1
|
Gopinath S, Hosamani M, Joseph BV, Patil SS. Development of classical swine fever virus E2-protein based indirect ELISA for detection of antibodies against the virus in pigs. Vet Res Commun 2024; 48:3121-3129. [PMID: 39088127 DOI: 10.1007/s11259-024-10482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Classical swine fever (CSF) is an economically important and highly contagious disease of pigs caused by CSF virus, genus Pestivirus. Serological diagnosis of the disease is highly valuable for surveillance and thereby containment of spread of the disease. In this study, we have demonstrated the development of CSFV envelope glycoprotein E2-based indirect ELISA (E2-iELISA) for the detection of CSFV specific antibodies. The full-length E2 protein was expressed in E. coli and the purified protein was used as a coating antigen in indirect ELISA for detecting CSFV specific antibodies in pigs. A panel of 506 pig sera samples was used to validate the ELISA and the results were highly comparable to the results obtained with the commercial antibody detection kit (PrioCHECK CSFV Ab kit). The in-house E2-iELISA demonstrated high diagnostic sensitivity (95.4%) and specificity (95.5%), highlighting its potential application for sero-surveillance or monitoring of the disease in the swine population.
Collapse
Affiliation(s)
| | - Madhusudan Hosamani
- ICAR- Indian Veterinary Research Institute, Bengaluru, 560024, Karnataka, India
| | | | - Sharanagouda S Patil
- ICAR- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, 560064, Karnataka, India.
| |
Collapse
|
2
|
Tong C, Mundt A, Meindl-Boehmer A, Haist V, Gallei A, Chen N. Safety and DIVA Capability of Novel Live Attenuated Classical Swine Fever Marker Vaccine Candidates in Pregnant Sows. Viruses 2024; 16:1043. [PMID: 39066207 PMCID: PMC11281586 DOI: 10.3390/v16071043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/28/2024] Open
Abstract
Classical Swine Fever (CSF), a highly contagious viral disease affecting pigs and wild boar, results in significant economic losses in the swine industry. In endemic regions, prophylactic vaccination and stamping-out strategies are used to control CSF outbreaks. However, sporadic outbreaks and persistent infections continue to be reported. Although the conventional attenuated CSF vaccines protect pigs against the disease, they do not allow for the differentiation of infected from vaccinated animals (DIVA), limiting their use as an eradication tool. In this study, three targeted attenuation strategies were employed to generate vaccine candidates based on the current prevalent CSFV group 2 strains GD18 and QZ07: a single deletion of H79 in Erns (QZ07-sdErnsH-KARD), double deletion of H79 and C171 in Erns (GD18-ddErnsHC-KARD and QZ07-ddErnsHC-KARD), and deletion of H79 in Erns combined with a 5-168 amino acids deletion of Npro (GD18-ddNpro-ErnsH-KARD). Additionally, a negative serological marker with four substitutions in a highly conserved epitope in E2 recognized by the monoclonal antibody 6B8 was introduced in each candidate for DIVA purposes. The safety of these four resulting vaccine candidates was evaluated in pregnant sows. Two candidates, GD18-ddErnsHC-KARD and QZ07-sdErnsH-KARD were found to be safe for pregnant sows and unlikely to cause vertical transmission. Both candidates also demonstrated potential to be used as DIVA vaccines, as was shown using a proprietary blocking ELISA based on the 6B8 monoclonal antibody. These results, together with our previous work, constitute a proof-of-concept for the rational design of CSF antigenically marked modified live virus vaccine candidates.
Collapse
MESH Headings
- Animals
- Classical Swine Fever/prevention & control
- Classical Swine Fever/virology
- Classical Swine Fever/immunology
- Swine
- Female
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/adverse effects
- Classical Swine Fever Virus/immunology
- Classical Swine Fever Virus/genetics
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Viral Vaccines/administration & dosage
- Viral Vaccines/adverse effects
- Pregnancy
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Vaccines, Marker/immunology
- Vaccines, Marker/administration & dosage
- Vaccines, Marker/genetics
- Vaccination/veterinary
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
Collapse
Affiliation(s)
- Chao Tong
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., No. 299, Xiangtai Road, Taizhou 225300, China;
| | - Alice Mundt
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany; (A.M.); (A.M.-B.); (V.H.); (A.G.)
| | - Alexandra Meindl-Boehmer
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany; (A.M.); (A.M.-B.); (V.H.); (A.G.)
| | - Verena Haist
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany; (A.M.); (A.M.-B.); (V.H.); (A.G.)
| | - Andreas Gallei
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany; (A.M.); (A.M.-B.); (V.H.); (A.G.)
| | - Ning Chen
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., No. 299, Xiangtai Road, Taizhou 225300, China;
| |
Collapse
|
3
|
Kamboj A, Dumka S, Saxena MK, Singh Y, Kaur BP, da Silva SJR, Kumar S. A Comprehensive Review of Our Understanding and Challenges of Viral Vaccines against Swine Pathogens. Viruses 2024; 16:833. [PMID: 38932126 PMCID: PMC11209531 DOI: 10.3390/v16060833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Pig farming has become a strategically significant and economically important industry across the globe. It is also a potentially vulnerable sector due to challenges posed by transboundary diseases in which viral infections are at the forefront. Among the porcine viral diseases, African swine fever, classical swine fever, foot and mouth disease, porcine reproductive and respiratory syndrome, pseudorabies, swine influenza, and transmissible gastroenteritis are some of the diseases that cause substantial economic losses in the pig industry. It is a well-established fact that vaccination is undoubtedly the most effective strategy to control viral infections in animals. From the period of Jenner and Pasteur to the recent new-generation technology era, the development of vaccines has contributed significantly to reducing the burden of viral infections on animals and humans. Inactivated and modified live viral vaccines provide partial protection against key pathogens. However, there is a need to improve these vaccines to address emerging infections more comprehensively and ensure their safety. The recent reports on new-generation vaccines against swine viruses like DNA, viral-vector-based replicon, chimeric, peptide, plant-made, virus-like particle, and nanoparticle-based vaccines are very encouraging. The current review gathers comprehensive information on the available vaccines and the future perspectives on porcine viral vaccines.
Collapse
Affiliation(s)
- Aman Kamboj
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Shaurya Dumka
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | - Mumtesh Kumar Saxena
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Yashpal Singh
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Bani Preet Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | | | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| |
Collapse
|
4
|
Park GN, Shin J, Choe S, Kim KS, Kim JJ, Lim SI, An BH, Hyun BH, An DJ. Safety and Immunogenicity of Chimeric Pestivirus KD26_E2LOM in Piglets and Calves. Vaccines (Basel) 2023; 11:1622. [PMID: 37897024 PMCID: PMC10610696 DOI: 10.3390/vaccines11101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
A chimeric pestivirus (KD26_E2LOM) was prepared by inserting the E2 gene of the classical swine fever virus (CSFV) LOM strain into the backbone of the bovine viral diarrhea virus (BVDV) KD26 strain. KD26_E2LOM was obtained by transfecting the cDNA pACKD26_E2LOM into PK-15 cells. KD26_E2LOM chimeric pestivirus proliferated to titers of 106.5 TCID50/mL and 108.0 TCID50/mL at 96 h post-inoculation into PK-15 cells or MDBK cells, respectively. It also reacted with antibodies specific for CSFV E2 and BVDV Erns, but not with an anti-BVDV E2 antibody. Piglets (55-60 days old) inoculated with a high dose (107.0 TCID50/mL) of KD26_E2LOM produced high levels of CSFV E2 antibodies. In addition, no co-habiting pigs were infected with KD26_E2LOM; however, some inoculated pigs excreted the virus, and the virus was detected in some organs. When pregnant sows were inoculated during the first trimester (55-60 days) with a high dose (107.0 TCID50/mL) of KD26_E2LOM, anti-CSFV E2 antibodies were produced at high levels; chimeric pestivirus was detected in one fetus and in the ileum of one sow. When 5-day-old calves that did not consume colostrum received a high dose (107.0 TCID50/mL) of KD26_E2LOM, one calf secreted the virus in both feces and nasal fluid on Day 2. A high dose of KD26_E2LOM does not induce specific clinical signs in most animals, does not spread from animal to animal, and generates CSFV E2 antibodies with DVIA functions. Therefore, chimeric pestivirus KD26_E2LOM is a potential CSFV live marker vaccine.
Collapse
Affiliation(s)
- Gyu-Nam Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Jihye Shin
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Ki-Sun Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Jae-Jo Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Seong-In Lim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Byung-Hyun An
- College of Veterinary Medicine, Seoul University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea;
| | - Bang-Hun Hyun
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| |
Collapse
|
5
|
Suárez-Pedroso M, Sordo-Puga Y, Rodríguez-Moltó MP, Naranjo-Valdés P, Pérez-Pérez D, Sosa-Teste I, Montero-Espinosa C, Fuentes-Rodríguez Y, Sardina-González T, Santana-Rodríguez E, Vargas-Hernández M, Oliva-Cárdenas A, González-Fernández N, Bover-Fuentes E, Duarte CA, Estrada-García MP. Neutralizing antibodies as a correlate of protection against classical swine fever in Porvac® vaccinated pigs. BIONATURA 2023. [DOI: 10.21931/rb/2023.08.01.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Porvac is a classical swine fever (CSF) subunit vaccine. It is safe and induces a robust neutralizing antibody response, sterilizing immunity, and early protection, and it prevents vertical transmission in pregnant sows. The methodology to approve Porvac batches is a challenging experiment in pigs with a virulent CSF virus strain. However, there is an ethical reason to reduce, at minimum, the use of animals in these lethal experiments. The knowledge indicates that neutralizing antibody titers in the blood could be a good correlate of protection. The results of 22 challenge experiments involving 116 Porvac vaccinated and 38 unvaccinated animals were analyzed. All vaccinated animals remained free from CSF clinical signs and pathological lesions and were negative for viral isolation after the challenge.
In contrast, all unvaccinated pigs developed clinical and pathological signs of the disease and had to be euthanized eight days post-challenge. All vaccinated pigs exhibited high neutralizing antibody titers, with a geometric mean value of 1: 5153. The lower titer registered was 1: 800. A complete correspondence between neutralizing antibody titers and protection was demonstrated. These results support substituting the viral challenge test for the neutralizing peroxidase-linked assay in the release of Porvac® batches.
Keywords. Classical swine fever; virus; subunit vaccine; viral challenge; neutralizing antibodies
Collapse
Affiliation(s)
- Marisela Suárez-Pedroso
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | - Yusmel Sordo-Puga
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | - María Pilar Rodríguez-Moltó
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | - Paula Naranjo-Valdés
- Unidad de Laboratorio Central para Salud Agropecuaria (ULCSA), La Habana 11400, Cuba
| | - Danny Pérez-Pérez
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | - Iliana Sosa-Teste
- Centro de Toxicología Experimental (CETEX), Centro Nacional para la Producción de Animales de Laboratorio (CENPALAB), Mayabeque 10300, Cuba
| | - Carlos Montero-Espinosa
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | - Yohandy Fuentes-Rodríguez
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | - Talía Sardina-González
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | - Elaine Santana-Rodríguez
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | - Milagros Vargas-Hernández
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | - Ayme Oliva-Cárdenas
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | | | - Eddy Bover-Fuentes
- Departamento de Investigación Desarrollo. Centro de Ingeniería Genética y Biotecnología, Camagüey, Cuba
| | - Carlos A. Duarte
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | - Mario Pablo Estrada-García
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| |
Collapse
|
6
|
A Novel Blocking Enzyme-Linked Immunosorbent Assay Based on a Biotinylated Nanobody for the Rapid and Sensitive Clinical Detection of Classical Swine Fever Virus Antibodies. Microbiol Spectr 2023; 11:e0299622. [PMID: 36688674 PMCID: PMC9927282 DOI: 10.1128/spectrum.02996-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Monoclonal and polyclonal antibodies are mostly used for the development of traditional enzyme-linked immunosorbent assays (ELISAs), but the use of certain conventional antibodies may be limited by their low yield, the difficulty of their isolation, and their high cost. Heavy-chain antibodies derived from camelids with naturally missing light chains can overcome these deficiencies and are an excellent alternative to conventional antibodies. In this study, a nanobody (Nb)-AviTag fusion protein was constructed, and the feasibility of its use as a high-sensitivity probe in a blocking ELISA (bELISA) for classical swine fever virus (CSFV) was investigated. The CSFV E2 recombinant protein expressed by the CHO expression system exhibited good reactogenicity and immunogenicity and induced the production of high CSFV antibody levels in rabbits. Three different clones of Nbs were successfully isolated using a phage display system in alpaca, and an Nb1-AviTag fusion protein was successfully expressed using an Escherichia coli expression system. The purified Nb1-AviTag fusion protein was then biotinylated in vitro to obtain Nb1-biotin. A novel bELISA was developed for the detection of CSFV antibodies in clinical serum using Nb1-biotin as a probe. The cutoff value of bELISA was 32.18%, the sensitivity of bELISA was higher than that of the bELISA kit with IDEXX antibody, and the coincidence rate was 94.7%. A rapid, low-cost, highly sensitive and highly specific CSFV E2 antibody-based bELISA method was successfully established and can be used for the serological evaluation of CSFV E2 subunit vaccines and the ELISA-based diagnosis of CSFV infection. IMPORTANCE Currently, the epidemic situation of classical swine fever (CSF) is sporadic, and cases of atypical swine fever are on the rise in China. Therefore, it is necessary to accurately eliminate suspected cases by using highly sensitive and specific diagnostic techniques. In our study, a rapid, low-cost, highly sensitivity, highly reliable and reproducible, and highly specific classical swine fever virus (CSFV) E2 antibody-based blocking ELISA method was successfully established by using the phage display system and the Nb1-AviTag fusion expression platform. It provides a new technique for serological evaluation of CSFV vaccines and ELISA-based diagnosis of CSFV infection.
Collapse
|
7
|
Yuan M, Yang X, Zhang X, Zhao X, Abid M, Qiu HJ, Li Y. Different Types of Vaccines against Pestiviral Infections: "Barriers" for " Pestis". Viruses 2022; 15:2. [PMID: 36680043 PMCID: PMC9860862 DOI: 10.3390/v15010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The genus Pestivirus of the family Flaviviridae mainly comprises classical swine fever virus (CSFV), bovine viral diarrhea virus 1 (BVDV-1), BVDV-2, border disease virus (BDV), and multiple new pestivirus species such as atypical porcine pestivirus (APPV), giraffe pestivirus, and antelope pestivirus. Pestiviruses cause infectious diseases, resulting in tremendous economic losses to animal husbandry. Different types of pestivirus vaccines have been developed to control and prevent these important animal diseases. In recent years, pestiviruses have shown great potential as viral vectors for developing multivalent vaccines. This review analyzes the advantages and disadvantages of various pestivirus vaccines, including live attenuated pestivirus strains, genetically engineered marker pestiviruses, and pestivirus-based multivalent vaccines. This review provides new insights into the development of novel vaccines against emerging pestiviruses, such as APPV and ovine pestivirus.
Collapse
Affiliation(s)
- Mengqi Yuan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaoke Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaotian Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Muhammad Abid
- Viral Oncogenesis Group, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
8
|
Zhang H, Yin D, Qin H, Zhang K, Li Z, Cui G, Ma G, Sun P, Cao Z. Immunogenicity of the recombinant adenovirus fusion-expressing E0-E2 gene of the classical swine fever virus. Front Microbiol 2022; 13:1054651. [PMID: 36406388 PMCID: PMC9673476 DOI: 10.3389/fmicb.2022.1054651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Adenovirus vector vaccines have been the mainstream research direction of CSF vaccines, due to the replication deficiency of adenovirus vectors, achieving double effects with the safety of inactivated vaccines and the efficacy of live vaccines. Therefore, the E0 and E2 genes were expressed by an adenovirus vector, a recombinant adenovirus E0-E2 (rAd-E0-E2) vaccine was constructed, and the minimum immunization dose and immune duration period were determined in this study. Forty healthy piglets were randomly divided into 8 groups (n = 5). Groups 1 ~ 5 were used to determine the minimum immunization dose, and 5 groups were inoculated with rAd-E0-E2 at different immune doses. Serum was collected at 7 d and 14 d after immunization to detect CSFV antibodies by ELISA, and piglets were challenged at 7 d post immunization. Groups 6 ~ 8 were immunized with 1 dose of rAd-E0-E2, the CSFV live attenuated vaccine C strain and saline to identify the immune duration period. Serum was collected at different time points after immunization, CSFV antibodies were detected by ELISA, and piglets were challenged at 8 months post immunization. Meanwhile, temperature, clinical symptoms and pathology were observed. The results of groups 1 ~ 5 showed that 1 piglet was protected after challenge, and 4 piglets exhibited high fever retention, typical CSFV symptoms and tissue lesions in the 1/50 dose group, whereas no clinical symptoms were observed in the 1/10 dose, 1/5 dose or 1 dose groups with 5/5 protection after challenge. The minimum dose was determined as 1/10 dose. The results of groups 6 ~ 8 showed that all piglets survived after challenge, but the antibody level of the rAd-E0-E2 strain was higher than that of the C strain at 8 months post immunization, and all piglets in the negative group developed the disease process after challenge. Overall, the minimum immunization dose of rAd-E0-E2 was 1/10 dose (3.16 × 106.0 IFU) and the minimum immune dose was determined to be 1 dose (3.16 × 107.0 IFU) to achieve the expected effects. The immune duration period of piglets immunized with 1 dose of rAd-E0-E2 was at least 8 months.
Collapse
Affiliation(s)
- Heng Zhang
- Swine Disease R&D Center, Shandong SINDER Technology Co., Ltd., Qingdao, China
| | - Dehua Yin
- College of Animal Medicine, Qingdao Agricultural University, Qingdao, China
| | - Huairui Qin
- College of Animal Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ke Zhang
- College of Animal Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhaoyang Li
- Swine Disease R&D Center, Shandong SINDER Technology Co., Ltd., Qingdao, China
| | - Guangchao Cui
- Swine Disease R&D Center, Shandong SINDER Technology Co., Ltd., Qingdao, China
| | - Guangbin Ma
- Swine Disease R&D Center, Shandong SINDER Technology Co., Ltd., Qingdao, China
| | - Peng Sun
- YEBIO Bioengineering Co., Ltd of Qingdao, Qingdao, China
| | - Zhi Cao
- College of Animal Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Zhi Cao,
| |
Collapse
|
9
|
Zhang Y, Li Q, Wang R, Wang L, Wang X, Luo J, Xing G, Zheng G, Wan B, Guo J, Zhang G. Differentiation of Classical Swine Fever Virus Virulent and Vaccine Strains by CRISPR/Cas13a. Microbiol Spectr 2022; 10:e0089122. [PMID: 36173294 PMCID: PMC9603908 DOI: 10.1128/spectrum.00891-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/10/2022] [Indexed: 12/30/2022] Open
Abstract
As a notifiable terrestrial and aquatic animal disease listed by World Organisation for Animal Health (formerly the Office International des Epizooties [OIE]), classical swine fever (CSF) has caused great economic losses to the swine industry worldwide during recent decades. Differentiation of infected and vaccinated animals (DIVA) is urgent for eradication of CSF. In this study, a diagnostic platform based on CRISPR/Cas13a was established with the ability to differentiate between classical swine fever virus (CSFV) virulent and vaccine strains. In combination with reverse transcription recombinase-aided amplification (RT-RAA), the detection limit for CSFV synthetic RNA templates reached 3.0 × 102 copies/μL. In addition, with boiling and chemical reduction, heating unextracted diagnostic samples to obliterate nucleases (HUDSON) treatment was introduced to inactivate nucleases and release viral genome, achieving robust pretreatment of tested sample before CRISPR/Cas13a detection without the need to extract viral nucleic acids. HUDSON-RT-RAA-CRISPR/Cas13a can directly detect cell cultures of virulent Shimen strain and vaccine hog cholera lapinized virus (HCLV) strain, with the detection limit of 3.5 × 102 copies/μL and 1.8 × 102 copies/μL, respectively, which was equally sensitive to nested PCR (nPCR) and 100 times more sensitive than antigen enzyme-linked immunosorbent assay (ELISA). Meanwhile, HUDSON-RT-RAA-CRISPR/Cas13a showed no cross-reactivity with bovine viral diarrhea virus (BVDV), atypical porcine pestivirus (APPV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), African swine fever virus (ASFV), pseudorabies virus (PRV), and porcine circovirus 2 (PCV2), exhibiting good specificity. At last, a total of 50 pig spleen samples with suspected clinical signs were also assayed with HUDSON-RT-RAA-CRISPR/Cas13a, nPCR, and antigen ELISA in parallel. HUDSON-RT-RAA-CRISPR/Cas13a showed 100.0% with nPCR and 82.0% coincident rate with antigen ELISA, respectively. IMPORTANCE Classical swine fever (CSF) is a World Organisation for Animal Health (formerly the Office International des Epizooties [OIE]) notifiable terrestrial and aquatic animal disease, causing great economic losses to the swine industry worldwide during the past decades. Due to the use of the most effective and safe attenuated live vaccine for CSF prevention, differentiation of infected and vaccinated pigs is vital work, as well as a bottleneck for eradication of CSF. Methods with the ability to precisely differentiate classical swine fever virus (CSFV) virulent strains from vaccine strain hog cholera lapinized virus (HCLV) are urgently needed. Combining the high sensitivity of isothermal recombinase-aided amplification (RAA) with the accurate molecular sensing ability of Cas13a, we presented a novel method for CSFV detection without the need to extract viral nucleic acids, which showed great advantage to traditional detection methods for precise differentiation of CSFV virulent strains and vaccine strain, providing a novel powerful tool for CSF eradication.
Collapse
Affiliation(s)
- Yuhang Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qingmei Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ruining Wang
- Henan University of Animal Husbandry and Economy, College of Veterinary Medicine, Zhengzhou, China
| | - Li Wang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xun Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jun Luo
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Guangxu Xing
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Guanmin Zheng
- Public Health and Preventive Medicine Teaching and Research Center, Henan University of Chinese Medicine, Zhengzhou, China
| | - Bo Wan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Junqing Guo
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
The NS4A Protein of Classical Swine Fever Virus Suppresses RNA Silencing in Mammalian Cells. J Virol 2022; 96:e0187421. [PMID: 35867575 PMCID: PMC9364796 DOI: 10.1128/jvi.01874-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RNA interference (RNAi) is a significant posttranscriptional gene silencing mechanism and can function as an antiviral immunity in eukaryotes. However, numerous viruses can evade this antiviral RNAi by encoding viral suppressors of RNA silencing (VSRs). Classical swine fever virus (CSFV), belonging to the genus Pestivirus, is the cause of classical swine fever (CSF), which has an enormous impact on animal health and the pig industry. Notably, little is known about how Pestivirus blocks RNAi in their host. In this paper, we uncovered that CSFV NS4A protein can antagonize RNAi efficiently in mammalian cells by binding to double-stranded RNA and small interfering RNA. In addition, the VSR activity of CSFV NS4A was conserved among Pestivirus. Furthermore, the replication of VSR-deficient CSFV was attenuated but could be restored by the deficiency of RNAi in mammalian cells. In conclusion, our studies uncovered that CSFV NS4A is a novel VSR that suppresses RNAi in mammalian cells and shed new light on knowledge about CSFV and other Pestivirus. IMPORTANCE It is well known that RNAi is an important posttranscriptional gene silencing mechanism that is also involved in the antiviral response in mammalian cells. While numerous viruses have evolved to block this antiviral immunity by encoding VSRs. Our data demonstrated that the NS4A protein of CSFV exhibited a potent VSR activity through binding to dsRNA and siRNA in the context of CSFV infection in mammalian cells, which are a conservative feature among Pestivirus. In addition, the replication of VSR-deficient CSFV was attenuated but could be restored by the deficiency of RNAi, providing a theoretical basis for the development of other important attenuated Pestivirus vaccines.
Collapse
|
11
|
Mignani S, Shi X, Rodrigues J, Tomás H, Majoral JP. Dendrimer nanoplatforms for veterinary medicine applications: A concise overview. Drug Discov Today 2022; 27:1251-1260. [PMID: 34999213 DOI: 10.1016/j.drudis.2022.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 02/08/2023]
Abstract
Within the nanoparticle (NP) space, dendrimers are becoming increasingly important in the field of nanomedicine, not only to treat human diseases, but also in veterinary medicine, which represents a new therapeutic approach. Major applications include using dendrimers to tackle highly contagious foot-and-mouth disease virus (FMDV) and swine fever virus (SFV) in pigs, FMDV in cattle, hypothermic circulatory arrest (HCA) in dogs, rabies, and H9N2 avian influenza virus in chickens. As we review here, intramuscular (im) subcutaneous (sc), intravenous (iv), and intraperitoneal (ip) routes of administration can be used for the successful application of dendrimers in animals.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, Rue des Saints Peres, 75006 Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Xiangyang Shi
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Helena Tomás
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université Toulouse, 118 Route de Narbonne, 31077 Toulouse Cedex 4, France.
| |
Collapse
|
12
|
Oliva-Cárdenas A, Fernández-Zamora F, Santana-Rodríguez E, Sordo-Puga Y, Vargas-Hernández MDLC, Rodríguez-Moltó MP, Pérez-Pérez D, Sardina-González T, Duarte CA, León-Goñi A, Blanco -Gámez D, Contreras-Pérez F, Valdés-Faure O, Hernández-Prado R, Acosta-Lago E, Sosa-Testé I, Suárez-Pedroso MF. Safety and immunogenicity in piglets of two immunization schedules initiated at two or three weeks of age with PorvacÒ, a classical swine fever subunit marker vaccine. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.03.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Classical swine fever is a highly contagious viral disease with a significant impact on food production worldwide. It currently represents one of the main limitations for the development of the pig industry in Cuba. PorvacÒ is a subunit marker vaccine that confers a very rapid onset of protection. Since there are different production systems in pig breeding, readjustments in the vaccination program are often required. This study compares the safety and efficacy in piglets of two vaccination schedules with PorvacÒ (0-2 weeks and 0-3 weeks), initiated at two or three weeks of age. Clinical monitoring was conducted, and a neutralization peroxidase-linked assay was used to measure the neutralization titers. All immunization regimens were safe and well-tolerated, without local or systemic adverse reactions in the vaccinated animals. Geometric mean neutralizing antibody titers higher than 1/1500 were detected in all groups during the six months of the trial. One month after the second immunization, piglets primed at two weeks of age, and boostered three weeks later, developed significantly higher neutralization titers (1/15644) compared to those vaccinated at a similar age but with a two-week interval between doses (1/5760). However, no significant differences in the titers were found three and six months after vaccination among the four regimens. In summary, all the variants studied are effective, but it is recommended to start vaccination at two weeks old, with the second dose at either two or three weeks later, depending on the production system and the purpose of the farm.
Collapse
Affiliation(s)
- Aymé Oliva-Cárdenas
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Fé Fernández-Zamora
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Elaine Santana-Rodríguez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Yusmel Sordo-Puga
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | | | - María P. Rodríguez-Moltó
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Danny Pérez-Pérez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Talia Sardina-González
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Carlos A. Duarte
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Avelina León-Goñi
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Diurys Blanco -Gámez
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Francisco Contreras-Pérez
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Odalys Valdés-Faure
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Rosmery Hernández-Prado
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Eric Acosta-Lago
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Ileana Sosa-Testé
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Marisela F. Suárez-Pedroso
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| |
Collapse
|
13
|
Petersen B, Kammerer R, Frenzel A, Hassel P, Dau TH, Becker R, Breithaupt A, Ulrich RG, Lucas-Hahn A, Meyers G. Generation and first characterization of TRDC-knockout pigs lacking γδ T cells. Sci Rep 2021; 11:14965. [PMID: 34294758 PMCID: PMC8298467 DOI: 10.1038/s41598-021-94017-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
The TRDC-locus encodes the T cell receptor delta constant region, one component of the γδ T cell receptor which is essential for development of γδ T cells. In contrast to peptide recognition by αβ T cells, antigens activating γδ T cells are mostly MHC independent and not well characterized. Therefore, the function of γδ T cells and their contribution to protection against infections is still unclear. Higher numbers of circulating γδ T cells compared to mice, render the pig a suitable animal model to study γδ T cells. Knocking-out the porcine TRDC-locus by intracytoplasmic microinjection and somatic cell nuclear transfer resulted in healthy living γδ T cell deficient offspring. Flow cytometric analysis revealed that TRDC-KO pigs lack γδ T cells in peripheral blood mononuclear cells (PBMC) and spleen cells. The composition of the remaining leucocyte subpopulations was not affected by the depletion of γδ T cells. Genome-wide transcriptome analyses in PBMC revealed a pattern of changes reflecting the impairment of known or expected γδ T cell dependent pathways. Histopathology did not reveal developmental abnormalities of secondary lymphoid tissues. However, in a vaccination experiment the KO pigs stayed healthy but had a significantly lower neutralizing antibody titer as the syngenic controls.
Collapse
Affiliation(s)
- Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Neustadt am Rbge./Mariensee, 31535, Neustadt, Germany.
| | - Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Insel Riems, 17493, Greifswald, Germany.
| | - Antje Frenzel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Neustadt am Rbge./Mariensee, 31535, Neustadt, Germany
| | - Petra Hassel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Neustadt am Rbge./Mariensee, 31535, Neustadt, Germany
| | - Tung Huy Dau
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Insel Riems, 17493, Greifswald, Germany
| | - Roswitha Becker
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Neustadt am Rbge./Mariensee, 31535, Neustadt, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Insel Riems, Greifswald, Germany
| | | | - Andrea Lucas-Hahn
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Neustadt am Rbge./Mariensee, 31535, Neustadt, Germany
| | - Gregor Meyers
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Insel Riems, 17493, Greifswald, Germany
| |
Collapse
|
14
|
Cid R, Bolívar J. Platforms for Production of Protein-Based Vaccines: From Classical to Next-Generation Strategies. Biomolecules 2021; 11:1072. [PMID: 34439738 PMCID: PMC8394948 DOI: 10.3390/biom11081072] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
To date, vaccination has become one of the most effective strategies to control and reduce infectious diseases, preventing millions of deaths worldwide. The earliest vaccines were developed as live-attenuated or inactivated pathogens, and, although they still represent the most extended human vaccine types, they also face some issues, such as the potential to revert to a pathogenic form of live-attenuated formulations or the weaker immune response associated with inactivated vaccines. Advances in genetic engineering have enabled improvements in vaccine design and strategies, such as recombinant subunit vaccines, have emerged, expanding the number of diseases that can be prevented. Moreover, antigen display systems such as VLPs or those designed by nanotechnology have improved the efficacy of subunit vaccines. Platforms for the production of recombinant vaccines have also evolved from the first hosts, Escherichia coli and Saccharomyces cerevisiae, to insect or mammalian cells. Traditional bacterial and yeast systems have been improved by engineering and new systems based on plants or insect larvae have emerged as alternative, low-cost platforms. Vaccine development is still time-consuming and costly, and alternative systems that can offer cost-effective and faster processes are demanding to address infectious diseases that still do not have a treatment and to face possible future pandemics.
Collapse
Affiliation(s)
- Raquel Cid
- ADL Bionatur Solutions S.A., Av. del Desarrollo Tecnológico 11, 11591 Jerez de la Frontera, Spain
| | - Jorge Bolívar
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Campus Universitario de Puerto Real, University of Cadiz, 11510 Puerto Real, Spain
| |
Collapse
|
15
|
Research Progress and Challenges in Vaccine Development against Classical Swine Fever Virus. Viruses 2021; 13:v13030445. [PMID: 33801868 PMCID: PMC7998128 DOI: 10.3390/v13030445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/06/2023] Open
Abstract
Classical swine fever (CSF), caused by CSF virus (CSFV), is one of the most devastating viral epizootic diseases of swine in many countries. To control the disease, highly efficacious and safe live attenuated vaccines have been used for decades. However, the main drawback of these conventional vaccines is the lack of differentiability of infected from vaccinated animals (DIVA concept). Advances in biotechnology and our detailed knowledge of multiple basic science disciplines have facilitated the development of effective and safer DIVA vaccines to control CSF. To date, two types of DIVA vaccines have been developed commercially, including the subunit vaccines based on CSFV envelope glycoprotein E2 and chimeric pestivirus vaccines based on infectious cDNA clones of CSFV or bovine viral diarrhea virus (BVDV). Although inoculation of these vaccines successfully induces solid immunity against CSFV, none of them could ideally meet all demands regarding to safety, efficacy, DIVA potential, and marketability. Due to the limitations of the available choices, researchers are still striving towards the development of more advanced DIVA vaccines against CSF. This review summarizes the present status of candidate CSFV vaccines that have been developed. The strategies and approaches revealed here may also be helpful for the development of new-generation vaccines against other diseases.
Collapse
|
16
|
Suárez-Pedroso M, Sordo-Puga Y, Sosa-Teste I, Rodriguez-Molto MP, Naranjo-Valdés P, Sardina-González T, Santana-Rodríguez E, Montero-Espinosa C, Frías-Laporeaux MT, Fuentes-Rodríguez Y, Pérez-Pérez D, Oliva-Cárdenas A, Pereda CL, González-Fernández N, Bover-Fuentes E, Vargas-Hernández M, Duarte CA, Estrada-García MP. Novel chimeric E2CD154 subunit vaccine is safe and confers long lasting protection against classical swine fever virus. Vet Immunol Immunopathol 2021; 234:110222. [PMID: 33690056 DOI: 10.1016/j.vetimm.2021.110222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 10/22/2022]
Abstract
E2CD154 is a vaccine candidate against classical swine fever (CSF) based on a chimeric protein composed of the E2 glycoprotein fused to porcine CD154 antigen, and formulated in the oil adjuvant Montanide™ ISA 50 V2. This vaccine confers early protection in pigs and prevents vertical transmission in pregnant sows. The objectives of this study were to assess the safety of this immunogen in piglets, to compare several doses of antigen in the formulation, and to study the duration of the immunity provided by this vaccine for up to 9 months. Three trials were conducted by immunizing pigs with a two-dose regime of the vaccine. Challenge experiments were carried out with the highly pathogenic Margarita strain. No local or systemic adverse effects were documented, and neither macroscopic nor microscopic pathological findings were observed in the vaccinated animals. The three antigen doses explored were safe and induced CSF protective neutralizing antibodies. The dose of 50 μg was selected for further development because it provided the best clinical and virological protection. Finally, this protective immunity was sustained for at least 9 months. This study demonstrates that E2CD154 vaccine is safe; defines a vaccine dose of 50 μg antigen, and evidences the capacity of this vaccine to confer long term protection from CSFV infection for up to 9 months post- vaccination. These findings complement previous data on the evaluation of this vaccine candidate, and suggest that E2CD154 is a promising alternative to modified live vaccines in CSF endemic areas.
Collapse
Affiliation(s)
- Marisela Suárez-Pedroso
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba.
| | - Yusmel Sordo-Puga
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Iliana Sosa-Teste
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Cuba
| | | | | | - Talía Sardina-González
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Elaine Santana-Rodríguez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Carlos Montero-Espinosa
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | | | - Yohandy Fuentes-Rodríguez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Danny Pérez-Pérez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Ayme Oliva-Cárdenas
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Carmen Laura Pereda
- Centro Nacional de Sanidad Agropecuaria (CENSA), Apdo 10, San José de Las Lajas, Havana, Cuba
| | - Nemecio González-Fernández
- Departamento de Desarrollo de Procesos, Centro de Ingeniería Genética y Biotecnología (CIGB), Camagüey, Cuba
| | - Eddy Bover-Fuentes
- Departamento de Desarrollo de Procesos, Centro de Ingeniería Genética y Biotecnología (CIGB), Camagüey, Cuba
| | - Milagros Vargas-Hernández
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Carlos A Duarte
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Mario Pablo Estrada-García
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| |
Collapse
|
17
|
Wei Q, Bai Y, Song Y, Liu Y, Yu W, Sun Y, Wang L, Deng R, Xing G, Zhang G. Generation and immunogenicity analysis of recombinant classical swine fever virus glycoprotein E2 and E rns expressed in baculovirus expression system. Virol J 2021; 18:44. [PMID: 33627167 PMCID: PMC7903030 DOI: 10.1186/s12985-021-01507-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/08/2021] [Indexed: 11/12/2022] Open
Abstract
Classical swine fever (CSF) caused by the classical swine fever virus (CSFV) is a highly contagious swine disease resulting in large economical losses worldwide. The viral envelope glycoprotein E2 and Erns are major targets for eliciting antibodies against CSFV in infected animals. In this report, the glycoprotein E2 and Erns were expressed using the baculovirus system and their protective immunity in rabbits were tested. Twenty CSFV seronegative rabbits were randomly divided into five groups. Each rabbit was intramuscularly immunized with CSFV-E2, CSFV-Erns, or their combination (CSFV-E2 + Erns). Besides, a commercial CSFV vaccine (C-strain) and PBS were used as positive or negative controls, respectively. Four weeks after the second immunization, all the rabbits were challenged with 100 RID50 of CSFV C-strain. High levels of CSFV E2-specific antibody, neutralizing antibody and cellular immune responses to CSFV were elicited in the rabbits inoculated with C-strain, CSFV-E2, and CSFV-E2 + Erns. And the rabbits inoculated with the three vaccines received complete protection against CSFV C-strain. However, no neutralizing antibody was detected in the Erns vaccinated rabbits and the rabbits exhibited fever typical of CSFV, suggesting the Erns alone is not able to induce a protective immune response. Taken together, while the Erns could not confer protection against CSFV, E2 and E2 + Erns could not only elicit humoral and cell-mediated immune responses but also confer complete protection against CSFV C-strain in rabbits.
Collapse
Affiliation(s)
- Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yilin Bai
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yapeng Song
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Wei Yu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yaning Sun
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.,Henan Baiao Biological Project Co., Ltd., Zhengzhou, 450002, China
| | - Li Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China. .,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.
| |
Collapse
|
18
|
Porvac ® Subunit Vaccine E2-CD154 Induces Remarkable Rapid Protection against Classical Swine Fever Virus. Vaccines (Basel) 2021; 9:vaccines9020167. [PMID: 33671399 PMCID: PMC7922993 DOI: 10.3390/vaccines9020167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 11/17/2022] Open
Abstract
Live attenuated C-strain classical swine fever vaccines provide early onset protection. These vaccines confer effective protection against the disease at 5–7 days post-vaccination. It was previously reported that intramuscular administration of the Porvac® vaccine protects against highly virulent classical swine fever virus (CSFV) “Margarita” strain as early as seven days post-vaccination. In order to identify how rapidly protection against CSFV is conferred after a single dose of the Porvac® subunit vaccine E2-CD154, 15 swine, vaccinated with a single dose of Porvac®, were challenged intranasally at five, three, and one day post-vaccination with 2 × 103 LD50 of the highly pathogenic Cuban “Margarita” strain of the classical swine fever virus. Another five animals were the negative control of the experiment. The results provided clinical and virological data confirming protection at five days post-vaccination. Classical swine fever (CSF)-specific IFNγ T cell responses were detected in vaccinated animals but not detected in unvaccinated control animals. These results provided the first data that a subunit protein vaccine demonstrates clinical and viral protection at five days post-vaccination, as modified live vaccines.
Collapse
|
19
|
Coronado L, Perera CL, Rios L, Frías MT, Pérez LJ. A Critical Review about Different Vaccines against Classical Swine Fever Virus and Their Repercussions in Endemic Regions. Vaccines (Basel) 2021; 9:154. [PMID: 33671909 PMCID: PMC7918945 DOI: 10.3390/vaccines9020154] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Classical swine fever (CSF) is, without any doubt, one of the most devasting viral infectious diseases affecting the members of Suidae family, which causes a severe impact on the global economy. The reemergence of CSF virus (CSFV) in several countries in America, Asia, and sporadic outbreaks in Europe, sheds light about the serious concern that a potential global reemergence of this disease represents. The negative aspects related with the application of mass stamping out policies, including elevated costs and ethical issues, point out vaccination as the main control measure against future outbreaks. Hence, it is imperative for the scientific community to continue with the active investigations for more effective vaccines against CSFV. The current review pursues to gather all the available information about the vaccines in use or under developing stages against CSFV. From the perspective concerning the evolutionary viral process, this review also discusses the current problematic in CSF-endemic countries.
Collapse
Affiliation(s)
- Liani Coronado
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Carmen L. Perera
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Liliam Rios
- Reiman Cancer Research Laboratory, Faculty of Medicine, University of New Brunswick, Saint John, NB E2L 4L5, Canada;
| | - María T. Frías
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Lester J. Pérez
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana–Champaign, Champaign, IL 61802, USA
| |
Collapse
|
20
|
Ma Z, Lv J, Zhang Z, Zhao Y, Pan L, Zhang Y. A chemiluminescence immunoassay for rapid detection of classical swine fever virus E2 antibodies in pig serum samples. Transbound Emerg Dis 2020; 67:1797-1803. [PMID: 32239638 DOI: 10.1111/tbed.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/03/2020] [Accepted: 03/21/2020] [Indexed: 11/30/2022]
Abstract
The high performance of chemiluminescence immunoassays (CLIAs) in diagnosis has been gradually recognized in recent years, but their application in the diagnosis of classical swine fever (CSF) has not been reported. Here, a recombinant E2 (rE2) protein and a peroxidase-conjugated monoclonal antibody (MAb G5) were used to develop a competition-based chemiluminescence immunoassay (cCLIA) for rapid and accurate detection of E2-specific antibodies in pig serum. To evaluate the feasibility of cCLIA in the diagnosis of CSF, we developed a competition-based enzyme-linked immunosorbent assay (cELISA) as a control. Under the optimum test conditions, cCLIA showed a higher signal-to-noise ratio than that of the control cELISA. The best signal-to-noise ratios of cCLIA and cELISA were 70 and 17, respectively. Then, the diagnostic performance of the two assays was compared by examining a panel of pig serum samples (n = 285) with a confirmed status, and cCLIA showed higher diagnostic sensitivity (Dn) and diagnostic specificity (Dp) values than those of cELISA. The Dn and Dp of cCLIA were 97.49% and 96.08%, respectively, and those of cELISA were 93.97% and 94.12%, respectively. Furthermore, cCLIA can provide results within 20 min, whereas the control cELISA requires at least 1 hr. According to these findings, the newly developed cCLIA has potential application in the diagnosis of CSF and offers an alternative approach for efficient and rapid detection of E2-specific antibodies.
Collapse
Affiliation(s)
- Zhongyuan Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jianliang Lv
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zhongwang Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ye Zhao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Li Pan
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
21
|
Malik YS, Bhat S, Kumar ORV, Yadav AK, Sircar S, Ansari MI, Sarma DK, Rajkhowa TK, Ghosh S, Dhama K. Classical Swine Fever Virus Biology, Clinicopathology, Diagnosis, Vaccines and a Meta-Analysis of Prevalence: A Review from the Indian Perspective. Pathogens 2020; 9:pathogens9060500. [PMID: 32580503 PMCID: PMC7350356 DOI: 10.3390/pathogens9060500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/21/2020] [Accepted: 06/21/2020] [Indexed: 12/19/2022] Open
Abstract
Classical swine fever (CSF) is an economically significant, multi-systemic, highly contagious viral disease of swine world over. The disease is notifiable to the World Organization for Animal Health (OIE) due to its enormous consequences on porcine health and the pig industry. In India, the pig population is 9.06 million and contributes around 1.7% of the total livestock population. The pig industry is not well organized and is mostly concentrated in the eastern and northeastern states of the country (~40% of the country’s population). Since the first suspected CSF outbreak in India during 1944, a large number of outbreaks have been reported across the country, and CSF has acquired an endemic status. As of date, there is a scarcity of comprehensive information on CSF from India. Therefore, in this review, we undertook a systematic review to compile and evaluate the prevalence and genetic diversity of the CSF virus situation in the porcine population from India, targeting particular virus genes sequence analysis, published reports on prevalence, pathology, and updates on indigenous diagnostics and vaccines. The CSF virus (CSFV) is genetically diverse, and at least three phylogenetic groups are circulating throughout the world. In India, though genotype 1.1 predominates, recently published reports point toward increasing evidence of co-circulation of sub-genotype 2.2 followed by 2.1. Sequence identities and phylogenetic analysis of Indian CSFV reveal high genetic divergence among circulating strains. In the meta-analysis random-effects model, the estimated overall CSF prevalence was 35.4%, encompassing data from both antigen and antibody tests, and region-wise sub-group analysis indicated variable incidence from 25% in the southern to nearly 40% in the central zone, eastern, and northeastern regions. A country-wide immunization approach, along with other control measures, has been implemented to reduce the disease incidence and eliminate the virus in time to come.
Collapse
Affiliation(s)
- Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243001, India; (S.B.); (S.S.); (M.I.A.)
- Correspondence: (Y.S.M.); (K.D.); Tel.: +91-58-1230-2777 (Y.S.M. & K.D.); Fax: +91-58-1230-1757 (Y.S.M. & K.D.)
| | - Sudipta Bhat
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243001, India; (S.B.); (S.S.); (M.I.A.)
| | - O. R. Vinodh Kumar
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India;
| | - Ajay Kumar Yadav
- Animal Health, ICAR-National Research Centre on Pig (ICAR-NRCP), Guwahati, Assam 781015, India;
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243001, India; (S.B.); (S.S.); (M.I.A.)
| | - Mohd Ikram Ansari
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243001, India; (S.B.); (S.S.); (M.I.A.)
| | - Dilip Kumar Sarma
- Department of Veterinary Microbiology, Assam Agricultural University, Khanapara, Guwahati 781022, India;
| | - Tridib Kumar Rajkhowa
- College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram 796001, India;
| | - Souvik Ghosh
- Department of Biomedical Sciences, One Health Center for Zoonoses and Tropical Veterinary Medicine, Basseterre, St. Kitts PO Box 334, West Indies;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
- Correspondence: (Y.S.M.); (K.D.); Tel.: +91-58-1230-2777 (Y.S.M. & K.D.); Fax: +91-58-1230-1757 (Y.S.M. & K.D.)
| |
Collapse
|
22
|
Li J, Li X, Ma H, Ren X, Hao G, Zhang H, Zhao Z, Fang K, Li X, Rong Z, Sun S, Chen H, Qian P. Efficient mucosal vaccination of a novel classical swine fever virus E2-Fc fusion protein mediated by neonatal Fc receptor. Vaccine 2020; 38:4574-4583. [PMID: 32417139 DOI: 10.1016/j.vaccine.2020.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022]
Abstract
Classical swine fever (CSF) remains one of the most important highly contagious and fatal viral disease of swine with high morbidity and mortality. CSF is caused by classical swine fever virus (CSFV), a small, enveloped RNA virus of the genus Pestivirus. The aim of this study was to construct the a novel CSFV Fc-fusion recombinant protein and evaluate the efficacy as a vaccine against CSFV. Here, we obtained a novel subunit vaccine expressing CSFV E2 recombinant fusion protein in CHO-S cells. Functional analysis revealed that CSFV Fc-fusion recombinant protein (CSFV-E2-Fc) could bind to FcγRI on antigen-presenting cells (APCs) and significantly increase IgA levels in serum and feces, inducing stronger mucosal immune response in swine. Additionally, CSFV-E2-Fc immunization enhanced CSFV-specific T cell immune response with a Th1-like pattern of cytokine secretion, remarkably stimulated the Th1-biased cellular immune response and humoral immune response. Further, the protective effects of CSFV-E2-Fc subunit vaccines were confirmed. The data suggest that CSFV E2-Fc recombinant fusion protein may be a promising candidate subunit vaccine to elicit immune response and protect against CSFV.
Collapse
Affiliation(s)
- Jianglong Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Hui Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xujiao Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Genxi Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huawei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zekai Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Kui Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xinxin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhenxiang Rong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Shaohua Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China.
| |
Collapse
|
23
|
SAILO LALRENGPUII, KUMAR AMIT, SAH VAISHALI, CHAUDHARY RAJNI, SAHOO NR, SAXENA SHIKHA, GANDHAM RAVIKUMAR, MISHRA BP. Expression profiling of miR-146a-3p and miR-1343 with their target genes after classical swine fever vaccination. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i2.98779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The expression profiling of the miRNAs, ssc-miR-146a- 3p and ssc-miR-1343 in the PBMCs of classical swine fever (CSF) vaccinated crossbred pigs were investigated on 7 days post vaccination (7 dpv) as compared to unvaccinated pigs. It was observed that ssc-miR-146a-3p was up-regulated (1.243 Log2 FC) and ssc-miR-1343 was down-regulated (-1.63 Log2 FC) on 7 dpv compared to unvaccinated crossbred pigs which were in concordance with earlier report of miRNA Seq expression profiling. Two target genes, (CD86 for ssc-miR-146a-3p and IFIT1 for ssc-miR-1343) were validated by qRT-PCR and were also found to be in concordance with miRNA expression profile. The CD86 was downregulated with log2 fold changes -5.99, whereas the IFIT1 was upregulated with log2 fold changes 3.19 at 7 dpv. Both of these miRNA was actively involved in cell mediated immune response at 7dpv after CSF vaccination. The CSF vaccine virus triggered the expression of host miRNAs and its target mRNA and enriched immune system processes/pathways.
Collapse
|
24
|
Tran HTT, Truong DA, Ly VD, Vu HT, Hoang TV, Nguyen CT, Chu NT, Nguyen VT, Nguyen DT, Miyazawa K, Kokuho T, Dang HV. The potential efficacy of the E2-subunit vaccine to protect pigs against different genotypes of classical swine fever virus circulating in Vietnam. Clin Exp Vaccine Res 2020; 9:26-39. [PMID: 32095438 PMCID: PMC7024730 DOI: 10.7774/cevr.2020.9.1.26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 11/15/2022] Open
Abstract
Purpose To date, many kinds of classical swine fever (CSF) vaccines have been developed to protect against this disease. However, the efficacy of these vaccines to protect the pig against field CSF strains needs to be considered, based on circulating strains of classical swine fever virus (CSFV). Materials and Methods Recombinant E2-CSFV protein produced by baculovirus/insect cell system was analyzed by western blots and immunoperoxidase monolayer assay. The effect of CSFV-E2 subunit vaccines was evaluated in experimental pigs with three genotypes of CSFV challenge. Anti-E2 specific and neutralizing antibodies in experimental pigs were analyzed by blocking enzyme-linked immunosorbent assay and neutralization peroxidize-linked assay. Results The data showed that CSFV VN91-E2 subunit vaccine provided clinical protection in pigs against three different genotypes of CSFV without noticeable clinical signs, symptoms, and mortality. In addition, no CSFV was isolated from the spleen of the vaccinated pigs. However, the unvaccinated pigs exhibited high clinical scores and the successful virus isolation from spleen. These results showed that the E2-specific and neutralizing antibodies induced by VN91-E2 antigen appeared at day 24 after first boost and a significant increase was observed at day 28 (p<0.01). This response reached a peak at day 35 and continued until day 63 when compared to controls. Importantly, VN91-E2 induced E2-specific and neutralizing antibodies protected experimental pigs against high virulence of CSFVs circulating in Vietnam, including genotype 1.1, 2.1, and 2.2. Conclusion These findings also suggested that CSFV VN91-E2 subunit vaccine could be a promising vaccine candidate for the control and prevention of CSFV in Vietnam.
Collapse
Affiliation(s)
- Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Duc Anh Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Viet Duc Ly
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Hao Thi Vu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Tuan Van Hoang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Chinh Thi Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Nhu Thi Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Vinh The Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Duyen Thuy Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Kohtaro Miyazawa
- National Institute of Animal Health, The National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takehiro Kokuho
- National Institute of Animal Health, The National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| |
Collapse
|
25
|
Abid M, Teklue T, Li Y, Wu H, Wang T, Qiu HJ, Sun Y. Generation and Immunogenicity of a Recombinant Pseudorabies Virus Co-Expressing Classical Swine Fever Virus E2 Protein and Porcine Circovirus Type 2 Capsid Protein Based on Fosmid Library Platform. Pathogens 2019; 8:pathogens8040279. [PMID: 31805703 PMCID: PMC6963705 DOI: 10.3390/pathogens8040279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
Pseudorabies (PR), classical swine fever (CSF), and porcine circovirus type 2 (PCV2)-associated disease (PCVAD) are economically important infectious diseases of pigs. Co-infections of these diseases often occur in the field, posing significant threat to the swine industry worldwide. gE/gI/TK-gene-deleted vaccines are safe and capable of providing full protection against PR. Classical swine fever virus (CSFV) E2 glycoprotein is mainly used in the development of CSF vaccines. PCV2 capsid (Cap) protein is the major antigen targeted for developing PCV2 subunit vaccines. Multivalent vaccines, and especially virus-vectored vaccines expressing foreign proteins, are attractive strategies to fight co-infections for various swine diseases. The gene-deleted pseudorabies virus (PRV) can be used to develop promising and economical multivalent live virus-vectored vaccines. Herein, we constructed a gE/gI/TK-gene-deleted PRV co-expressing E2 of CSFV and Cap of PCV2 by fosmid library platform established for PRV, and the expression of E2 and Cap proteins was confirmed using immunofluorescence assay and western blotting. The recombinant virus propagated in porcine kidney 15 (PK-15) cells for 20 passages was genetically stable. The evaluation results in rabbits and pigs demonstrate that rPRVTJ-delgE/gI/TK-E2-Cap elicited detectable anti-PRV antibodies, but not anti-PCV2 or anti-CSFV antibodies. These findings provide insights that rPRVTJ-delgE/gI/TK-E2-Cap needs to be optimally engineered as a promising trivalent vaccine candidate against PRV, PCV2 and CSFV co-infections in future.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua-Ji Qiu
- Correspondence: (H.-J.Q.); (Y.S.); Tel.: +86-451-5105-1708
| | - Yuan Sun
- Correspondence: (H.-J.Q.); (Y.S.); Tel.: +86-451-5105-1708
| |
Collapse
|
26
|
Sailo L, Kumar A, Sah V, Chaudhary R, Upmanyu V, Tiwari AK, Kumar A, Pandey A, Saxena S, Singh A, Wani SA, Gandham RK, Rai A, Mishra BP, Singh RK. Genome-wide integrated analysis of miRNA and mRNA expression profiles to identify differentially expressed miR-22-5p and miR-27b-5p in response to classical swine fever vaccine virus. Funct Integr Genomics 2019; 19:901-918. [PMID: 31134483 DOI: 10.1007/s10142-019-00689-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022]
Abstract
The present study was conducted to identify the differentially expressed miRNAs (DE miRNAs) in the peripheral blood mononuclear cells of crossbred pigs in response to CSF vaccination on 7 and 21 days of post vaccination as compared to unvaccinated control (0 dpv). Simultaneously, set of miRNA was predicted using mRNA seq data at same time point. The proportion of CD4-CD8+ and CD4+CD8+ increased after vaccination, and the mean percentage inhibition was 86.89% at 21 dpv. It was observed that 22 miRNAs were commonly expressed on both the time points. Out of predicted DE miRNAs, it was found that 40 and 35 DE miRNAs were common, obtained from miRNA seq analysis and predicted using mRNA seq data on 7 dpv versus 0 dpv and 21 dpv versus 0 dpv respectively. Two DE miRNAs, ssc-miR-22-5p and ssc-miR-27b-5p, were selected based on their log2 fold change and functions of their target genes in immune process/pathway of viral infections. The validations of DE miRNAs using qRT-PCR were in concordance with miRNA seq analysis. Two set of target genes, CD40 and SWAP70 (target gene of ssc-miR-22-5p) and TLR4 and Lyn (target gene of ssc-miR-27b-5p), were validated and were in concordance with results of RNA seq analysis at a particular time point (except TLR4). The first report of genome-wide identification of differentially expressed miRNA in response to live attenuated vaccine virus of classical swine fever revealed miR-22-5p and miR-27b-5p were differentially expressed at 7 dpv and 21 dpv.
Collapse
Affiliation(s)
- Lalrengpuii Sailo
- Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India
| | - Amit Kumar
- Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India.
| | - Vaishali Sah
- Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India
| | - Rajni Chaudhary
- Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India
| | - Vikramaditya Upmanyu
- Standardization Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India
| | - A K Tiwari
- Standardization Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India
| | - Ajay Kumar
- Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India
| | - Aruna Pandey
- Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India
| | - Shikha Saxena
- Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India
| | - Akansha Singh
- Animal Genetics and Breeding, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | | | - Ravi Kumar Gandham
- Animal Biotechnology, National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India.
| | - Anil Rai
- Head Centre for Bioinformatics, IASRI, New Delhi, 110012, India
| | - B P Mishra
- Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India
| | - R K Singh
- Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India
| |
Collapse
|
27
|
Park Y, An DJ, Choe S, Lee Y, Park M, Park S, Gu S, Min K, Kim NH, Lee S, Kim JK, Kim HY, Sohn EJ, Hwang I. Development of Recombinant Protein-Based Vaccine Against Classical Swine Fever Virus in Pigs Using Transgenic Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2019; 10:624. [PMID: 31156681 PMCID: PMC6531818 DOI: 10.3389/fpls.2019.00624] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/26/2019] [Indexed: 05/07/2023]
Abstract
Classical swine fever virus (CSFV) is highly contagious, and fatal to infected pigs. Vaccines against CSFV have been developed from attenuated or modified live viruses. These vaccines are effective for immunization of animals, but they are associated with problems such as the accidental spreading of viruses to animals in the field, and with barriers to trade following vaccination. Here, we report the generation of transgenic Nicotiana benthamiana plants for large-scale, cost-effective production of E2 fusion protein for use as a recombinant vaccine against CSFV in pigs. Transgenic N. benthamiana plants harboring an intergenic, single-copy insertion of a chimeric gene encoding E2 fusion protein had high levels of transgene expression. For large-scale production of E2 fusion protein from leaf tissues, we developed a protein-purification protocol consisting of cellulose-binding domain (CBD)-cellulose-based affinity purification and size-exclusion gel-filtration chromatography. E2 fusion proteins showed high immunogenicity in piglets and provided protection against CSFV challenge. The CBD in the E2 fusion protein was also highly immunogenic. These results suggest that plant-produced recombinant E2 fusion proteins can be developed into cost-effective vaccines against CSFV, with the CBD as a marker antigen to differentiate between vaccination and natural infection.
Collapse
Affiliation(s)
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | | | | | | | - Sungmin Gu
- BioApplications Inc., Pohang, South Korea
| | | | | | | | | | - Hye-Yeon Kim
- Protein Structure Group, Korea Basic Science Institute, Ochang, South Korea
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Eun-Ju Sohn
- BioApplications Inc., Pohang, South Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
- *Correspondence: Eun-Ju Sohn, Inhwan Hwang,
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
- *Correspondence: Eun-Ju Sohn, Inhwan Hwang,
| |
Collapse
|
28
|
Madera RF, Wang L, Gong W, Burakova Y, Buist S, Nietfeld J, Henningson J, Cino-Ozuna AG, Tu C, Shi J. Toward the development of a one-dose classical swine fever subunit vaccine: antigen titration, immunity onset, and duration of immunity. J Vet Sci 2018; 19:393-405. [PMID: 29510474 PMCID: PMC5974521 DOI: 10.4142/jvs.2018.19.3.393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 11/28/2022] Open
Abstract
Highly contagious classical swine fever (CSF) remains a major trade and health problem in the pig industry, resulting in large economic losses worldwide. In CSF-endemic countries, attenuated CSF virus (CSFV) vaccines have been routinely used to control the disease. However, eradication of CSFV in a geographical area would require permanent reduction to zero presence of the virus. It is therefore of paramount importance to develop a safe, potent, and non-infectious CSF vaccine. We have previously reported on a cost-effective CSF E2 subunit vaccine, KNB-E2, which can protect against CSF symptoms in a single dose containing 75 µg of recombinant CSFV glycoprotein E2. In this study, we report on a series of animal studies undertaken to elucidate further the efficacy of KNB-E2. We found that pigs vaccinated with a single KNB-E2 dose containing 25 µg of recombinant CSFV glycoprotein E2 were protected from clinical symptoms of CSF. In addition, KNB-E2-mediated reduction of CSF symptoms was observed at two weeks post-vaccination and the vaccinated pigs continued to exhibit reduced CSF clinical signs when virus challenged at two months and four months post-vaccination. These results suggest that KNB-E2 effectively reduces CSF clinical signs, indicating the potential of this vaccine for safely minimizing CSF-related losses.
Collapse
Affiliation(s)
- Rachel F Madera
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Lihua Wang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Wenjie Gong
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130062, China
| | - Yulia Burakova
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Sterling Buist
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Jerome Nietfeld
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Ada G Cino-Ozuna
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Changchun Tu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130062, China
| | - Jishu Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
29
|
Zhang H, Leng C, Tian Z, Liu C, Chen J, Bai Y, Li Z, Xiang L, Zhai H, Wang Q, Peng J, An T, Kan Y, Yao L, Yang X, Cai X, Tong G. Complete genomic characteristics and pathogenic analysis of the newly emerged classical swine fever virus in China. BMC Vet Res 2018; 14:204. [PMID: 29940930 PMCID: PMC6019732 DOI: 10.1186/s12917-018-1504-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 05/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Classical swine fever (CSF) is one of the most devastating and highly contagious viral diseases in the world. Since late 2014, outbreaks of a new sub-genotype 2.1d CSF virus (CSFV) had caused substantial economic losses in numbers of C-strain vaccinated swine farms in China. The objective of the present study was to explore the genomic characteristics and pathogenicity of the newly emerged CSFV isolates in China during 2014-2015. RESULTS All the new 8 CSFV isolates belonged to genetic sub-genotype 2.1d. Some genomic variations or deletions were found in the UTRs and E2 of these new isolates. In addition, the pathogenicity of HLJ1 was less than Shimen, suggesting the HLJ1 of sub-genotype 2.1d may be a moderated pathogenic isolate and the C-strain vaccine can supply complete protection. CONCLUSIONS The new CSFV isolates with unique genomic characteristics and moderate pathogenicity can be epidemic in many large-scale C-strain vaccinated swine farms. This study provides the information should be merited special attention on establishing prevention and control policies for CSF.
Collapse
Affiliation(s)
- Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Chaoliang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061 China
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Chunxiao Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Jiazeng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Yun Bai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Zhen Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Lirun Xiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Hongyue Zhai
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061 China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Jinmei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Yunchao Kan
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061 China
| | - Lunguang Yao
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061 China
| | - Xufu Yang
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, 512005 China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241 China
| |
Collapse
|
30
|
Krol E, Pastuch-Gawolek G, Chaubey B, Brzuska G, Erfurt K, Szewczyk B. Novel Uridine Glycoconjugates, Derivatives of 4-Aminophenyl 1-Thioglycosides, as Potential Antiviral Compounds. Molecules 2018; 23:molecules23061435. [PMID: 29899276 PMCID: PMC6100568 DOI: 10.3390/molecules23061435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/02/2018] [Accepted: 06/10/2018] [Indexed: 01/19/2023] Open
Abstract
A novel series of uridine glycoconjugates, derivatives of 4-aminophenyl 1-thioglycosides, was designed and synthesized. All compounds were evaluated in vitro for their antiviral activity against hepatitis C virus (HCV) and classical swine fever virus (CSFV), two important human and animal viral pathogens for which new or improved therapeutic options are needed. The antiviral activity of all synthesized compounds was confirmed using pseudo-plaque reduction assays in which a significant arrest of CSFV and HCV growth was observed in the presence of these compounds. Two of the synthesized compounds, 9 and 12, displayed a significant inhibitory effect on HCV and CSFV propagation with IC50 values of 4.9 and 13.5 µM for HCV and 4.2 and 4 µM for CSFV, respectively, with low cytotoxicity. Using various infection and replication models, we have shown that both compounds were able to significantly reduce viral genome replication by up to 90% with IC50 values in the low micromolar range. A structure activity analysis of the synthesized compounds showed that the high antiviral activity was attributed to the hydrophobicity of glycoconjugates and the introduction of elements capable to coordinate metal ions into the spacer connecting the sugar and uridine moiety, which can be useful in the development of new antiviral compounds in the future.
Collapse
Affiliation(s)
- Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | - Gabriela Pastuch-Gawolek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Binay Chaubey
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
- Functional Genomics Lab., Centre for Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, 700019 Kolkata, India.
| | - Gabriela Brzuska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.
| | - Boguslaw Szewczyk
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
31
|
Henke J, Carlson J, Zani L, Leidenberger S, Schwaiger T, Schlottau K, Teifke JP, Schröder C, Beer M, Blome S. Protection against transplacental transmission of moderately virulent classical swine fever virus using live marker vaccine "CP7_E2alf". Vaccine 2018; 36:4181-4187. [PMID: 29895502 DOI: 10.1016/j.vaccine.2018.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 05/04/2018] [Accepted: 06/05/2018] [Indexed: 11/19/2022]
Abstract
Classical swine fever (CSF) remains as one of the most important infectious diseases of swine. While prophylactic vaccination is usually prohibited in free countries with industrialized pig production, emergency vaccination is still foreseen. In this context, marker vaccines are preferred as they can reduce the impact on trade. The live-attenuated Suvaxyn® CSF Marker vaccine by Zoetis (based on pestivirus chimera "CP7_E2alf"), was recently licensed by the European Medicines Agency. Its efficacy for the individual animal had been shown in prior studies, but questions remained regarding protection against transplacental transmission. To answer this question, a trial with eight pregnant sows and their offspring was performed as prescribed by the OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Six of the sows were intramuscularly vaccinated on day 44 of gestation, while the other two remained as unvaccinated controls. All sows were challenged with the moderately virulent CSFV strain "Roesrath" and euthanized shortly before the calculated farrowing date. Sows and piglets were grossly examined and necropsied. Organs (spleen, tonsil, lymph node, and kidney), EDTA-blood and serum were collected from all animals. All samples were tested for antibodies against CSFV glycoproteins E2 and Erns as well as CSFV (virus, antigen and genome). It could be demonstrated that the vaccine complies with all requirements, i.e. no virus was found in the blood of vaccinated sows and their fetuses, and no antibodies were found in the serum of the fetuses from the vaccinated sows. All controls were valid. Thus, it was demonstrated that a single dose vaccination in the sows efficiently protected the offspring against transplacental infection with a moderately virulent CSFV strain.
Collapse
Affiliation(s)
- Julia Henke
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Jolene Carlson
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany; Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Laura Zani
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Simone Leidenberger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Theresa Schwaiger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany; Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Jens P Teifke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany.
| |
Collapse
|
32
|
Classical swine fever in India: current status and future perspective. Trop Anim Health Prod 2018; 50:1181-1191. [DOI: 10.1007/s11250-018-1608-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
|
33
|
Gao F, Jiang Y, Li G, Zhou Y, Yu L, Li L, Tong W, Zheng H, Zhang Y, Yu H, Shan T, Yang S, Liu H, Zhao K, Tong G. Porcine reproductive and respiratory syndrome virus expressing E2 of classical swine fever virus protects pigs from a lethal challenge of highly-pathogenic PRRSV and CSFV. Vaccine 2018; 36:3269-3277. [PMID: 29724508 DOI: 10.1016/j.vaccine.2018.04.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 12/25/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) and classical swine fever (CSF) are economically significant diseases that affect the swine industry worldwide. However, the current vaccination strategy, which uses two single live attenuated vaccines, can result in interference for each other. In addition, the universally used CSFV vaccine C-strain does not allow for differentiation of infected and vaccinated animals. In this study, rPRRSV-E2, PRRS virus (PRRSV) expressing CSF virus (CSFV) E2, was constructed by reverse genetics. The E2 gene of CSFV was inserted between ORF1b and ORF2 in the genome of the PRRS vaccine virus, HuN4-F112. A copy of transcriptional regulatory sequence 6 was inserted at the 3' terminal of the exogenous gene to produce CSFV E2 as a unique subgenomic mRNA transcript. The rPRRSV-E2 was stable for at least 25 serial cell passages. Single-shot intramuscular immunization of rPRRSV-E2 into pigs induced PRRSV-specific and CSFV-specific antibodies and fully protected pigs from lethal challenge with highly-pathogenic PRRSV and CSFV. These results demonstrate that a novel strategy for recombinant PRRSV production is effective, and suggest that rPRRSV-E2 is a promising live, virus-vectored vaccine against PRRS and a marker vaccine against CSF.
Collapse
Affiliation(s)
- Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Guoxin Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Liwei Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Hao Zheng
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yujiao Zhang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Hai Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Tongling Shan
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Shen Yang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Huan Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Kuan Zhao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
34
|
Kumar R, Kumar V, Kumar S. Production of recombinant Erns protein of classical swine fever virus and assessment of its enzymatic activity: A recombinant Newcastle disease virus-based approach. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Humoral and cellular immune response in mice induced by the classical swine fever virus E2 protein fused to the porcine CD154 antigen. Biologicals 2018; 52:67-71. [DOI: 10.1016/j.biologicals.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 08/23/2017] [Accepted: 12/22/2017] [Indexed: 01/15/2023] Open
|
36
|
Blome S, Wernike K, Reimann I, König P, Moß C, Beer M. A decade of research into classical swine fever marker vaccine CP7_E2alf (Suvaxyn ® CSF Marker): a review of vaccine properties. Vet Res 2017; 48:51. [PMID: 28915927 PMCID: PMC5603031 DOI: 10.1186/s13567-017-0457-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/04/2017] [Indexed: 11/29/2022] Open
Abstract
Due to its impact on animal health and pig industry, classical swine fever (CSF) is still one of the most important viral diseases of pigs. To control the disease, safe and highly efficacious live attenuated vaccines exist for decades. However, until recently, the available live vaccines did not allow a serological marker concept that is essentially important to circumvent long-term trade restrictions. In 2014, a new live attenuated marker vaccine, Suvaxyn® CSF Marker (Zoetis), was licensed by the European Medicines Agency. This vaccine is based on pestivirus chimera “CP7_E2alf” that carries the main immunogen of CSF virus “Alfort/187”, glycoprotein E2, in a bovine viral diarrhea virus type 1 backbone (“CP7”). This review summarizes the available data on design, safety, efficacy, marker diagnostics, and its possible integration into control strategies.
Collapse
Affiliation(s)
- Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Patricia König
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Claudia Moß
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| |
Collapse
|
37
|
Postel A, Austermann-Busch S, Petrov A, Moennig V, Becher P. Epidemiology, diagnosis and control of classical swine fever: Recent developments and future challenges. Transbound Emerg Dis 2017; 65 Suppl 1:248-261. [PMID: 28795533 DOI: 10.1111/tbed.12676] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 12/31/2022]
Abstract
Classical swine fever (CSF) represents a major health and trade problem for the pig industry. In endemic countries or those with a wild boar reservoir, CSF remains a priority for Veterinary Services. Surveillance as well as stamping out and/or vaccination are the principle tools of prevention and control, depending on the context. In the past decades, marker vaccines and accompanying diagnostic tests allowing the discrimination of infected from vaccinated animals have been developed. In the European Union, an E2 subunit and a chimeric live vaccine have been licensed and are available for the use in future disease outbreak scenarios. The implementation of commonly accepted and globally harmonized concepts could pave the way to replace the ethically questionable stamping out policy by a vaccination-to-live strategy and thereby avoid culling of a large number of healthy animals and save food resources. Although a number of vaccines and diagnostic tests are available worldwide, technological advancement in both domains is desirable. This work provides a summary of an analysis undertaken by the DISCONTOOLS group of experts on CSF. Details of the analysis can be downloaded from the web site at http://www.discontools.eu/.
Collapse
Affiliation(s)
- Alexander Postel
- EU and OIE Reference Laboratory for Classical Swine Fever, Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sophia Austermann-Busch
- EU and OIE Reference Laboratory for Classical Swine Fever, Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Anja Petrov
- EU and OIE Reference Laboratory for Classical Swine Fever, Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Volker Moennig
- EU and OIE Reference Laboratory for Classical Swine Fever, Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Paul Becher
- EU and OIE Reference Laboratory for Classical Swine Fever, Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
38
|
Pastuch-Gawolek G, Chaubey B, Szewczyk B, Krol E. Novel thioglycosyl analogs of glycosyltransferase substrates as antiviral compounds against classical swine fever virus and hepatitis C virus. Eur J Med Chem 2017; 137:247-262. [PMID: 28601004 DOI: 10.1016/j.ejmech.2017.05.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/29/2017] [Accepted: 05/24/2017] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV) and classical swine fever virus (CSFV) are important pathogens for which new therapeutic approaches are in high demand. Herein, we report the synthesis of newly designed thioglycosyl analogs of glycosyltransferase substrates which were evaluated using cell-based assays for cytotoxicity and antiviral activity against both viruses. The antiviral activity of synthesized compounds against CSFV and HCV was confirmed using pseudo-plaque reduction assays where a significant arrest of viral growth was observed in the presence of selected compounds. We showed that compounds 13 and 14 exerted the most significant inhibitory effect on in vitro CSFV and HCV infections in the series. Glycoconjugates 13 and 14 not only inhibited both viral propagation with IC50 values in low micromolar range, but efficiently suppressed the production of viral proteins in a dose-dependent manner. In addition, studies using in vitro HCV infection and replication models have shown that both compounds are able to significantly reduce viral genomic replication. We demonstrated that compounds 13 and 14 showed a strong inhibition, up to 90% of replication which inscribe them in the promising alternative approach for the development of new anti-CSFV and anti-HCV drugs.
Collapse
Affiliation(s)
- Gabriela Pastuch-Gawolek
- Silesian University of Technology, Faculty of Chemistry, Chair of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Krzywoustego 4, 44-100 Gliwice, Poland; Biotechnology Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Binay Chaubey
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; Functional Genomics Lab., Centre for Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, 700019 Kolkata, India
| | - Boguslaw Szewczyk
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
39
|
Lin H, Ma Z, Chen L, Fan H. Recombinant Swinepox Virus Expressing Glycoprotein E2 of Classical Swine Fever Virus Confers Complete Protection in Pigs upon Viral Challenge. Front Vet Sci 2017; 4:81. [PMID: 28612010 PMCID: PMC5447669 DOI: 10.3389/fvets.2017.00081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/12/2017] [Indexed: 01/21/2023] Open
Abstract
Classical swine fever (CSF) is a highly contagious and serious viral disease that affects the pig industry worldwide. The glycoprotein E2 of the classical swine fever virus (CSFV) can induce neutralizing antibodies, and it is widely used for novel vaccine development. To explore the development of a vaccine against CSFV infections, the gene of glycoprotein E2 was inserted into the swinepox virus (SPV) genome by homologous recombination. The culture titers of rSPV-E2 remained at about 4.3 × 106 TCID50 for more than 60 passages in PK15 and swine testis cell lines. The rSPV-E2 could not be replicated in Vero, MDBK or other non-porcine cell lines. After two to three passages, the SPV specific gene of rSPV-E2 could not been detected in the non-porcine cell culture. To evaluate the immunogenicity of rSPV-E2, 20 CSFV seronegative minipigs were immunized with rSPV-E2, a commercial C-strain vaccine, wild-type SPV (wtSPV; negative control), or PBS (a no-challenge control). After challenge with CSFV, pigs in the rSPV-E2-immunized group showed significantly shorter fever duration compared with the wtSPV-treated group (P < 0.05). E2-specific antibodies in the rSPV-E2-immunized group increased dramatically after vaccination and increased continuously over time. CSFV genomic copies in the serum of rSPV-E2-immunized pigs were significantly less compared with the wtSPV-treated group at all time points after challenge (P < 0.01). Significant reduction in gross lung lesion scores, histopathological liver, spleen, lung, and kidney lesion scores were noted in the rSPV-E2-immunized group compared with the wtSPV-treated group (P < 0.01). The results suggested that the recombinant rSPV-E2 provided pigs with significant protection from CSFV infections; thus, rSPV-E2 offers proof of principle for the development of a vaccine for the prevention of CSFV infections in pigs.
Collapse
Affiliation(s)
- Huixing Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lei Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
40
|
Blome S, Moß C, Reimann I, König P, Beer M. Classical swine fever vaccines-State-of-the-art. Vet Microbiol 2017; 206:10-20. [PMID: 28069290 DOI: 10.1016/j.vetmic.2017.01.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/24/2016] [Accepted: 01/01/2017] [Indexed: 10/20/2022]
Abstract
Due to its impact on animal health and pig industry, classical swine fever (CSF) is still one of the most important viral diseases of pigs. To control the disease, safe and highly efficacious live attenuated vaccines exist for decades. These vaccines have usually outstanding efficacy and safety but lack differentiability of infected from vaccinated animals (DIVA or marker strategy). In contrast, the first generation of E2 subunit marker vaccines shows constraints in efficacy, application, and production. To overcome these limitations, new generations of marker vaccines are developed. A wide range of approaches have been tried including recombinant vaccines, recombinant inactivated vaccines or subunit vaccines, vector vaccines, and DNA/RNA vaccines. During the last years, especially attenuated deletion vaccines or chimeric constructs have shown potential. At present, especially two new constructs have been intensively tested, the adenovirus-delivered, Semliki Forest virus replicon-vectored marker vaccine candidate "rAdV-SFV-E2" and the pestivirus chimera "CP7_E2alf". The later was recently licensed by the European Medicines Agency. Under field conditions, all marker vaccines have to be accompanied by a potent test system. Particularly this point shows still weaknesses and it is important to embed vaccination in a well-established vaccination strategy and a suitable diagnostic workflow. In summary, conventional vaccines are a standard in terms of efficacy. However, only vaccines with DIVA will allow improved eradication strategies e.g. also under emergency vaccination conditions in free regions. To answer this demand, new generations of marker vaccines have been developed and add now to the tool box of CSF control.
Collapse
Affiliation(s)
- Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Claudia Moß
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Patricia König
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Insel Riems, Germany.
| |
Collapse
|
41
|
Madera R, Gong W, Wang L, Burakova Y, Lleellish K, Galliher-Beckley A, Nietfeld J, Henningson J, Jia K, Li P, Bai J, Schlup J, McVey S, Tu C, Shi J. Pigs immunized with a novel E2 subunit vaccine are protected from subgenotype heterologous classical swine fever virus challenge. BMC Vet Res 2016; 12:197. [PMID: 27612954 PMCID: PMC5016919 DOI: 10.1186/s12917-016-0823-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/01/2016] [Indexed: 11/17/2022] Open
Abstract
Background Classical swine fever (CSF) or hog cholera is a highly contagious swine viral disease. CSF endemic countries have to use routine vaccination with modified live virus (MLV) vaccines to prevent and control CSF. However, it is impossible to serologically differentiate MLV vaccinated pigs from those infected with CSF virus (CSFV). The aim of this study is to develop a one-dose E2-subunit vaccine that can provide protection against CSFV challenge. We hypothesize that a vaccine consisting of a suitable adjuvant and recombinant E2 with natural conformation may induce a similar level of protection as the MLV vaccine. Results Our experimental vaccine KNB-E2 was formulated with the recombinant E2 protein (Genotype 1.1) expressed by insect cells and an oil-in-water emulsion based adjuvant. 10 pigs (3 weeks old, 5 pigs/group) were immunized intramuscularly with one dose or two doses (3 weeks apart) KNB-E2, and 10 more control pigs were administered normal saline solution only. Two weeks after the second vaccination, all KNB-E2 vaccinated pigs and 5 control pigs were challenged with 5 × 105 TCID50 CSFV Honduras/1997 (Genotype 1.3, 1 ml intramuscular, 1 ml intranasal). It was found that while control pigs infected with CSFV stopped growing and developed high fever (>40 °C), high level CSFV load in blood and nasal fluid, and severe leukopenia 3–14 days post challenge, all KNB-E2 vaccinated pigs continued to grow as control pigs without CSFV exposure, did not show any fever, had low or undetectable level of CSFV in blood and nasal fluid. At the time of CSFV challenge, only pigs immunized with KNB-E2 developed high levels of E2-specific antibodies and anti-CSFV neutralizing antibodies. Conclusions Our studies provide direct evidence that pigs immunized with one dose KNB-E2 can be protected clinically from CSFV challenge. This protection is likely mediated by high levels of E2-specific and anti-CSFV neutralizing antibodies.
Collapse
Affiliation(s)
- Rachel Madera
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Wenjie Gong
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA.,Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Lihua Wang
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yulia Burakova
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA.,Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Karen Lleellish
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Amy Galliher-Beckley
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jerome Nietfeld
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Kaimin Jia
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Ping Li
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Jianfa Bai
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - John Schlup
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Scott McVey
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, Manhattan, KS, 66502, USA
| | - Changchun Tu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China.
| | - Jishu Shi
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
42
|
Dräger C, Schröder C, König P, Tegtmeyer B, Beer M, Blome S. Efficacy of Suvaxyn CSF Marker (CP7_E2alf) in the presence of pre-existing antibodies against Bovine viral diarrhea virus type 1. Vaccine 2016; 34:4666-4671. [PMID: 27523739 DOI: 10.1016/j.vaccine.2016.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/31/2016] [Accepted: 08/05/2016] [Indexed: 11/26/2022]
Abstract
Classical swine fever (CSF) is still one of the most important viral diseases of pigs worldwide and outbreaks are notifiable to the OIE. The different control options also include (emergency) vaccination, preferably with a vaccine that allows differentiation of infected from vaccinated animals (DIVA principle). Recently, the chimeric pestivirus "CP7_E2alf" (Suvaxyn® CSF Marker, Zoetis) was licensed as live attenuated marker vaccine by the European Medicines Agency (EMA). In the context of risk assessments for an emergency vaccination scenario, the question has been raised whether pre-existing anti-pestivirus antibodies, especially against the vaccine backbone Bovine viral diarrhea virus type 1 (BVDV-1), would interfere with "CP7_E2alf" vaccination and the accompanying DIVA diagnostics. To answer this question, a vaccination-challenge-trial was conducted with Suvaxyn® CSF Marker and the "gold-standard" of live-modified CSF vaccines C-strain (RIEMSER® Schweinepestvakzine) as comparator. Pre-existing antibodies against BVDV-1 were provoked in a subset of animals through intramuscular inoculation of a recent field isolate from Germany (two injections with an interval of 2weeks). Twenty-seven days after the first injection, intramuscular vaccination of pre-exposed and naïve animals with either "CP7_E2alf" or C-strain "Riems" was performed. Seven days later, all vaccinated animals and two additional controls were oro-nasally challenged with highly virulent CSF virus (CSFV) strain Koslov. It was demonstrated that pre-existing BVDV-1 antibodies do not impact on the efficacy of live attenuated vaccines against CSF. Both C-strain "Riems" and marker vaccine "CP7_E2alf" were able to confer full protection against highly virulent challenge seven days after vaccination. However, slight interference was seen with serological DIVA diagnostics accompanying the vaccination with CP7_E2alf. Amended sample preparation and combination of test systems was able to resolve most cases of false positive reactions. However, in such a co-infection scenario, optimization and embedding in a well-defined surveillance strategy is clearly needed.
Collapse
Affiliation(s)
- Carolin Dräger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Patricia König
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Birthe Tegtmeyer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
43
|
Applications of Replicating-Competent Reporter-Expressing Viruses in Diagnostic and Molecular Virology. Viruses 2016; 8:v8050127. [PMID: 27164126 PMCID: PMC4885082 DOI: 10.3390/v8050127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/31/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022] Open
Abstract
Commonly used tests based on wild-type viruses, such as immunostaining, cannot meet the demands for rapid detection of viral replication, high-throughput screening for antivirals, as well as for tracking viral proteins or virus transport in real time. Notably, the development of replicating-competent reporter-expressing viruses (RCREVs) has provided an excellent option to detect directly viral replication without the use of secondary labeling, which represents a significant advance in virology. This article reviews the applications of RCREVs in diagnostic and molecular virology, including rapid neutralization tests, high-throughput screening systems, identification of viral receptors and virus-host interactions, dynamics of viral infections in vitro and in vivo, vaccination approaches and others. However, there remain various challenges associated with RCREVs, including pathogenicity alterations due to the insertion of a reporter gene, instability or loss of the reporter gene expression, or attenuation of reporter signals in vivo. Despite all these limitations, RCREVs have become powerful tools for both basic and applied virology with the development of new technologies for generating RCREVs, the inventions of novel reporters and the better understanding of regulation of viral replication.
Collapse
|
44
|
Li H, Ning P, Lin Z, Liang W, Kang K, He L, Zhang Y. Co-expression of the C-terminal domain of Yersinia enterocolitica invasin enhances the efficacy of classical swine-fever-vectored vaccine based on human adenovirus. J Biosci 2015; 40:79-90. [PMID: 25740144 DOI: 10.1007/s12038-014-9495-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of adenovirus vector-based vaccines is a promising approach for generating antigen-specific immune responses. Improving vaccine potency is necessary in other approaches to address their inadequate protection for the majority of infectious diseases. This study is the first to reconstruct a recombinant replication-defective human adenovirus co-expressing E2 and invasin C-terminal (InvC) glycoproteins (rAd-E2-InvC). rAd-E2-InvC with 2 x 10(6) TCID50 was intramuscularly administered two times to CSFV-free pigs at 14 day intervals. No adverse clinical reactions were observed in any of the pigs after the vaccination. The CSFV E2-specific antibody titer was significantly higher in the rAd-E2-InvC group than that in the rAdV-E2 group as measured by NPLA and blocking ELISA. Pigs immunized with rAd-E2-InvC were completely protected against lethal challenge. Neither CSFV RNA nor pathological changes were detected in the tissues after CSFV challenge. These results demonstrate that rAd-E2-InvC could be an alternative to the existing CSF vaccine. Moreover, InvC that acts as an adjuvant could enhance the immunogenicity of rAdV-E2 and induce high CSFV E2-specific antibody titer and protection level.
Collapse
Affiliation(s)
- Helin Li
- College of Veterinary Medicine, Northwest A and F University, Yangling 712100, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Li Y, Wang X, Sun Y, Li LF, Zhang L, Li S, Luo Y, Qiu HJ. Generation and evaluation of a chimeric classical swine fever virus expressing a visible marker gene. Arch Virol 2015; 161:563-71. [PMID: 26614259 DOI: 10.1007/s00705-015-2693-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/16/2015] [Indexed: 11/24/2022]
Abstract
Classical swine fever virus (CSFV) is a noncytopathogenic virus, and the incorporation of an enhanced green fluorescent protein (EGFP) tag into the viral genome provides a means of direct monitoring of viral infection without immunostaining. It is well established that the 3' untranslated region (3'-UTR) of the CSFV plays an important role in viral RNA replication. Although CSFV carrying a reporter gene and chimeric CSFV have been generated and evaluated, a chimeric CSFV with a visible marker has not yet been reported. Here, we generated and evaluated a chimeric virus containing the EGFP tag and the 3'-UTR from vaccine strain HCLV (C-strain) in the genetic background of the highly virulent CSFV Shimen strain. The chimeric marker CSFV was fluorescent and had an approximately 100-fold lower viral titer, lower replication level of viral genome, and weaker fluorescence intensity than the recombinant CSFV with only the EGFP tag or the parental virus. Furthermore, the marker chimera was avirulent and displayed no viremia in inoculated pigs, which were completely protected from lethal CSFV challenge as early as 15 days post-inoculation. The chimeric marker virus was visible in vitro and attenuated in vitro and in vivo, which suggests that CSFV can be engineered to produce attenuated variants with a visible marker to facilitate in vitro studies of CSFV infection and replication and to develop of novel vaccines against CSF.
Collapse
Affiliation(s)
- Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, Heilongjiang, China
| | - Xiao Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, Heilongjiang, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, Heilongjiang, China
| | - Lian-Feng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, Heilongjiang, China
| | - Lingkai Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, Heilongjiang, China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, Heilongjiang, China
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, Heilongjiang, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
46
|
Rossi S, Staubach C, Blome S, Guberti V, Thulke HH, Vos A, Koenen F, Le Potier MF. Controlling of CSFV in European wild boar using oral vaccination: a review. Front Microbiol 2015; 6:1141. [PMID: 26557109 PMCID: PMC4615961 DOI: 10.3389/fmicb.2015.01141] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/05/2015] [Indexed: 11/24/2022] Open
Abstract
Classical swine fever (CSF) is among the most detrimental diseases for the swine industry worldwide. Infected wild boar populations can play a crucial role in CSF epidemiology and controlling wild reservoirs is of utmost importance for preventing domestic outbreaks. Oral mass vaccination (OMV) has been implemented to control CSF in wild boars and limit the spill over to domestic pigs. This retrospective overview of vaccination experiences illustrates the potential for that option. The C-strain live vaccine was confirmed to be highly efficacious and palatable baits were developed for oral delivery in free ranging wild boars. The first field trials were performed in Germany in the 1990’s and allowed deploying oral baits at a large scale. The delivery process was further improved during the 2000’s among different European countries. Optimal deployment has to be early regarding disease emergence and correctly designed regarding the landscape structure and the natural food sources that can compete with oral baits. OMV deployment is also highly dependent on a local veterinary support working closely with hunters, wildlife and forestry agencies. Vaccination has been the most efficient strategy for CSF control in free ranging wild boar when vaccination is wide spread and lasting for a sufficient period of time. Alternative disease control strategies such as intensified hunting or creating physical boundaries such as fences have been, in contrast, seldom satisfactory and reliable. However, monitoring outbreaks has been challenging during and after vaccination deployment since OMV results in a low probability to detect virus-positive animals and the live-vaccine currently available does not allow serological differentiation of infected from vaccinated animals. The development of a new marker vaccine and companion test is thus a promising option for better monitoring outbreaks during OMV deployment as well as help to better determine when to stop vaccination efforts. After rabies in red fox, the use of OMV against CSF in European wild boar can be considered as a second example of successful disease control in wildlife. The 30 years of disease control experience included in this review may provide options for improving future disease management within wild populations.
Collapse
Affiliation(s)
- Sophie Rossi
- Unité Sanitaire de la Faune, Office National de la Chasse et de la Faune Sauvage Gap, France
| | - Christoph Staubach
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health Greifswald, Germany
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health Greifswald, Germany
| | - Vittorio Guberti
- Instituto Superiore per la Protezione e la Ricerca Ambientale Ozzano dell'Emilia, Italy
| | - Hans-Hermann Thulke
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research-UFZ Leipzig, Germany
| | - Ad Vos
- Development Vaccines Technologies, IDT Biologika GmbH Dessau-Rosslau, Germany
| | - Frank Koenen
- Operational Direction Interactions and Surveillance, Centrum voor Onderzoek in Diergeneeskunde en Agrochemie-Centre d'Etude et de Recherches Vétérinaires et Agrochimiques Ukkel, Belgium
| | | |
Collapse
|
47
|
Goller KV, Dräger C, Höper D, Beer M, Blome S. Classical swine fever virus marker vaccine strain CP7_E2alf: genetic stability in vitro and in vivo. Arch Virol 2015; 160:3121-5. [PMID: 26392285 DOI: 10.1007/s00705-015-2611-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Abstract
Recently, CP7_E2alf (SuvaxynCSF Marker), a live marker vaccine against classical swine fever virus, was licensed through the European Medicines Agency. For application of such a genetically engineered virus under field conditions, knowledge about its genetic stability is essential. Here, we report on stability studies that were conducted to assess and compare the mutation rate of CP7_E2alf in vitro and in vivo. Sequence analyses upon passaging confirmed the high stability of CP7_E2alf, and no recombination events were observed in the experimental setup. The data obtained in this study confirm the genetic stability of CP7_E2alf as an important safety component.
Collapse
Affiliation(s)
- Katja V Goller
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Carolin Dräger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|
48
|
Generation and Efficacy Evaluation of a Recombinant Pseudorabies Virus Variant Expressing the E2 Protein of Classical Swine Fever Virus in Pigs. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1121-9. [PMID: 26311244 DOI: 10.1128/cvi.00383-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/19/2015] [Indexed: 01/29/2023]
Abstract
Classical swine fever (CSF) is an economically important infectious disease of pigs caused by classical swine fever virus (CSFV). Pseudorabies (PR), which is caused by pseudorabies virus (PRV), is another important infectious disease of pigs and other animals. Coinfections of pigs with PRV and CSFV occur occasionally in the field. The modified live vaccine Bartha-K61 strain has played an important role in the control of PR in many countries, including China. Since late 2011, however, increasing PR outbreaks caused by an emerging PRV variant have been reported in Bartha-K61-vaccinated swine populations on many farms in China. Previously, we generated a gE/gI-deleted PRV (rPRVTJ-delgE) based on this PRV variant, which was shown to be safe and can provide rapid and complete protection against lethal challenge with the PRV variant in pigs. Here, we generated a new recombinant PRV variant expressing the E2 gene of CSFV (rPRVTJ-delgE/gI-E2) and evaluated its immunogenicity and efficacy in pigs. The results showed that rPRVTJ-delgE/gI-E2 was safe for pigs, induced detectable anti-PRV and anti-CSFV neutralizing antibodies, and provided complete protection against the lethal challenge with either the PRV TJ strain or the CSFV Shimen strain. The data indicate that rPRVTJ-delgE/gI-E2 is a promising candidate bivalent vaccine against PRV and CSFV coinfections.
Collapse
|
49
|
Zhou W, Gao S, Podgórska K, Stadejek T, Qiu HJ, Yin H, Drew T, Liu L. Rovac is the possible ancestor of the Russian lapinized vaccines LK-VNIVViM and CS strains but not the Chinese strain (C-strain) vaccine against classical swine fever. Vaccine 2015; 32:6639-42. [PMID: 25306909 DOI: 10.1016/j.vaccine.2014.09.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 11/28/2022]
Abstract
Classical swine fever (CSF), or hog cholera, is a highly contagious disease that emerged in the first half of the nineteenth century. To fight against the disease and protect pigs, different vaccines were developed, including early generation of lapinized Rovac strain and the later development of the “Chinese” strain (C-strain). However, details of the development of these vaccines are lost in history. In order to investigate the phylogenetic relationship between the Rovac and other lapinized vaccines, this study determined the genome sequence of the Rovac, which comprised 12,304 nucleotides, notably with the 3′untranslated region (3′UTR) containing a 13-nucleotide insertion. The near-complete genome of Russian vaccine strain LK-VNIVViM was determined by next-generation sequencing on Illumina MiSeq platform. Whole genome phylogenetic analysis revealed a closer relationship of the Rovac strain with the Russian LK-VNIVViM, CS strain and its derivative RUCSFPLUM (genotype 1.2), rather than with the C-strain (genotype 1.1). In addition, it demonstrated an ancestry role of the LK-VNIVViM in relation to the CS strain and RUCSFPLUM. The study suggested that the Rovac vaccine is the possible ancestor of the Russian vaccine strains but not the C-strain vaccine.
Collapse
Affiliation(s)
- Weiguang Zhou
- Department of Virology, Immunobiology and Parasitology, National Veterinary Institute, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Pannhorst K, Fröhlich A, Staubach C, Meyer D, Blome S, Becher P. Evaluation of an Erns-based enzyme-linked immunosorbent assay to distinguish Classical swine fever virus-infected pigs from pigs vaccinated with CP7_E2alf. J Vet Diagn Invest 2015; 27:449-60. [PMID: 26179095 DOI: 10.1177/1040638715592446] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Infections with Classical swine fever virus (CSFV) are a major economic threat to pig production. To combat CSF outbreaks and to maintain trade, new marker vaccines were developed that allow differentiation of infected from vaccinated animals (DIVA principle). The chimeric pestivirus CP7_E2alf was shown to be safe and efficacious. Its DIVA strategy is based on the detection of CSFV E(rns)-specific antibodies that are only developed on infection. However, for the new marker vaccine to be considered a valuable control tool, a validated discriminatory assay is needed. One promising candidate is the already commercially available enzyme-linked immunosorbent assay, PrioCHECK CSFV E(rns) ELISA (Prionics BV, Lelystad, The Netherlands). Four laboratories of different European Union member states tested 530 serum samples and country-specific field sera from domestic pigs and wild boar. The ELISA displayed a good robustness. However, based on its reproducibility and repeatability, ranges rather than single values for diagnostic sensitivity and specificity were defined. The ELISA displayed a sensitivity of 90-98% with sera from CSFV-infected domestic pigs. A specificity of 89-96% was calculated with sera from domestic pigs vaccinated once with CP7_E2alf. The ELISA detected CSFV infections in vaccinated domestic pigs with a sensitivity of 82-94%. The sensitivity was lower with sera taken ≤21 days post-challenge indicating that the stage of CSFV infection had a considerable influence on testing. Taken together, the PrioCHECK CSFV E(rns) ELISA can be used for detection of CSFV infections in CP7_E2alf-vaccinated and nonvaccinated domestic pig populations, but should only be applied on a herd basis by testing a defined number of animals.
Collapse
Affiliation(s)
- Katrin Pannhorst
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany (Pannhorst, Meyer, Becher)Institute of Epidemiology (Fröhlich, Staubach)Institute of Diagnostic Virology (Blome)Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Andreas Fröhlich
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany (Pannhorst, Meyer, Becher)Institute of Epidemiology (Fröhlich, Staubach)Institute of Diagnostic Virology (Blome)Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Christoph Staubach
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany (Pannhorst, Meyer, Becher)Institute of Epidemiology (Fröhlich, Staubach)Institute of Diagnostic Virology (Blome)Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Denise Meyer
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany (Pannhorst, Meyer, Becher)Institute of Epidemiology (Fröhlich, Staubach)Institute of Diagnostic Virology (Blome)Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Sandra Blome
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany (Pannhorst, Meyer, Becher)Institute of Epidemiology (Fröhlich, Staubach)Institute of Diagnostic Virology (Blome)Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Paul Becher
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany (Pannhorst, Meyer, Becher)Institute of Epidemiology (Fröhlich, Staubach)Institute of Diagnostic Virology (Blome)Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| |
Collapse
|