1
|
Cacciotto C, Dore GM, Cubeddu T, Burrai GP, Anfossi AG, Antuofermo E, Varoni MV, Demontis MP, Zobba R, Pittau M, Müller M, Alberti A. Ovine papillomavirus type 3 virus-like particle-based tools for diagnosis and detection of infection. Vaccine 2024; 42:126033. [PMID: 38839520 DOI: 10.1016/j.vaccine.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/03/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
The design of prophylactic and diagnostic tools specific to animal papillomaviruses is hampered by the difficulties of viral in vitro manipulation and by the scarce availability of dedicated biotechnological tools. This paper reports the production of Ovine Papillomavirus 3 (OaPV3)-based virus-like particles (OaPV3-VLPs) in the baculovirus system and their use to investigate host humoral immune response through the establishment of an indirect ELISA test., Polyclonal sera and monoclonal antibodies were generated against OaPV3-VLPs, and their isotype and reactivity were determined. Additionally, antibodies allowed OaPV3 detection in ovine squamous cell carcinoma (SCC) samples by immunohistochemistry. Results encourage the standardization of OaPV3-specific prophylactic and serological diagnostic tools, and open new perspectives for the study of host-viral interaction and SCC development.
Collapse
Affiliation(s)
- Carla Cacciotto
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Sassari, Italy; Mediterranean Center for Disease Control, Sassari, Italy
| | - Gian Mario Dore
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Sassari, Italy
| | - Tiziana Cubeddu
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Sassari, Italy; Mediterranean Center for Disease Control, Sassari, Italy
| | - Giovanni Pietro Burrai
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Sassari, Italy; Mediterranean Center for Disease Control, Sassari, Italy
| | | | - Elisabetta Antuofermo
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Sassari, Italy; Mediterranean Center for Disease Control, Sassari, Italy
| | - Maria Vittoria Varoni
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Sassari, Italy
| | - Maria Piera Demontis
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Sassari, Italy
| | - Rosanna Zobba
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Sassari, Italy
| | - Marco Pittau
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Sassari, Italy; Mediterranean Center for Disease Control, Sassari, Italy
| | | | - Alberto Alberti
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Sassari, Italy; Mediterranean Center for Disease Control, Sassari, Italy.
| |
Collapse
|
2
|
Jose L, Gonzalez J, Kessinger E, Androphy EJ, DeSmet M. Focal Adhesion Kinase Binds to the HPV E2 Protein to Regulate Initial Replication after Infection. Pathogens 2023; 12:1203. [PMID: 37887719 PMCID: PMC10609836 DOI: 10.3390/pathogens12101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Human papillomaviruses are small DNA tumor viruses that infect cutaneous and mucosal epithelia. The viral lifecycle is linked to the differentiation status of the epithelium. During initial viral infection, the genomes replicate at a low copy number but the mechanism(s) the virus uses to control the copy number during this stage is not known. In this study, we demonstrate that the tyrosine kinase focal adhesion kinase (FAK) binds to and phosphorylates the high-risk viral E2 protein, the key regulator of HPV replication. The depletion of FAK with a specific PROTAC had no effect on viral DNA content in keratinocytes that already maintain HPV-16 and HPV-31 episomes. In contrast, the depletion of FAK significantly increased HPV-16 DNA content in keratinocytes infected with HPV-16 quasiviruses. These data imply that FAK prevents the over-replication of the HPV genome after infection through the interaction and phosphorylation of the E2 protein.
Collapse
Affiliation(s)
- Leny Jose
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.J.); (E.K.); (E.J.A.)
| | - Jessica Gonzalez
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Emma Kessinger
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.J.); (E.K.); (E.J.A.)
| | - Elliot J. Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.J.); (E.K.); (E.J.A.)
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Marsha DeSmet
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.J.); (E.K.); (E.J.A.)
| |
Collapse
|
3
|
Yuan B, Liu Y, Lv M, Sui Y, Hou S, Yang T, Belhadj Z, Zhou Y, Chang N, Ren Y, Sun C. Virus-like particle-based nanocarriers as an emerging platform for drug delivery. J Drug Target 2023; 31:433-455. [PMID: 36940208 DOI: 10.1080/1061186x.2023.2193358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
New nanocarrier technologies are emerging, and they have great potential for improving drug delivery, targeting efficiency, and bioavailability. Virus-like particles (VLPs) are natural nanoparticles from animal and plant viruses and bacteriophages. Hence, VLPs present several great advantages, such as morphological uniformity, biocompatibility, reduced toxicity, and easy functionalisation. VLPs can deliver many active ingredients to the target tissue and have great potential as a nanocarrier to overcome the limitations associated with other nanoparticles. This review will focus primarily on the construction and applications of VLPs, particularly as a novel nanocarrier to deliver active ingredients. Herein, the main methods for the construction, purification, and characterisation of VLPs, as well as various VLP-based materials used in delivery systems are summarised. The biological distribution of VLPs in drug delivery, phagocyte-mediated clearance, and toxicity are also discussed.
Collapse
Affiliation(s)
| | - Yang Liu
- School of Pharmaceutical Sciences, Zhengzhou University, No.100, Kexue Avenue, Zhengzhou 450001, China
| | - Meilin Lv
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Yilei Sui
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Shenghua Hou
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Tinghui Yang
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Zakia Belhadj
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yulong Zhou
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Naidan Chang
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Yachao Ren
- Harbin Medical University-Daqing, Daqing 163319, China.,School of Chemistry and Chemical Engineering, Tianjin University of Technology, tianjin, 300000, China
| | | |
Collapse
|
4
|
Brendle S, Cladel N, Balogh K, Alam S, Christensen N, Meyers C, Hu J. A Comparative Study on Delivery of Externally Attached DNA by Papillomavirus VLPs and Pseudoviruses. Vaccines (Basel) 2021; 9:vaccines9121501. [PMID: 34960247 PMCID: PMC8709278 DOI: 10.3390/vaccines9121501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023] Open
Abstract
Human papillomavirus (HPV) 16 capsids have been chosen as a DNA delivery vehicle in many studies. Our preliminary studies suggest that HPV58 capsids could be better vehicles than HPV16 capsids to deliver encapsidated DNA in vitro and in vivo. In the current study, we compared HPV16, HPV58, and the cottontail rabbit papillomavirus (CRPV) capsids either as L1/L2 VLPs or pseudoviruses (PSVs) to deliver externally attached GFP-expressing DNA. Both rabbit and human cells were used to test whether there was a species-specific effect. DNA delivery efficiency was determined by quantifying either GFP-expressing cell populations or mean fluorescent intensities (MFI) by flow cytometry. Interestingly, CRPV and 58-VLPs and PSVs were significantly more efficient at delivering attached DNA when compared to 16-VLPs and PSVs. A capsid/DNA ratio of 2:1 showed the highest efficiency for delivering external DNA. The PSVs with papillomavirus DNA genomes also showed higher efficiency than those with irrelevant plasmid DNA. HPV16L1/58L2 hybrid VLPs displayed increased efficiency compared to HPV58L1/16L2 VLPs, suggesting that L2 may play a critical role in the delivery of attached DNA. Additionally, we demonstrated that VLPs increased in vivo infectivity of CRPV DNA in rabbits. We conclude that choosing CRPV or 58 capsids to deliver external DNA could improve DNA uptake in in vitro and in vivo models.
Collapse
Affiliation(s)
- Sarah Brendle
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (S.B.); (N.C.); (K.B.); (N.C.)
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nancy Cladel
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (S.B.); (N.C.); (K.B.); (N.C.)
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Karla Balogh
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (S.B.); (N.C.); (K.B.); (N.C.)
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Samina Alam
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (S.A.); (C.M.)
| | - Neil Christensen
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (S.B.); (N.C.); (K.B.); (N.C.)
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (S.A.); (C.M.)
| | - Craig Meyers
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (S.A.); (C.M.)
| | - Jiafen Hu
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (S.B.); (N.C.); (K.B.); (N.C.)
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence:
| |
Collapse
|
5
|
|
6
|
Wang M, Li X, Xie W, Zhong L, Leng Y, Chen X, Yang M, Qi L, Zhang Z, Liu L, Tang D. Inhibitory Effect of Lentivirus-Mediated Gag-Caspase-8 on the Growth of HER-2-Overexpressing Primary Human Breast Cancer Cells. Cancer Biother Radiopharm 2021; 37:720-728. [PMID: 34388026 DOI: 10.1089/cbr.2021.0124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Apoptosis plays an essential role in the development and treatment of tumors, and caspase-8 (CASP8) plays an important role in the enzyme cascade reaction that leads to apoptosis. Human epidermal growth factor receptor 2 (HER-2)-overexpressing breast cancer is highly aggressive and has a high recurrence rate and poor prognosis. This study investigated whether lentivirus-mediated Gag-CASP8 can effectively deliver activated CASP8 into primary human breast cancer cells overexpressing HER-2 to induce apoptosis and explore the underlying mechanism. Materials and Methods: HER-2-overexpressing primary human breast cancer cells were infected with lentivirus-like particles carrying Gag-CASP8. Results: After a 48-h infection of primary human breast cancer cells with HER-2 by lentivirus-mediated Gag-CASP8, significant differences were observed in the survival rate, migration ability, S-phase number of cells, apoptosis rate, and intracellular activated CASP8 and caspase-3 levels in tumor cells compared with those in the control group (p < 0.05). Conclusions: Lentivirus-mediated Gag-CASP8 can deliver activated CASP8 into HER-2-overexpressing primary human breast cancer cells and induce apoptosis by activating caspase-3, a downstream apoptotic executive molecule. By blocking the S-phase to inhibit cell proliferation and migration, lentivirus-mediated Gag-CASP8 provides a reference for tumor gene therapy.
Collapse
Affiliation(s)
- Min Wang
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiping Li
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wei Xie
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Li Zhong
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yu Leng
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoqiong Chen
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Mei Yang
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ling Qi
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhenda Zhang
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Linjian Liu
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongxin Tang
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
7
|
Aljabali AA, Obeid MA. Inorganic-organic Nanomaterials for Therapeutics and Molecular Imaging Applications. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2210681209666190807145229] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
Surface modification of nanoparticles with targeting moieties can be
achieved through bioconjugation chemistries to impart new Functionalities. Various polymeric
nanoparticles have been used for the formulation of nanoparticles such as naturally-occurring
protein cages, virus-like particles, polymeric saccharides, and liposomes. These polymers have
been proven to be biocompatible, side effects free and degradable with no toxicity.
Objectives::
This paper reviews available literature on the nanoparticles pharmaceutical and medical
applications. The review highlights and updates the customized solutions for selective drug
delivery systems that allow high-affinity binding between nanoparticles and the target receptors.
Methods::
Bibliographic databases and web-search engines were used to retrieve studies that assessed
the usability of nanoparticles in the pharmaceutical and medical fields. Data were extracted
on each system in vivo and in vitro applications, its advantages and disadvantages, and its ability to
be chemically and genetically modified to impart new functionalities. Finally, a comparison
between naturally occurring and their synthetic counterparts was carried out.
Results::
The results showed that nanoparticles-based systems could have promising applications in
diagnostics, cell labeling, contrast agents (Magnetic Resonance Imaging and Computed Tomography),
antimicrobial agents, and as drug delivery systems. However, precautions should be taken
to avoid or minimize toxic effect or incompatibility of nanoparticles-based systems with the biological
systems in case of pharmaceutical or medical applications.
Conclusion::
This review presented a summary of recent developments in the field of pharmaceutical
nanotechnology and highlighted the challenges and the merits that some of the nanoparticles-
based systems both in vivo and in vitro systems.
Collapse
Affiliation(s)
- Alaa A.A. Aljabali
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan
| | - Mohammad A. Obeid
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan
| |
Collapse
|
8
|
Lu Y, Dong H, Li J, Li L, Wang M, Liu H, Teng Z, Zhang Y, Jin Y, Guo H, Yang Y, Wen X, Sun S. Enhanced protective immune response of foot-and-mouth disease vaccine through DNA-loaded virus-like particles. Microb Pathog 2020; 143:104130. [PMID: 32165331 DOI: 10.1016/j.micpath.2020.104130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/20/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is the etiological agent of a highly contagious disease that affects cloven-hoofed animals. Virus-like particles (VLPs) can induce a robust immune response and deliver DNA and small molecules. In this study, a VLP-harboring pcDNA3.1/P12A3C plasmid was generated, and the protective immune response was characterized. Guinea pigs were injected with VLPs, naked DNA vaccine, DNA-loaded VLPs, or phosphate-buffered saline twice subcutaneously at four-week intervals. Results demonstrated that the VLPs protected the naked DNA from DNase degeneration and delivered the DNA into the cells in vitro. The DNA-loaded VLPs and the VLPs alone induced a similar level of specific antibodies (P > 0.05) except at 49 dpv (P < 0.05). The difference in interferon-γ was consistent with that in specific antibodies. The levels of neutralizing antibodies induced by the DNA-loaded VLPs were significantly higher than those of other samples (P < 0.01). Similarly, the lymphocyte proliferation by using DNA-loaded VLPs was significantly higher than those using other formulas after booster immunization. Vaccination with DNA-loaded VLPs provided higher protection (100%) against viral challenge compared with vaccination with VLPs (75%) and DNA vaccine (25%). This study suggested that VLPs can be used as a delivery carrier for DNA vaccine. In turn, the DNA vaccine can enhance the immune response and prolong the serological duration of the VLP vaccine. This phenomenon contributes in providing complete protection against the FMDV challenge in guinea pigs and can be valuable in exploring novel nonreplicating vaccines and controlling FMD in endemic countries worldwide.
Collapse
Affiliation(s)
- Yuanlu Lu
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China; College of Animal Science, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Hu Dong
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Jielin Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Luying Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Miaomiao Wang
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Haiyun Liu
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Zhidong Teng
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Ye Jin
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Yuying Yang
- College of Animal Science, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Xiaobo Wen
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction and Breeding and Epidemic Disease Research, Haidian Island, Haikou, 570228, PR China.
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| |
Collapse
|
9
|
Ao Z, Chen W, Tan J, Cheng Y, Xu Y, Wang L, Yao X. Lentivirus-Based Virus-Like Particles Mediate Delivery of Caspase 8 into Breast Cancer Cells and Inhibit Tumor Growth. Cancer Biother Radiopharm 2019; 34:33-41. [DOI: 10.1089/cbr.2018.2566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Zhujun Ao
- Department of Human Anatomy and Histology, Zunyi Medical College, Zunyi, China
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - Wei Chen
- Department of Human Anatomy and Histology, Zunyi Medical College, Zunyi, China
| | - Jun Tan
- Department of Human Anatomy and Histology, Zunyi Medical College, Zunyi, China
| | - Yuling Cheng
- Department of Human Anatomy and Histology, Zunyi Medical College, Zunyi, China
| | - Yanlan Xu
- Department of Human Anatomy and Histology, Zunyi Medical College, Zunyi, China
| | - Lijun Wang
- Department of Human Anatomy and Histology, Zunyi Medical College, Zunyi, China
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
10
|
Somiya M, Liu Q, Kuroda S. Current Progress of Virus-mimicking Nanocarriers for Drug Delivery. Nanotheranostics 2017; 1:415-429. [PMID: 29188175 PMCID: PMC5704007 DOI: 10.7150/ntno.21723] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022] Open
Abstract
Nanomedicines often involve the use of nanocarriers as a delivery system for drugs or genes for maximizing the therapeutic effect and/or minimizing the adverse effect. From drug administration to therapeutic activity, nanocarriers must evade the host's immune system, specifically and efficiently target and enter the cell, and release their payload into the cell cytoplasm by endosomal escape. These processes constitute the early infection stage of viruses. Viruses are a powerful natural nanomaterial for the efficient delivery of genetic information by sophisticated mechanisms. Over the past two decades, many virus-inspired nanocarriers have been generated to permit successful drug and gene delivery. In this review, we summarize the early infection machineries of viruses, of which the part has so far been utilized for delivery systems. Furthermore, we describe basics and applications of the bio-nanocapsule, which is a hepatitis B virus-mimicking nanoparticle harboring nearly all activities involved in the early infection machineries (i.e., stealth activity, targeting activity, cell entry activity, endosomal escaping activity).
Collapse
Affiliation(s)
| | | | - Shun'ichi Kuroda
- The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| |
Collapse
|
11
|
Shirbaghaee Z, Bolhassani A. Different applications of virus-like particles in biology and medicine: Vaccination and delivery systems. Biopolymers 2016; 105:113-32. [PMID: 26509554 PMCID: PMC7161881 DOI: 10.1002/bip.22759] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/25/2015] [Accepted: 10/25/2015] [Indexed: 12/17/2022]
Abstract
Virus-like particles (VLPs) mimic the whole construct of virus particles devoid of viral genome as used in subunit vaccine design. VLPs can elicit efficient protective immunity as direct immunogens compared to soluble antigens co-administered with adjuvants in several booster injections. Up to now, several prokaryotic and eukaryotic systems such as insect, yeast, plant, and E. coli were used to express recombinant proteins, especially for VLP production. Recent studies are also generating VLPs in plants using different transient expression vectors for edible vaccines. VLPs and viral particles have been applied for different functions such as gene therapy, vaccination, nanotechnology, and diagnostics. Herein, we describe VLP production in different systems as well as its applications in biology and medicine.
Collapse
Affiliation(s)
- Zeinab Shirbaghaee
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
- Department of Immunology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Azam Bolhassani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| |
Collapse
|
12
|
A Cell-Free Assembly System for Generating Infectious Human Papillomavirus 16 Capsids Implicates a Size Discrimination Mechanism for Preferential Viral Genome Packaging. J Virol 2015; 90:1096-107. [PMID: 26559838 DOI: 10.1128/jvi.02497-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED We have established a cell-free in vitro system to study human papillomavirus type 16 (HPV16) assembly, a poorly understood process. L1/L2 capsomers, obtained from the disassembly of virus-like particles (VLPs), were incubated with nuclear extracts to provide access to the range of cellular proteins that would be available during assembly within the host cell. Incorporation of a reporter plasmid "pseudogenome" was dependent on the presence of both nuclear extract and ATP. Unexpectedly, L1/L2 VLPs that were not disassembled prior to incubation with a reassembly mixture containing nuclear extract also encapsidated a reporter plasmid. As with HPV pseudoviruses (PsV) generated intracellularly, infection by cell-free particles assembled in vitro required the presence of L2 and was susceptible to the same biochemical inhibitors, implying the cell-free assembled particles use the infectious pathway previously described for HPV16 produced in cell culture. Using biochemical and electron microscopy analyses, we observed that, in the presence of nuclear extract, intact VLPs partially disassemble, providing a mechanistic explanation to how the exogenous plasmid was packaged by these particles. Further, we provide evidence that capsids containing an <8-kb pseudogenome are resistant to the disassembly/reassembly reaction. Our results suggest a novel size discrimination mechanism for papillomavirus genome packaging in which particles undergo iterative rounds of disassembly/reassembly, seemingly sampling DNA until a suitably sized DNA is encountered, resulting in the formation of a stable virion structure. IMPORTANCE Little is known about papillomavirus assembly biology due to the difficulties in propagating virus in vitro. The cell-free assembly method established in this paper reveals a new mechanism for viral genome packaging and will provide a tractable system for further dissecting papillomavirus assembly. The knowledge gained will increase our understanding of virus-host interactions, help to identify new targets for antiviral therapy, and allow for the development of new gene delivery systems based on in vitro-generated papillomavirus vectors.
Collapse
|
13
|
The application of virus-like particles as vaccines and biological vehicles. Appl Microbiol Biotechnol 2015; 99:10415-32. [PMID: 26454868 PMCID: PMC7080154 DOI: 10.1007/s00253-015-7000-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 01/04/2023]
Abstract
Virus-like particles (VLPs) can be spontaneously self-assembled by viral structural proteins under appropriate conditions in vitro while excluding the genetic material and potential replication probability. In addition, VLPs possess several features including can be rapidly produced in large quantities through existing expression systems, highly resembling native viruses in terms of conformation and appearance, and displaying repeated cluster of epitopes. Their capsids can be modified via genetic insertion or chemical conjugation which facilitating the multivalent display of a homologous or heterogeneous epitope antigen. Therefore, VLPs are considered as a safe and effective candidate of prophylactic and therapeutic vaccines. VLPs, with a diameter of approximately 20 to 150 nm, also have the characteristics of nanometer materials, such as large surface area, surface-accessible amino acids with reactive moieties (e.g., lysine and glutamic acid residues), inerratic spatial structure, and good biocompatibility. Therefore, assembled VLPs have great potential as a delivery system for specifically carrying a variety of materials. This review summarized recent researches on VLP development as vaccines and biological vehicles, which demonstrated the advantages and potential of VLPs in disease control and prevention and diagnosis. Then, the prospect of VLP biology application in the future is discussed as well.
Collapse
|
14
|
Kianmehr Z, Ardestani SK, Soleimanjahi H, Farahmand B, Abdoli A, Khatami M, Akbari K, Fotouhi F. An effective DNA priming-protein boosting approach for the cervical cancer vaccination. Pathog Dis 2014; 73:1-8. [DOI: 10.1093/femspd/ftu012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
15
|
Buonaguro L, Tagliamonte M, Visciano ML. Chemokine receptor interactions with virus-like particles. Methods Mol Biol 2013; 1013:57-66. [PMID: 23625493 DOI: 10.1007/978-1-62703-426-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Virus-like particles (VLPs) presenting conformational envelope proteins on their surface represent an invaluable tool to study molecular interactions between viruses and cellular receptors/co-receptors, eliminating biological risks associated with working with live native viruses. The availability of target cells expressing specific chemokine receptors facilitates the dissection of specific interactions between human immunodeficiency virus (HIV) viral envelope proteins and these receptors in the laboratory. Here, we describe a method to evaluate HIV-VLP binding to cellular chemokine co-receptors, by carboxyfluorescein succinimidyl ester labeling and cellular uptake.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale Tumori "Fond G. Pascale", Naples, Italy
| | | | | |
Collapse
|
16
|
Ungaro F, Conte C, Quaglia F, Tornesello ML, Buonaguro FM, Buonaguro L. VLPs and particle strategies for cancer vaccines. Expert Rev Vaccines 2013; 12:1173-1193. [PMID: 24124878 DOI: 10.1586/14760584.2013.836909] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Effective delivery of tumor antigens to APCs is one of the key steps for eliciting a strong and durable immune response to tumors. Several cancer vaccines have been evaluated in clinical trials, based on soluble peptides, but results have not been fully satisfactory. To improve immunogenicity particles provide a valid strategy to display and/or incorporate epitopes which can be efficiently targeted to APCs for effective induction of adaptive immunity. In the present review, we report some leading technologies for developing particulate vaccines employed in cancer immunotherapy, highlighting the key parameters for a rational design to elicit both humoral and cellular responses.
Collapse
Affiliation(s)
- Francesca Ungaro
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Buonaguro L, Tagliamonte M, Visciano ML, Tornesello ML, Buonaguro FM. Developments in virus-like particle-based vaccines for HIV. Expert Rev Vaccines 2013; 12:119-127. [PMID: 23414404 DOI: 10.1586/erv.12.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Virus-like particles (VLPs) hold great promise for the development of effective and affordable vaccines. VLPs, indeed, are suitable for presentation and efficient delivery to antigen-presenting cells of linear as well as conformational antigens. This will ultimately result in a crosspresentation with both MHC class I and II molecules to prime CD4(+) T-helper and CD8(+) cytotoxic T cells. This review describes an update on the development and use of VLPs as vaccine approaches for HIV.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Department of Experimental Oncology, Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori 'Fond Pascale', Via Mariano Semmola 142, 80131 Napoli, Italy
| | | | | | | | | |
Collapse
|
18
|
Pushko P, Pumpens P, Grens E. Development of Virus-Like Particle Technology from Small Highly Symmetric to Large Complex Virus-Like Particle Structures. Intervirology 2013; 56:141-65. [DOI: 10.1159/000346773] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Unzueta U, Ferrer-Miralles N, Cedano J, Zikung X, Pesarrodona M, Saccardo P, García-Fruitós E, Domingo-Espín J, Kumar P, Gupta KC, Mangues R, Villaverde A, Vazquez E. Non-amyloidogenic peptide tags for the regulatable self-assembling of protein-only nanoparticles. Biomaterials 2012; 33:8714-22. [PMID: 22954515 DOI: 10.1016/j.biomaterials.2012.08.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/15/2012] [Indexed: 01/11/2023]
Abstract
Controlling the self-assembling of building blocks as nanoscale entities is a requisite for the generation of bio-inspired vehicles for nanomedicines. A wide spectrum of functional peptides has been incorporated to different types of nanoparticles for the delivery of conventional drugs and nucleic acids, enabling receptor-specific cell binding and internalization, endosomal escape, cytosolic trafficking, nuclear targeting and DNA condensation. However, the development of architectonic tags to induce the self-assembling of functionalized monomers has been essentially neglected. We have examined here the nanoscale architectonic capabilities of arginine-rich cationic peptides, that when displayed on His-tagged proteins, promote their self-assembling as monodisperse, protein-only nanoparticles. The scrutiny of the cross-molecular interactivity cooperatively conferred by poly-arginines and poly-histidines has identified regulatable electrostatic interactions between building blocks that can also be engineered to encapsulate cargo DNA. The combined use of cationic peptides and poly-histidine tags offers an unusually versatile approach for the tailored design and biofabrication of protein-based nano-therapeutics, beyond the more limited spectrum of possibilities so far offered by self-assembling amyloidogenic peptides.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Buonaguro L, Tagliamonte M, Tornesello ML, Buonaguro FM. Developments in virus-like particle-based vaccines for infectious diseases and cancer. Expert Rev Vaccines 2011; 10:1569-1583. [PMID: 22043956 DOI: 10.1586/erv.11.135] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Virus-like particles hold great promise for the development of effective and affordable vaccines. Indeed, virus-like particles are suitable for presentation and efficient delivery of linear as well as conformational antigens to antigen-presenting cells. This will ultimately result in optimal B-cell activation and cross-presentation with both MHC class I and II molecules to prime CD4(+) T-helper as well as CD8(+) cytotoxic T cells. This article provides an update on the development and use of virus-like particles as vaccine approaches for infectious diseases and cancer.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Via Mariano Semmola 142, 80131 Napoli, Italy.
| | | | | | | |
Collapse
|
21
|
Tagliamonte M, Visciano ML, Tornesello ML, De Stradis A, Buonaguro FM, Buonaguro L. HIV-Gag VLPs presenting trimeric HIV-1 gp140 spikes constitutively expressed in stable double transfected insect cell line. Vaccine 2011; 29:4913-4922. [PMID: 21596085 DOI: 10.1016/j.vaccine.2011.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/07/2011] [Accepted: 05/01/2011] [Indexed: 12/25/2022]
Abstract
We have previously described the establishment and characterization of a stably transfected insect cell line for the constitutive and efficient expression of Pr55 HIV Gag proteins, which auto-assemble into enveloped Virus-Like Particles (VLPs) released into the cell culture supernatant. Such HIV-Gag VLPs have been shown to elicit a specific systemic humoral response in vivo, proving the appropriate antigenic presentation of the HIV Gag protein to the immune system. Here we describe the establishment of a stable double transfected insect cell line for the constitutive and reproducible production of Pr55Gag-VLPs expressing on their surface trimeric forms of HIV-1 envelope glycoproteins. The persistence of HIV coding genes has been verified in clonal resistant insect cells, the protein expression and conformation has been verified by Western blot analysis. The resulting HIV-VLPs have been visualized by standard transmission electron microscopy and their immunogenicity has been evaluated in vivo. This represents, to our knowledge, the first example of stable double transfected insect cell line for the constitutive production of enveloped HIV-Gag VLPs presenting trimeric HIV-gp140 on their surface.
Collapse
Affiliation(s)
- M Tagliamonte
- Lab. of Molecular Biology and Viral Oncogenesis, Istituto Nazionale Tumori Fond. G. Pascale, Naples, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Tagliamonte M, Tornesello ML, Buonaguro FM, Buonaguro L. Conformational HIV-1 envelope on particulate structures: a tool for chemokine coreceptor binding studies. J Transl Med 2011; 9 Suppl 1:S1. [PMID: 21284899 PMCID: PMC3105500 DOI: 10.1186/1479-5876-9-s1-s1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein gp120 presents conserved binding sites for binding to the primary virus receptor CD4 as well as the major HIV chemokine coreceptors, CCR5 and CXCR4. Concerted efforts are underway to understand the specific interactions between gp120 and coreceptors as well as their contribution to the subsequent membrane fusion process. The present review summarizes the current knowledge on this biological aspect, which represents one of the key and essential points of the HIV-host cell interplay and HIV life cycle. The relevance of conformational HIV-1 Envelope proteins presented on Virus-like Particles for appropriate assessment of this molecular interaction, is also discussed.
Collapse
Affiliation(s)
- Maria Tagliamonte
- Lab. of Molecular Biology and Viral Oncogenesis & AIDS Reference Center, Istituto Nazionale Tumori “Fond. G. Pascale”, Naples, Italy
| | - Maria Lina Tornesello
- Lab. of Molecular Biology and Viral Oncogenesis & AIDS Reference Center, Istituto Nazionale Tumori “Fond. G. Pascale”, Naples, Italy
| | - Franco M Buonaguro
- Lab. of Molecular Biology and Viral Oncogenesis & AIDS Reference Center, Istituto Nazionale Tumori “Fond. G. Pascale”, Naples, Italy
| | - Luigi Buonaguro
- Lab. of Molecular Biology and Viral Oncogenesis & AIDS Reference Center, Istituto Nazionale Tumori “Fond. G. Pascale”, Naples, Italy
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Bolhassani A, Safaiyan S, Rafati S. Improvement of different vaccine delivery systems for cancer therapy. Mol Cancer 2011; 10:3. [PMID: 21211062 PMCID: PMC3024302 DOI: 10.1186/1476-4598-10-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 01/07/2011] [Indexed: 12/18/2022] Open
Abstract
Cancer vaccines are the promising tools in the hands of the clinical oncologist. Many tumor-associated antigens are excellent targets for immune therapy and vaccine design. Optimally designed cancer vaccines should combine the best tumor antigens with the most effective immunotherapy agents and/or delivery strategies to achieve positive clinical results. Various vaccine delivery systems such as different routes of immunization and physical/chemical delivery methods have been used in cancer therapy with the goal to induce immunity against tumor-associated antigens. Two basic delivery approaches including physical delivery to achieve higher levels of antigen production and formulation with microparticles to target antigen-presenting cells (APCs) have demonstrated to be effective in animal models. New developments in vaccine delivery systems will improve the efficiency of clinical trials in the near future. Among them, nanoparticles (NPs) such as dendrimers, polymeric NPs, metallic NPs, magnetic NPs and quantum dots have emerged as effective vaccine adjuvants for infectious diseases and cancer therapy. Furthermore, cell-penetrating peptides (CPP) have been known as attractive carrier having applications in drug delivery, gene transfer and DNA vaccination. This review will focus on the utilization of different vaccine delivery systems for prevention or treatment of cancer. We will discuss their clinical applications and the future prospects for cancer vaccine development.
Collapse
Affiliation(s)
- Azam Bolhassani
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Shima Safaiyan
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
24
|
Peng S, Monie A, Kang TH, Hung CF, Roden R, Wu TC. Efficient delivery of DNA vaccines using human papillomavirus pseudovirions. Gene Ther 2010; 17:1453-64. [PMID: 20668481 PMCID: PMC2972366 DOI: 10.1038/gt.2010.106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/07/2010] [Accepted: 04/15/2010] [Indexed: 11/26/2022]
Abstract
We have examined non-replicative human papillomavirus (HPV) pseudovirions as an approach in the delivery of naked DNA vaccines without safety concerns associated with live viral vectors. In this study, we have generated HPV-16 pseudovirions encapsidating a DNA vaccine encoding the model antigen, ovalbumin (OVA) (HPV16-OVA pseudovirions). Vaccination with HPV16-OVA pseudovirions subcutaneously elicited significantly stronger OVA-specific CD8+ T-cell immune responses compared with OVA DNA vaccination via gene gun in a dose-dependent manner. We showed that a single amino acid mutation in the L2 minor capsid protein that eliminates the infectivity of HPV16-OVA pseudovirion significantly decreased the antigen-specific CD8+ T-cell responses in vaccinated mice. Furthermore, a subset of CD11c+ cells and B220+ cells in draining lymph nodes became labeled on vaccination with fluorescein isothiocyanate-labeled HPV16-OVA pseudovirions in injected mice. HPV pseudovirions were found to infect bone marrow-derived dendritic cells (BMDCs) in vitro. We also showed that pretreatment of HPV16-GFP pseudovirions with furin leads to enhanced HPV16-OVA pseudovirion infection of BMDCs and OVA antigen presentation. Our data suggest that DNA vaccines delivered using HPV pseudovirions represent an efficient delivery system that can potentially affect the field of DNA vaccine delivery.
Collapse
Affiliation(s)
- Shiwen Peng
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Archana Monie
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Tae Heung Kang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Richard Roden
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - T.-C. Wu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Tagliamonte M, Visciano ML, Tornesello ML, De Stradis A, Buonaguro FM, Buonaguro L. Constitutive expression of HIV-VLPs in stably transfected insect cell line for efficient delivery system. Vaccine 2010; 28:6417-6424. [PMID: 20678589 DOI: 10.1016/j.vaccine.2010.07.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 07/12/2010] [Accepted: 07/17/2010] [Indexed: 12/24/2022]
Abstract
We have previously developed HIV-1 Pr55gag-based virus-like particles (HIV-VLPs) as presentation and delivery model using a transient Baculovirus expression system. Here we describe the establishment and characterization of stably transfected insect cell line for the constitutive and reproducible production of HIV-VLPs. The persistence of HIV gag coding gene has been verified in clonal resistant insect cells and the protein expression has been confirmed by Western blot analysis. The resulting HIV-VLPs have been evaluated by standard transmission electron microscopy and their immunogenicity has been evaluated in vivo. Our results demonstrate that this strategy is highly efficient for constitutive expression of conformational enveloped VLPs which can be employed as presentation and delivery system for pathogen as well as tumor-associated antigens. This represents, to our knowledge, the first example of stably transfected insect cell line for the constitutive production of VLPs.
Collapse
Affiliation(s)
- M Tagliamonte
- Lab of Molecular Biology and Viral Oncogenesis & AIDS Reference Center, Istituto Nazionale Tumori Fond G Pascale, Naples, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Federico M. Virus-like particles show promise as candidates for new vaccine strategies. Future Virol 2010. [DOI: 10.2217/fvl.10.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Maurizio Federico
- National AIDS Center, Division of Pathogenesis of Retroviruses, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
27
|
Muratori C, Bona R, Federico M. Lentivirus-based virus-like particles as a new protein delivery tool. Methods Mol Biol 2010; 614:111-124. [PMID: 20225039 DOI: 10.1007/978-1-60761-533-0_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Virus Like Particles (VLPs) are self-assembling, nonreplicating, nonpathogenic, genomeless particles similar in size and conformation to intact infectious virions. The possibility of engineering VLPs to incorporate heterologous polypeptides/proteins renders VLPs attractive candidates for vaccine strategies, as well as for protein delivery for basic science. Among the wide number of VLP types, our expertise focused on both retro- and lentivirus based VLPs as protein delivery tools. In particular, here we describe a system relying on the finding that some HIV-1 Nef mutants are incorporated at high levels into both Human Immunodeficiency virus (HIV)-1 and Moloney Leukemia Virus (MLV)-based VLPs. Most importantly, these Nef mutants can efficiently act as anchoring proteins upon fusion with heterologous proteins up to 630 amino acids in length. This chapter describes the preparation of prototypic HIV-1 based VLPs incorporating Nef mutant-GFP fusion molecules. Besides having potential utility in the field of basic virology, these VLPs represent a useful reference model for recovering alternative retro- or lentiviral based VLPs for the cell delivery of polypeptides/proteins of interest.
Collapse
Affiliation(s)
- Claudia Muratori
- Division of Pathogenesis of Retroviruses, National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | | | | |
Collapse
|
28
|
|
29
|
Abstract
Gene therapy covers a broad spectrum of applications, from gene replacement and knockdown for genetic or acquired diseases such as cancer, to vaccination, each with different requirements for gene delivery. Viral vectors and synthetic liposomes have emerged as the vehicles of choice for many applications today, but both have limitations and risks, including complexity of production, limited packaging capacity, and unfavorable immunological features, which restrict gene therapy applications and hold back the potential for preventive gene therapy. While continuing to improve these vectors, it is important to investigate other options, particularly nonviral biological agents which include bacteria, bacteriophage, virus-like particles (VLPs), erythrocyte ghosts, and exosomes. Exploiting the natural properties of these biological entities for specific gene delivery applications will expand the repertoire of gene therapy vectors available for clinical use. Here, we review the prospects for nonviral biological delivery vehicles as gene therapy agents with focus on their unique evolved biological properties and respective limitations and potential applications. The potential of these nonviral biological entities to act as clinical gene therapy delivery vehicles has already been shown in clinical trials using bacteria-mediated gene transfer and with sufficient development, these entities will complement the established delivery techniques for gene therapy applications.
Collapse
|
30
|
Induction of antibody response against hepatitis E virus (HEV) with recombinant human papillomavirus pseudoviruses expressing truncated HEV capsid proteins in mice. Vaccine 2008; 26:6602-7. [DOI: 10.1016/j.vaccine.2008.09.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/04/2008] [Accepted: 09/15/2008] [Indexed: 11/19/2022]
|
31
|
Lee KW, Tan WS. Recombinant hepatitis B virus core particles: association, dissociation and encapsidation of green fluorescent protein. J Virol Methods 2008; 151:172-180. [PMID: 18584885 DOI: 10.1016/j.jviromet.2008.05.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 05/09/2008] [Accepted: 05/14/2008] [Indexed: 01/04/2023]
Abstract
The recombinant hepatitis B virus (HBV) core antigen (HBcAg) expressed in Escherichia coli self-assembles into icosahedral capsids of about 35 nm which can be exploited as gene or drug delivery vehicles. The association and dissociation properties of the C-terminally truncated HBcAg with urea and guanidine hydrochloride (GdnHCl) were studied. Transmission electron microscopy (TEM) revealed that the dissociated HBcAg was able to re-associate into particles when the applied denaturing agents were physically removed. In order to evaluate the potential of the particles in capturing molecules, purified green fluorescent protein (GFP) was applied to the dissociated HBcAg for encapsidation. The HBcAg particles harbouring the GFP molecules were purified using sucrose density gradient ultracentrifugation and analysed using native agarose gel electrophoresis and TEM. A method for the encapsidation of GFP in HBcAg particles which has the potential to capture drugs or nucleic acids was established.
Collapse
Affiliation(s)
- Khai Wooi Lee
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | |
Collapse
|
32
|
Ferrer-Miralles N, Vázquez E, Villaverde A. Membrane-active peptides for non-viral gene therapy: making the safest easier. Trends Biotechnol 2008; 26:267-75. [PMID: 18358551 DOI: 10.1016/j.tibtech.2008.02.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 02/01/2008] [Accepted: 02/05/2008] [Indexed: 12/14/2022]
Abstract
Non-viral gene therapy uses engineered nanoparticles in the virus size range for the cell-targeted delivery of therapeutic nucleic acids. A diverse range of macromolecules are suitable for constructing such 'artificial viruses'. However, proteins, either man-made or from natural sources, are especially convenient for mimicking the viral functions critical for gene transfer. Cell penetration is a critical step for the delivery of nucleic acids in sufficient amounts and hence for reaching satisfactory transgene expression levels. Membrane-active peptides have shown great promise because of their positive role in cross-membrane transport and intracellular trafficking, and they have been incorporated into different artificial viruses. In this review, we will discuss the biological properties of these peptides together with the newest rational approaches designed to optimize their application.
Collapse
Affiliation(s)
- Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine and Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|