslo, Norway
- * E-mail:
| | - Holly Sanders
- National Institute of Biological Standards and Control, Potters Bar, United Kingdom
| | | | | | - Hannah Chan
- National Institute of Biological Standards and Control, Potters Bar, United Kingdom
| | - Carina Brehony
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Caroline Vipond
- National Institute of Biological Standards and Control, Potters Bar, United Kingdom
| | - Chris Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Rory Care
- National Institute of Biological Standards and Control, Potters Bar, United Kingdom
| | | | | | | | - Ian Feavers
- National Institute of Biological Standards and Control, Potters Bar, United Kingdom
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
5
|
Combined meningococcal serogroup A and W135 outer-membrane vesicles activate cell-mediated immunity and long-term memory responses against non-covalent capsular polysaccharide A. Immunol Res 2014; 58:75-85. [PMID: 23660844 DOI: 10.1007/s12026-013-8427-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Outer-membrane vesicles (OMVs) have inherent adjuvant properties, and many vaccines use OMV as vaccine components. Utilizing the adjuvant properties of OMV could lead to the formulation of vaccines that are less expensive and potentially more immunogenic than covalently conjugated polysaccharide vaccines. We evaluated the adjuvant effect in Balb/c mice of combinations of OMV from Neisseria meningitidis serogroup A and W135 as compared to that of the non-covalently conjugated capsular polysaccharide A. Both antigens were adsorbed onto aluminum hydroxide. The mice were given a booster dose of plain polysaccharide A to stimulate an immunologic memory response. Subclasses determination and cytokine assays demonstrated the capacity of OMV to induce a IgG2a/IgG2b isotype profile and IFN-γ production, suggesting the induction of a Th1 pattern immune response. Lymphoproliferative responses to OMVs were high, with affinity maturation of antibodies observed. Bactericidal titers after the booster dose were also observed. Memory B cells and long-term memory T cells were also detected. The results of this study indicate that combined meningococcal serogroup A and W135 OMV can activate cell-mediated immunity and induce a long-term memory response.
Collapse
|
6
|
Preclinical immunogenicity and functional activity studies of an A+W meningococcal outer membrane vesicle (OMV) vaccine and comparisons with existing meningococcal conjugate- and polysaccharide vaccines. Vaccine 2013; 31:6097-106. [DOI: 10.1016/j.vaccine.2013.09.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/16/2013] [Accepted: 09/23/2013] [Indexed: 11/21/2022]
|
7
|
Gong Q, Qu N, Niu M, Qin C, Cheng M, Sun X, Zhang A. Immune responses and protective efficacy of a novel DNA vaccine encoding outer membrane protein of avian Pasteurella multocida. Vet Immunol Immunopathol 2013; 152:317-24. [PMID: 23340446 DOI: 10.1016/j.vetimm.2013.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 12/30/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
Abstract
Avian Pasteurella multocida is a causative agent of fowl cholera. Two proteins OmpH and OmpA are the major immunogenic antigens of avian P. multocida, which play an important role in inducing immune responses that confer resistance against infections. In the present study, we used pcDNA3.1(+) as a vector and constructed DNA vaccines with the genes encoding the two antigens mentioned above. These DNA vaccines include monovalent (pcDNA-OMPH, pOMPH and pcDNA-OMPA, pOMPA), divalent combination (pcDNA-OMPH+pcDNA-OMPA, pOMPH+pOMPA) and fusion of two gene vaccines (pcDNA-OMPH/OMPA, pOMPHA). The immune responses to these DNA vaccines were evaluated by serum antibody titers, lymphocyte proliferation assay and titers of a cytokines, IFN-γ. The protective efficacy after challenging with a virulent avian P. multocida strain, CVCC474, was evaluated by survival rate. A significant increase in serum antibody levels was observed in chickens vaccinated with divalent combination and fusion DNA vaccines. Additionally, the lymphocyte proliferation (SI value) and the levels of IFN-γ were both higher in chickens immunized with divalent combination and fusion DNA vaccines than in those vaccinated with monovalent DNA vaccines (P<0.05). Furthermore, the protection provided by divalent combination and fusion DNA vaccines was superior to that provided by monovalent DNA vaccines after challenging with the avian P. multocida strain CVCC474. And the protective efficacy in chickens immunized three times with the fusion DNA vaccine was equivalent to the protective efficacy in chickens vaccinated once with the attenuated live vaccine. This suggests that divalent combination and fusion DNA vaccines represent a promising approach for the prevention of fowl cholera.
Collapse
Affiliation(s)
- Qiang Gong
- He Nan University of Science and Technology, Luoyang, PR China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Sadarangani M, Hoe JC, Callaghan MJ, Jones C, Chan H, Makepeace K, Daniels-Treffandier H, Deadman ME, Bayliss C, Feavers I, van der Ley P, Pollard AJ. Construction of Opa-positive and Opa-negative strains of Neisseria meningitidis to evaluate a novel meningococcal vaccine. PLoS One 2012; 7:e51045. [PMID: 23251421 PMCID: PMC3521020 DOI: 10.1371/journal.pone.0051045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/31/2012] [Indexed: 11/19/2022] Open
Abstract
Neisseria meningitidis is a major global pathogen causing invasive disease with a mortality of 5-10%. Most disease in developed countries is caused by serogroup B infection, against which there is no universal vaccine. Opacity-associated adhesin (Opa) proteins are major meningococcal outer membrane proteins, which have shown recent promise as a potential novel vaccine. Immunisation of mice with different Opa variants elicited high levels of meningococcal-specific bactericidal antibodies, demonstrating proof in principle for this approach. Opa proteins are critical in meningococcal pathogenesis, mediating bacterial adherence to host cells, and modulating human cellular immunity via interactions with T cells and neutrophils, although there are conflicting data regarding their effects on CD4(+) T cells. We constructed Opa-positive and Opa-negative meningococcal strains to allow further evaluation of Opa as a vaccine component. All four opa genes from N. meningitidis strain H44/76 were sequentially disrupted to construct all possible combinations of N. meningitidis strains deficient in one, two, three, or all four opa genes. The transformations demonstrated that homologous recombination of exogenous DNA into the meningococcal chromosome can occur with as little as 80 bp, and that minor sequence differences are permissible. Anti-Opa bactericidal antibody responses following immunisation of mice with recombinant Opa were specific to the Opa variant used in immunisation. No immunomodulatory effects were observed when Opa was contained within meningococcal outer membrane vesicles (OMVs), compared to Opa-negative OMVs. These observations support the incorporation of Opa in meningococcal vaccines.
Collapse
Affiliation(s)
- Manish Sadarangani
- Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Norheim G, Tunheim G, Naess LM, Kristiansen PA, Caugant DA, Rosenqvist E. An Outer Membrane Vesicle Vaccine for Prevention of Serogroup A and W-135 Meningococcal Disease in the African Meningitis Belt. Scand J Immunol 2012; 76:99-107. [DOI: 10.1111/j.1365-3083.2012.02709.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Xie O, Bolgiano B, Gao F, Lockyer K, Swann C, Jones C, Delrieu I, Njanpop-Lafourcade BM, Tamekloe TA, Pollard AJ, Norheim G. Characterization of size, structure and purity of serogroup X Neisseria meningitidis polysaccharide, and development of an assay for quantification of human antibodies. Vaccine 2012; 30:5812-23. [PMID: 22835740 DOI: 10.1016/j.vaccine.2012.07.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/16/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
Abstract
Serogroup X Neisseria meningitidis (MenX) has recently emerged as a cause of localized disease outbreaks in sub-Saharan Africa. In order to prepare for vaccine development, MenX polysaccharide (MenX PS) was purified by standard methods and analyzed for identity and structure by NMR spectroscopy. This study presents the first full assignment of the structure of the MenX PS using (13)C, (1)H and (31)P NMR spectroscopy and total correlation spectroscopy (TOCSY) and (1)H-(13)C heteronuclear single quantum coherence (HSQC). Molecular size distribution analysis using HPLC-SEC with multi-angle laser light scattering (MALLS) found the single peak of MenX PS to have a weight-average molar mass of 247,000g/mol, slightly higher than a reference preparation of purified serogroup C meningococcal polysaccharide. MenX PS tended to be more thermostable than serogroup A PS. A method for the quantification of MenX PS was developed by use of high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). A novel and specific ELISA assay for quantification of human anti-MenX PS IgG based on covalent linkage of the MenX PS to functionally modified microtitre plates was developed and found valid for the assessment of the specific antibody concentrations produced in response to MenX vaccination or natural infection. The current work thus provides the necessary background for the development of a MenX PS-based vaccine to prevent meningococcal infection caused by bacteria bearing this capsule.
Collapse
Affiliation(s)
- Ouli Xie
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7TU, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Naturally produced outer membrane vesicles from Pseudomonas aeruginosa elicit a potent innate immune response via combined sensing of both lipopolysaccharide and protein components. Infect Immun 2010; 78:3822-31. [PMID: 20605984 DOI: 10.1128/iai.00433-10] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a prevalent opportunistic human pathogen that, like other Gram-negative pathogens, secretes outer membrane vesicles. Vesicles are complex entities composed of a subset of envelope lipid and protein components that have been observed to interact with and be internalized by host cells. This study characterized the inflammatory responses to naturally produced P. aeruginosa vesicles and determined the contribution of vesicle Toll-like receptor (TLR) ligands and vesicle proteins to that response. Analysis of macrophage responses to purified vesicles by real-time PCR and enzyme-linked immunosorbent assay identified proinflammatory cytokines upregulated by vesicles. Intact vesicles were shown to elicit a profoundly greater inflammatory response than the response to purified lipopolysaccharide (LPS). Both TLR ligands LPS and flagellin contributed to specific vesicle cytokine responses, whereas the CpG DNA content of vesicles did not. Neutralization of LPS sensing demonstrated that macrophage responses to the protein composition of vesicles required the adjuvantlike activity of LPS to elicit strain specific responses. Protease treatment to remove proteins from the vesicle surface resulted in decreased interleukin-6 and tumor necrosis factor alpha production, indicating that the production of these specific cytokines may be linked to macrophage recognition of vesicle proteins. Confocal microscopy of vesicle uptake by macrophages revealed that vesicle LPS allows for binding to macrophage surfaces, whereas vesicle protein content is required for internalization. These data demonstrate that macrophage sensing of both LPS and protein components of outer membrane vesicles combine to produce a bacterial strain-specific response that is distinct from those triggered by individual, purified vesicle components.
Collapse
|
12
|
Specificity of subcapsular antibody responses in Ethiopian patients following disease caused by serogroup A meningococci. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:863-71. [PMID: 18337382 DOI: 10.1128/cvi.00252-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dissecting the specificities of human antibody responses following disease caused by serogroup A meningococci may be important for the development of improved vaccines. We performed a study of Ethiopian patients during outbreaks in 2002 and 2003. Sera were obtained from 71 patients with meningitis caused by bacteria of sequence type 7, as confirmed by PCR or culture, and from 113 Ethiopian controls. Antibody specificities were analyzed by immunoblotting (IB) against outer membrane antigen extracts of a reference strain and of the patients' own isolates and by enzyme-linked immunosorbent assay for immunoglobulin G (IgG) levels against lipooligosaccharide (LOS) L11 and the proteins NadA and NspA. IB revealed that the main antigens targeted were the proteins PorA, PorB, RmpM, and Opa/OpcA, as well as LOS. MenA disease induced significant increases in IgG against LOS L11 and NadA. The IgG levels against LOS remained elevated following disease, whereas the IgG anti-NadA levels returned to acute-phase levels in the late convalescent phase. Among adults, the anti-LOS IgG levels were similar in acute-phase patient sera as in control sera, whereas anti-NadA IgG levels were significantly higher in acute-phase sera than in controls. The IgG antibody levels against LOS and NadA correlated moderately but significantly with serum bactericidal activity against MenA strains. Future studies on immune response during MenA disease should take into account the high levels of anti-MenA polysaccharide IgG commonly found in the population and seek to clarify the role of antibodies against subcapsular antigens in protection against MenA disease.
Collapse
|
13
|
Norheim G, Aseffa A, Yassin MA, Mengistu G, Kassu A, Fikremariam D, Tamire W, Merid Y, Høiby EA, Caugant DA, Fritzsønn E, Tangen T, Alebel T, Berhanu D, Harboe M, Rosenqvist E. Serum antibody responses in Ethiopian meningitis patients infected with Neisseria meningitidis serogroup A sequence type 7. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:451-63. [PMID: 17301215 PMCID: PMC1865611 DOI: 10.1128/cvi.00008-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 01/09/2007] [Accepted: 02/05/2007] [Indexed: 11/20/2022]
Abstract
To elucidate critical components of protective immune responses induced during the natural course of serogroup A meningococcal disease, we studied acute-, early-convalescent-, and late-convalescent-phase sera from Ethiopian patients during outbreaks in 2002 to 2003. Sera were obtained from laboratory-confirmed patients positive for serogroup A sequence type 7 (ST-7) meningococci (A:4/21:P1.20,9) (n = 71) and from Ethiopian controls (n = 113). The sera were analyzed using an enzyme-linked immunosorbent assay to measure levels of immunoglobulin G (IgG) against serogroup A polysaccharide (APS) and outer membrane vesicles (OMVs) and for serum bactericidal activity (SBA) using both rabbit and human complement sources. Despite relatively high SBA titers and high levels of IgG against APS and OMVs in acute-phase patient sera, significant increases were seen in the early convalescent phase. Antibody concentrations returned to acute-phase levels in the late convalescent phase. Considering all patients' sera, a significant but low correlation (r = 0.46) was observed between SBA with rabbit complement (rSBA) using an ST-5 reference strain and SBA with human complement (hSBA) using an ST-7 strain from Ethiopia. While rSBA demonstrated a significant linear relation with IgG against APS, hSBA demonstrated significant linear relationships with IgG against both APS and OMV. This study indicates that antibodies against both outer membrane proteins and APS may be important in providing the protection induced during disease, as measured by hSBA. Therefore, outer membrane proteins could also have a role as components of future meningococcal vaccines for the African meningitis belt.
Collapse
Affiliation(s)
- Gunnstein Norheim
- Division of Infectious Disease Control, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shaik YB, Grogan S, Davey M, Sebastian S, Goswami S, Szmigielski B, Genco CA. Expression of the iron-activated nspA and secY genes in Neisseria meningitidis group B by Fur-dependent and -independent mechanisms. J Bacteriol 2006; 189:663-9. [PMID: 17085550 PMCID: PMC1797404 DOI: 10.1128/jb.01638-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our whole-genome microarray studies of Neisseria meningitidis MC58 previously identified a set of 153 genes whose transcription was activated during growth in iron. In this study, Fur-mediated regulation of the iron-activated nspA gene was confirmed, whereas iron-activated regulation of the secY gene was demonstrated to be Fur independent. Analysis of the Fur binding sequences in the nspA gene and an additional iron-activated and Fur-regulated gene identified a hexameric (G/T)ATAAT unit in the operator regions of these genes similar to that observed in Fur- and iron-repressed genes. These studies indicate that the expression of the iron-activated nspA and secY genes in N. meningitidis occur by Fur-dependent and -independent mechanisms, respectively.
Collapse
Affiliation(s)
- Yazdani B Shaik
- Department of Medicine, Section of Molecular Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Norheim G, Aase A, Caugant DA, Høiby EA, Fritzsønn E, Tangen T, Kristiansen P, Heggelund U, Rosenqvist E. Development and characterisation of outer membrane vesicle vaccines against serogroup A Neisseria meningitidis. Vaccine 2005; 23:3762-74. [PMID: 15893613 DOI: 10.1016/j.vaccine.2005.02.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 02/17/2005] [Accepted: 02/25/2005] [Indexed: 10/25/2022]
Abstract
Neisseria meningitidis bacteria of serogroup A are causing recurring meningitis epidemics on the African continent. An outer membrane vesicle (OMV) vaccine against serogroup A meningococci made from a subgroup III serogroup A meningococcal strain was previously shown to induce antibodies with serum bactericidal activity (SBA) in mice. We have here further investigated the properties of OMV vaccines made from five different subgroup III serogroup A meningococcal strains grown in a synthetic medium with low iron content. In addition to the major outer membrane proteins (PorA, PorB, RmpM, Opa and OpcA), small amounts of the NadA, TdfH, Omp85, FetA, FbpA and NspA outer membrane proteins, as well as lipooligosaccharides, were detected in the vaccines. The OMV vaccines were used to immunise mice. Anti-meningococcal IgG antibodies in the mouse sera were analysed by immunoblotting and by enzyme-linked immunosorbent assay against OMVs, and against live meningococcal cells in SBA and a flow-cytometric assay. The vaccines induced antibodies with high SBA and opsonophagocytic activity. The strongest IgG responses were directed against PorA. Significant SBA responses were also observed against a subgroup III strain, which did not express PorA, whereas no SBA was observed against a clone IV-1 serogroup A strain. An OMV vaccine from serogroup A meningococci may be an alternative to polysaccharide and conjugate polysaccharide vaccines for Africa.
Collapse
Affiliation(s)
- Gunnstein Norheim
- Division of Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Vicente D, Esnal O, Michaus L, López de Goicoechea MJ, Cisterna R, Pérez-Trallero E. Prevalence of genosubtypes (PorA types) of serogroup B invasive meningococcus in the north of Spain from 2000 to 2003. J Med Microbiol 2005; 54:381-384. [PMID: 15770024 DOI: 10.1099/jmm.0.45855-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The composition of new vaccines against Neisseria meningitidis serogroup B is based on differences in the variable regions VR1 and VR2 of the class 1 outer-membrane protein (PorA) of meningococci. Genosubtyping of 96 N. meningitidis B isolates from blood or cerebrospinal fluid from 2000 to 2003 in the north of Spain allowed characterization of all the strains. Twenty-six genosubtypes or distinct PorA types were obtained. The most prevalent were P1.5-1, 10-8 (20 strains), P1.19, 15 (14 strains), P1.22, 9 (11 strains) and P1.5, 2 (nine strains), while 17 genosubtypes were represented by only one or two strains. The wide diversity of genosubtypes observed and their differences compared with those found in other regions reveals the difficulty in designing a useful outer-membrane vesicle vaccine applicable to different regions of the world.
Collapse
Affiliation(s)
- Diego Vicente
- Microbiology Department, Hospital Donostia and Basque Country Meningococcal Reference Centre, Paseo Dr Beguiristain s/n, 20014 San Sebastián (Gipuzkoa), Spain 2Microbiology Laboratory, Hospital Txagorritxu, Vitoria, Spain 3Microbiology Laboratory, Hospital Galdácano, Galdácano, Spain 4Microbiology Department, Hospital Basurto, Bilbao, Spain
| | - Olatz Esnal
- Microbiology Department, Hospital Donostia and Basque Country Meningococcal Reference Centre, Paseo Dr Beguiristain s/n, 20014 San Sebastián (Gipuzkoa), Spain 2Microbiology Laboratory, Hospital Txagorritxu, Vitoria, Spain 3Microbiology Laboratory, Hospital Galdácano, Galdácano, Spain 4Microbiology Department, Hospital Basurto, Bilbao, Spain
| | - Lourdes Michaus
- Microbiology Department, Hospital Donostia and Basque Country Meningococcal Reference Centre, Paseo Dr Beguiristain s/n, 20014 San Sebastián (Gipuzkoa), Spain 2Microbiology Laboratory, Hospital Txagorritxu, Vitoria, Spain 3Microbiology Laboratory, Hospital Galdácano, Galdácano, Spain 4Microbiology Department, Hospital Basurto, Bilbao, Spain
| | - Maria José López de Goicoechea
- Microbiology Department, Hospital Donostia and Basque Country Meningococcal Reference Centre, Paseo Dr Beguiristain s/n, 20014 San Sebastián (Gipuzkoa), Spain 2Microbiology Laboratory, Hospital Txagorritxu, Vitoria, Spain 3Microbiology Laboratory, Hospital Galdácano, Galdácano, Spain 4Microbiology Department, Hospital Basurto, Bilbao, Spain
| | - Ramón Cisterna
- Microbiology Department, Hospital Donostia and Basque Country Meningococcal Reference Centre, Paseo Dr Beguiristain s/n, 20014 San Sebastián (Gipuzkoa), Spain 2Microbiology Laboratory, Hospital Txagorritxu, Vitoria, Spain 3Microbiology Laboratory, Hospital Galdácano, Galdácano, Spain 4Microbiology Department, Hospital Basurto, Bilbao, Spain
| | - Emilio Pérez-Trallero
- Microbiology Department, Hospital Donostia and Basque Country Meningococcal Reference Centre, Paseo Dr Beguiristain s/n, 20014 San Sebastián (Gipuzkoa), Spain 2Microbiology Laboratory, Hospital Txagorritxu, Vitoria, Spain 3Microbiology Laboratory, Hospital Galdácano, Galdácano, Spain 4Microbiology Department, Hospital Basurto, Bilbao, Spain
| |
Collapse
|