1
|
Zhao H, Zhang Z, Xue Y, Wang N, Liu Y, Ma X, Wang L, Wang X, Zhang D, Zhang J, Wu X, Liang Y. Evaluation of Immunogenicity of Mycobacterium tuberculosis ag85ab DNA Vaccine Delivered by Pulmonary Administration. Vaccines (Basel) 2025; 13:442. [PMID: 40432054 PMCID: PMC12115664 DOI: 10.3390/vaccines13050442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Tuberculosis (TB) is a respiratory infectious disease, and the current TB vaccine has low local lung protection. We aim to optimize immune pathways to improve the immunogenicity of vaccines. Methods: In the immunogenicity study, 50 BALB/c mice were randomly divided into the following: (1) phosphate buffered saline (PBS)+intramuscular injection combined with electroporation (EP) group (100 μL), (2) pVAX1+EP group (50 μg/100 μL), (3) ag85ab+EP group (50 μg/100 μL), (4) pVAX1+pulmonary delivery (PD) group (50 μg/50 μL), and (5) ag85ab+PD group (50 μg/50 μL). Immunization was given once every 2 weeks for a total of three times. The number of IFN-γ-secreting lung and spleen lymphocytes was determined by enzyme-linked immunospot assay (ELISPOT). The levels of Th1, Th2, and Th17 cytokines in the culture supernatants of lung and spleen lymphocytes were detected with the Luminex method. The proportion of FoxP3 regulatory T cells in splenocytes was determined by flow cytometry. The levels of IgG-, IgG1-, and IgG2a-specific antibodies in plasma and IgA antibody in bronchoalveolar lavage fluid (BALF) were determined by enzyme-linked immunosorbent assay (ELISA). Results: The PD and EP routes of Mycobacterium tuberculosis (M. tb) ag85ab DNA vaccine can effectively induce the responses of IFN-γ-secreting lung and spleen lymphocytes, and induce dominant Th1 and Th17 cell immune responses. The PD route can induce earlier, greater numbers and stronger responses of pulmonary effector T cells, with higher levels of the specific antibody IgA detected in BALF. High levels of the specific antibodies IgG, IgG1, and IgG2α were detected in the plasma of mice immunized by the EP route. Conclusions: The PD route of DNA vaccines can more effectively stimulate the body to produce strong cellular and mucosal immunity than the EP route, especially local cellular immunity in the lungs, which can provide early protection for the lungs. It can significantly improve the immunogenicity of the ag85ab DNA vaccine, suggesting a feasible and effective approach to DNA immunization.
Collapse
Affiliation(s)
- Haimei Zhao
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
- Graduate School, Hebei North University, Zhangjiakou 075000, China;
| | - Zhen Zhang
- Graduate School, Hebei North University, Zhangjiakou 075000, China;
| | - Yong Xue
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
| | - Nan Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
| | - Yinping Liu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
| | - Xihui Ma
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
| | - Lan Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
| | - Xiaoou Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
| | - Danyang Zhang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
| | - Junxian Zhang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
| | - Xueqiong Wu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
| | - Yan Liang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
| |
Collapse
|
2
|
Yang Y, Xue Y, Wang X, Wang L, Wang J, Zhang J, Liu Y, Liang Y, Wu X. Bioinformatics Analysis and Immunogenicity Assessment of the Novel Multi-Stage DNA Vaccine W541 Against Mycobacterium Tuberculosis. Immun Inflamm Dis 2024; 12:e70074. [PMID: 39588938 PMCID: PMC11590035 DOI: 10.1002/iid3.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Vaccination is one of the effective measures to prevent latent tuberculosis infection (LTBI) from developing into active tuberculosis (TB). Applying bioinformatics methods to pre-evaluate the biological characteristics and immunogenicity of vaccines can improve the efficiency of vaccine development. OBJECTIVES To evaluate the immunogenicity of TB vaccine W541 and to explore the application of bioinformatics technology in TB vaccine research. METHODS This study concatenated the immunodominant sequences of Ag85A, Ag85B, Rv3407, and Rv1733c to construct the W541 DNA vaccine. Then, bioinformatics methods were used to analyze the physicochemical properties, antigenicity, allergenicity, toxicity, and population coverage of the vaccine, to identify its epitopes, and to perform molecular docking with MHC alleles and Toll-like receptor 4 (TLR4) of the host. Finally, the immunogenicity of the vaccine was evaluated in animal experiments. RESULTS The W541 vaccine protein is a soluble cytoplasmic protein with a half-life of 1.1 h in vivo and an instability index of 45.37. It has good antigenicity and wide population coverage without allergenicity and toxicity. It contains 138 HTL epitopes, 73 CTL epitopes, 8 linear and 14 discontinuous B cell epitopes, and has a strong affinity for TLR4. Immune simulations have shown that it can effectively stimulate innate and adaptive immune responses. Animal experiments confirmed that the W541 DNA vaccine could effectively activate Th1- and Th17-type immune responses, producing high levels of IFN-γ and IL-17A, but could not significantly increase antibody levels. CONCLUSION The W541 DNA vaccine can induce strong cellular immune responses. However, further optimization of the vaccine design is needed to make the expressed protein more stable in vivo. Bioinformatics analysis could reveal the physicochemical and immunological information of vaccines, which is critical for guiding vaccine design and development.
Collapse
Affiliation(s)
- Yourong Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Yong Xue
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Xiaoou Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Lan Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Jie Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Junxian Zhang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Yinping Liu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Yan Liang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Xueqiong Wu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
3
|
de Lima MR, Leandro ACCS, de Souza AL, Barradas MM, Roma EH, Fernandes ATG, Galdino-Silva G, Carvalho JKMR, Marchevsky RS, Coelho JMCO, Gonçalves EDC, VandeBerg JL, Silva CL, Bonecini-Almeida MDG. Safety and Immunogenicity of an In Vivo Muscle Electroporation Delivery System for DNA- hsp65 Tuberculosis Vaccine in Cynomolgus Monkeys. Vaccines (Basel) 2023; 11:1863. [PMID: 38140266 PMCID: PMC10747856 DOI: 10.3390/vaccines11121863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
A Bacille Calmette-Guérin (BCG) is still the only licensed vaccine for the prevention of tuberculosis, providing limited protection against Mycobacterium tuberculosis infection in adulthood. New advances in the delivery of DNA vaccines by electroporation have been made in the past decade. We evaluated the safety and immunogenicity of the DNA-hsp65 vaccine administered by intramuscular electroporation (EP) in cynomolgus macaques. Animals received three doses of DNA-hsp65 at 30-day intervals. We demonstrated that intramuscular electroporated DNA-hsp65 vaccine immunization of cynomolgus macaques was safe, and there were no vaccine-related effects on hematological, renal, or hepatic profiles, compared to the pre-vaccination parameters. No tuberculin skin test conversion nor lung X-ray alteration was identified. Further, low and transient peripheral cellular immune response and cytokine expression were observed, primarily after the third dose of the DNA-hsp65 vaccine. Electroporated DNA-hsp65 vaccination is safe but provides limited enhancement of peripheral cellular immune responses. Preclinical vaccine trials with DNA-hsp65 delivered via EP may include a combination of plasmid cytokine adjuvant and/or protein prime-boost regimen, to help the induction of a stronger cellular immune response.
Collapse
Affiliation(s)
- Monique Ribeiro de Lima
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Ana Cristina C. S. Leandro
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
- Division of Human Genetics, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Andreia Lamoglia de Souza
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Marcio Mantuano Barradas
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Eric Henrique Roma
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Ana Teresa Gomes Fernandes
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Gabrielle Galdino-Silva
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Joyce Katiuccia M. Ramos Carvalho
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Renato Sergio Marchevsky
- Laboratory of Neurovirulence, Instituto de Biotecnologia em Imunobiológicos, Biomanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Janice M. C. Oliveira Coelho
- Laboratory of Pathology, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | | | - John L. VandeBerg
- Division of Human Genetics, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Celio Lopes Silva
- Farmacore Biotecnologia Ltda, Ribeirão Preto 14056-680, SP, Brazil; (E.D.C.G.); (C.L.S.)
- Laboratory for Research and Development of Immunobiologicals, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Maria da Gloria Bonecini-Almeida
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| |
Collapse
|
4
|
Wang N, Liang Y, Ma Q, Mi J, Xue Y, Yang Y, Wang L, Wu X. Mechanisms of ag85a/b DNA vaccine conferred immunotherapy and recovery from Mycobacterium tuberculosis-induced injury. Immun Inflamm Dis 2023; 11:e854. [PMID: 37249284 PMCID: PMC10187016 DOI: 10.1002/iid3.854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Our previous research developed a novel tuberculosis (TB) DNA vaccine ag85a/b that showed a significant therapeutic effect on the mouse tuberculosis model by intramuscular injection (IM) and electroporation (EP). However, the action mechanisms between these two vaccine immunization methods remain unclear. In a previous study, 96 Mycobacterium tuberculosis (MTB) H37 Rv-infected BALB/c mice were treated with phosphate-buffered saline, 10, 50, 100, and 200 μg ag85a/b DNA vaccine delivered by IM and EP three times at 2-week intervals, respectively. In this study, peripheral blood mononuclear cells (PBMCs) from three mice in each group were isolated to extract total RNA. The gene expression profiles were analyzed using gene microarray technology to obtain differentially expressed (DE) genes. Finally, DE genes were validated by real-time reverse transcription-quantitive polymerase chain reaction and the GEO database. After MTB infection, most of the upregulated DE genes were related to the digestion and absorption of nutrients or neuroendocrine (such as Iapp, Scg2, Chga, Amy2a5), and most of the downregulated DE genes were related to cellular structural and functional proteins, especially the structure and function proteins of the alveolar epithelial cell (such as Sftpc, Sftpd, Pdpn). Most of the abnormally upregulated or downregulated DE genes in the TB model group were recovered in the 100 and 200 μg ag85a/b DNA IM groups and four DNA EP groups. The pancreatic secretion pathway downregulated and the Rap1 signal pathway upregulated had particularly significant changes during the immunotherapy of the ag85a/b DNA vaccine on the mouse TB model. The action targets and mechanisms of IM and EP are highly consistent. Tuberculosis infection causes rapid catabolism and slow anabolism in mice. For the first time, we found that the effective dose of the ag85a/b DNA vaccine immunized whether by IM or EP could significantly up-regulate immune-related pathways and recover the metabolic disorder and the injury caused by MTB.
Collapse
Affiliation(s)
- Nan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Qianqian Ma
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Jie Mi
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yourong Yang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Lan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| |
Collapse
|
5
|
Luo X, Zeng X, Gong L, Ye Y, Sun C, Chen T, Zhang Z, Tao Y, Zeng H, Zou Q, Yang Y, Li J, Sun H. Nanomaterials in tuberculosis DNA vaccine delivery: historical perspective and current landscape. Drug Deliv 2022; 29:2912-2924. [PMID: 36081335 PMCID: PMC9467597 DOI: 10.1080/10717544.2022.2120565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Vaccinations, especially DNA vaccines that promote host immunity, are the most effective interventions for tuberculosis (TB) control. However, the vaccine delivery system exhibits a significant impact on the protective effects of the vaccine. Recently, effective nanomaterial-based delivery systems (including nanoparticles, nanogold, nanoliposomes, virus-like particles, and virus carriers) have been developed for DNA vaccines to control TB. This review highlights the historical development of various nanomaterial-based delivery systems for TB DNA vaccines, along with the emerging technologies. Nanomaterial-based vaccine delivery systems could enhance the efficacy of TB vaccination; therefore, this summary could guide nanomaterial selection for optimal and safe vaccine delivery, facilitating the design and development of highly effective TB vaccines.
Collapse
Affiliation(s)
- Xing Luo
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiaoqiang Zeng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Li Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Ye
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Cun Sun
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ting Chen
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Zelong Zhang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yikun Tao
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hao Zeng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yun Yang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jieping Li
- Department of Hematology Oncology, Chongqing University Cancer Hospital, Chongqing, China.,Department of Hematology, Changsha Central Hospital, Changsha, China
| | - Hongwu Sun
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
6
|
Schijns V, Fernández-Tejada A, Barjaktarović Ž, Bouzalas I, Brimnes J, Chernysh S, Gizurarson S, Gursel I, Jakopin Ž, Lawrenz M, Nativi C, Paul S, Pedersen GK, Rosano C, Ruiz-de-Angulo A, Slütter B, Thakur A, Christensen D, Lavelle EC. Modulation of immune responses using adjuvants to facilitate therapeutic vaccination. Immunol Rev 2020; 296:169-190. [PMID: 32594569 PMCID: PMC7497245 DOI: 10.1111/imr.12889] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Therapeutic vaccination offers great promise as an intervention for a diversity of infectious and non-infectious conditions. Given that most chronic health conditions are thought to have an immune component, vaccination can at least in principle be proposed as a therapeutic strategy. Understanding the nature of protective immunity is of vital importance, and the progress made in recent years in defining the nature of pathological and protective immunity for a range of diseases has provided an impetus to devise strategies to promote such responses in a targeted manner. However, in many cases, limited progress has been made in clinical adoption of such approaches. This in part results from a lack of safe and effective vaccine adjuvants that can be used to promote protective immunity and/or reduce deleterious immune responses. Although somewhat simplistic, it is possible to divide therapeutic vaccine approaches into those targeting conditions where antibody responses can mediate protection and those where the principal focus is the promotion of effector and memory cellular immunity or the reduction of damaging cellular immune responses as in the case of autoimmune diseases. Clearly, in all cases of antigen-specific immunotherapy, the identification of protective antigens is a vital first step. There are many challenges to developing therapeutic vaccines beyond those associated with prophylactic diseases including the ongoing immune responses in patients, patient heterogeneity, and diversity in the type and stage of disease. If reproducible biomarkers can be defined, these could allow earlier diagnosis and intervention and likely increase therapeutic vaccine efficacy. Current immunomodulatory approaches related to adoptive cell transfers or passive antibody therapy are showing great promise, but these are outside the scope of this review which will focus on the potential for adjuvanted therapeutic active vaccination strategies.
Collapse
Affiliation(s)
- Virgil Schijns
- Wageningen University, Cell Biology & Immunology and, ERC-The Netherlands, Schaijk, Landerd campus, The Netherlands
| | - Alberto Fernández-Tejada
- Chemical Immunology Lab, Center for Cooperative Research in Biosciences, CIC bioGUNE, Biscay, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Žarko Barjaktarović
- Agency for Medicines and Medical Devices of Montenegro, Podgorica, Montenegro
| | - Ilias Bouzalas
- Hellenic Agricultural Organization-DEMETER, Veterinary Research Institute, Thessaloniki, Greece
| | | | - Sergey Chernysh
- Laboratory of Insect Biopharmacology and Immunology, Department of Entomology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | | | | | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Maria Lawrenz
- Vaccine Formulation Institute (CH), Geneva, Switzerland
| | - Cristina Nativi
- Department of Chemistry, University of Florence, Florence, Italy
| | | | | | | | - Ane Ruiz-de-Angulo
- Chemical Immunology Lab, Center for Cooperative Research in Biosciences, CIC bioGUNE, Biscay, Spain
| | - Bram Slütter
- Div. BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Liang Y, Zhang X, Bai X, Yang Y, Gong W, Wang T, Ling Y, Zhang J, Wang L, Wang J, Li G, Chen Y, Chen X, Wu X. Immunogenicity and Therapeutic Effects of Latency-Associated Genes in a Mycobacterium Tuberculosis Reactivation Mouse Model. Hum Gene Ther Methods 2019; 30:60-69. [PMID: 30727774 DOI: 10.1089/hgtb.2018.211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Yan Liang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Xiaoyan Zhang
- Zhengzhou Kingmed Center for Clinical Laboratory, Zhengzhou, P.R. China
| | - Xuejuan Bai
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Yourong Yang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Wenping Gong
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Tong Wang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Yanbo Ling
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Junxian Zhang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Lan Wang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Jie Wang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Gaimei Li
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Yi Chen
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Xiaoyang Chen
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Xueqiong Wu
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| |
Collapse
|
8
|
Liang Y, Zhao Y, Bai X, Xiao L, Yang Y, Zhang J, Wang L, Cui L, Wang T, Shi Y, Zhao W, Wu X. Immunotherapeutic effects of Mycobacterium tuberculosis rv3407 DNA vaccine in mice. Autoimmunity 2019; 51:417-422. [PMID: 30632804 DOI: 10.1080/08916934.2018.1546291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tuberculosis (TB) is a major global public health problem. Latent TB infection (LTBI) is a major source of active TB. New vaccines to treat LTBI are urgently demanded. In this study, the gene encoding latency-associated antigen Rv3407 of Mycobacterium tuberculosis (MTB) rv3407 DNA vaccine was used to prepare and the immunogenicity and therapeutic effects were evaluated. Normal mice were immunized intramuscularly three times at two-week intervals with sterile water for injection, plasmid vector pVAX1, M. vaccae vaccine, ag85a DNA or rv3407 DNA. TB-infected mice were immunized intramuscularly three times at two-week intervals with phosphate-buffered saline (PBS) and rv3407 DNA. The normal mice immunized with rv3407 DNA or ag85a DNA showed higher levels of interferon-gamma (IFN-γ) in stimulated spleen lymphocyte culture supernatants, and had more Th1 cells and an elevated ratio of Th1/Th2 immune cells in whole blood, indicating that a Th1-type immune response was predominant. The levels of anti-Ag85A or anti-Rv3407 IgG antibody were significantly increased in the ag85a DNA and rv3407 DNA groups compared to the sterile water for injection, vector, and M. vaccae groups (p < .0001). Compared with the PBS group, the rv3407 DNA group had pulmonary bacterial loads that were lower by 0.56 log10 (p < .01). The mice vaccinated with rv3407 DNA developed antigen-specific cellular and humoral responses. The rv3407 DNA is a potential DNA vaccine candidate against TB.
Collapse
Affiliation(s)
- Yan Liang
- a Army Tuberculosis Prevention and Control Key Laboratory , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China.,b Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China
| | - Yajing Zhao
- a Army Tuberculosis Prevention and Control Key Laboratory , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China.,b Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China.,c Respiratory Department , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China
| | - Xuejuan Bai
- a Army Tuberculosis Prevention and Control Key Laboratory , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China.,b Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China
| | - Li Xiao
- a Army Tuberculosis Prevention and Control Key Laboratory , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China.,b Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China
| | - Yourong Yang
- a Army Tuberculosis Prevention and Control Key Laboratory , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China.,b Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China
| | - Junxian Zhang
- a Army Tuberculosis Prevention and Control Key Laboratory , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China.,b Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China
| | - Lan Wang
- a Army Tuberculosis Prevention and Control Key Laboratory , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China.,b Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China
| | - Lei Cui
- a Army Tuberculosis Prevention and Control Key Laboratory , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China.,b Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China
| | - Tong Wang
- a Army Tuberculosis Prevention and Control Key Laboratory , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China.,b Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China
| | - Yingchang Shi
- a Army Tuberculosis Prevention and Control Key Laboratory , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China.,b Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China
| | - Weiguo Zhao
- c Respiratory Department , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China
| | - Xueqiong Wu
- a Army Tuberculosis Prevention and Control Key Laboratory , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China.,b Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research , The 8th Medical Center of PLA General Hospital , Beijing , P. R. China
| |
Collapse
|
9
|
Gong W, Liang Y, Wu X. The current status, challenges, and future developments of new tuberculosis vaccines. Hum Vaccin Immunother 2018; 14:1697-1716. [PMID: 29601253 DOI: 10.1080/21645515.2018.1458806] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium tuberculosis complex causes tuberculosis (TB), one of the top 10 causes of death worldwide. TB results in more fatalities than multi-drug resistant (MDR) HIV strain related coinfection. Vaccines play a key role in the prevention and control of infectious diseases. Unfortunately, the only licensed preventive vaccine against TB, bacilli Calmette-Guérin (BCG), is ineffective for prevention of pulmonary TB in adults. Therefore, it is very important to develop novel vaccines for TB prevention and control. This literature review provides an overview of the innate and adaptive immune response during M. tuberculosis infection, and presents current developments and challenges to novel TB vaccines. A comprehensive understanding of vaccines in preclinical and clinical studies provides extensive insight for the development of safer and more efficient vaccines, and may inspire new ideas for TB prevention and treatment.
Collapse
Affiliation(s)
- Wenping Gong
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| | - Yan Liang
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| | - Xueqiong Wu
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| |
Collapse
|
10
|
Liang Y, Zhang J, Yang Y, Bai X, Yu Q, Li N, Hou Y, Shi Y, Wang L, Wu X. Immunogenicity and therapeutic effects of recombinant Ag85AB fusion protein vaccines in mice infected with Mycobacterium tuberculosis. Vaccine 2018. [PMID: 28625522 DOI: 10.1016/j.vaccine.2017.05.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The immune function of tuberculosis (TB) patients is disordered. By using immune regulators to assist chemotherapy for TB the curative effect might be improved. In this study, a vaccine containing Mycobacterium tuberculosis (M. tuberculosis) recombinant Ag85AB fusion protein (rAg85AB) was constructed and evaluated. The mice were immunized intramuscularly three times at two-week intervals with Ag85AB fusion protein combined with Corynebacterium parvum adjuvant (rAg85AB+CP). In comparison to control mice that received either CP alone or saline, the mice that received rAg85AB+CP had significantly higher number of T cells secreting IFN-γ and higher levels of specific antibodies of IgG, IgG1 and IgG2a isotypes in sera. The specific antibodies also had higher ratios of IgG2a to IgG1, indicating a predominant Th1 immune response. To test for immunotherapy of TB, M. tuberculosis infected mice were given three intramuscular doses of 20μg, 40μg or 60μg of rAg85AB in rAg85AB+CP, or phosphate-buffered saline (PBS), or CP or Mycobacterium phlei (M. Phlei) F.U.36. Compared with the PBS group, 20µg, 40µg and 60µg rAg85AB+CP and M. phlei F.U.36 groups reduced the pulmonary bacterial loads by 0.13, 0.15, 0.42 and 0.40 log10, and the liver bacterial loads by 0.64, 0.64, 0.53 and 0.61 log10, respectively. Pathological changes of lungs were less, and the lesions were limited to a certain extent in 40µg and 60µg rAg85AB+CP and M. phlei F.U.36 groups. These results showed that rAg85AB+CP had immunotherapeutic effect on TB, significantly increasing the cellular immune response, and inhibiting the growth of M. tuberculosis.
Collapse
Affiliation(s)
- Yan Liang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, China
| | - Junxian Zhang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, China
| | - Yourong Yang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, China
| | - Xuejuan Bai
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, China
| | - Qi Yu
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, China
| | - Ning Li
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, China
| | - Ying Hou
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, China
| | - Yingchang Shi
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, China
| | - Lan Wang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, China
| | - Xueqiong Wu
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, China.
| |
Collapse
|
11
|
Liang Y, Zhang X, Bai X, Xiao L, Wang X, Zhang J, Yang Y, Song J, Wang L, Wu X. Immunogenicity and therapeutic effects of a Mycobacterium tuberculosis rv2190c DNA vaccine in mice. BMC Immunol 2017; 18:11. [PMID: 28241799 PMCID: PMC5327546 DOI: 10.1186/s12865-017-0196-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 02/16/2017] [Indexed: 11/14/2022] Open
Abstract
Background Tuberculosis (TB) is a major global public health problem. New treatment methods on TB are urgently demanded. In this study, Mycobacterium tuberculosis (MTB) rv2190c DNA vaccine was prepared and its immunogenicity and therapeutic effects were evaluated. Results Non-infected mice immunized with rv2190c DNA or ag85a DNA showed higher levels of interferon-gamma (IFN-γ) in stimulated spleen lymphocyte culture supernatants, and had more Th1 cells and an elevatory ratio of Th1/Th2 immune cells in whole blood, indicating that Th1-type immune response was predominant. Compared with the saline group, ag85a DNA group and rv2190c DNA group in the infected mice decreased the lung colony-forming units (CFUs) by 0.533 and 0.283 log10, and spleen CFUs by 0.425 and 0.321 log10 respectively, and pathological lesion. Conclusions The rv2190c DNA had some immunotherapeutic effect on TB. Electronic supplementary material The online version of this article (doi:10.1186/s12865-017-0196-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Liang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 309th Hospital of Chinese PLA, Beijing, 100091, People's Republic of China
| | - Xiaoyan Zhang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 309th Hospital of Chinese PLA, Beijing, 100091, People's Republic of China.,Zhengzhou Kingmed Center for Clinical Laboratory, Zhengzhou, 450016, People's Republic of China
| | - Xuejuan Bai
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 309th Hospital of Chinese PLA, Beijing, 100091, People's Republic of China
| | - Li Xiao
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 309th Hospital of Chinese PLA, Beijing, 100091, People's Republic of China
| | - Xiaomei Wang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 309th Hospital of Chinese PLA, Beijing, 100091, People's Republic of China
| | - Junxian Zhang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 309th Hospital of Chinese PLA, Beijing, 100091, People's Republic of China
| | - Yourong Yang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 309th Hospital of Chinese PLA, Beijing, 100091, People's Republic of China
| | - Jinying Song
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 309th Hospital of Chinese PLA, Beijing, 100091, People's Republic of China
| | - Lan Wang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 309th Hospital of Chinese PLA, Beijing, 100091, People's Republic of China
| | - Xueqiong Wu
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 309th Hospital of Chinese PLA, Beijing, 100091, People's Republic of China.
| |
Collapse
|
12
|
Boosting BCG-primed mice with chimeric DNA vaccine HG856A induces potent multifunctional T cell responses and enhanced protection against Mycobacterium tuberculosis. Immunol Res 2016; 64:64-72. [PMID: 26111521 DOI: 10.1007/s12026-015-8674-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The tuberculosis pandemic continues to rampage despite widespread use of the current Bacillus Calmette-Guerin (BCG) vaccine. Because DNA vaccines can elicit effective antigen-specific immune responses, including potent T cell-mediated immunity, they are promising vehicles for antigen delivery. In a prime-boost approach, they can supplement the inadequate anti-TB immunological memory induced by BCG. Based on this, a chimeric DNA vaccine HG856A encoding Mycobacterium tuberculosis (M. tuberculosis) immunodominant antigen Ag85A plus two copies of ESAT-6 was constructed. Potent humoral immune responses, as well as therapeutic effects induced by this DNA vaccine, were observed previously in M. tuberculosis-infected mice. In this study, we further evaluated the antigen-specific T cell immune responses and showed that repeated immunization with HG856A gave modest protection against M. tuberculosis challenge infection and significantly boosted the immune protection primed by BCG vaccination. Enhanced protection was accompanied by increased multifunctional Th1 CD4(+) T cell responses, most notably by an elevated frequency of M. tuberculosis antigen-specific IL-2-producing CD4(+) T cells post-vaccination. These data confirm the potential of chimeric DNA vaccine HG856A as an anti-TB vaccine candidate.
Collapse
|
13
|
Liang Y, Bai X, Zhang J, Song J, Yang Y, Yu Q, Li N, Wu X. Ag85A/ESAT-6 chimeric DNA vaccine induces an adverse response in tuberculosis-infected mice. Mol Med Rep 2016; 14:1146-52. [PMID: 27279275 PMCID: PMC4940052 DOI: 10.3892/mmr.2016.5364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 03/24/2016] [Indexed: 11/16/2022] Open
Abstract
The Mycobacterium tuberculosis (M. tb) antigens encoded by the 6 kDa early secretory antigenic target (esat-6) and antigen 85A (ag85a) genes are known to exert protective effects against tuberculosis in animal models. In addition, these antigens represent vaccine components that were tested in early human clinical trials. In the present study, a chimeric DNA vaccine was constructed that contained two copies of the esat-6 gene inserted into the ag85a gene from M. tb. BALB/c mice were treated with this chimeric vaccine following infection with either M. tb H37Rv or a clinical multi drug resistant tuberculosis isolate. Treatment of both groups of mice with the chimeric vaccine resulted in accelerated mortality. These findings are in contrast with previous results, which indicated that DNA vaccines expressing the individual antigens were either beneficial or at least not harmful. The results of the present study suggested that the ESAT-6 antigen is not suitable for inclusion in therapeutic vaccines.
Collapse
Affiliation(s)
- Yan Liang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, P.R. China
| | - Xuejuang Bai
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, P.R. China
| | - Junxian Zhang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, P.R. China
| | - Jingying Song
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, P.R. China
| | - Yourong Yang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, P.R. China
| | - Qi Yu
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, P.R. China
| | - Ning Li
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, P.R. China
| | - Xueqiong Wu
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, P.R. China
| |
Collapse
|
14
|
Liang Y, Wu X, Zhang J, Xiao L, Yang Y, Bai X, Yu Q, Li Z, Bi L, Li N, Wu X. Immunogenicity and therapeutic effects of Ag85A/B chimeric DNA vaccine in mice infected with Mycobacterium tuberculosis. ACTA ACUST UNITED AC 2013; 66:419-26. [PMID: 23163873 DOI: 10.1111/1574-695x.12008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 09/09/2012] [Accepted: 09/17/2012] [Indexed: 11/27/2022]
Abstract
The situation of tuberculosis (TB) is very severe in China. New therapeutic agents or regimens to treat TB are urgently needed. In this study, Mycobacterium tuberculosis-infected mice were given immunotherapy intramuscularly with Ag85A/B chimeric DNA or saline, plasmid vector pVAX1, or Mycobacterium vaccae vaccine. The mice treated with Ag85A/B chimeric DNA showed significantly higher numbers of T cells secreting interferon-gamma (IFN-γ), more IFN-γ in splenocyte culture supernatant, more Th1 and Tc1 cells, and higher ratios of Th1/Th2 and Tc1/Tc2 cells in whole blood, indicating a predominant Th1 immune response to treatment. Infected mice treated with doses of 100 μg Ag85A/B chimeric DNA had an extended time until death of 50% of the animals that was markedly longer than the saline and vector control groups, and the death rate at 1 month after the last dose was lower than that in the other groups. Compared with the saline group, 100 μg Ag85A/B chimeric DNA and 100 μg Ag85A DNA reduced the pulmonary bacterial loads by 0.79 and 0.45 logs, and the liver bacterial loads by 0.52 and 0.50 logs, respectively. Pathological changes in the lungs were less, and the lesions were more limited. These results show that Ag85A/B chimeric DNA was effective for the treatment of TB, significantly increasing the cellular immune response and inhibiting the growth of M. tuberculosis.
Collapse
Affiliation(s)
- Yan Liang
- Army Tuberculosis Prevention and Control Key Laboratory, Institute of Tuberculosis Research, the 309th Hospital of Chinese PLA, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
BAO HONG, YU TING, JIN YUFEN, TENG CHUNYAN, LIU XIMING, LI YANLEI. Construction of a DNA vaccine based on the Mycobacterium tuberculosis Ag85A/MPT64 fusion gene and evaluation of its immunogenicity. Mol Med Rep 2012; 6:1375-8. [DOI: 10.3892/mmr.2012.1109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 09/07/2012] [Indexed: 11/05/2022] Open
|
16
|
Zhang Y, Liu J, Wang Y, Xian Q, Shao L, Yang Z, Wang X. Immunotherapy using IL-2 and GM-CSF is a potential treatment for multidrug-resistant Mycobacterium tuberculosis. SCIENCE CHINA. LIFE SCIENCES 2012; 55:800-806. [PMID: 23015129 DOI: 10.1007/s11427-012-4368-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/20/2012] [Indexed: 12/01/2022]
Abstract
This study investigated the therapeutic effects of interleukin (IL)-2 and granulocyte-macrophage colony-stimulating factor (GM-CSF) co-administrated with antibacterial agents isoniazid (INH) and rifampin (RIF) to treat a mouse model of tuberculosis (TB) infection. A drug-susceptible TB strain, H37Rv was used to infect mice and the effectiveness of IL-2 and GM-CSF was initially evaluated based on survival rate, bacterial counts in lungs and spleens and the pathological condition of the lungs. Next, the therapeutic effect of the immunotherapy regimen was assessed in multidrug-resistant strain OB35-infected mice. In the H37Rv infection model, IL-2 and GM-CSF monotherapies reduced bacterial numbers in the lungs by 0.82 (P<0.01) and 0.58 (P<0.05) lg colony-forming units (CFU), respectively, and in the spleens by 1.42 (P<0.01) and 1.22 (P<0.01) lg CFU, respectively, compared with the untreated group. Mice receiving immunotherapy developed fewer lesions in the lungs compared with mice receiving antibacterial therapy alone. In the OB35 infection model, immunotherapy with either cytokine resulted in a significant reduction of bacterial load in the lungs and spleens and less severe lesions in the lungs compared with the untreated or antibacterial therapy treated mice. Notably, mice receiving immunotherapy with both cytokines had a 30% survival rate which was higher than that in other treated groups, and had significantly less CFUs in the lungs and spleens (1.02 and 1.34 lg CFU) compared with antibacterial therapy alone (P<0.01). This study demonstrated that immunotherapy with both IL-2 and GM-CSF may be useful to treat multidrug resistant tuberculosis (MDR-TB).
Collapse
Affiliation(s)
- YongRong Zhang
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Lowrie DB. Tuberculosis vaccine research in China. Emerg Microbes Infect 2012; 1:e7. [PMID: 26038419 PMCID: PMC3636423 DOI: 10.1038/emi.2012.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/27/2012] [Accepted: 03/28/2012] [Indexed: 12/21/2022]
Abstract
It is now privately acknowledged that there may be little if any perceptible impact of the national Bacille Calmette-Guerin (BCG) vaccination program on disease prevalence, despite the extensive coverage of the newborn infant population and likely benefit in the early years of life. A better preventive vaccine than BCG is now being sought by Chinese researchers. Urgency has been added to the control problem by the emergence of multidrug-resistant tuberculosis (TB). Furthermore, expensive second-line drugs seem unlikely to be made available by the government to treat drug-resistant cases, so attention in addition has turned to the potential of immunotherapy as an adjunct to chemotherapy. Research trends are summarized here.
Collapse
Affiliation(s)
- Douglas B Lowrie
- Shanghai Public Health Clinical Center, Fudan University , Shanghai 201508, China
| |
Collapse
|
18
|
Abstract
Mycobacterium tuberculosis was one of the first human pathogens to be identified as the cause of a specific disease – TB. TB was also one of the first specific diseases for which immunotherapy was attempted. In more than a century since, multiple different immunotherapies have been attempted, alongside vaccination and antibiotic treatment, with varying degrees of success. Despite this, TB remains a major worldwide health problem that causes nearly 2 million deaths annually and has infected an estimated 2 billion people. A major reason for this is that M. tuberculosis is an ancient human pathogen that has evolved complex strategies for persistence in the human host. It has thus been long understood that, to effectively control TB, we will need to address the ability of the pathogen to establish a persistent, latent infection in most infected individuals. This review discusses what is presently known about the interaction of M. tuberculosis with the immune system, and how this knowledge has been used to design immunotherapeutic strategies.
Collapse
Affiliation(s)
- T Mark Doherty
- Medical Affairs, GlaxoSmithKline, Brøndby, DK-2605, Copenhagen, Denmark
| |
Collapse
|
19
|
Liang Y, Wu X, Zhang J, Yang Y, Wang L, Bai X, Yu Q, Li N, Li Z. Treatment of Multi-Drug-Resistant Tuberculosis in Mice with DNA Vaccines Alone or in Combination with Chemotherapeutic Drugs. Scand J Immunol 2011; 74:42-6. [DOI: 10.1111/j.1365-3083.2011.02538.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Immunogenicity and protective efficacy against murine tuberculosis of a prime-boost regimen with BCG and a DNA vaccine expressing ESAT-6 and Ag85A fusion protein. Clin Dev Immunol 2011; 2011:617892. [PMID: 21461375 PMCID: PMC3065234 DOI: 10.1155/2011/617892] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 12/30/2010] [Indexed: 11/17/2022]
Abstract
Heterologous prime-boost regimens utilizing BCG as a prime vaccine probably represent the best hope for the development of novel tuberculosis (TB) vaccines. In this study, we examined the immunogenicity and protective efficacy of DNA vaccine (pcD685A) expressing the fusion protein of Ag85A and ESAT-6 (r685A) and its booster effects in BCG-immunized mice. The recombinant r685A fusion protein stimulated higher level of antigen-specific IFN-γ release in tuberculin skin test- (TST-) positive healthy household contacts of active pulmonary TB patients than that in TST-negative population. Vaccination of C57BL/6 mice with pcD685A resulted in significant protection against challenge with virulent Mycobacterium tuberculosis H37Rv when compared with the control group. Most importantly, pcD685A could act as a BCG booster and amplify Th1-type cell-mediated immunity in the lung of BCG-vaccinated mice as shown the increased expression of IFN-γ. The most significant reduction in bacterial load of both spleen and lung was obtained in mice vaccinated with BCG prime and pcD685A DNA booster when compared with BCG or pcD685A alone. Thus, our study indicates that pcD685A may be an efficient booster vaccine against TB with a strong ability to enhance prior BCG immunity.
Collapse
|
21
|
Krammer F, Schinko T, Messner P, Palmberger D, Ferko B, Grabherr R. Influenza virus-like particles as an antigen-carrier platform for the ESAT-6 epitope of Mycobacterium tuberculosis. J Virol Methods 2010; 167:17-22. [PMID: 20304011 PMCID: PMC4388402 DOI: 10.1016/j.jviromet.2010.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/02/2010] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
Various virus-like particles (VLPs) have been shown to induce cytotoxic T-cell immune response as well as B-cell immune response. This makes VLPs promising candidates for antigen-carrier platforms for various epitopes. Influenza A VLPs were produced displaying a 20 amino acid sequence from Mycobacterium tuberculosis early secretory antigenic target 6 protein (ESAT-6). As this sequence is known to comprise a potent T-cell epitope it was chosen as a model for a foreign epitope to be presented on an influenza VLP scaffold. The ESAT-6 epitope was engineered into the antigenic region B of the influenza hemagglutinin (HA) from strain A/New Caledonia/20/99. VLPs were expressed in insect cells and subjected to immunization studies in mice. High serum antibody titers detected against recombinant ESAT-6 demonstrated the feasibility of influenza A VLPs serving as an efficient platform for epitope presentation.
Collapse
Affiliation(s)
- Florian Krammer
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Theresa Schinko
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Paul Messner
- Department of Nanobiotechnology, University of Natural Resources and Applied Life Sciences, 1190 Vienna, Austria
| | - Dieter Palmberger
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Boris Ferko
- Avir Green Hills Biotechnology AG, 1180 Vienna, Austria
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
22
|
Abstract
The current tuberculosis (TB) vaccine bacillus Calmette-Guérin (BCG) fails to protect against adult pulmonary TB. Yet, its capacity to control miliary TB in newborn infants forms the basis for development of novel vaccine candidates. These either exploit genetic modification of BCG to create a viable replacement vaccine or use BCG to prime the immune response followed by boost with a novel subunit vaccine. This could ultimately result in a combination vaccination schedule comprising a prime with a live BCG replacement followed by a subunit vaccine boost. Ultimately, vaccination strategies that achieve sterile eradication of, or prevent infection with, tubercle bacilli would be an ambitious highly promising goal.
Collapse
Affiliation(s)
- S H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
23
|
Carvalho JA, Rodgers J, Atouguia J, Prazeres DMF, Monteiro GA. DNA vaccines: a rational design against parasitic diseases. Expert Rev Vaccines 2010; 9:175-91. [PMID: 20109028 DOI: 10.1586/erv.09.158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Parasitic diseases are one of the most devastating causes of morbidity and mortality worldwide. Although immunization against these infections would be an ideal solution, the development of effective vaccines has been hampered by specific challenges posed by parasitic pathogens. Plasmid-based DNA vaccines may prove to be promising immunization tools in this area because vectors can be designed to integrate several antigens from different stages of the parasite life cycle or different subspecies; vaccines, formulations and immunization protocols can be tuned to match the immune response that offers protective immunity; and DNA vaccination is an affordable platform for developing countries. Partial and full protective immunity have been reported following DNA vaccination against the most significant parasitic diseases in the world.
Collapse
Affiliation(s)
- Joana A Carvalho
- Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
24
|
Immunotherapy with combined DNA vaccines is an effective treatment for M. bovis infection in cattle. Vaccine 2009; 27:1317-22. [DOI: 10.1016/j.vaccine.2008.12.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/17/2008] [Accepted: 12/28/2008] [Indexed: 11/17/2022]
|