1
|
Tadic S, Martínez A. Nucleic acid cancer vaccines targeting tumor related angiogenesis. Could mRNA vaccines constitute a game changer? Front Immunol 2024; 15:1433185. [PMID: 39081320 PMCID: PMC11286457 DOI: 10.3389/fimmu.2024.1433185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Tumor related angiogenesis is an attractive target in cancer therapeutic research due to its crucial role in tumor growth, invasion, and metastasis. Different agents were developed aiming to inhibit this process; however they had limited success. Cancer vaccines could be a promising tool in anti-cancer/anti-angiogenic therapy. Cancer vaccines aim to initiate an immune response against cancer cells upon presentation of tumor antigens which hopefully will result in the eradication of disease and prevention of its recurrence by inducing an efficient and long-lasting immune response. Different vaccine constructs have been developed to achieve this and they could include either protein-based or nucleic acid-based vaccines. Nucleic acid vaccines are simple and relatively easy to produce, with high efficiency and safety, thus prompting a high interest in the field. Different DNA vaccines have been developed to target crucial regulators of tumor angiogenesis. Most of them were successful in pre-clinical studies, mostly when used in combination with other therapeutics, but had limited success in the clinic. Apparently, different tumor evasion mechanisms and reduced immunogenicity still limit the potential of these vaccines and there is plenty of room for improvement. Nowadays, mRNA cancer vaccines are making remarkable progress due to improvements in the manufacturing technology and represent a powerful potential alternative. Apart from their efficiency, mRNA vaccines are simple and cheap to produce, can encompass multiple targets simultaneously, and can be quickly transferred from bench to bedside. mRNA vaccines have already accomplished amazing results in cancer clinical trials, thus ensuring a bright future in the field, although no anti-angiogenic mRNA vaccines have been described yet. This review aims to describe recent advances in anti-angiogenic DNA vaccine therapy and to provide perspectives for use of revolutionary approaches such are mRNA vaccines for anti-angiogenic treatments.
Collapse
Affiliation(s)
| | - Alfredo Martínez
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
2
|
Jiang XT, Liu Q. mRNA vaccination in breast cancer: current progress and future direction. J Cancer Res Clin Oncol 2023; 149:9435-9450. [PMID: 37100972 PMCID: PMC10132791 DOI: 10.1007/s00432-023-04805-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Messenger RNA (mRNA) vaccination has proven to be highly successful in combating Coronavirus disease 2019 (COVID-19) and has recently sparked tremendous interest. This technology has been a popular topic of research over the past decade and is viewed as a promising treatment strategy for cancer immunotherapy. However, despite being the most prevalent malignant disease for women worldwide, breast cancer patients have limited access to immunotherapy benefits. mRNA vaccination has the potential to convert cold breast cancer into hot and expand the responders. Effective mRNA vaccine design for in vivo function requires consideration of vaccine targets, mRNA structures, transport vectors, and injection routes. This review provides an overview of pre-clinical and clinical data on various mRNA vaccination platforms used for breast cancer treatment and discusses potential approaches to combine appropriate vaccination platforms or other immunotherapies to improve mRNA vaccine therapy efficacy for breast cancer.
Collapse
Affiliation(s)
- Xiao-Ting Jiang
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Qiang Liu
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
3
|
Zhang L, Zhou X, Sha H, Xie L, Liu B. Recent Progress on Therapeutic Vaccines for Breast Cancer. Front Oncol 2022; 12:905832. [PMID: 35734599 PMCID: PMC9207208 DOI: 10.3389/fonc.2022.905832] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer remains the most frequently diagnosed malignancy worldwide. Advanced breast cancer is still an incurable disease mainly because of its heterogeneity and limited immunogenicity. The great success of cancer immunotherapy is paving the way for a new era in cancer treatment, and therapeutic cancer vaccination is an area of interest. Vaccine targets include tumor-associated antigens and tumor-specific antigens. Immune responses differ in different vaccine delivery platforms. Next-generation sequencing technologies and computational analysis have recently made personalized vaccination possible. However, only a few cases benefiting from neoantigen-based treatment have been reported in breast cancer, and more attention has been given to overexpressed antigen-based treatment, especially human epidermal growth factor 2-derived peptide vaccines. Here, we discuss recent advancements in therapeutic vaccines for breast cancer and highlight near-term opportunities for moving forward.
Collapse
Affiliation(s)
- Lianru Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xipeng Zhou
- Department of oncology, Yizheng People's Hospital, Yangzhou, China
| | - Huizi Sha
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Li Xie
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Iesato A, Nucera C. Tumor Microenvironment-Associated Pericyte Populations May Impact Therapeutic Response in Thyroid Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:253-269. [PMID: 34664244 PMCID: PMC9839315 DOI: 10.1007/978-3-030-73119-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy, and aggressive radioactive iodine refractory thyroid carcinomas still lack an effective treatment. A deeper understanding of tumor heterogeneity and microenvironment will be critical to establishing new therapeutic approaches. One of the important influencing factors of tumor heterogeneity is the diversity of cells in the tumor microenvironment. Among these are pericytes, which play an important role in blood vessel stability and angiogenesis, as well as tumor growth and metastasis. Pericytes also have stem cell-like properties and are a heterogeneous cell population, and their lineage, which has been challenging to define, may impact tumor resistance at different tumor stages. Pericytes are also important stroma cell types in the angiogenic microenvironment which express tyrosine-kinase (TK) pathways (e.g., PDGFR-β). Although TK inhibitors (TKI) and BRAFV600E inhibitors are currently used in the clinic for thyroid cancer, their efficacy is not durable and drug resistance often develops. Characterizing the range of distinct pericyte populations and distinguishing them from other perivascular cell types may enable the identification of their specific functions in the thyroid carcinoma vasculature. This remains an essential step in developing new therapeutic strategies. Also, assessing whether thyroid tumors hold immature and/or mature vasculature with pericyte populations coverage may be key to predicting tumor response to either targeted or anti-angiogenesis therapies. It is also critical to apply different markers in order to identify pericyte populations and characterize their cell lineage. This chapter provides an overview of pericyte ontogenesis and the lineages of diverse cell populations. We also discuss the role(s) and targeting of pericytes in thyroid carcinoma, as well as their potential impact on precision targeted therapies and drug resistance.
Collapse
Affiliation(s)
- Asumi Iesato
- Human Thyroid Cancers Preclinical and Translational Research Program, Division of Experimental Pathology, Cancer Research Institute, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,Center for Vascular Biology Research (CVBR), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Carmelo Nucera
- Human Thyroid Cancers Preclinical and Translational Research Program, Division of Experimental Pathology, Cancer Research Institute, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,Center for Vascular Biology Research (CVBR), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
5
|
Gordon B, Gadi VK. The Role of the Tumor Microenvironment in Developing Successful Therapeutic and Secondary Prophylactic Breast Cancer Vaccines. Vaccines (Basel) 2020; 8:vaccines8030529. [PMID: 32937885 PMCID: PMC7565925 DOI: 10.3390/vaccines8030529] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer affects roughly one in eight women over their lifetime and is a leading cause of cancer-related death in women. While outcomes have improved in recent years, prognosis remains poor for patients who present with either disseminated disease or aggressive molecular subtypes. Cancer immunotherapy has revolutionized the treatment of several cancers, with therapeutic vaccines aiming to direct the cytotoxic immune program against tumor cells showing particular promise. However, these results have yet to translate to breast cancer, which remains largely refractory from such approaches. Recent evidence suggests that the breast tumor microenvironment (TME) is an important and long understudied barrier to the efficacy of therapeutic vaccines. Through an improved understanding of the complex and biologically diverse breast TME, it may be possible to advance new combination strategies to render breast carcinomas sensitive to the effects of therapeutic vaccines. Here, we discuss past and present efforts to advance therapeutic vaccines in the treatment of breast cancer, the molecular mechanisms through which the TME contributes to the failure of such approaches, as well as the potential means through which these can be overcome.
Collapse
Affiliation(s)
- Benjamin Gordon
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Correspondence:
| | - Vijayakrishna K. Gadi
- Division of Hematology and Oncology, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
6
|
Abstract
Recent advances in targeted therapy and immunotherapy have once again raised the hope that a cure might be within reach for many cancer types. Yet, most late-stage cancers are either insensitive to the therapies to begin with or develop resistance later. Therapy with live tumour-targeting bacteria provides a unique option to meet these challenges. Compared with most other therapeutics, the effectiveness of tumour-targeting bacteria is not directly affected by the 'genetic makeup' of a tumour. Bacteria initiate their direct antitumour effects from deep within the tumour, followed by innate and adaptive antitumour immune responses. As microscopic 'robotic factories', bacterial vectors can be reprogrammed following simple genetic rules or sophisticated synthetic bioengineering principles to produce and deliver anticancer agents on the basis of clinical needs. Therapeutic approaches using live tumour-targeting bacteria can either be applied as a monotherapy or complement other anticancer therapies to achieve better clinical outcomes. In this Review, we summarize the potential benefits and challenges of this approach. We discuss how live bacteria selectively induce tumour regression and provide examples to illustrate different ways to engineer bacteria for improved safety and efficacy. Finally, we share our experience and insights on oncology clinical trials with tumour-targeting bacteria, including a discussion of the regulatory issues.
Collapse
Affiliation(s)
- Shibin Zhou
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Claudia Gravekamp
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Bermudes
- Department of Biology, California State University, Northridge, CA, USA
| | - Ke Liu
- Oncology Branch, Division of Clinical Evaluation, Pharmacology and Toxicology; Office of Tissues and Advanced Therapies, CBER, FDA, Silver Spring, MD, USA
| |
Collapse
|
7
|
Jitariu AA, Raica M, Cîmpean AM, Suciu SC. The role of PDGF-B/PDGFR-BETA axis in the normal development and carcinogenesis of the breast. Crit Rev Oncol Hematol 2018; 131:46-52. [PMID: 30293705 DOI: 10.1016/j.critrevonc.2018.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/10/2018] [Accepted: 08/22/2018] [Indexed: 12/25/2022] Open
Abstract
PDGFs/PDGFRs axis is documented as an important tumor-promoting agent and potential therapeutic target for several human carcinomas, including breast cancer. However, little is known about the role played by the PDGF family members in the normal development of the breast tissue, breast carcinogenesis and tumor-microenvironment dynamics Despite its potent pro-lymphangiogenic effects, PDGF-B/PDGFR-beta axis remains controversial and incompletely elucidated in the field of breast cancer, with emphasis to its differential implications in breast cancer molecular subtypes. Although some data are available concerning this aspect, little or no information is found regarding the role of the PDGF-B/PDGFR-beta axis in rare and aggressive types of breast cancers, such as triple negative breast cancers (TNBCs) and its associated subtypes This review attempted to gather as many data as possible concerning PDGFs family members in the normal breast tissue and in breast carcinogenesis with special focus on their role in diagnosis and therapeutic approach.
Collapse
Affiliation(s)
- Adriana-Andreea Jitariu
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babeș University of Medicine and Pharmacy, Timișoara, Romania
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babeș University of Medicine and Pharmacy, Timișoara, Romania
| | - Anca Maria Cîmpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babeș University of Medicine and Pharmacy, Timișoara, Romania.
| | - Silviu Cristian Suciu
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babeș University of Medicine and Pharmacy, Timișoara, Romania
| |
Collapse
|
8
|
Jimenez-Luna C, Prados J, Ortiz R, Melguizo C, Torres C, Caba O. Current Status of Immunotherapy Treatments for Pancreatic Cancer. J Clin Gastroenterol 2016; 50:836-848. [PMID: 27505403 DOI: 10.1097/mcg.0000000000000623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC) is a lethal disease representing the seventh most frequent cause of death from cancer worldwide. Resistance of pancreatic tumors to current treatments leads to disappointing survival rates, and more specific and effective therapies are urgently needed. In recent years, immunotherapy has been proposed as a promising approach to the treatment of PC, and encouraging results have been published by various preclinical and clinical studies. This review provides an overview of the latest developments in the immunotherapeutic treatment of PC and summarizes the most recent and important clinical trials.
Collapse
Affiliation(s)
- Cristina Jimenez-Luna
- *Institute of Biopathology and Regenerative Medicine (IBIMER) ‡Department of Biochemistry and Molecular Biology I, Universidad de Granada, Granada †Department of Health Sciences, Universidad de Jaen, Jaen, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Wagner SC, Ichim TE, Ma H, Szymanski J, Perez JA, Lopez J, Bogin V, Patel AN, Marincola FM, Kesari S. Cancer anti-angiogenesis vaccines: Is the tumor vasculature antigenically unique? J Transl Med 2015; 13:340. [PMID: 26510973 PMCID: PMC4625691 DOI: 10.1186/s12967-015-0688-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 10/03/2015] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is essential for the growth and metastasis of solid tumors. The tumor endothelium exists in a state of chronic activation and proliferation, fueled by the tumor milieu where angiogenic mediators are aberrantly over-expressed. Uncontrolled tumor growth, immune evasion, and therapeutic resistance are all driven by the dysregulated and constitutive angiogenesis occurring in the vasculature. Accordingly, great efforts have been dedicated toward identifying molecular signatures of this pathological angiogenesis in order to devise selective tumor endothelium targeting therapies while minimizing potential autoimmunity against physiologically normal endothelium. Vaccination with angiogenic antigens to generate cellular and/or humoral immunity against the tumor endothelium has proven to be a promising strategy for inhibiting or normalizing tumor angiogenesis and reducing cancer growth. Here we review tumor endothelium vaccines developed to date including active immunization strategies using specific tumor endothelium-associated antigens and whole endothelial cell-based vaccines designed to elicit immune responses against diverse target antigens. Among the novel therapeutic options, we describe a placenta-derived endothelial cell vaccine, ValloVax™, a polyvalent vaccine that is antigenically similar to proliferating tumor endothelium and is supported by pre-clinical studies to be safe and efficacious against several tumor types.
Collapse
Affiliation(s)
- Samuel C Wagner
- Batu Biologics Inc., Towne Center Drive, San Diego, CA, 92121, USA.
| | - Thomas E Ichim
- Batu Biologics Inc., Towne Center Drive, San Diego, CA, 92121, USA.
| | - Hong Ma
- Batu Biologics Inc., Towne Center Drive, San Diego, CA, 92121, USA.
| | - Julia Szymanski
- Batu Biologics Inc., Towne Center Drive, San Diego, CA, 92121, USA.
| | | | - Javier Lopez
- Pan Am Cancer Treatment Center, Tijuana, Mexico.
| | - Vladimir Bogin
- Batu Biologics Inc., Towne Center Drive, San Diego, CA, 92121, USA.
| | - Amit N Patel
- Department of Surgery, University of Utah, Salt Lake City, UT, USA.
| | | | | |
Collapse
|
10
|
Wentink MQ, Huijbers EJM, de Gruijl TD, Verheul HMW, Olsson AK, Griffioen AW. Vaccination approach to anti-angiogenic treatment of cancer. Biochim Biophys Acta Rev Cancer 2015; 1855:155-71. [PMID: 25641676 DOI: 10.1016/j.bbcan.2015.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/16/2015] [Accepted: 01/22/2015] [Indexed: 02/07/2023]
Abstract
Improvement of patient survival by anti-angiogenic therapy has proven limited. A vaccination approach inducing an immune response against the tumor vasculature combines the benefits of immunotherapy and anti-angiogenesis, and may overcome the limitations of current anti-angiogenic drugs. Strategies to use whole endothelial cell vaccines and DNA- or protein vaccines against key players in the VEGF signaling axis, as well as specific markers of tumor endothelial cells, have been tested in preclinical studies. Current clinical trials are now testing the promise of this specific anti-cancer vaccination approach. This review will highlight the state-of-the-art in this exciting field of cancer research.
Collapse
Affiliation(s)
- Madelon Q Wentink
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Tanja D de Gruijl
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Henk M W Verheul
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
De Dosso S, Grande E, Barriuso J, Castellano D, Tabernero J, Capdevila J. The targeted therapy revolution in neuroendocrine tumors: in search of biomarkers for patient selection and response evaluation. Cancer Metastasis Rev 2014; 32:465-77. [PMID: 23589060 DOI: 10.1007/s10555-013-9421-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The molecular events of tumorigenesis in neuroendocrine tumors are poorly understood. Understanding of the molecular alterations will lead to the identification of molecular markers, providing new targets for therapeutics. The purpose of this review was to critically analyze the genetic abnormalities in neuroendocrine tumors, with the aim of identifying biomarkers that indicate a response to agents developed against these targets and to serve as an understanding for the combinations of different active compounds. Human epidermal growth factor receptor 1/2 (EGFR and HER2), vascular endothelial growth factor receptors, hepatocyte growth factor receptor (c-Met), platelet-derived growth factor receptor, insulin-like growth factor, phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin pathway, and heat shock proteins are all interesting candidate biomarkers with involvement in carcinogenesis and tumor evolution of several neoplasms, including neuroendocrine tumors. Some of them have already been evaluated both as targets and also as biomarkers in clinical trials conducted in advanced neuroendocrine tumor settings, and others should encourage further investigations into innovative therapeutic opportunities.
Collapse
Affiliation(s)
- Sara De Dosso
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The immune system plays a vital role in regulating the growth of tumors. Some types of inflammatory responses can promote tumor growth, while a tumor-specific adaptive immune response can potentially control tumor growth. Malignancies have the ability to evade the immune system, and proliferate and metastasize. The goal of immunotherapy is to marshal the specificity and long-term memory of the adaptive immune response to achieve durable tumor regression and possible cure, although, to date, this has been achieved in only a small subset of patients. A variety of approaches to immunotherapy have been investigated. These include administration of exogenous cytokines or therapeutic vaccines to increase the frequency of tumor-specific T cells, adoptive transfer of tumor-specific immune effector cells, and, more recently, the application of a variety of immune checkpoint inhibitors and agonists of co-stimulatory receptors to overcome tumor-induced immune-suppressive mechanisms. Some approaches have been more successful than others for reasons that are now becoming apparent, and these observations have led to an exciting resurgence in clinical research to develop more effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Mary L Disis
- Tumor Vaccine Group, University of Washington, Seattle, WA.
| |
Collapse
|
13
|
Koido S, Ito M, Sagawa Y, Okamoto M, Hayashi K, Nagasaki E, Kan S, Komita H, Kamata Y, Homma S. Vaccination with vascular progenitor cells derived from induced pluripotent stem cells elicits antitumor immunity targeting vascular and tumor cells. Cancer Immunol Immunother 2014; 63:459-68. [PMID: 24627093 PMCID: PMC11028528 DOI: 10.1007/s00262-014-1531-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/25/2014] [Indexed: 01/12/2023]
Abstract
Vaccination of BALB/c mice with dendritic cells (DCs) loaded with the lysate of induced vascular progenitor (iVP) cells derived from murine-induced pluripotent stem (iPS) cells significantly suppressed the tumor of CMS-4 fibrosarcomas and prolonged the survival of CMS-4-inoculated mice. This prophylactic antitumor activity was more potent than that of immunization with DCs loaded with iPS cells or CMS-4 tumor cells. Tumors developed slowly in mice vaccinated with DCs loaded with iVP cells (DC/iVP) and exhibited a limited vascular bed. Immunohistochemistry and a tomato-lectin perfusion study demonstrated that the tumors that developed in the iVP-immunized mice showed a marked decrease in tumor vasculature. Immunization with DC/iVP induced a potent suppressive effect on vascular-rich CMS-4 tumors, a weaker effect on BNL tumors with moderate vasculature, and nearly no effect on C26 tumors with poor vasculature. Treatment of DC/iVP-immunized mice with a monoclonal antibody against CD4 or CD8, but not anti-asialo GM1, inhibited the antitumor activity. CD8(+) T cells from DC/iVP-vaccinated mice showed significant cytotoxic activity against murine endothelial cells and CMS-4 cells, whereas CD8(+) T cells from DC/iPS-vaccinated mice did not. DNA microarray analysis showed that the products of 29 vasculature-associated genes shared between genes upregulated by differentiation from iPS cells into iVP cells and genes shared by iVP cells and isolated Flk-1(+) vascular cells in CMS-4 tumor tissue might be possible targets in the immune response. These results suggest that iVP cells from iPS cells could be used as a cancer vaccine targeting tumor vascular cells and tumor cells.
Collapse
Affiliation(s)
- Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
- Department of Oncology, Institute of DNA Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan
- Institute of Clinical Medicine and Research, Jikei University School of Medicine, Chiba, Japan
| | - Masaki Ito
- Department of Oncology, Institute of DNA Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Yukiko Sagawa
- Department of Oncology, Institute of DNA Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Masato Okamoto
- Division of Cellular Signaling, Institute of Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kazumi Hayashi
- Department of Oncology, Institute of DNA Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Eijiro Nagasaki
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Shin Kan
- Department of Oncology, Institute of DNA Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Hideo Komita
- Shimbashi Medical Checkup Office, Jikei University Hospital, Tokyo, Japan
| | - Yuko Kamata
- Department of Oncology, Institute of DNA Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Sadamu Homma
- Department of Oncology, Institute of DNA Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| |
Collapse
|
14
|
Schlom J, Hodge JW, Palena C, Tsang KY, Jochems C, Greiner JW, Farsaci B, Madan RA, Heery CR, Gulley JL. Therapeutic cancer vaccines. Adv Cancer Res 2014; 121:67-124. [PMID: 24889529 PMCID: PMC6324585 DOI: 10.1016/b978-0-12-800249-0.00002-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Therapeutic cancer vaccines have the potential of being integrated in the therapy of numerous cancer types and stages. The wide spectrum of vaccine platforms and vaccine targets is reviewed along with the potential for development of vaccines to target cancer cell "stemness," the epithelial-to-mesenchymal transition (EMT) phenotype, and drug-resistant populations. Preclinical and recent clinical studies are now revealing how vaccines can optimally be used with other immune-based therapies such as checkpoint inhibitors, and so-called nonimmune-based therapeutics, radiation, hormonal therapy, and certain small molecule targeted therapies; it is now being revealed that many of these traditional therapies can lyse tumor cells in a manner as to further potentiate the host immune response, alter the phenotype of nonlysed tumor cells to render them more susceptible to T-cell lysis, and/or shift the balance of effector:regulatory cells in a manner to enhance vaccine efficacy. The importance of the tumor microenvironment, the appropriate patient population, and clinical trial endpoints is also discussed in the context of optimizing patient benefit from vaccine-mediated therapy.
Collapse
Affiliation(s)
- Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kwong-Yok Tsang
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - John W Greiner
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Benedetto Farsaci
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ravi A Madan
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James L Gulley
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Ferguson HJM, Wragg J, Ismail T, Bicknell R. Vaccination against tumour blood vessels in colorectal cancer. Eur J Surg Oncol 2013; 40:133-6. [PMID: 24388410 DOI: 10.1016/j.ejso.2013.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 12/27/2022] Open
Affiliation(s)
- H J M Ferguson
- School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Colorectal Surgery, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham B15 2TH, UK.
| | - J Wragg
- School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - T Ismail
- Department of Colorectal Surgery, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham B15 2TH, UK.
| | - R Bicknell
- School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
16
|
Ding ZY, Zou XL, Wei YQ. Cancer microenvironment and cancer vaccine. CANCER MICROENVIRONMENT 2012; 5:333-44. [PMID: 22562695 DOI: 10.1007/s12307-012-0107-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/03/2012] [Indexed: 02/05/2023]
Abstract
The cancer microenvironment is constituted of non-transformed host stromal cells such as endothelial cells, fibroblasts, various immune cells, and a complex extra-cellular matrix secreted by both the normal and neoplastic cells embedded in it. The importance of the microenvironment and its potential in cancer therapy is just being established. Among modalities that target the microenvironment, cancer vaccine is a unique strategy which is aimed to elicit specific immunity against components in the microenvironment. Most, if not all, components can be targeted by the vaccines. The most extensively studied are the endothelial cells, fibroblasts and macrophages as well as ECM. Vaccines are in development for each of them. All the vaccines were proved to be effective at providing protective or therapeutic anti-tumor effects in the pre-clinical models. A few of them have been tested in the clinical trials. The mechanisms of the vaccines were mainly related to the cellular immune response such as CD8+ cytotoxic T cells, and in some instances CD4+ Th cells were involved as well. The present review also discussed the hurdles associated with the microenvironment-based vaccines such as the selection of suitable patients with appropriate biomarkers. With the rapid increase of our knowledge in the cancer microenvironment, the proof-of-concept of microenvironment-based cancer vaccines will surely expand our armamentarium against cancer.
Collapse
Affiliation(s)
- Zhen-Yu Ding
- Cancer Center, West China Hospital, West China Medical School, State Key Laboratory of Biotherapy, Sichuan Univerisity, Guoxue Lane 37, Chengdu, 610041, China
| | | | | |
Collapse
|
17
|
Jarosz M, Jazowiecka-Rakus J, Cichoń T, Głowala-Kosińska M, Smolarczyk R, Smagur A, Malina S, Sochanik A, Szala S. Therapeutic antitumor potential of endoglin-based DNA vaccine combined with immunomodulatory agents. Gene Ther 2012; 20:262-73. [PMID: 22495576 DOI: 10.1038/gt.2012.28] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Therapy targeting tumor blood vessels ought to inhibit tumor growth. However, tumors become refractory to antiangiogenic drugs. Therefore, therapeutic solutions should be sought to address cellular resistance to antiangiogenic therapy. In this regard, reversal of the proangiogenic and immunosuppressive phenotype of cancer cells, and the shift of the tumor microenvironment towards more antiangiogenic and immune-stimulating phenotype may hold some promise. In our study, we sought to validate the effects of a combination therapy aimed at reducing tumor blood vessels, coupled with the abrogation of the immunosuppressive state. To achieve this, we developed an oral DNA vaccine against endoglin. This antigen was carried by an attenuated Salmonella Typhimurium and applied before or after tumor cell inoculation into immunocompetent mice. Our results show that this DNA vaccine effectively inhibited tumor growth, in both the prophylactic and therapeutic settings. It also activated both specific and nonspecific immune responses in immunized mice. Activated cytotoxic T-lymphocytes were directed specifically against endothelial and tumor cells overexpressing endoglin. The DNA vaccine inhibited angiogenesis but did not affect wound healing. In combination with interleukin-12-mediated gene therapy, or with cyclophosphamide administration, the DNA vaccine resulted in reduced microvessel density and lowered the level of Treg lymphocytes in the experimental tumors. This effectively inhibited tumor growth and prolonged survival of the treated animals. Polarization of tumor milieu, from proangiogenic and immunosuppressive, towards an immunostimulatory and antiangiogenic profile represents a promising avenue in anticancer therapy.
Collapse
Affiliation(s)
- M Jarosz
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Schlom J. Therapeutic cancer vaccines: current status and moving forward. J Natl Cancer Inst 2012; 104:599-613. [PMID: 22395641 DOI: 10.1093/jnci/djs033] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Concurrent with U.S. Food and Drug Administration (FDA) approval of the first therapeutic cancer vaccine, a wide spectrum of other cancer vaccine platforms that target a diverse range of tumor-associated antigens is currently being evaluated in randomized phase II and phase III trials. The profound influence of the tumor microenvironment and other immunosuppressive entities, however, can limit the effectiveness of these vaccines. Numerous strategies are currently being evaluated both preclinically and clinically to counteract these immunosuppressive entities, including the combined use of vaccines with immune checkpoint inhibitors, certain chemotherapeutics, small-molecule targeted therapies, and radiation. The potential influence of the appropriate patient population and clinical trial endpoint in vaccine therapy studies is discussed, as well as the potential importance of biomarkers in future directions of this field.
Collapse
Affiliation(s)
- Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr, Rm 8B09, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Zhao X, Bose A, Komita H, Taylor JL, Chi N, Lowe DB, Okada H, Cao Y, Mukhopadhyay D, Cohen PA, Storkus WJ. Vaccines targeting tumor blood vessel antigens promote CD8(+) T cell-dependent tumor eradication or dormancy in HLA-A2 transgenic mice. THE JOURNAL OF IMMUNOLOGY 2012; 188:1782-8. [PMID: 22246626 DOI: 10.4049/jimmunol.1101644] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently shown that effective cytokine gene therapy of solid tumors in HLA-A2 transgenic (HHD) mice lacking murine MHC class I molecule expression results in the generation of HLA-A2-restricted CD8(+) T effector cells selectively recognizing tumor blood vessel-associated pericytes and/or vascular endothelial cells. Using an HHD model in which HLA-A2(neg) tumor (MC38 colon carcinoma or B16 melanoma) cells are not recognized by the CD8(+) T cell repertoire, we now show that vaccines on the basis of tumor-associated blood vessel Ags (TBVA) elicit protective Tc1-dependent immunity capable of mediating tumor regression or extending overall survival. Vaccine efficacy was not observed if (HLA-A2(neg)) wild-type C57BL/6 mice were instead used as recipient animals. In the HHD model, effective vaccination resulted in profound infiltration of tumor lesions by CD8(+) (but not CD4(+)) T cells, in a coordinate reduction of CD31(+) blood vessels in the tumor microenvironment, and in the "spreading" of CD8(+) T cell responses to alternate TBVA that were not intrinsic to the vaccine. Protective Tc1-mediated immunity was durable and directly recognized pericytes and/or vascular endothelial cells flow-sorted from tumor tissue but not from tumor-uninvolved normal kidneys harvested from these same animals. Strikingly, the depletion of CD8(+), but not CD4(+), T cells at late time points after effective therapy frequently resulted in the recurrence of disease at the site of the regressed primary lesion. This suggests that the vaccine-induced anti-TBVA T cell repertoire can mediate the clinically preferred outcomes of either effectively eradicating tumors or policing a state of (occult) tumor dormancy.
Collapse
Affiliation(s)
- Xi Zhao
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cambien B, Richard-Fiardo P, Karimdjee BF, Martini V, Ferrua B, Pitard B, Schmid-Antomarchi H, Schmid-Alliana A. CCL5 neutralization restricts cancer growth and potentiates the targeting of PDGFRβ in colorectal carcinoma. PLoS One 2011; 6:e28842. [PMID: 22205974 PMCID: PMC3243667 DOI: 10.1371/journal.pone.0028842] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 11/16/2011] [Indexed: 11/24/2022] Open
Abstract
Increased CCL5 levels are markers of an unfavourable outcome in patients with melanoma, breast, cervical, prostate, gastric or pancreatic cancer. Here, we have assessed the role played by CCL5/CCR5 interactions in the development of colon cancer. To do so, we have examined a number of human colorectal carcinoma clinical specimens and found CCL5 and its receptors over-expressed within primary as well as liver and pulmonary metastases of patients compared to healthy tissues. In vitro, CCL5 increased the growth and migratory responses of colon cancer cells from both human and mouse origins. In addition, systemic treatment of mice with CCL5-directed antibodies reduced the extent of development of subcutaneous colon tumors, of liver metastases and of peritoneal carcinosis. Consistently, we found increased numbers of CD45-immunoreactive cells within the stroma of the remaining lesions as well as at the interface with the healthy tissue. In contrast, selective targeting of CCR5 through administration of TAK-779, a CCR5 antagonist, only partially compromised colon cancer progression. Furthermore, CCL5 neutralization rendered the tumors more sensitive to a PDGFRβ-directed strategy in mice, this combination regimen offering the greatest protection against liver metastases and suppressing macroscopic peritoneal carcinosis. Collectively, our data demonstrate the involvement of CCL5 in the pathogenesis of colorectal carcinoma and point to its potential value as a therapeutic target.
Collapse
Affiliation(s)
- Béatrice Cambien
- Université de Nice Sophia Antipolis, UFR Médecine, Nice, France.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhao X, Bose A, Komita H, Taylor JL, Kawabe M, Chi N, Spokas L, Lowe DB, Goldbach C, Alber S, Watkins SC, Butterfield LH, Kalinski P, Kirkwood JM, Storkus WJ. Intratumoral IL-12 gene therapy results in the crosspriming of Tc1 cells reactive against tumor-associated stromal antigens. Mol Ther 2011; 19:805-14. [PMID: 21189473 PMCID: PMC3070096 DOI: 10.1038/mt.2010.295] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/08/2010] [Indexed: 12/20/2022] Open
Abstract
HLA-A2 transgenic mice bearing established HLA-A2(neg) B16 melanomas were effectively treated by intratumoral (i.t.) injection of syngeneic dendritic cells (DCs) transduced to express high levels of interleukin (IL)-12, resulting in CD8(+) T cell-dependent antitumor protection. In this model, HLA-A2-restricted CD8(+) T cells do not directly recognize tumor cells and therapeutic benefit was associated with the crosspriming of HLA-A2-restricted type-1 CD8(+) T cells reactive against antigens expressed by stromal cells [i.e., pericytes and vascular endothelial cells (VEC)]. IL-12 gene therapy-induced CD8(+) T cells directly recognized HLA-A2(+) pericytes and VEC flow-sorted from B16 tumor lesions based on interferon (IFN)-γ secretion and translocation of the lytic granule-associated molecule CD107 to the T cell surface after coculture with these target cells. In contrast, these CD8(+) T effector cells failed to recognize pericytes/VEC isolated from the kidneys of tumor-bearing HHD mice. The tumor-associated stromal antigen (TASA)-derived peptides studied are evolutionarily conserved and could be recognized by CD8(+) T cells harvested from the blood of HLA-A2(+) normal donors or melanoma patients after in vitro stimulation. These TASA and their derivative peptides may prove useful in vaccine formulations against solid cancers, as well as, in the immune monitoring of HLA-A2(+) cancer patients receiving therapeutic interventions, such as IL-12 gene therapy.
Collapse
Affiliation(s)
- Xi Zhao
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Matejuk A, Leng Q, Chou ST, Mixson AJ. Vaccines targeting the neovasculature of tumors. Vasc Cell 2011; 3:7. [PMID: 21385454 PMCID: PMC3061948 DOI: 10.1186/2045-824x-3-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/08/2011] [Indexed: 01/04/2023] Open
Abstract
Angiogenesis has a critical role in physiologic and disease processes. For the growth of tumors, angiogenesis must occur to carry sufficient nutrients to the tumor. In addition to growth, development of new blood vessels is necessary for invasion and metastases of the tumor. A number of strategies have been developed to inhibit tumor angiogenesis and further understanding of the interplay between tumors and angiogenesis should allow new approaches and advances in angiogenic therapy. One such promising angiogenic approach is to target and inhibit angiogenesis with vaccines. This review will discuss recent advances and future prospects in vaccines targeting aberrant angiogenesis of tumors. The strategies utilized by investigators have included whole endothelial cell vaccines as well as vaccines with defined targets on endothelial cells and pericytes of the developing tumor endothelium. To date, several promising anti-angiogenic vaccine strategies have demonstrated marked inhibition of tumor growth in pre-clinical trials with some showing no observed interference with physiologic angiogenic processes such as wound healing and fertility.
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Pathology, University of Maryland Baltimore, MSTF Building, 10 South Pine Street, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
23
|
Paterson Y, Guirnalda PD, Wood LM. Listeria and Salmonella bacterial vectors of tumor-associated antigens for cancer immunotherapy. Semin Immunol 2010; 22:183-9. [PMID: 20299242 PMCID: PMC4411241 DOI: 10.1016/j.smim.2010.02.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 02/15/2010] [Indexed: 01/30/2023]
Abstract
This review covers the use of the facultative intracellular bacteria, Listeriamonocytogenes and Salmonella enterica serovar typhimurium as delivery systems for tumor-associated antigens in tumor immunotherapy. Because of their ability to infect and survive in antigen presenting cells, these bacteria have been harnessed to deliver tumor antigens to the immune system both as bacterially expressed proteins and encoded on eukaryotic plasmids. They do this in the context of strong innate immunity, which provides the required stimulus to the immune response to break tolerance against those tumor-associated antigens that bear homology to self. Here we describe differences in the properties of these bacteria as vaccine vectors, a summary of the major therapies they have been applied to and their advancement towards the clinic.
Collapse
Affiliation(s)
- Yvonne Paterson
- University of Pennsylvania, Department of Microbiology, 323 Johnson Pavilion, 36th St. and Hamilton Walk, Philadelphia, PA 19104-6076, United States.
| | | | | |
Collapse
|
24
|
Therapeutic efficacy of a DNA vaccine targeting the endothelial tip cell antigen delta-like ligand 4 in mammary carcinoma. Oncogene 2010; 29:4276-86. [PMID: 20498640 DOI: 10.1038/onc.2010.176] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Notch ligand delta-like ligand 4 (DLL4) is an essential component expressed by endothelial tip cells during angiogenic sprouting. We have described a conceptually novel therapeutic strategy for targeting tumor angiogenesis and endothelial tip cells based on DNA vaccination against DLL4. Immunization with DLL4-encoding plasmid DNA by in vivo electroporation severely retarded the growth of orthotopically implanted mammary carcinomas in mice by induction of a nonproductive angiogenic response. Mechanistically, vaccination brought about a break in tolerance against the self-antigen, DLL4, as evidenced by the production of inhibitory and inherently therapeutic antibodies against mouse DLL4. Importantly, no evidence for a delayed wound healing response, or for toxicity associated with pharmacological blockade of DLL4 signaling, was noted in mice immunized with the DLL4 vaccine. We have thus developed a well-tolerated DNA vaccination strategy targeting the endothelial tip cells and the antigen DLL4 with proven therapeutic efficacy in mouse models of mammary carcinoma; a disease that has been reported to dramatically induce the expression of DLL4. Conceivably, induction of immunity toward principal mediators of pathological angiogenesis could provide protection against recurrent malignant disease in the adjuvant setting.
Collapse
|
25
|
DNA vaccines: developing new strategies against cancer. J Biomed Biotechnol 2010; 2010:174378. [PMID: 20368780 PMCID: PMC2846346 DOI: 10.1155/2010/174378] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/05/2010] [Indexed: 12/14/2022] Open
Abstract
Due to their rapid and widespread development, DNA vaccines have entered into a variety of human clinical trials for vaccines against various diseases including cancer. Evidence that DNA vaccines are well tolerated and have an excellent safety profile proved to be of advantage as many clinical trials combines the first phase with the second, saving both time and money. It is clear from the results obtained in clinical trials that such DNA vaccines require much improvement in antigen expression and delivery methods to make them sufficiently effective in the clinic. Similarly, it is clear that additional strategies are required to activate effective immunity against poorly immunogenic tumor antigens. Engineering vaccine design for manipulating antigen presentation and processing pathways is one of the most important aspects that can be easily handled in the DNA vaccine technology. Several approaches have been investigated including DNA vaccine engineering, co-delivery of immunomodulatory molecules, safe routes of administration, prime-boost regimen and strategies to break the immunosuppressive networks mechanisms adopted by malignant cells to prevent immune cell function. Combined or single strategies to enhance the efficacy and immunogenicity of DNA vaccines are applied in completed and ongoing clinical trials, where the safety and tolerability of the DNA platform are substantiated.
In this review on DNA vaccines, salient aspects on this topic going from basic research to the clinic are evaluated. Some representative DNA cancer vaccine studies are also discussed.
Collapse
|
26
|
A digest on the role of the tumor microenvironment in gastrointestinal cancers. CANCER MICROENVIRONMENT 2010; 3:167-76. [PMID: 21209782 DOI: 10.1007/s12307-010-0040-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 01/27/2010] [Indexed: 12/12/2022]
Abstract
Experimental studies and analyses of clinical material have convincingly demonstrated that tumor formation and progression occurs through a concerted action of malignant cells and the surrounding microenvironment of the tumor stroma. The tumor microenvironment is comprised of various cell types like fibroblasts, immune cells, vascular cells and bone-marrow-derived cells embedded in the extracellular matrix. This review, focusing on recent findings in the context of gastrointestinal tumors, introduces the different stromal cell types and delineates their contributions to cancer initiation, growth and metastasis. By selected examples we also present how the tumor microenvironment is emerging as a promising target for therapeutic intervention.
Collapse
|
27
|
Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM, Matrisian LM. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 2009; 15:5323-37. [PMID: 19723653 DOI: 10.1158/1078-0432.ccr-09-0737] [Citation(s) in RCA: 1047] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of the National Cancer Institute pilot project to prioritize cancer antigens was to develop a well-vetted, priority-ranked list of cancer vaccine target antigens based on predefined and preweighted objective criteria. An additional aim was for the National Cancer Institute to test a new approach for prioritizing translational research opportunities based on an analytic hierarchy process for dealing with complex decisions. Antigen prioritization involved developing a list of "ideal" cancer antigen criteria/characteristics, assigning relative weights to those criteria using pairwise comparisons, selecting 75 representative antigens for comparison and ranking, assembling information on the predefined criteria for the selected antigens, and ranking the antigens based on the predefined, preweighted criteria. Using the pairwise approach, the result of criteria weighting, in descending order, was as follows: (a) therapeutic function, (b) immunogenicity, (c) role of the antigen in oncogenicity, (d) specificity, (e) expression level and percent of antigen-positive cells, (f) stem cell expression, (g) number of patients with antigen-positive cancers, (h) number of antigenic epitopes, and (i) cellular location of antigen expression. None of the 75 antigens had all of the characteristics of the ideal cancer antigen. However, 46 were immunogenic in clinical trials and 20 of them had suggestive clinical efficacy in the "therapeutic function" category. These findings reflect the current status of the cancer vaccine field, highlight the possibility that additional organized efforts and funding would accelerate the development of therapeutically effective cancer vaccines, and accentuate the need for prioritization.
Collapse
Affiliation(s)
- Martin A Cheever
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
de Lemos Rieper C, Galle P, Hansen MB. Characterization and potential clinical applications of autoantibodies against cytokines. Cytokine Growth Factor Rev 2009; 20:61-75. [DOI: 10.1016/j.cytogfr.2009.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Komita H, Zhao X, Taylor JL, Sparvero LJ, Amoscato AA, Alber S, Watkins SC, Pardee AD, Wesa AK, Storkus WJ. CD8+ T-cell responses against hemoglobin-beta prevent solid tumor growth. Cancer Res 2008; 68:8076-84. [PMID: 18829566 PMCID: PMC2597529 DOI: 10.1158/0008-5472.can-08-0387] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone marrow-derived dendritic cells engineered using recombinant adenovirus to secrete high levels of IL-12p70 dramatically inhibited the growth of established CMS4 sarcomas in BALB/c mice after intratumoral administration. An analysis of splenic CD8(+) T cells in regressor mice revealed a strong, complex reactivity pattern against high-performance liquid chromatography (HPLC)-resolved peptides isolated by acid elution from single-cell suspensions of surgically resected CMS4 lesions. Mass spectrometry analyses defined two major overlapping peptide species that derive from the murine hemoglobin-beta (HBB) protein within the most stimulatory HPLC fractions. Although cultured CMS4 tumor cells failed to express HBB mRNA based on reverse transcription-PCR analyses, prophylactic vaccination of BALB/c mice with vaccines containing HBB peptides promoted specific CD8(+) T-cell responses that protected mice against a subsequent challenge with CMS4 or unrelated syngeneic (HBB(neg)) tumors of divergent histology (sarcoma, carcinomas of the breast or colon). In situ imaging suggested that vaccines limit or destabilize tumor-associated vascular structures, potentially by promoting immunity against HBB+ vascular pericytes. Importantly, there were no untoward effects of vaccination with the HBB peptide on peripheral RBC numbers, RBC hemoglobin content, or vascular structures in the brain or eye.
Collapse
Affiliation(s)
- Hideo Komita
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Xi Zhao
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jennifer L. Taylor
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Louis J. Sparvero
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA
| | - Andrew A. Amoscato
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA
| | - Sean Alber
- Departments of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Simon C. Watkins
- Departments of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Angela D. Pardee
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Amy K. Wesa
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Walter J. Storkus
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA
| |
Collapse
|
30
|
Huebener N, Fest S, Strandsby A, Michalsky E, Preissner R, Zeng Y, Gaedicke G, Lode HN. A rationally designed tyrosine hydroxylase DNA vaccine induces specific antineuroblastoma immunity. Mol Cancer Ther 2008; 7:2241-51. [DOI: 10.1158/1535-7163.mct-08-0109] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Tumour-stroma interactions in colorectal cancer: converging on beta-catenin activation and cancer stemness. Br J Cancer 2008; 98:1886-93. [PMID: 18506144 PMCID: PMC2441948 DOI: 10.1038/sj.bjc.6604401] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sporadic cases of colorectal cancer are primarily initiated by gene mutations in members of the canonical Wnt pathway, ultimately resulting in β-catenin stabilisation. Nevertheless, cells displaying nuclear β-catenin accumulation are nonrandomly distributed throughout the tumour mass and preferentially localise along the invasive front where parenchymal cells are in direct contact with the stromal microenvironment. Here, we discuss the putative role played by stromal cell types in regulating β-catenin intracellular accumulation in a paracrine fashion. As such, the tumour microenvironment is likely to maintain the cancer stem cell phenotype in a subset of cells, thus mediating invasion and metastasis.
Collapse
|
32
|
Immunotherapy of Angiogenesis with DNA Vaccines. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Mkrtichyan M, Ghochikyan A, Loukinov D, Davtyan H, Ichim TE, Cribbs DH, Lobanenkov VV, Agadjanyan MG. DNA, but not protein vaccine based on mutated BORIS antigen significantly inhibits tumor growth and prolongs the survival of mice. Gene Ther 2008; 15:61-4. [PMID: 17972923 PMCID: PMC2497453 DOI: 10.1038/sj.gt.3303044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/10/2007] [Accepted: 07/07/2007] [Indexed: 01/06/2023]
Abstract
The ideal immunological target for cancer vaccine development would meet the criteria of tumor specificity, immunogenicity and vital dependency of the tumor on the functional activities of the antigenic target so as to avoid antigenic loss by mutation. Given that at face value the brother of regulator of imprinted sites (BORIS) transcription factor meets these criteria, we have developed a mutant variant of this molecule (mBORIS) that lacks tumorigenic ability, while retaining immunogenic epitopes that elicits responses against histologically irrelevant tumor cells. Here we compared vaccine strategies employing as an immunogen either mBORIS recombinant protein formulated in a strong Th1-type adjuvant, QuilA or DNA encoding this immunogen along with plasmids expressing interleukin (IL)12/IL18 molecular adjuvants. In both groups of vaccinated mice induction of tumor-specific immunity (antibody response, T-cell proliferation, cytokine production, T-cell cytotoxicity) as well as ability to inhibit growth of the aggressive breast cancer cell line and to prolong survival of vaccinated animals have been tested. We determined that DNA, but not recombinant protein vaccine, induced potent Th1-like T-cell recall responses that significantly inhibited tumor growth and prolongs the survival of vaccinated mice. These studies demonstrate that DNA immunization is superior to recombinant protein strategy and provide a clear guidance for clinical development of a cancer vaccine targeting what appears to be a universal tumor antigen.
Collapse
Affiliation(s)
- M Mkrtichyan
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - A Ghochikyan
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - D Loukinov
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - H Davtyan
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA, USA
| | | | - DH Cribbs
- The Institute for Brain Aging and Dementia, University of California, Irvine, CA, USA
| | - VV Lobanenkov
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - MG Agadjanyan
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA, USA
- The Institute for Brain Aging and Dementia, University of California, Irvine, CA, USA
| |
Collapse
|