1
|
Esmaeili Z, Kamal Shahsavar S, Ariannejad H, Hajinajaf N, Menbari S, Ghazvini K. Investigation of the inhibitory effects of immunoglobulin Y antibody against key epitopes of Helicobacter pylori UreB recombinant protein. Microb Pathog 2025; 204:107613. [PMID: 40252938 DOI: 10.1016/j.micpath.2025.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
Helicobacter pylori (H.pylori) is considered to be the most important gastrointestinal pathogen causing gastritis, gastric ulcers and even gastric cancer. The treatment of these infections has failed due to the rapidly increasing antibiotic resistance to standard treatment regimens and the lack of an effective vaccine. This study investigates the production and therapeutic potential of Immunoglobulin Y (IgY) antibodies targeting key epitopes of the H. pylori UreB recombinant protein. Given the increasing challenge of antibiotic resistance in H. pylori treatment, this research underscores the necessity for alternative therapeutic strategies. A specific region of the UreB gene, containing critical immunogenic epitopes, was amplified using Polymerase Chain Reaction (PCR) and cloned into the pET32b vector. The recombinant plasmid was expressed in Escherichia coli BL21 (DE3), and the UreB protein was purified via Ni-NTA affinity chromatography, confirmed by SDS-PAGE and Western blot analysis. Hens were immunized with the recombinant UreB protein, resulting in the generation of specific IgY antibodies. The purified IgY-UreB antibodies exhibited a remarkable reduction in urease activity by 84.53 % at a concentration of 10 mg/mL, effectively neutralizing this critical virulence factor. Additionally, in vitro assays demonstrated that IgY-UreB antibodies significantly inhibited the growth of H. pylori at a concentration of 5 mg/mL. These findings highlight the potential of IgY as a viable alternative to traditional antibiotic therapies, particularly in the context of rising antibiotic resistance. This study paves the way for the development of innovative immunotherapeutic strategies that may improve treatment outcomes for H. pylori infections.
Collapse
Affiliation(s)
- Zahra Esmaeili
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Kamal Shahsavar
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Ariannejad
- Institute of Biotechnology, Ferdowsi University of Mashhad, Iran
| | - Nima Hajinajaf
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Shaho Menbari
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Kiarash Ghazvini
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Sarabi PA, Rismani E, Shabanpouremam M, Talehahmad S, Vosough M. Developing a multi-epitope vaccine against Helicobacter Pylori. Hum Immunol 2025; 86:111212. [PMID: 39642777 DOI: 10.1016/j.humimm.2024.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/17/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Helicobacter pylori, a significant factor in the development of gastric cancer and peptic ulcers, poses challenges for drug development due to its resilience. Computational approaches offer potential solutions for effective vaccine development targeting its antigens while ensuring stability and safety. The four critical antigenic proteins included in this study's innovative vaccine design are neuraminyllactose-binding hemagglutinin (HpaA), catalase (KatA), urease (UreB), and vacuolating toxin (VacA). Advanced immunoinformatics methods identified the possibility of triggering an immunological reaction. An adjuvant (50S ribosomal protein L7/L12) was fused to the vaccine sequence's N-terminus to improve immunogenicity. GROMACS molecular dynamics simulations with the OPLS-AA force field further improved the structure. The vaccine design and human Toll-like receptor 5 (TLR5) demonstrated a strong binding in docking tests. A model of simulating immune response confirmed the vaccine's efficacy and predicted how it would affect the immune system. Using the optimal restriction sites of the pET28b (+) expression vector, the vaccine candidate was cloned in silico. To validate the findings, this vaccine design will be synthesized in a bacterial system, and in experimental studies will be conducted in the following phase.
Collapse
Affiliation(s)
- Pedram Asadi Sarabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mahshid Shabanpouremam
- Department of Cellular and Molecular Biology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran
| | - Sara Talehahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran..
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, and Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
3
|
Ji Q, Ma J, Wang S, Liu Q. Embedding of exogenous B cell epitopes on the surface of UreB structure generates a broadly reactive antibody response against Helicobacter pylori. Immunology 2024; 171:212-223. [PMID: 37899627 DOI: 10.1111/imm.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Since Helicobacter pylori (H. pylori) resistance to antibiotic regimens has increased, vaccination is becoming an increasingly important alternative therapy to control H. pylori infection. UreB, FlaA, AlpB, SabA, and HpaA proteins of H. pylori were previously proved to be used as candidate vaccine antigens. Here, we developed an engineered antigen based on a recombinant chimeric protein containing a structural scaffold from UreB and B cell epitopes from FlaA, AlpB, SabA, and HpaA. The multi-epitope chimeric antigen, named MECU, could generate a broadly reactive antibody response including antigen-specific antibodies and neutralising antibodies against H. pylori urease and adhesins. Moreover, therapeutic immunisation with MECU could reduce H. pylori colonisation in the stomach and protect the stomach in BALB/c mice. This study not only provides promising immunotherapy to control H. pylori infection but also offers a reference for antigen engineering against other pathogens.
Collapse
Affiliation(s)
- Qianyu Ji
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Junfei Ma
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Shuying Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
4
|
Zhang Z, Chen X, Li B, Xia T, Wu X, Wu C. Helicobacter pylori induces urease subunit B-specific CD8 + T cell responses in infected individuals via cytosolic pathway of cross-presentation. Helicobacter 2023; 28:e13005. [PMID: 37382428 DOI: 10.1111/hel.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Urease subunit B (UreB), a conserved and key virulence factor of Helicobacter pylori (H. pylori), can induce the host CD4+ T cell immune responses to provide protection, but less is known regarding CD8+ T cell responses. The characteristics of H. pylori-specific CD8+ T cell responses and the mechanism underlying antigen processing and presentation pathways remain unclear. This study was focus on protective antigen recombinant UreB (rUreb) to detect specific CD8+ T cell responses in vitro and elucidate the mechanism of UreB antigen processing and presentation. METHODS The peripheral blood mononuclear cells (PBMCs) collected from H. pylori-infected individuals were stimulated with rUreB in vitro to detect specific CD8+ T cell responses after co-culture with rUreB-pulsed autologous hMDCs. Through blocking assay, we investigated the potential pathway of UreB antigen processing and presentation via the cytosolic pathway or vacuolar pathway. The cytokines production of UreB specific CD8+ T cell were evaluated as well. RESULTS We demonstrated UreB can induce specific CD8+ T cell immune responses in H. pylori infected individuals. Importantly, we characterized that UreB were mainly processed by proteasome instead of lysosomal proteases and presented through cytosolic pathway of cross-presentation, which requires endoplasmic reticulum-Golgi transport and newly synthesized MHC-I molecules, to induce functional-specific CD8+ T cell (IFN-γ + TNF-α + Grz A+ Grz B+) responses. CONCLUSIONS These results suggest that H. pylori UreB induces specific CD8+ T cell responses through cytosolic pathway of cross-presentation in infected individuals.
Collapse
Affiliation(s)
- Zelin Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xingchi Chen
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Bin Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tingting Xia
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaobin Wu
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
5
|
Xie W, Zhao W, Zou Z, Kong L, Yang L. Oral multivalent epitope vaccine, based on UreB, HpaA, CAT, and LTB, for prevention and treatment of Helicobacter pylori infection in C57BL / 6 mice. Helicobacter 2021; 26:e12807. [PMID: 33847026 DOI: 10.1111/hel.12807] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND As the resistance of Helicobacter pylori to traditional triple therapy is gradually revealed, an increasing number of people are focusing on vaccine treatments for H. pylori infection. Epitope vaccines are a promising strategy for the treatment of H. pylori infection, and multivalent vaccines will be more effective than monovalent vaccines. MATERIALS AND METHODS In this study, we designed a multivalent vaccine named LHUC, which consists of the adjuvant LTB as well as three Th cell epitopes (HpaA154-171 , UreB237-251, and UreB546-561 ) and five B-cell epitopes (UreB349-363 , UreB327-334 , CAT394-405 , CAT387-397, and HpaA132-141 ) from UreB, HpaA, and catalase. In BALB/c mice, the specificity and immunogenicity of the fusion peptide LHUC and the neutralization of H. pylori urease and catalase by the specific IgG elicited by LHUC were evaluated. The preventive and therapeutic effects of LHUC were evaluated in C57BL/6 mice infected with H. pylori. RESULTS The results showed that compared with LTB and PBS, LHUC induced specific IgG and IgA antibody production in mice, and IgG antibodies significantly inhibited the H. pylori urease and catalase activities in vitro. Additionally, by detecting the levels of IFN-γ, IL-4, and IL-17 in lymphocyte supernatants, we proved that LHUC could activate Th1, Th2, and Th17 mixed T-cell immune responses in vivo. Finally, a C57BL/6 mouse model of gastric infection with H. pylori was established. The results showed that compared with the effects of LTB and PBS, the prevention and treatment effects of oral inoculation with LHUC significantly inhibited bacterial colonization. CONCLUSIONS In conclusion, LHUC, a multivalent vaccine based on multiple H. pylori antigens, is a promising and safe vaccine that can effectively reduce the colonization of H. pylori in the stomach.
Collapse
Affiliation(s)
- Wenwei Xie
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Wenfeng Zhao
- Department of Biochemistry, China Pharmaceutical university, Nanjing, China
| | - Ziling Zou
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Lingyi Kong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Lei Yang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Kaminski ZJ, Relich I, Konieczna I, Kaca W, Kolesinska B. Cross-Reactivity of Polyclonal Antibodies againstCanavalia ensiformis(Jack Bean) Urease andHelicobacter pyloriUrease Subunit A Fragments. Chem Biodivers 2017; 15. [DOI: 10.1002/cbdv.201700444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/16/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Zbigniew Jerzy Kaminski
- Institute of Organic Chemistry; Lodz University of Technology; Zeromskiego 116 94-050 Lodz Poland
| | - Inga Relich
- Institute of Organic Chemistry; Lodz University of Technology; Zeromskiego 116 94-050 Lodz Poland
| | - Iwona Konieczna
- Department of Microbiology; Jan Kochanowski University; Swietokrzyska 11 25-406 Kielce Poland
| | - Wieslaw Kaca
- Department of Microbiology; Jan Kochanowski University; Swietokrzyska 11 25-406 Kielce Poland
| | - Beata Kolesinska
- Institute of Organic Chemistry; Lodz University of Technology; Zeromskiego 116 94-050 Lodz Poland
| |
Collapse
|
7
|
Guo L, Yang H, Tang F, Yin R, Liu H, Gong X, Wei J, Zhang Y, Xu G, Liu K. Oral Immunization with a Multivalent Epitope-Based Vaccine, Based on NAP, Urease, HSP60, and HpaA, Provides Therapeutic Effect on H. pylori Infection in Mongolian gerbils. Front Cell Infect Microbiol 2017; 7:349. [PMID: 28824883 PMCID: PMC5543039 DOI: 10.3389/fcimb.2017.00349] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022] Open
Abstract
Epitope-based vaccine is a promising strategy for therapeutic vaccination against Helicobacter pylori (H. pylori) infection. A multivalent subunit vaccine containing various antigens from H. pylori is superior to a univalent subunit vaccine. However, whether a multivalent epitope-based vaccine is superior to a univalent epitope-based vaccine in therapeutic vaccination against H. pylori, remains unclear. In this study, a multivalent epitope-based vaccine named CWAE against H. pylori urease, neutrophil-activating protein (NAP), heat shock protein 60 (HSP60) and H. pylori adhesin A (HpaA) was constructed based on mucosal adjuvant cholera toxin B subunit (CTB), Th1-type adjuvant NAP, multiple copies of selected B and Th cell epitopes (UreA27–53, UreA183–203, HpaA132–141, and HSP60189–203), and also the epitope-rich regions of urease B subunit (UreB158–251 and UreB321–385) predicted by bioinformatics. Immunological properties of CWAE vaccine were characterized in BALB/c mice model. Its therapeutic effect was evaluated in H. pylori-infected Mongolian gerbil model by comparing with a univalent epitope-based vaccine CTB-UE against H. pylori urease that was constructed in our previous studies. Both CWAE and CTB-UE could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect of H. pylori urease activity. However, only CWAE could induce high levels of specific antibodies to NAP, HSP60, HpaA, and also the synthetic peptides epitopes (UreB158–172, UreB181–195, UreB211–225, UreB349–363, HpaA132–141, and HSP60189–203). In addition, oral therapeutic immunization with CWAE significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils, compared with oral immunization using CTB-UE or H. pylori urease. The protection of CWAE was associated with higher levels of mixed CD4+ T cell (Th cell) response, IgG, and secretory IgA (sIgA) antibodies to H. pylori. These results indic ate that a multivalent epitope-based vaccine including Th and B cell epitopes from various H. pylori antigens could be a promising candidate against H. pylori infection.
Collapse
Affiliation(s)
- Le Guo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical UniversityYinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical UniversityYinchuan, China
| | - Hua Yang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai UniversityXining, China
| | - Runting Yin
- Medical School of Nantong University, Nantong UniversityNantong, China
| | - Hongpeng Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Xiaojuan Gong
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Jun Wei
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical UniversityYinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins UniversityBaltimore, MD, United States
| | - Guangxian Xu
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical UniversityYinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Kunmei Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical UniversityYinchuan, China
| |
Collapse
|
8
|
Ghasemian Safaei H, Faghri J, Moghim S, Nasr Esfahani B, Fazeli H, Makvandi M, Adib M, Rashidi N. Production of IFN-γ and IL-4 Against Intact Catalase and Constructed Catalase Epitopes of Helicobacter pylori From T-Cells. Jundishapur J Microbiol 2015; 8:e24697. [PMID: 26862387 PMCID: PMC4741185 DOI: 10.5812/jjm.24697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 09/30/2015] [Accepted: 10/04/2015] [Indexed: 01/15/2023] Open
Abstract
Background: Helicobacter pylori infection is highly prevalent in the developing countries. It causes gastritis, peptic ulcer disease, and gastrocarcinoma. Treatment with drugs and antibiotics is problematic due to the following reasons: cost, resistance to antibiotics, prolonged treatment and using multiple drugs. Catalase is highly conserved among the Helicobacter species and is important to the survival of the organism. It is expressed in high amounts and is exposed to the surface of this bacterium; therefore it represents a suitable candidate vaccine antigen. Objectives: A suitable approach in H. pylori vaccinology is the administration of epitope based vaccines. Therefore the responses of T-cells (IFN-γ and IL-4 production) against the catalase of H. pylori were determined. Then the quality of the immune responses against intact catalase and three epitopes of catalase were compared. Materials and Methods: In this study, a composition of three epitopes of the H. pylori catalase was selected based on Propred software. The effect of catalase epitopes on T-cells were assayed and immune responses identified. Results: The results of IFN-γ, IL-4 production against antigens, epitopes, and recombinant catalase by T-cells were compared for better understanding of epitope efficiency. Conclusions: The current research demonstrated that epitope sequence stimulates cellular immune responses effectively. In addition, increased safety and potency as well as a reduction in time and cost were advantages of this method. Authors are going to use this sequence as a suitable vaccine candidate for further research on animal models and humans in future.
Collapse
Affiliation(s)
- Hajieh Ghasemian Safaei
- Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Jamshid Faghri
- Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Sharareh Moghim
- Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Bahram Nasr Esfahani
- Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Hossein Fazeli
- Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Manoochehr Makvandi
- Department of Virology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Minoo Adib
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Niloufar Rashidi
- Department of Laboratory Sciences, Paramedical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
- Research Institute for Infectious Disease of Digestive System, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
- Corresponding author: Niloufar Rashidi, Department of Laboratory Sciences, Paramedical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran. Tel: +98-9131942891, Fax: +98-6133738330, E-mail:
| |
Collapse
|
9
|
Major histocompatibility complex linked databases and prediction tools for designing vaccines. Hum Immunol 2015; 77:295-306. [PMID: 26585361 DOI: 10.1016/j.humimm.2015.11.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/29/2015] [Accepted: 11/09/2015] [Indexed: 12/19/2022]
Abstract
Presently, the major histocompatibility complex (MHC) is receiving considerable interest owing to its remarkable role in antigen presentation and vaccine design. The specific databases and prediction approaches related to MHC sequences, structures and binding/nonbinding peptides have been aggressively developed in the past two decades with their own benchmarks and standards. Before using these databases and prediction tools, it is important to analyze why and how the tools are constructed along with their strengths and limitations. The current review presents insights into web-based immunological bioinformatics resources that include searchable databases of MHC sequences, epitopes and prediction tools that are linked to MHC based vaccine design, including population coverage analysis. In T cell epitope forecasts, MHC class I binding predictions are very accurate for most of the identified MHC alleles. However, these predictions could be further improved by integrating proteasome cleavage (in conjugation with transporter associated with antigen processing (TAP) binding) prediction, as well as T cell receptor binding prediction. On the other hand, MHC class II restricted epitope predictions display relatively low accuracy compared to MHC class I. To date, pan-specific tools have been developed, which not only deliver significantly improved predictions in terms of accuracy, but also in terms of the coverage of MHC alleles and supertypes. In addition, structural modeling and simulation systems for peptide-MHC complexes enable the molecular-level investigation of immune processes. Finally, epitope prediction tools, and their assessments and guidelines, have been presented to immunologist for the design of novel vaccine and diagnostics.
Collapse
|
10
|
Immunodominant epitope-specific Th1 but not Th17 responses mediate protection against Helicobacter pylori infection following UreB vaccination of BALB/c mice. Sci Rep 2015; 5:14793. [PMID: 26434384 PMCID: PMC4593181 DOI: 10.1038/srep14793] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) infects more than half of the world’s population, causing chronic gastritis, peptic ulcers and gastric cancer. Urease B subunit (UreB), a conserved protein of H. pylori, is capable of inducing specific CD4+ T-cell responses and provides protection against this infection. Previous studies have confirmed the effectiveness of rUreB subunit vaccines in generating CD4+ T-cell-mediated protection, but less is known regarding the roles of different subtypes of T-cell immunity, such as Th1, Th2 and Th17, particularly the immunodominant epitopes inducing specific CD4+ T-cell responses, in vaccine-mediated protection. In this study, we demonstrated that the vaccination of BALB/c mice with rUreB resulted in significant antigen-specific Th1 and Th17 immune responses. Importantly, two novel Th epitopes, UreB317–329 and UreB409–421, which are recognized by a major population of CD4+ T cells, were identified in immunized mice. Our results demonstrated that two novel epitopes can simultaneously induce Th1 and Th17 immune responses; however, only the epitope vaccine-induced CD4+ T-cells secreting IFN-γ mediated the protection against H. pylori; cells secreting IL-17A did not. Taken together, our results suggest that two novel immunodominant epitopes can induce Th1 and Th17 immune responses, but only the induced Th1 lymphocytes mediate protection against H. pylori.
Collapse
|
11
|
Nedrud JG, Bagheri N, Schön K, Xin W, Bergroth H, Eliasson DG, Lycke NY. Subcomponent vaccine based on CTA1-DD adjuvant with incorporated UreB class II peptides stimulates protective Helicobacter pylori immunity. PLoS One 2013; 8:e83321. [PMID: 24391754 PMCID: PMC3877028 DOI: 10.1371/journal.pone.0083321] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/01/2013] [Indexed: 11/29/2022] Open
Abstract
A mucosal vaccine against Helicobacter pylori infection could help prevent gastric cancers and peptic ulcers. While previous attempts to develop such a vaccine have largely failed because of the requirement for safe and effective adjuvants or large amounts of well defined antigens, we have taken a unique approach to combining our strong mucosal CTA1-DD adjuvant with selected peptides from urease B (UreB). The protective efficacy of the selected peptides together with cholera toxin (CT) was first confirmed. However, CT is a strong adjuvant that unfortunately is precluded from clinical use because of its toxicity. To circumvent this problem we have developed a derivative of CT, the CTA1-DD adjuvant, that has been found safe in non-human primates and equally effective compared to CT when used intranasally. We genetically fused the selected peptides into the CTA1-DD plasmid and found after intranasal immunizations of Balb/c mice using purified CTA1-DD with 3 copies of an H. pylori urease T cell epitope (CTA1-UreB3T-DD) that significant protection was stimulated against a live challenge infection. Protection was, however, weaker than with the gold standard, bacterial lysate+CT, but considering that we only used a single epitope in nanomolar amounts the results convey optimism. Protection was associated with enhanced Th1 and Th17 immunity, but immunizations in IL-17A-deficient mice revealed that IL-17 may not be essential for protection. Taken together, we have provided evidence for the rational design of an effective mucosal subcomponent vaccine against H. pylori infection based on well selected protective epitopes from relevant antigens incorporated into the CTA1-DD adjuvant platform.
Collapse
Affiliation(s)
- John G. Nedrud
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Nayer Bagheri
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Karin Schön
- Mucosal Immunobiology and Vaccine Research Center (MIVAC) and the Department of Microbiolgy and Immunology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Hilda Bergroth
- Mucosal Immunobiology and Vaccine Research Center (MIVAC) and the Department of Microbiolgy and Immunology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Dubravka Grdic Eliasson
- Mucosal Immunobiology and Vaccine Research Center (MIVAC) and the Department of Microbiolgy and Immunology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Nils Y. Lycke
- Mucosal Immunobiology and Vaccine Research Center (MIVAC) and the Department of Microbiolgy and Immunology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
12
|
Immunological features and efficacy of a multi-epitope vaccine CTB-UE against H. pylori in BALB/c mice model. Appl Microbiol Biotechnol 2013; 98:3495-507. [DOI: 10.1007/s00253-013-5408-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 12/31/2022]
|
13
|
Yang WC, Chen L, Li HB, Li B, Hu J, Zhang JY, Yang SM, Zou QM, Guo H, Wu C. Identification of two novel immunodominant UreB CD4(+) T cell epitopes in Helicobacter pylori infected subjects. Vaccine 2013; 31:1204-9. [PMID: 23306364 DOI: 10.1016/j.vaccine.2012.12.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/09/2012] [Accepted: 12/21/2012] [Indexed: 01/14/2023]
Abstract
An epitope-based vaccine is a promising option for treating Helicobacter pylori (H. pylori) infection. Epitope mapping is the first step in designing an epitope-based vaccine. A pivotal role of CD4(+) T cells in protection against H. pylori has been accepted, but few Th epitopes have been identified. In this study, two novel UreB CD4(+) T cell epitopes were identified using PBMCs obtained from two H. pylori infected subjects. We determined the restriction molecules by antibody blocking and used various Epstein-Barr virus-transformed B lymphocyte cell lines (BLCLs) with different HLA alleles as APCs to present peptides to CD4(+) T cells. These epitopes were DRB1*1404-restricted UreB(373-385) and DRB1*0803-restricted UreB(438-452). The T cells specific to these epitopes not only recognized autologous DCs loaded with recombinant UreB but also those pulsed with H. pylori whole cell lysates, suggesting that these epitope peptides are naturally processed. These epitopes have important value for designing an effective H. pylori vaccine.
Collapse
Affiliation(s)
- Wu-Chen Yang
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Surface properties of Helicobacter pylori urease complex are essential for persistence. PLoS One 2010; 5:e15042. [PMID: 21124783 PMCID: PMC2993952 DOI: 10.1371/journal.pone.0015042] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/14/2010] [Indexed: 12/18/2022] Open
Abstract
The enzymatic activity of Helicobacter pylori's urease neutralises stomach acidity, thereby promoting infection by this pathogen. Urease protein has also been found to interact with host cells in vitro, although this property's possible functional importance has not been studied in vivo. To test for a role of the urease surface in the host/pathogen interaction, surface exposed loops that display high thermal mobility were targeted for inframe insertion mutagenesis. H. pylori expressing urease with insertions at four of eight sites tested retained urease activity, which in three cases was at least as stable as was wild-type urease at pH 3. Bacteria expressing one of these four mutant ureases, however, failed to colonise mice for even two weeks, and a second had reduced bacterial titres after longer term (3 to 6 months) colonisation. These results indicate that a discrete surface of the urease complex is important for H. pylori persistence during gastric colonisation. We propose that this surface interacts directly with host components important for the host-pathogen interaction, immune modulation or other actions that underlie H. pylori persistence in its special gastric mucosal niche.
Collapse
|
15
|
Li HX, Mao XH, Shi Y, Ma Y, Wu YN, Zhang WJ, Luo P, Yu S, Zhou WY, Guo Y, Wu C, Guo G, Zou QM. Screening and identification of a novel B-cell neutralizing epitope from Helicobacter pylori UreB. Vaccine 2008; 26:6945-9. [PMID: 18948159 DOI: 10.1016/j.vaccine.2008.09.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 09/24/2008] [Indexed: 01/10/2023]
Abstract
Urease plays a crucial role in the survival and pathogenesis of Helicobacter pylori (H. pylori), and antibody neutralizing the urease activity may be implicated for the protection against H. pylori infection. Previously, a neutralizing monoclonal antibody (MAb) 6E6 against UreB of H. pylori was developed. In this work, we try to identify the B-cell epitope recognized by neutralizing MAb 6E6. Following screening a series of truncated proteins of UreB, an epitope was primarily localized in the aa 200-230 of UreB. Subsequently, we screened the overlapping synthetic peptides covering the aa 200-230 and identified a novel B-cell epitope (U(211-225), IEAGAIGFKIHEDWG) that was recognized by specific MAb 6E6. The newly identified epitope may help understanding of the protective immunity against H. pylori and be implicated for vaccine development.
Collapse
Affiliation(s)
- Hai-Xia Li
- Department of Clinical Microbiology and Clinical Immunology, The Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li HX, Mao XH, Shi Y, Ma Y, Wu YN, Zhang WJ, Luo P, Yu S, Zhou WY, Guo Y, Wu C, Guo G, Zou QM. Screening and identification of a novel B-cell neutralizing epitope from Helicobacter pylori UreB. Vaccine 2008; 27:5013-9. [PMID: 18948159 DOI: 10.1016/j.vaccine.2009.05.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/24/2009] [Accepted: 05/04/2009] [Indexed: 02/08/2023]
Abstract
Urease plays a crucial role in the survival and pathogenesis of Helicobacter pylori (H. pylori), and antibody neutralizing the urease activity may be implicated for the protection against H. pylori infection. Previously, a neutralizing monoclonal antibody (MAb) 6E6 against UreB of H. pylori was developed. In this work, we try to identify the B-cell epitope recognized by neutralizing MAb 6E6. Following screening a series of truncated proteins of UreB, an epitope was primarily localized in the aa 200-230 of UreB. Subsequently, we screened the overlapping synthetic peptides covering the aa 200-230 and identified a novel B-cell epitope (U(211-225), IEAGAIGFKIHEDWG) that was recognized by specific MAb 6E6. The newly identified epitope may help understanding of the protective immunity against H. pylori and be implicated for vaccine development.
Collapse
Affiliation(s)
- Hai-Xia Li
- Department of Clinical Microbiology and Clinical Immunology, The Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|