1
|
Joshi DC, Sharma A, Prasad S, Singh K, Kumar M, Sherawat K, Tuli HS, Gupta M. Novel therapeutic agents in clinical trials: emerging approaches in cancer therapy. Discov Oncol 2024; 15:342. [PMID: 39127974 PMCID: PMC11317456 DOI: 10.1007/s12672-024-01195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Novel therapeutic agents in clinical trials offer a paradigm shift in the approach to battling this prevalent and destructive disease, and the area of cancer therapy is on the precipice of a trans formative revolution. Despite the importance of tried-and-true cancer treatments like surgery, radiation, and chemotherapy, the disease continues to evolve and adapt, making new, more potent methods necessary. The field of cancer therapy is currently witnessing the emergence of a wide range of innovative approaches. Immunotherapy, including checkpoint inhibitors, CAR-T cell treatment, and cancer vaccines, utilizes the host's immune system to selectively target and eradicate malignant cells while minimizing harm to normal tissue. The development of targeted medicines like kinase inhibitors and monoclonal antibodies has allowed for more targeted and less harmful approaches to treating cancer. With the help of genomics and molecular profiling, "precision medicine" customizes therapies to each patient's unique genetic makeup to maximize therapeutic efficacy while minimizing unwanted side effects. Epigenetic therapies, metabolic interventions, radio-pharmaceuticals, and an increasing emphasis on combination therapy with synergistic effects further broaden the therapeutic landscape. Multiple-stage clinical trials are essential for determining the safety and efficacy of these novel drugs, allowing patients to gain access to novel treatments while also furthering scientific understanding. The future of cancer therapy is rife with promise, as the integration of artificial intelligence and big data has the potential to revolutionize early detection and prevention. Collaboration among researchers, and healthcare providers, and the active involvement of patients remain the bedrock of the ongoing battle against cancer. In conclusion, the dynamic and evolving landscape of cancer therapy provides hope for improved treatment outcomes, emphasizing a patient-centered, data-driven, and ethically grounded approach as we collectively strive towards a cancer-free world.
Collapse
Affiliation(s)
- Deepak Chandra Joshi
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist., Ajmer, Rajasthan, India.
| | - Anurag Sharma
- Invertis Institute of Pharmacy, Invertis University Bareilly Uttar Pradesh, Bareilly, India
| | - Sonima Prasad
- Chandigarh University, Ludhiana-Chandigarh State Highway, Gharuan, Mohali, Punjab, 140413, India
| | - Karishma Singh
- Institute of Pharmaceutical Sciences, Faculty of Engineering and Technology, University of Lucknow, Lucknow, India
| | - Mayank Kumar
- Himalayan Institute of Pharmacy, Road, Near Suketi Fossil Park, Kala Amb, Hamidpur, Himachal Pradesh, India
| | - Kajal Sherawat
- Meerut Institute of Technology, Meerut, Uttar Pradesh, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences & Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
| |
Collapse
|
2
|
Roberto Raúl SG, Damaris IA, Ángel de Jesús JC, Leticia MF. Cry1Ac Protoxin Confers Antitumor Adjuvant Effect in a Triple-Negative Breast Cancer Mouse Model by Improving Tumor Immunity. BREAST CANCER: BASIC AND CLINICAL RESEARCH 2022; 16:11782234211065154. [PMID: 35002244 PMCID: PMC8738886 DOI: 10.1177/11782234211065154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/17/2021] [Indexed: 12/07/2022] Open
Abstract
The Cry1Ac protoxin from Bacillus thuringiensis is a systemic
and mucosal adjuvant, able to confer protective immunity in different infection
murine models and induce both Th1 and TCD8+ cytotoxic lymphocyte responses,
which are required to induce antitumor immunity. The Cry1Ac toxin, despite
having not being characterized as an adjuvant, has also proved to be immunogenic
and able to activate macrophages. Here, we investigated the potential antitumor
adjuvant effect conferred by the Cry1Ac protoxin and Cry1Ac toxin in a triple
negative breast cancer (TNBC) murine model. First, we evaluated the ability of
Cry1Ac proteins to improve dendritic cell (DC) activation and cellular response
through intraperitoneal (i.p.) coadministration with the 4T1 cellular lysate.
Mice coadministered with the Cry1Ac protoxin showed an increase in the number
and activation of CD11c+MHCII- and CD11c+MHCII+low in the peritoneal
cavity and an increase in DC activation (CD11c+MHCII+) in the spleen. Cry1Ac
protoxin increased the proliferation of TCD4+ and TCD8+ lymphocytes in the
spleen and mesenteric lymph nodes (MLN), while the Cry1Ac toxin only increased
the proliferation of TCD4+ and TCD8+ in the MLN. Remarkably, when tested in the
in vivo TNBC mouse model, prophylactic immunizations with 4T1 lysates plus the
Cry1Ac protoxin protected mice from developing tumors. The antitumor effect
conferred by the Cry1Ac protoxin also increased specific cytotoxic T cell
responses, and prevented the typical tumor-related decrease of T cells
(TCD3+ and TCD4+) as well the increase of myeloid-derived suppressor cells
(MDSC) in spleen. Also in the tumor microenvironment of mice coadministered
twice with Cry1Ac protoxin immunological improvements were found such as
reductions in immunosupressive populations (T regulatory lymphocytes and MDSC)
along with increases in macrophages upregulating CD86. These results show a
differential antitumor adjuvant capability of Cry1Ac proteins, highlighting the
ability of Cry1Ac protoxin to enhance local and systemic tumor immunity in TNBC.
Finally, using a therapeutic approach, we evaluated the coadministration of
Cry1Ac protoxin with doxorubicin. A significant reduction in tumor volume and
lung metastasis was found, with increased intratumoral levels of tumor necrosis
factor-α and IL-6 with respect to the vehicle group, further supporting its
antitumor applicability.
Collapse
Affiliation(s)
- Servin-Garrido Roberto Raúl
- Laboratorio de Inmunidad en Mucosas, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1 Los Reyes Iztacala CP 54090, Tlalnepantla, Estado de México, México
| | - Ilhuicatzi-Alvarado Damaris
- Laboratorio de Inmunidad en Mucosas, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1 Los Reyes Iztacala CP 54090, Tlalnepantla, Estado de México, México
| | - Jiménez-Chávez Ángel de Jesús
- Laboratorio de Inmunidad en Mucosas, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1 Los Reyes Iztacala CP 54090, Tlalnepantla, Estado de México, México
| | - Moreno-Fierros Leticia
- Laboratorio de Inmunidad en Mucosas, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1 Los Reyes Iztacala CP 54090, Tlalnepantla, Estado de México, México
| |
Collapse
|
3
|
Frega G, Wu Q, Le Naour J, Vacchelli E, Galluzzi L, Kroemer G, Kepp O. Trial Watch: experimental TLR7/TLR8 agonists for oncological indications. Oncoimmunology 2020; 9:1796002. [PMID: 32934889 PMCID: PMC7466852 DOI: 10.1080/2162402x.2020.1796002] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Resiquimod (R848) and motolimod (VTX-2337) are second-generation experimental derivatives of imiquimod, an imidazoquinoline with immunostimulatory properties originally approved by the US Food and Drug Administration for the topical treatment of actinic keratosis and genital warts more than 20 years ago. Both resiquimod and motolimod operate as agonists of Toll-like receptor 7 (TLR7) and/or TLR8, in thus far delivering adjuvant-like signals to antigen-presenting cells (APCs). In line with such an activity, these compounds are currently investigated as immunostimulatory agents for the treatment of various malignancies, especially in combination with peptide-based, dendritic cell-based, cancer cell lysate-based, or DNA-based vaccines. Here, we summarize preclinical and clinical evidence recently collected to support the development of resiquimod and motolimod and other TLR7/TLR8 agonists as anticancer agents.
Collapse
Affiliation(s)
- Giorgio Frega
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.,Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Qi Wu
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Julie Le Naour
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Erika Vacchelli
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Karolinska Institutet, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Oliver Kepp
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| |
Collapse
|
4
|
Koerner J, Horvath D, Groettrup M. Harnessing Dendritic Cells for Poly (D,L-lactide- co-glycolide) Microspheres (PLGA MS)-Mediated Anti-tumor Therapy. Front Immunol 2019; 10:707. [PMID: 31024545 PMCID: PMC6460768 DOI: 10.3389/fimmu.2019.00707] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
With emerging success in fighting off cancer, chronic infections, and autoimmune diseases, immunotherapy has become a promising therapeutic approach compared to conventional therapies such as surgery, chemotherapy, radiation therapy, or immunosuppressive medication. Despite the advancement of monoclonal antibody therapy against immune checkpoints, the development of safe and efficient cancer vaccine formulations still remains a pressing medical need. Anti-tumor immunotherapy requires the induction of antigen-specific CD8+ cytotoxic T lymphocyte (CTL) responses which recognize and specifically destroy tumor cells. Due to the crucial role of dendritic cells (DCs) in initiating anti-tumor immunity, targeting tumor antigens to DCs has become auspicious in modern vaccine research. Over the last two decades, micron- or nanometer-sized particulate delivery systems encapsulating tumor antigens and immunostimulatory molecules into biodegradable polymers have shown great promise for the induction of potent, specific and long-lasting anti-tumor responses in vivo. Enhanced vaccine efficiency of the polymeric micro/nanoparticles has been attributed to controlled and continuous release of encapsulated antigens, efficient targeting of antigen presenting cells (APCs) such as DCs and subsequent induction of CTL immunity. Poly (D, L-lactide-co-glycolide) (PLGA), as one of these polymers, has been extensively studied for the design and development of particulate antigen delivery systems in cancer therapy. This review provides an overview of the current state of research on the application of PLGA microspheres (PLGA MS) as anti-tumor cancer vaccines in activating and potentiating immune responses attempting to highlight their potential in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
5
|
The Modified Vaccination Technique. Vaccines (Basel) 2018; 7:vaccines7010001. [PMID: 30577575 PMCID: PMC6466438 DOI: 10.3390/vaccines7010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 11/16/2022] Open
Abstract
In addition to active and passive immunizations, there is a third method of immunization, the modified vaccination technique, which is based on injecting a combination of target antigens and antibodies against this antigen. The vaccine is essentially comprised of immune complexes with pre-determined immune-inducing components. When such an immune complex (target antigen × antibody against the target antigen) with a slight antigen excess is administered, it evokes a corrective immune response by the production of the same antibody with the same specificity against the target antigen that is present in the immune complex (pre-determined immune response).
Collapse
|
6
|
Garg H, Gupta JC, Talwar GP, Dubey S. Immunotherapy approach with recombinant survivin adjuvanted with alum and MIP suppresses tumor growth in murine model of breast cancer. Prep Biochem Biotechnol 2018; 48:264-269. [PMID: 29355462 DOI: 10.1080/10826068.2018.1425710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Survivin has received attention as a potential target for cancer immunotherapy because of its crucial role in oncogenesis. We undertook this study to evaluate the immunotherapeutic potential of combination of recombinant survivin along with adjuvant alum and immune modulator Mycobacterium indicus pranii (MIP). In vivo efficacy of the combination was studied in an invasive murine breast cancer model. Recombinant survivin protein was purified from Escherichia coli based expression system and characterized by western blotting. Purified survivin protein was combined with alum and MIP and was used for immunization of Balb/c mice. Antigen-primed animals were then challenged with syngeneic mammary tumor cells known as 4T-1. Balb/c mice spontaneously develop tumor when inoculated with 4T-1 cells. Antigen and adjuvant combination was immunogenic and significantly suppressed tumor growth in mice immunized with combination of recombinant survivin (10 µg), alum, and MIP. This is the first report that describes a combination immunotherapy approach using recombinant survivin, alum, and MIP in highly metastatic murine breast cancer model and holds promise for development of new biotherapeutics for cancer.
Collapse
Affiliation(s)
- Himani Garg
- a Amity Institute of Virology and Immunology , Amity University, Uttar Pradesh , Noida , India.,b Talwar Research Foundation, Neb Sarai , New Delhi , India
| | | | - G P Talwar
- b Talwar Research Foundation, Neb Sarai , New Delhi , India
| | - Shweta Dubey
- a Amity Institute of Virology and Immunology , Amity University, Uttar Pradesh , Noida , India
| |
Collapse
|
7
|
Li X, Shenashen MA, Wang X, Ito A, Taniguchi A, Ei-Safty SA. Hierarchically porous, and Cu- and Zn-containing γ-AlOOH mesostrands as adjuvants for cancer immunotherapy. Sci Rep 2017; 7:16749. [PMID: 29196724 PMCID: PMC5711866 DOI: 10.1038/s41598-017-12446-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/08/2017] [Indexed: 02/08/2023] Open
Abstract
Alum is the only licensed adjuvant by Food and Drug Administration of USA used in many human vaccines and has excellent safety record in clinical applications. However, alum hardly induces T helper 1 (Th1) immune responses that are required for anti-tumor immunity. In the present study, we fabricated hierarchical copper- and zinc- buds dressing γ-AlOOH mesostrands (Cu- and Zn-AMSs) with randomly wrinkled morphology, mesoscale void- or cave-like pockets, high-exposed surface coverage sites, and positive charge streams in saline. We confirmed that Cu- and Zn-AMSs promoted intracellular uptake of model cancer antigen (ovalbumin, OVA) by THP-1-differentiated macrophage-like cells in vitro. Moreover, Cu- and Zn-AMSs enhanced maturation and cytokine release of bone marrow dendritic cells in vitro. In vivo study demonstrated that Cu- and Zn-AMSs markedly induced anti-tumor-immunity and enhanced CD4+ and CD8+ T cell populations in splenocytes of mice. These findings demonstrated that hierarchical copper- and zinc- buds dressing γ-AlOOH mesostrands, which are oriented in randomly wrinkled matrice, are suitable platforms as novel adjuvants for cancer immunotherapy.
Collapse
Affiliation(s)
- Xia Li
- Green Recycling Process Group, Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tuskuba, Ibaraki, 305-0047, Japan.
| | - Mohamed A Shenashen
- Green Recycling Process Group, Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tuskuba, Ibaraki, 305-0047, Japan
| | - Xiupeng Wang
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Atsuo Ito
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Akiyoshi Taniguchi
- Cellular Functional Nanomaterials Group, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Sherif A Ei-Safty
- Green Recycling Process Group, Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tuskuba, Ibaraki, 305-0047, Japan. .,Faculty of Engineering and Advanced Manufacturing, University of Sunderland, St Peter's Campus, St Peter's Way, Sunderland, SR6 0DD, UK.
| |
Collapse
|
8
|
Wang M, Yan SJ, Zhang HT, Li N, Liu T, Zhang YL, Li XX, Ma Q, Qiu XC, Fan QY, Ma BA. Ginsenoside Rh2 enhances the antitumor immunological response of a melanoma mice model. Oncol Lett 2016; 13:681-685. [PMID: 28356946 PMCID: PMC5351349 DOI: 10.3892/ol.2016.5490] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 02/04/2016] [Indexed: 11/25/2022] Open
Abstract
The treatment of malignant tumors following surgery is important in preventing relapse. Among all the post-surgery treatments, immunomodulators have demonstrated satisfactory effects on preventing recurrence according to recent studies. Ginsenoside is a compound isolated from panax ginseng, which is a famous traditional Chinese medicine. Ginsenoside aids in killing tumor cells through numerous processes, including the antitumor processes of ginsenoside Rh2 and Rg1, and also affects the inflammatory processes of the immune system. However, the role that ginsenoside serves in antitumor immunological activity remains to be elucidated. Therefore, the present study aimed to analyze the effect of ginsenoside Rh2 on the antitumor immunological response. With a melanoma mice model, ginsenoside Rh2 was demonstrated to inhibit tumor growth and improved the survival time of the mice. Ginsenoside Rh2 enhanced T-lymphocyte infiltration in the tumor and triggered cytotoxicity in spleen lymphocytes. In addition, the immunological response triggered by ginsenoside Rh2 could be transferred to other mice. In conclusion, the present study provides evidence that ginsenoside Rh2 treatment enhanced the antitumor immunological response, which may be a potential therapy for melanoma.
Collapse
Affiliation(s)
- Meng Wang
- Department of Orthopedic Surgery Center and Orthopedic Oncology Institute of People's Liberation Army, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China; Department of Spine and Joint Surgery, Center of the Chinese People's Liberation Army Lanzhou Military Region, The 11th Hospital of the People's Liberation Army, Xinjiang 835000, P.R. China
| | - Shi-Ju Yan
- Department of Orthopedic Surgery Center and Orthopedic Oncology Institute of People's Liberation Army, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Hong-Tao Zhang
- Department of Orthopedic Surgery Center and Orthopedic Oncology Institute of People's Liberation Army, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Nan Li
- Department of Orthopedic Surgery Center and Orthopedic Oncology Institute of People's Liberation Army, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Tao Liu
- Department of Orthopedic Surgery Center and Orthopedic Oncology Institute of People's Liberation Army, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Ying-Long Zhang
- Department of Orthopedic Surgery Center and Orthopedic Oncology Institute of People's Liberation Army, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiao-Xiang Li
- Department of Orthopedic Surgery Center and Orthopedic Oncology Institute of People's Liberation Army, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Qiong Ma
- Department of Orthopedic Surgery Center and Orthopedic Oncology Institute of People's Liberation Army, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiu-Chun Qiu
- Department of Orthopedic Surgery Center and Orthopedic Oncology Institute of People's Liberation Army, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Qing-Yu Fan
- Department of Orthopedic Surgery Center and Orthopedic Oncology Institute of People's Liberation Army, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Bao-An Ma
- Department of Orthopedic Surgery Center and Orthopedic Oncology Institute of People's Liberation Army, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
9
|
Zhao H, Zhao X, Du P, Qi G. Construction of random tumor transcriptome expression library for creating and selecting novel tumor antigens. Tumour Biol 2016; 37:12877-12887. [PMID: 27449040 DOI: 10.1007/s13277-016-5201-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 07/13/2016] [Indexed: 12/29/2022] Open
Abstract
Novel tumor antigens are necessary for the development of efficient tumor vaccines for overcoming the immunotolerance and immunosuppression induced by tumors. Here, we developed a novel strategy to create tumor antigens by construction of random tumor transcriptome expression library (RTTEL). The complementary DNA (cDNA) from S180 sarcoma was used as template for arbitrarily amplifying gene fragments with random primers by PCR, then ligated to the C-terminal of HSP65 in a plasmid pET28a-HSP for constructing RTTEL in Escherichia coli. A novel antigen of A5 was selected from RTTEL with the strongest immunotherapeutic effects on S180 sarcoma. Adoptive immunotherapy with anti-A5 sera also inhibited tumor growth, further confirming the key antitumor roles of A5-specific antibodies in mice. A5 contains a sequence similar to protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT1). The antisera of A5 were verified to cross-react with PCMT1 by Western blotting assay and vice versa. Both anti-A5 sera and anti-PCMT1 sera could induce antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity toward S180 cells by in vitro assay. Further assay with fluorescent staining showed that PCMT1 is detectable on the surface of S180 cells. Summary, the strategy to construct RTTEL is potential for creating and screening novel tumor antigens to develop efficient tumor vaccines. By RTTEL, we successfully created a protein antigen of A5 with significant immunotherapeutic effects on S180 sarcoma by induction of antibodies targeting for PCMT1.
Collapse
Affiliation(s)
- Huizhun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, HuBei Province, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, HuBei Province, China
| | - Peng Du
- College of Life Science, Hubei University, 430062, Wuhan, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, HuBei Province, China.
| |
Collapse
|
10
|
Wang X, Li X, Ito A, Watanabe Y, Sogo Y, Hirose M, Ohno T, Tsuji NM. Rod-shaped and substituted hydroxyapatite nanoparticles stimulating type 1 and 2 cytokine secretion. Colloids Surf B Biointerfaces 2016; 139:10-6. [DOI: 10.1016/j.colsurfb.2015.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/29/2015] [Accepted: 12/01/2015] [Indexed: 01/28/2023]
|
11
|
Kirner A, Mayer-Mokler A, Reinhardt C. IMA901: a multi-peptide cancer vaccine for treatment of renal cell cancer. Hum Vaccin Immunother 2015; 10:3179-89. [PMID: 25625928 DOI: 10.4161/21645515.2014.983857] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite a major improvement in the treatment of advanced kidney cancer by the recent introduction of targeted agents such as multi-kinase inhibitors, long-term benefits are still limited and a significant unmet medical need remains for this disease. Cancer immunotherapy has shown its potential by the induction of long-lasting responses in a small subset of patients, however, the unspecific immune interventions with (high dose) cytokines used so far are associated with significant side effects. Specific cancer immunotherapy may circumvent these problems by attacking tumor cells while sparing normal tissue with the use of multi-peptide vaccination being one of the most promising strategies. We here summarize the clinical and translational data from phase I and II trials investigating IMA901. Significant associations of clinical benefit with detectable T cell responses against the IMA901 peptides and encouraging survival data in treated patients has prompted the start of a randomized, controlled phase III trial in 1st line advanced RCC with survival results expected toward the end of 2015. Potential combination strategies with the recently discovered so-called checkpoint inhibitors are also discussed.
Collapse
Key Words
- 5-FU, 5 fluorouracil
- AE, Adverse event
- CTL, Cytotoxic T-lymphocyte
- CY, Cyclophosphamide
- Cancer vaccine
- DC, Dendritic cell
- DCR, Disease control rate
- ECG, Electrocardiogram
- ELISpot, Enzyme-linked immunospot assay
- FDA, Food and Drug Administration
- GM-CSF
- HBV, Hepatitis B virus
- HLA, Human leukocyte antigen
- IFN, Interferon
- IL, Interleukin
- IMA901
- MDSC, Myeloid-derived suppressor cells
- MHC, Major histocompatibility complex
- MSKCC, Memorial Sloan Kettering Cancer Center
- NCI-CTC, National Cancer Institute-Common Toxicity Criteria
- OS, Overall survival
- PD, Progressive disease
- PFS, Progression-free survival
- PK, Pharmacokinetic
- PR, Partial response
- RCC, Renal cell carcinoma
- RECIST, Response Evaluation Criteria in Solid Tumors
- SAE, Serious adverse event
- SD, Stable disease
- TKI, Tyrosine-kinase inhibitors
- TNF, Tumor necrosis factor
- TUMAP, Tumor-associated peptides
- Tregs, Regulatory T-cells
- VEGF, Vascular endothelial growth factor
- ccRCC, Clear cell renal cell carcinoma
- checkpoint inhibitor
- cyclophosphamide
- i.d., intradermal
- immunotherapy
- intradermally
- kidney cancer
- mRNA, Messenger ribonucleic acid
- mTOR, Mammalian target of rapamycin
- mg, Milligram
- n, Number
- renal cell carcinoma
- s.c., subcutaneous, subcutaneously
- tumor-associated peptides
- vaccination
- μg, Microgram
Collapse
|
12
|
Yaddanapudi K, Mitchell RA, Eaton JW. Cancer vaccines: Looking to the future. Oncoimmunology 2014; 2:e23403. [PMID: 23802081 PMCID: PMC3661166 DOI: 10.4161/onci.23403] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 12/25/2022] Open
Abstract
These are exciting times for the field of cancer immunotherapy. Although the clinical efficacy of monoclonal antibodies has been demonstrated since the early 1990s, the therapeutic profile of other immunotherapeutic approaches-especially vaccines-has not yet been formally clarified. However, the recent success of several immunotherapeutic regimens in cancer patients has boosted the development of this treatment modality. These achievements stemmed from recent scientific advances demonstrating the tolerogenic nature of cancer and the fundamental role of the tumor immune microenvironment in the suppression of antitumor immunity. New immunotherapeutic strategies against cancer attempt to promote protective antitumor immunity while disrupting the immunoregulatory circuits that contribute to tumor tolerance. Cancer vaccines differ from other anticancer immunotherapeutics in that they initiate the dynamic process of activating the immune system so as to successfully re-establish a state of equilibrium between tumor cells and the host. This article reviews recent clinical trials involving several different cancer vaccines and describes some of the most promising immunotherapeutic approaches that harness antitumor T-cell responses. In addition, we describe strategies whereby cancer vaccines can be exploited in combination with other therapeutic approach to overcome-in a synergistic fashion-tumor immunoevasion. Finally, we discuss prospects for the future development of broad spectrum prophylactic anticancer vaccines.
Collapse
Affiliation(s)
- Kavitha Yaddanapudi
- Molecular Targets Group; James Graham Brown Cancer Center; University of Louisville; Louisville, KY USA
| | | | | |
Collapse
|
13
|
Wang X, Li X, Onuma K, Sogo Y, Ohno T, Ito A. Zn- and Mg- containing tricalcium phosphates-based adjuvants for cancer immunotherapy. Sci Rep 2014; 3:2203. [PMID: 23857555 PMCID: PMC3712317 DOI: 10.1038/srep02203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/27/2013] [Indexed: 12/24/2022] Open
Abstract
Zn-, and Mg-containing tricalcium phosphates (TCPs) loaded with a hydrothermal extract of a human tubercle bacillus (HTB) were prepared by immersing Zn-TCP and Mg-TCP in HTB-containing supersaturated calcium phosphate solutions. The in vitro and in vivo immunogenic activities of the HTB-loaded Zn-, and Mg-TCPs (Zn-Ap-HTB and Mg-Ap-HTB, respectively) were evaluated as potential immunopotentiating adjuvants for cancer immunotherapy. The Zn-Ap-HTB and Mg-Ap-HTB adjuvants showed no obvious cytotoxicity and more effectively stimulated granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion by macrophage-like cells than unprocessed HTB or HTB-loaded TCP (T-Ap-HTB) in vitro. Zn-Ap-HTB and Mg-Ap-HTB mixed with liquid-nitrogen-treated tumor tissue markedly inhibited the in vivo development of rechallenged Lewis lung carcinoma (LLC) cells compared with T-Ap-HTB and the unprocessed HTB mixed liquid-nitrogen-treated tumor tissue. Zn-Ap-HTB and Mg-Ap-HTB contributed to eliciting potent systemic antitumor immunity in vivo.
Collapse
Affiliation(s)
- Xiupeng Wang
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Atreya I, Neurath MF. Immune cells in colorectal cancer: prognostic relevance and therapeutic strategies. Expert Rev Anticancer Ther 2014; 8:561-72. [DOI: 10.1586/14737140.8.4.561] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Wang X, Li X, Ito A, Sogo Y, Ohno T. Particle-size-dependent toxicity and immunogenic activity of mesoporous silica-based adjuvants for tumor immunotherapy. Acta Biomater 2013; 9:7480-9. [PMID: 23541601 DOI: 10.1016/j.actbio.2013.03.031] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
Abstract
Conventionally used adjuvants alone are insufficient for triggering cell-mediated immunity, although they have been successfully developed to elicit protective antibody responses in some vaccines. Here, with the aim of eliciting cell-mediated immunity, pathogen-associated molecular patterns (PAMPs) were immobilized with apatite within the pores and on the surface of mesoporous silica (MS) with particle sizes from 30 to 200nm to prepare novel MS-Ap-PAMP adjuvants, which showed cell-mediated anti-tumor immunity that was markedly improved compared to commercial alum adjuvant in vitro and in vivo. The toxicity and antitumor immunity of the MS-Ap-PAMP adjuvants were evaluated in vitro and in vivo. MS with a particle size of 200nm showed minimum in vitro cytotoxicity to NIH3T3 cells, particularly at concentrations no higher than 100μgml(-1). In particular, apatite precipitation within the pores and on the surface of MS decreased the in vitro cytotoxicity of MS particles. The MS-Ap-PAMP adjuvants showed the maximum in vitro immunogenic activity among original culture medium, PAMP and alum-PAMP. Moreover, injection of the MS-Ap-PAMP adjuvant in combination with liquid-nitrogen-treated tumor tissue (derived from Lewis lung carcinoma cells) into C57BL/6 mice markedly inhibited in vivo tumor recurrence and the development of rechallenged tumor compared to those with commercial alum adjuvant. The MS-Ap-PAMP adjuvant contributed to the elicitation of a potent systemic antitumor immunity without obvious toxicity in vivo.
Collapse
|
16
|
Li X, Wang X, Sogo Y, Ohno T, Onuma K, Ito A. Mesoporous silica-calcium phosphate-tuberculin purified protein derivative composites as an effective adjuvant for cancer immunotherapy. Adv Healthc Mater 2013; 2:863-71. [PMID: 23296515 DOI: 10.1002/adhm.201200149] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/28/2012] [Indexed: 12/21/2022]
Abstract
The synthesis of mesoporous silica/calcium phosphate composite loaded with the immunopotentiator tuberculin purified protein derivative (PPD-MS/CaP) as an effective adjuvant for cancer immunotherapy is reported here. The PPD-MS/CaP adjuvant is prepared by immersing mesoporous silica in a supersaturated calcium phosphate solution supplemented with the immunopotentiator PPD for 24 h. PPD is coprecipitated with calcium phosphate inside and on the surface of mesoporous silica. By loading the immunopotentiator PPD in the PPD-MS/CaP adjuvant, an enhanced activation of antigen-presenting cells, such as GM-CSF secretion by THP-1 differentiated macrophages, is obtained probably due to sustained PPD release and an efficient cellular uptake of PPD. The PPD-MS/CaP adjuvant mixed with liquid-N2 -treated tumor tissue effectively triggers anti-tumor immune response and markedly inhibits in vivo tumor growth. The PPD-MS/CaP adjuvant is a promising alternative for cancer immune therapy.
Collapse
Affiliation(s)
- Xia Li
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1‐1‐1 Higashi, Tsukuba, Ibaraki 305‐8566, Japan
| | - Xiupeng Wang
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1‐1‐1 Higashi, Tsukuba, Ibaraki 305‐8566, Japan
| | - Yu Sogo
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1‐1‐1 Higashi, Tsukuba, Ibaraki 305‐8566, Japan
| | - Tadao Ohno
- Department of Resources and Environmental Engineering, School of Science and Engineering, Waseda University, 3‐4‐1 Okubo, Shinjuku‐ku, Tokyo 169‐8555, Japan
| | - Kazuo Onuma
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1‐1‐1 Higashi, Tsukuba, Ibaraki 305‐8566, Japan
| | - Atsuo Ito
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1‐1‐1 Higashi, Tsukuba, Ibaraki 305‐8566, Japan
| |
Collapse
|
17
|
Wang X, Li X, Ito A, Sogo Y, Ohno T. Pore size-dependent immunogenic activity of mesoporous silica-based adjuvants in cancer immunotherapy. J Biomed Mater Res A 2013; 102:967-74. [DOI: 10.1002/jbm.a.34783] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/29/2013] [Accepted: 04/29/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Xiupeng Wang
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki 305-8566 Japan
| | - Xia Li
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki 305-8566 Japan
| | - Atsuo Ito
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki 305-8566 Japan
| | - Yu Sogo
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki 305-8566 Japan
| | - Tadao Ohno
- Department of Resources and Environmental Engineering; School of Science and Engineering, Waseda University; Shinjuku-ku Tokyo 169-8555 Japan
| |
Collapse
|
18
|
Tumor cells in multiple myeloma patients inhibit myeloma-reactive T cells through carcinoembryonic antigen-related cell adhesion molecule-6. Blood 2013; 121:4493-503. [PMID: 23603913 DOI: 10.1182/blood-2012-05-429415] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although functionally competent cytotoxic, T cells are frequently observed in malignant diseases, they possess little ability to react against tumor cells. This phenomenon is particularly apparent in multiple myeloma. We here demonstrate that cytotoxic T cells reacted against myeloma antigens when presented by autologous dendritic cells, but not by myeloma cells. We further show by gene expression profiling and flow cytometry that, similar to many other malignant tumors, freshly isolated myeloma cells expressed several carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) at varying proportions. Binding and crosslinking of CEACAM-6 by cytotoxic T cells inhibited their activation and resulted in T-cell unresponsiveness. Blocking of CEACAM-6 on the surface of myeloma cells by specific monoclonal antibodies or CEACAM-6 gene knock down by short interfering RNA restored T-cell reactivity against malignant plasma cells. These findings suggest that CEACAM-6 plays an important role in the regulation of CD8+ T-cell responses against multiple myeloma; therefore, therapeutic targeting of CEACAM-6 may be a promising strategy to improve myeloma immunotherapy.
Collapse
|
19
|
Narang AS, Varia S. Role of tumor vascular architecture in drug delivery. Adv Drug Deliv Rev 2011; 63:640-58. [PMID: 21514334 DOI: 10.1016/j.addr.2011.04.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/23/2011] [Accepted: 04/05/2011] [Indexed: 12/14/2022]
Abstract
Tumor targeted drug delivery has the potential to improve cancer care by reducing non-target toxicities and increasing the efficacy of a drug. Tumor targeted delivery of a drug from the systemic circulation, however, requires a thorough understanding of tumor pathophysiology. A growing or receding (under the impact of therapy) tumor represents a dynamic environment with changes in its angiogenic status, cell mass, and extracellular matrix composition. An appreciation of the salient characteristics of tumor vascular architecture and the unique biochemical markers that may be used for targeting drug therapy is important to overcome barriers to tumor drug therapy and to facilitate targeted drug delivery. This review discusses the unique aspects of tumor vascular architecture that need to be overcome or exploited for tumor targeted drug delivery.
Collapse
Affiliation(s)
- Ajit S Narang
- Bristol-Myers Squibb, Co., One Squibb Dr., PO Box 191, New Brunswick, NJ 08903-0191, USA.
| | | |
Collapse
|
20
|
Guo QY, Yuan M, Peng J, Cui XM, Song G, Sui X, Lu SB. Antitumor activity of mixed heat shock protein/peptide vaccine and cyclophosphamide plus interleukin-12 in mice sarcoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:24. [PMID: 21352555 PMCID: PMC3056821 DOI: 10.1186/1756-9966-30-24] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/26/2011] [Indexed: 01/08/2023]
Abstract
Background The immune factors heat shock protein (HSP)/peptides (HSP/Ps) can induce both adaptive and innate immune responses. Treatment with HSP/Ps in cancer cell-bearing mice and cancer patients revealed antitumor immune activity. We aimed to develop immunotherapy strategies by vaccination with a mixture of HSP/Ps (mHSP/Ps, HSP60, HSP70, Gp96 and HSP110) enhanced with cyclophosphamide (CY) and interleukin-12 (IL-12). Methods We extracted mHSP/Ps from the mouse sarcoma cell line S180 using chromatography. The identity of proteins in this mHSP/Ps was assayed using SDS-PAGE and Western blot analysis with antibodies specific to various HSPs. BALB/C mice bearing S180 cells were vaccinated with mHSP/Ps ×3, then were injected intraperitoneally with low-dose CY and subcutaneously with IL-12, 100 μg/day, ×5. After vaccination, T lymphocytes in the peripheral blood were analyzed using FACScan and Cytotoxicity (CTL) was analyzed using lactate dehydrogenase assay. ELISPOT assay was used to evaluate interferon γ (IFN-γ), and immune cell infiltration in tumors was examined in the sections of tumor specimen. Results In mice vaccinated with enhanced vaccine (mHSP/Ps and CY plus IL-12), 80% showed tumor regression and long-term survival, and tumor growth inhibition rate was 82.3% (30 days), all controls died within 40 days. After vaccination, lymphocytes and polymorphonuclear leukocytes infiltrated into the tumors of treated animals, but no leukocytes infiltrated into the tumors of control mice. The proportions of natural killer cells, CD8+, and interferon-γ-secreting cells were all increased in the immune group, and tumor-specific cytotoxic T lymphocyte activity was increased. Conclusions In this mice tumor model, vaccination with mHSP/Ps combined with low-dose CY plus IL-12 induced an immunologic response and a marked antitumor response to autologous tumors. The regimen may be a promising therapeutic agent against tumors.
Collapse
Affiliation(s)
- Quan-Yi Guo
- Institute of Orthopedic Research, General Hospital of the People's Liberation Army, Beijing 100853, China
| | | | | | | | | | | | | |
Collapse
|
21
|
'Dressed for success' C-type lectin receptors for the delivery of glyco-vaccines to dendritic cells. Curr Opin Immunol 2010; 23:131-7. [PMID: 21169001 DOI: 10.1016/j.coi.2010.11.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/17/2010] [Accepted: 11/23/2010] [Indexed: 12/19/2022]
Abstract
Current strategies in immunotherapy for the treatment of tumors or autoimmunity focus on direct in vivo targeting of antigens to dendritic cells (DC), as these cells are the key regulators of immune responses. Multiple DC subsets can be distinguished in both humans and mice, based on phenotype and location. Moreover, recent data show that these subsets have distinct functions. All these features have implications for the design of DC-targeting vaccines. In this review we integrate recent knowledge on the different DC subsets in human and mice and how DC-expressed C-type lectin receptors (CLR) can be exploited for the induction of either antigen-specific immunity or tolerance.
Collapse
|
22
|
Jeon YH, Choi Y, Lee J, Kim CW, Chung JK. CpG Oligodeoxynucleotides Enhance the Activities of CD8+ Cytotoxic T-Lymphocytes Generated by Combined hMUC1 Vaccination and hNIS Radioiodine Gene Therapy. Nucl Med Mol Imaging 2010; 44:199-206. [PMID: 24899950 DOI: 10.1007/s13139-010-0039-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/14/2010] [Accepted: 05/26/2010] [Indexed: 11/30/2022] Open
Abstract
PURPOSE The authors evaluated whether the cytotoxicity of CD8+CTLs generated by combined hMUC1 vaccination and hNIS radioiodine gene therapy was enhanced in the presence of CpG in an established tumor model. METHODS CMNF cells (CT26 cells expressing hMUC1, hNIS and Firefly luciferase) were transplanted into BALB/c mice. Four and 10 days later, tumor-bearing mice were immunized intramuscularly with pcDNA3.1 or pcDNA-hMUC1 or pcDNA-hMUC1+CpG, and subsequently administered PBS or (131)I [five groups (seven mice/group): referred to as the pcDNA3.1+PBS, phMUC1+PBS, pcDNA3.1+(131)I, phMUC1+(131)I, and phMUC1+(131)I+CpG groups]. The number of CD8+IFNr+ T cells of splenocytes as well as the number of CD8+IFNr+ T cells of splenocytes re-stimulated with CD11c+ cells was determined using FACS analysis. The activities of cytotoxic T cells (CTLs) from splenocytes were investigated. RESULTS Marked tumor growth inhibition was observed in the phMUC1+(131)I and phMUC1+(131)I+CpG groups, but not in the other three single therapy groups. Particularly the number of CD8+IFN-γ+ T cells of splenocytes was more increased in the phMUC1+(131)I+CpG group than in the phMUC1+(131)I group. The number of CD8+IFN-γ+ T cells of splenocytes stimulated with CD11c+ cells was the most enhanced in the phMUC1+(131)I+CpG group among the five groups. Concurrently, the activities of hMUC1-associated CTLs obtained from splenocytes in the phMUC1+(131)I+CpG group were significantly greater than in the other four groups (pcDNA+PBS, phMUC1+PBS, pcDNA+(131)I, phMUC1+(131)I, and phMUC1+(131)I+CpG, 16 ± 2%, 20 ± 1%, 30 ± 2%, 60 ± 2%, and 87 ± 2%, respectively, P < 0.01). CONCLUSION Our data suggest that adjuvant CpG ODNs can increase the killing activities of CTLs generated by combined hMUC1 DNA vaccination and hNIS radioiodine gene therapy.
Collapse
Affiliation(s)
- Yong Hyun Jeon
- Department of Nuclear Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-744 Korea ; Tumor Immunity Medical Research Center, Seoul National University College of Medicine, Seoul, Korea ; Laboratory of Molecular Imaging and Therapy of Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea ; Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yun Choi
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea ; Tumor Immunity Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Chul Woo Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea ; Tumor Immunity Medical Research Center, Seoul National University College of Medicine, Seoul, Korea ; Department of Pathology, Tumor Immunity Medical Research Center and Cancer Research Institute, Seoul National University, College of Medicine, 28 Yongon-Dong, Jongno-Gu, Seoul, 110-799 Korea
| | - June-Key Chung
- Department of Nuclear Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-744 Korea ; Tumor Immunity Medical Research Center, Seoul National University College of Medicine, Seoul, Korea ; Laboratory of Molecular Imaging and Therapy of Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Huang CJ, Lowe AJ, Batt CA. Recombinant immunotherapeutics: current state and perspectives regarding the feasibility and market. Appl Microbiol Biotechnol 2010; 87:401-10. [PMID: 20422181 DOI: 10.1007/s00253-010-2590-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 01/23/2023]
Abstract
Recombinant immunotherapeutics are important biologics for the treatment and prevention of various diseases. Immunotherapy can be divided into two categories, passive and active. For passive immunotherapy, the successes of antibody and cytokine therapeutics represent a promising future and opportunities for improvements. Efforts, such as cell engineering, antibody engineering, human-like glycosylation in yeast, and Fab fragment development, have led the way to improve antibody efficacy while decreasing its high manufacturing costs. Both new cytokines and currently used cytokines have demonstrated therapeutic effects for different indications. As for active immunotherapy, recently approved HPV vaccines have encouraged the development of preventative vaccines for other infectious diseases. Immunogenic antigens of pathogenic bacteria can now be identified by genomic means (reverse vaccinology). Due to the recent outbreaks of pandemic H1N1 influenza virus, recombinant influenza vaccines using virus-like particles and other antigens have also been engineered in several different recombinant systems. However, limitations are found in existing immunotherapeutics for cancer treatment, and recent development of therapeutic cancer vaccines such as MAGE-A3 and NY-ESO-1 may provide alternative therapeutic strategy.
Collapse
Affiliation(s)
- Chung-Jr Huang
- Field of Microbiology, 317 Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
24
|
Conforti A, Cipriani B, Peruzzi D, Dharmapuri S, Kandimalla ER, Agrawal S, Mori F, Ciliberto G, La Monica N, Aurisicchio L. A TLR9 agonist enhances therapeutic effects of telomerase genetic vaccine. Vaccine 2010; 28:3522-30. [PMID: 20332048 DOI: 10.1016/j.vaccine.2010.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 02/18/2010] [Accepted: 03/10/2010] [Indexed: 12/20/2022]
Abstract
The telomerase reverse transcriptase (TERT) is an attractive target for cancer vaccination because its expression is reactivated in most tumors. In this study, we have evaluated the ability of a genetic vaccine targeting murine TERT (mTERT) based on DNA electroporation (DNA-EP) and adenovirus serotype 6 (Ad6) to exert therapeutic effects in combination with a novel TLR9 agonist, referred to as immune modulatory oligonucleotide (IMO), as an adjuvant. IMO was administered to mice at the same time as vaccine. IMO induced dose-dependent cytokine secretion and activation of NK cells. Most importantly, vaccination of mice with IMO in combination with mTERT vaccine conferred therapeutic benefit in tumor bearing animals and this effect was associated with increased NK, DC and T cell tumor infiltration. These data show that appropriate combination of a DNA-EP/Ad6-based cancer vaccine against TERT with IMO induces multiple effects on innate and adaptive immune responses resulting in a significant antitumor efficacy.
Collapse
|
25
|
Barabas AZ, Cole CD, Barabas AD, Graeff RM, Lafreniere R, Weir DM. Modified Vaccination Technique for Prophylactic and Therapeutic Applications to Combat Endogenous Antigen-Induced Disorders. Scand J Immunol 2010; 71:125-33. [DOI: 10.1111/j.1365-3083.2009.02360.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Application of the modified vaccination technique for the prevention and cure of chronic ailments. ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(10)60060-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Antigen Specific Memory T Cells and Their Putative Need for the Generation of Sustained Anti-Tumor Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 684:155-65. [DOI: 10.1007/978-1-4419-6451-9_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Berinstein NL. Strategies to enhance the therapeutic activity of cancer vaccines: using melanoma as a model. Ann N Y Acad Sci 2009; 1174:107-17. [PMID: 19769743 DOI: 10.1111/j.1749-6632.2009.04935.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although there has been initial success with some types of immunotherapy, such as adoptive cellular therapy and monoclonal antibody therapy for cancer, the experience with therapeutic cancer vaccines has been much less encouraging. Almost all randomized phase III trials testing therapeutic cancer vaccines have failed to meet their end points. There are several potential explanations for this, ranging from factors related to the clinical trial design and the vaccine itself. Perhaps the most important are host-related factors. Specifically, progression and metastases of many cancers are associated with induction of multiple cancer-specific immune-inhibitory pathways. These inhibitory pathways include induction of T-cell anergy through dendritic cell dysfunction, release of immunosuppressive cytokines, T-cell exhaustion through inhibitory T-cell signaling and T regulatory cell-mediated tumor-specific immune suppression. All of these pathways have been shown to be operational in patients with melanoma. To enhance the activity of therapeutic cancer vaccines, these immunosupressive pathways need to be addressed and reversed. A number of new immunomodulatory reagents that are able to interfere with some of these pathways are now being assessed in the clinic. Sanofi Pasteur designed a clinical trial in patients with advanced or metastatic melanoma that is intended to both induce tumor-specific T-cell responses and modulate or reverse some of the immune suppression pathways that the melanoma has induced. To accomplish this, the recently optimized ALVAC melanoma multi-antigen vaccine is administered with high doses of IFN-alpha. Clinical trial parameters have also been optimized to enhance the likelihood of inducing and documenting antitumor activity. Success with other therapeutic cancer vaccine approaches will likely require similar approaches in which promising immunogenic vaccines are integrated with biologically and clinically active immunomodulatory reagents.
Collapse
Affiliation(s)
- Neil L Berinstein
- Departments of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
29
|
Smit E, Oberholzer HM, Pretorius E. A review of immunomodulators with reference to Canova. HOMEOPATHY 2009; 98:169-76. [PMID: 19647212 DOI: 10.1016/j.homp.2009.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 04/30/2009] [Accepted: 05/05/2009] [Indexed: 11/29/2022]
Abstract
Immunomodulators are substances which modify the immunity of an individual to favour a particular immunological response. The immune response and the function of the immune response regulation process are described, with special reference to cancer and autoimmune disease. Homeopathy and its role in immune regulation are discussed with special reference to Canova. Canova is a homeopathic product produced, according to the Hahnemannian homeopathic method, in Brazil. Its role in cancer, bone marrow and haematopoiesis as well as macrophage and monocyte activation is reviewed. Canova seems to stabilize platelet morphology in human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). The data suggest that the future of immunomodulators and homeopathic products which appear to have an effect on the immune response requires a better understanding of the relative need for immune activation versus immune modulation. Homeopathic products specifically need more attention.
Collapse
Affiliation(s)
- E Smit
- Department of Anatomy, University of Pretoria, Pretoria, Gauteng 0001, South Africa
| | | | | |
Collapse
|
30
|
Maksaereekul S, Dubie RA, Shen X, Kieu H, Dean GA, Sparger EE. Vaccination with vif-deleted feline immunodeficiency virus provirus, GM-CSF, and TNF-alpha plasmids preserves global CD4 T lymphocyte function after challenge with FIV. Vaccine 2009; 27:3754-65. [PMID: 19464559 PMCID: PMC2802579 DOI: 10.1016/j.vaccine.2009.03.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 03/24/2009] [Accepted: 03/26/2009] [Indexed: 12/17/2022]
Abstract
Feline immunodeficiency virus (FIV) DNA vaccine approaches that included a vif-deleted FIV provirus (FIV-pPPRDeltavif) and feline cytokine expression plasmids were tested for immunogenicity and efficacy by immunization of specific pathogen free cats. Vaccine protocols included FIV-pPPRDeltavif plasmid alone; a combination of FIV-pPPRDeltavif DNA and feline granulocyte macrophage-colony stimulating factor (GM-CSF) and tumor necrosis factor (TNF)-alpha expression plasmids; or a combination of FIV-pPPRDeltavif and feline interleukin (IL)-15 plasmids. Cats immunized with FIV-pPPRDeltavif, GM-CSF and TNF-alpha plasmids demonstrated an increased frequency of FIV-specific T cell proliferation responses compared to other vaccine groups. Immunization with FIV-pPPRDeltavif and IL-15 plasmids was distinguished from other vaccine protocols by the induction of antiviral antibodies. Suppression of virus loads was not observed for any of the FIV-pPPRDeltavif DNA vaccine protocols after challenge with the FIV-PPR isolate. However, prior immunization with FIV-pPPRDeltavif, GM-CSF, and TNF-alpha plasmids resulted in preservation of CD4 T cell functions, including mitogen-induced cytokine expression and antigen-specific proliferation upon infection with FIV. These findings justify further examination of cytokine combinations as adjuvants for lentiviral DNA vaccines.
Collapse
Affiliation(s)
- Saipiroon Maksaereekul
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California 95616
| | - Robert A. Dubie
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California 95616
| | - Xiaoying Shen
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California 95616
| | - Hung Kieu
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California 95616
| | - Gregg A. Dean
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606
| | - Ellen E. Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California 95616
| |
Collapse
|
31
|
Barabas AZ, Cole CD, Barabas AD, Graeff RM, Lafreniere R, Weir DM. Correcting autoimmune anomalies in autoimmune disorders by immunological means, employing the modified vaccination technique. Autoimmun Rev 2009; 8:552-7. [DOI: 10.1016/j.autrev.2009.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Accepted: 01/21/2009] [Indexed: 01/18/2023]
|
32
|
Abstract
Over the past decade, immune therapy has become a standard treatment for a variety of cancers. Monoclonal antibodies, immune adjuvants, and vaccines against oncogenic viruses are now well-established cancer therapies. Immune modulation is a principal element of supportive care for many high-dose chemotherapy regimens. In addition, immune activation is now appreciated as central to the therapeutic mechanism of bone marrow transplantation for hematologic malignancies. Advances in our understanding of the molecular interactions between tumors and the immune system have led to many novel investigational therapies and continue to inform efforts for devising more potent therapeutics. Novel approaches to immune-based cancer treatment strive to augment antitumor immune responses by expanding tumor-reactive T cells, providing exogenous immune-activating stimuli, and antagonizing regulatory pathways that induce immune tolerance. The future of immune therapy for cancer is likely to combine many of these approaches to generate more effective treatments.
Collapse
Affiliation(s)
- Michael Dougan
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
33
|
Aurisicchio L, Peruzzi D, Conforti A, Dharmapuri S, Biondo A, Giampaoli S, Fridman A, Bagchi A, Winkelmann CT, Gibson R, Kandimalla ER, Agrawal S, Ciliberto G, La Monica N. Treatment of mammary carcinomas in HER-2 transgenic mice through combination of genetic vaccine and an agonist of Toll-like receptor 9. Clin Cancer Res 2009; 15:1575-84. [PMID: 19240169 DOI: 10.1158/1078-0432.ccr-08-2628] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Oligodeoxynucleotides containing unmethylated CpG dinucleotides induce innate and adaptive immunity through Toll-like receptor 9 (TLR9). In the present study, we have examined the ability of a novel agonist of TLR9, called immunomodulatory oligonucleotide (IMO), to enhance effects of a HER-2/neu plasmid DNA electroporation/adenovirus (DNA-EP/Ad) vaccine. EXPERIMENTAL DESIGN BALB/NeuT mice were treated with DNA-EP vaccine alone, IMO alone, or the combination of two agents starting at week 13, when all mice showed mammary neoplasia. Tumor growth and survival were documented. Antibody and CD8+ T-cell responses were determined. Peptide microarray analysis of sera was carried out to identify immunoreactive epitopes. Additionally, microCT and microPET imaging was carried out in an advanced-stage tumor model starting treatment at week 17 in BALB/NeuT mice. RESULTS The combination of DNA-EP and IMO resulted in significant tumor regression or delay to tumor progression. 2-Deoxy-2-[18F]fluoro-D-glucose microPET and microCT imaging of mice showed reduced tumor size in the DNA-EP/IMO combination treatment group. Mice treated with the combination produced greater antibody titers with IgG2a isotype switch and antibody-dependent cellular cytotoxicity activity than did mice treated with DNA-EP vaccine. An immunogenic B-cell linear epitope, r70, within the HER-2 dimerization domain was identified through microarray analysis. Heterologous DNA-EP/Ad vaccination combined with IMO increased mice survival. CONCLUSION The combination of HER-2/neu genetic vaccine and novel agonist of TLR9 had potent antitumor activity associated with antibody isotype switch and antibody-dependent cellular cytotoxicity activities. These results support possible clinical trials of the combination of DNA-EP/Ad-based cancer vaccines and IMO.
Collapse
Affiliation(s)
- Luigi Aurisicchio
- Istituto di Ricerche di Biologia Molecolare, Oncology/Functional Department, Merck Research Labs, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Over the last century, vaccine studies have demonstrated that the human immune system, with appropriate help, can limit or prevent infection against otherwise lethal pathogens. Encouraged by these results, success in animal models and numerous well-documented reports of immune-mediated melanoma regression in humans, investigators developed melanoma vaccines. However, despite considerable laboratory evidence for vaccine-induced immune responses, clinical responses remain poor. Recent studies have elucidated several mechanisms that hinder or prevent the creation of successful vaccines and suggest novel approaches to overcome these barriers. Unraveling the mechanisms of autoimmunity, dendritic cell activation, regulatory T cells and Toll-like receptors will generate novel vaccines that, when used in conjunction with standard adjuvant therapies, may result in improved clinical outcomes. The objective of this review is to provide an overall summary of recent clinical trials with melanoma vaccines and highlight novel vaccine strategies to evaluate in the near future.
Collapse
Affiliation(s)
- Lee B Riley
- St Luke's Cancer Center, St Luke's Hospital and Health Network, 801 Ostrum Street, Bethlehem, PA 18015, USA.
| | | |
Collapse
|
35
|
Immunomodulatory effects of phytocompounds characterized by in vivo transgenic human GM-CSF promoter activity in skin tissues. J Biomed Sci 2008; 15:813-22. [PMID: 18622761 DOI: 10.1007/s11373-008-9266-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 06/22/2008] [Indexed: 02/07/2023] Open
Abstract
To investigate the immunomodulatory activities of phytocompounds for potential therapeutics, we devised an in vivo, transgenic, human cytokine gene promoter assay using defined epidermal skin cells as test tissue. Test compounds were topically applied to mouse skin before or after gene gun transfection, using a cytokine gene promoter-driven luciferase reporter. Croton oil, an inflammation inducer, induced transgenic GM-CSF and TNF-alpha promoter activities in skin epidermis 6-fold and 3.4-fold, respectively; however, it produced a less than 1.5-fold and 1.7-fold change in IL-1beta and IL-18 promoter activity, respectively. The phytocompound shikonin drastically inhibited inducible GM-CSF promoter activity. However, a fraction of Dioscorea batatas extract significantly increased the GM-CSF promoter activity in normal and inflamed skin. Shikonin suppressed the transcriptional activity of GM-CSF promoter by inhibiting the binding of TFIID protein complex (TBP) to TATA box. Our results demonstrate that this in vivo transgenic promoter activity assay system is cytokine gene-specific, and highly responsive to pro-inflammatory or anti-inflammatory stimuli. Currently it is difficult to profile the expression and cross-talk of various types of cytokines in vivo. This investigation has established a bona fide in vivo, in situ, immune tissue system for research into cytokine response to inflammation.
Collapse
|
36
|
Finke LH, Wentworth K, Blumenstein B, Rudolph NS, Levitsky H, Hoos A. Lessons from randomized phase III studies with active cancer immunotherapies--outcomes from the 2006 meeting of the Cancer Vaccine Consortium (CVC). Vaccine 2008; 25 Suppl 2:B97-B109. [PMID: 17916465 DOI: 10.1016/j.vaccine.2007.06.067] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 06/01/2007] [Accepted: 06/14/2007] [Indexed: 11/26/2022]
Abstract
After years of effort to develop active cancer immunotherapies, seven candidate products achieved promising results in phase I/II studies that triggered phase III randomized studies. One candidate to date has received an approvable letter from the United States Food and Drug Administration (FDA), defining a clear path to licensure for sipuleucel-T (Provenge, Dendreon) within the next couple of years. The other phase III studies failed to achieve statistical criteria for some or all of the critical endpoints. Yet, there is widespread recognition that using a patient's own immune system to target and destroy cancer cells may offer an effective biological therapy with less toxicity than presently available anti-cancer therapies, and several candidates are still being evaluated in clinical studies. This review summarizes the lessons learned from these case studies, evaluates scientific, study design, and business factors that can affect study outcomes, identifies common challenges faced by sponsors developing these innovative therapies, and provides considerations for future study designs that may increase the likelihood of success.
Collapse
|
37
|
Cell based cancer vaccines: regulatory and commercial development. Vaccine 2008; 25 Suppl 2:B35-46. [PMID: 17916462 DOI: 10.1016/j.vaccine.2007.06.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 06/11/2007] [Accepted: 06/14/2007] [Indexed: 11/20/2022]
Abstract
There is both clinical and regulatory drive to expedite development of safe, efficacious cancer therapies. Stimulation of the patients immune system through vaccination with tumour cells has long been at the vanguard of cancer therapeutic vaccines, and several have been demonstrated to be safe and to have efficacy in early clinical trials for a range of cancers including melanoma, renal cell carcinoma, prostate and colorectal cancers. A number of development-stage vaccines and strategies are currently being tested, utilising either autologous or allogeneic tumour cells, which may also have been ex vivo manipulated (e.g. cytokine transfected cells). It seems likely that clinical trial success, and hence patient benefit, could be improved through better patient identification, possibly by the discovery and use of novel immune response biomarkers. In this review, we aim to summarise the state of tumour cell vaccines in commercial development and to explore not only the difficulties of determining efficacy, but also the production challenges faced when developing a vaccine from proof of principle to pivotal phase III trials.
Collapse
|
38
|
Kwitniewski M, Juzeniene A, Glosnicka R, Moan J. Immunotherapy: a way to improve the therapeutic outcome of photodynamic therapy? Photochem Photobiol Sci 2008; 7:1011-7. [DOI: 10.1039/b806710d] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
39
|
|