1
|
Van Hoeven N, Wiley S, Gage E, Fiore-Gartland A, Granger B, Gray S, Fox C, Clements DE, Parks DE, Winram S, Stinchcomb DT, Reed SG, Coler RN. A combination of TLR-4 agonist and saponin adjuvants increases antibody diversity and protective efficacy of a recombinant West Nile Virus antigen. NPJ Vaccines 2018; 3:39. [PMID: 30302281 PMCID: PMC6158298 DOI: 10.1038/s41541-018-0077-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022] Open
Abstract
Members of the Flaviviridae family are the leading causes of mosquito-borne viral disease worldwide. While dengue virus is the most prevalent, the recent Zika virus outbreak in the Americas triggered a WHO public health emergency, and yellow fever and West Nile viruses (WNV) continue to cause regional epidemics. Given the sporadic nature of flaviviral epidemics both temporally and geographically, there is an urgent need for vaccines that can rapidly provide effective immunity. Protection from flaviviral infection is correlated with antibodies to the viral envelope (E) protein, which encodes receptor binding and fusion functions. TLR agonist adjuvants represent a promising tool to enhance the protective capacity of flavivirus vaccines through dose and dosage reduction and broadening of antiviral antibody responses. This study investigates the ability to improve the immunogenicity and protective capacity of a promising clinical-stage WNV recombinant E-protein vaccine (WN-80E) using a novel combination adjuvant, which contains a potent TLR-4 agonist and the saponin QS21 in a liposomal formulation (SLA-LSQ). Here, we show that, in combination with WN-80E, optimized SLA-LSQ is capable of inducing long-lasting immune responses in preclinical models that provide sterilizing protection from WNV challenge, reducing viral titers following WNV challenge to undetectable levels in Syrian hamsters. We have investigated potential mechanisms of action by examining the antibody repertoire generated post-immunization. SLA-LSQ induced a more diverse antibody response to WNV recombinant E-protein antigen than less protective adjuvants. Collectively, these studies identify an adjuvant formulation that enhances the protective capacity of recombinant flavivirus vaccines.
Collapse
Affiliation(s)
- Neal Van Hoeven
- 1Infectious Disease Research Institute, 1616 Eastlake Ave E., Suite 400, Seattle, WA 98102 USA.,2Pathobiology Program, Department of Global Health, University of Washington, Seattle, WA 98195 USA
| | - Steven Wiley
- Imdaptive Inc., 3010 Northwest 56th Street, Seattle, WA 98107 USA
| | - Emily Gage
- 1Infectious Disease Research Institute, 1616 Eastlake Ave E., Suite 400, Seattle, WA 98102 USA.,2Pathobiology Program, Department of Global Health, University of Washington, Seattle, WA 98195 USA
| | - Andrew Fiore-Gartland
- 4Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA
| | - Brian Granger
- 1Infectious Disease Research Institute, 1616 Eastlake Ave E., Suite 400, Seattle, WA 98102 USA
| | - Sean Gray
- 5PAI Life Sciences Incorporated, 1616 Eastlake Avenue, Suite 250, Seattle, WA 98102 USA
| | - Christopher Fox
- 1Infectious Disease Research Institute, 1616 Eastlake Ave E., Suite 400, Seattle, WA 98102 USA.,2Pathobiology Program, Department of Global Health, University of Washington, Seattle, WA 98195 USA
| | - David E Clements
- 6Hawaii Biotech Inc., 99-193 Aiea Heights Drive, Aiea, HI 96701 USA
| | - D Elliot Parks
- 6Hawaii Biotech Inc., 99-193 Aiea Heights Drive, Aiea, HI 96701 USA
| | - Scott Winram
- 7Leidos Inc., 11951 Freedom Drive, Reston, VA 20190 USA
| | - Dan T Stinchcomb
- 1Infectious Disease Research Institute, 1616 Eastlake Ave E., Suite 400, Seattle, WA 98102 USA
| | - Steven G Reed
- 1Infectious Disease Research Institute, 1616 Eastlake Ave E., Suite 400, Seattle, WA 98102 USA.,2Pathobiology Program, Department of Global Health, University of Washington, Seattle, WA 98195 USA
| | - Rhea N Coler
- 1Infectious Disease Research Institute, 1616 Eastlake Ave E., Suite 400, Seattle, WA 98102 USA.,2Pathobiology Program, Department of Global Health, University of Washington, Seattle, WA 98195 USA.,5PAI Life Sciences Incorporated, 1616 Eastlake Avenue, Suite 250, Seattle, WA 98102 USA
| |
Collapse
|
2
|
A Single Mutation at Position 156 in the Envelope Protein of Tembusu Virus Is Responsible for Virus Tissue Tropism and Transmissibility in Ducks. J Virol 2018; 92:JVI.00427-18. [PMID: 29899104 DOI: 10.1128/jvi.00427-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 01/20/2023] Open
Abstract
Duck Tembusu virus (TMUV), like other mosquito-borne flaviviruses, such as Japanese encephalitis virus, West Nile virus, and Bagaza virus, is able to transmit vector-independently. To date, why these flaviviruses can be transmitted without mosquito vectors remains poorly understood. To explore the key molecular basis of flavivirus transmissibility, we compared virus replication and transmissibility of an early and a recent TMUV in ducks. The recent TMUV strain FX2010 replicated systemically and transmitted efficiently in ducks, while the replication of early strain MM1775 was limited and did not transmit among ducks. The TMUV envelope protein and its domain I were responsible for tissue tropism and transmissibility. The mutation S156P in the domain I resulted in disruption of N-linked glycosylation at amino acid 154 of the E protein and changed the conformation of "150 loop" of the E protein, which reduced virus replication in lungs and abrogated transmission in ducks. These data indicate that the 156S in the envelope protein is critical for TMUV tissue tropism and transmissibility in ducks in the absence of mosquitos. Our findings provide novel insights on understanding TMUV transmission among ducks.IMPORTANCE Tembusu virus, similar to other mosquito-borne flaviviruses such as WNV, JEV, and BAGV, can be transmitted without the presence of mosquito vectors. We demonstrate that the envelope protein of TMUV and its amino acid (S) at position 156 is responsible for tissue tropism and transmission in ducks. The mutation S156P results in disruption of N-linked glycosylation at amino acid 154 of the E protein and changes the conformation of "150 loop" of the E protein, which induces limited virus replication in lungs and abrogates transmission between ducks. Our findings provide new knowledge about TMUV transmission among ducks.
Collapse
|
3
|
Abstract
The persistence of West Nile virus (WNV) infections throughout the USA since its inception in 1999 and its continuous spread throughout the globe calls for an urgent need of effective treatments and prevention measures. Although the licensing of several WNV vaccines for veterinary use provides a proof of concept, similar efforts on the development of an effective vaccine for humans remain still unsuccessful. Increased understanding of biology and pathogenesis of WNV together with recent technological advancements have raised hope that an effective WNV vaccine may be available in the near future. In addition, rapid progress in the structural and functional characterization of WNV and other flaviviral proteins have provided a solid base for the design and development of several classes of inhibitors as potential WNV therapeutics. Moreover, the therapeutic monoclonal antibodies demonstrate an excellent efficacy against WNV in animal models and represent a promising class of WNV therapeutics. However, there are some challenges as to the design and development of a safe and efficient WNV vaccine or therapeutic. In this chapter, we discuss the current approaches, progress, and challenges toward the development of WNV vaccines, therapeutic antibodies, and antiviral drugs.
Collapse
|
4
|
Van Hoeven N, Joshi SW, Nana GI, Bosco-Lauth A, Fox C, Bowen RA, Clements DE, Martyak T, Parks DE, Baldwin S, Reed SG, Coler RN. A Novel Synthetic TLR-4 Agonist Adjuvant Increases the Protective Response to a Clinical-Stage West Nile Virus Vaccine Antigen in Multiple Formulations. PLoS One 2016; 11:e0149610. [PMID: 26901122 PMCID: PMC4762984 DOI: 10.1371/journal.pone.0149610] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/02/2016] [Indexed: 01/27/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-transmitted member of the Flaviviridae family that has emerged in recent years to become a serious public health threat. Given the sporadic nature of WNV epidemics both temporally and geographically, there is an urgent need for a vaccine that can rapidly provide effective immunity. Protection from WNV infection is correlated with antibodies to the viral envelope (E) protein, which encodes receptor binding and fusion functions. Despite many promising E-protein vaccine candidates, there are currently none licensed for use in humans. This study investigates the ability to improve the immunogenicity and protective capacity of a promising clinical-stage WNV recombinant E-protein vaccine (WN-80E) by combining it with a novel synthetic TLR-4 agonist adjuvant. Using the murine model of WNV disease, we find that inclusion of a TLR-4 agonist in either a stable oil-in-water emulsion (SE) or aluminum hydroxide (Alum) formulation provides both dose and dosage sparing functions, whereby protection can be induced after a single immunization containing only 100 ng of WN-80E. Additionally, we find that inclusion of adjuvant with a single immunization reduced viral titers in sera to levels undetectable by viral plaque assay. The enhanced protection provided by adjuvanted immunization correlated with induction of a Th1 T-cell response and the resultant shaping of the IgG response. These findings suggest that inclusion of a next generation adjuvant may greatly enhance the protective capacity of WNV recombinant subunit vaccines, and establish a baseline for future development.
Collapse
Affiliation(s)
- Neal Van Hoeven
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle, WA 98103, United States of America
- * E-mail:
| | - Sharvari Waghmare Joshi
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle, WA 98103, United States of America
| | - Ghislain Ismael Nana
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle, WA 98103, United States of America
| | - Angela Bosco-Lauth
- Colorado State University Department of Biomedical Sciences, Foothills Campus, Fort Collins, CO 80523, United States of America
| | - Christopher Fox
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle, WA 98103, United States of America
| | - Richard A. Bowen
- Colorado State University Department of Biomedical Sciences, Foothills Campus, Fort Collins, CO 80523, United States of America
| | - David E. Clements
- Hawaii Biotech Inc. 99-193 Aiea Heights Drive, Aiea, Hawaii 96701, United States of America
| | - Timothy Martyak
- Hawaii Biotech Inc. 99-193 Aiea Heights Drive, Aiea, Hawaii 96701, United States of America
| | - D. Elliot Parks
- Hawaii Biotech Inc. 99-193 Aiea Heights Drive, Aiea, Hawaii 96701, United States of America
| | - Susan Baldwin
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle, WA 98103, United States of America
| | - Steven G. Reed
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle, WA 98103, United States of America
| | - Rhea N. Coler
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle, WA 98103, United States of America
| |
Collapse
|
5
|
Yamshchikov V, Manuvakhova M, Rodriguez E. Development of a human live attenuated West Nile infectious DNA vaccine: Suitability of attenuating mutations found in SA14-14-2 for WN vaccine design. Virology 2015; 487:198-206. [PMID: 26545140 DOI: 10.1016/j.virol.2015.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 01/21/2023]
Abstract
Direct attenuation of West Nile (WN) virus strain NY99 for the purpose of vaccine development is not feasible due to its high virulence and pathogenicity. Instead, we created highly attenuated chimeric virus W1806 with the serological identity of NY99. To further attenuate W1806, we investigated effects of mutations found in Japanese encephalitis virus vaccine SA14-14-2. WN viruses carrying all attenuating mutations lost infectivity in mammalian, but not in mosquito cells. No single reversion restored infectivity in mammalian cells, although increased infectivity in mosquito cells was observed. To identify a subset of mutations suitable for further attenuation of W1806, we analyzed effects of E138K and K279M changes on virulence, growth properties, and immunogenicity of derivatized W956, from which chimeric W1806 inherited its biological properties and attenuation profile. Despite strong dominant attenuating effect, introduction of only two mutations was not sufficient for attenuating W1806 to the safety level acceptable for human use.
Collapse
Affiliation(s)
| | - Marina Manuvakhova
- Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, United States
| | - Efrain Rodriguez
- Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, United States
| |
Collapse
|
6
|
Chen Q. Plant-made vaccines against West Nile virus are potent, safe, and economically feasible. Biotechnol J 2015; 10:671-80. [PMID: 25676782 PMCID: PMC4424112 DOI: 10.1002/biot.201400428] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/02/2014] [Accepted: 01/15/2015] [Indexed: 11/07/2022]
Abstract
The threat of West Nile virus (WNV) epidemics with increasingly severe neuroinvasive infections demands the development and licensing of effective vaccines. To date, vaccine candidates based on inactivated, live-attenuated, or chimeric virus, and viral DNA and WNV protein subunits have been developed. Some have been approved for veterinary use or are under clinical investigation, yet no vaccine has been licensed for human use. Reaching the milestone of a commercialized human vaccine, however, may largely depend on the economics of vaccine production. Analysis suggests that currently only novel low-cost production technologies would allow vaccination to outcompete the cost of surveillance and clinical treatment. Here, we review progress using plants to address the economic challenges of WNV vaccine production. The advantages of plants as hosts for vaccine production in cost, speed and scalability, especially those of viral vector-based transient expression systems, are discussed. The progress in developing WNV subunit vaccines in plants is reviewed within the context of their expression, characterization, downstream processing, and immunogenicity in animal models. The development of vaccines based on enveloped and non-enveloped virus-like particles is also discussed. These advancements suggest that plants may provide a production platform that offers potent, safe and affordable human vaccines against WNV.
Collapse
Affiliation(s)
- Qiang Chen
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA; School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
7
|
Flavivirus reverse genetic systems, construction techniques and applications: a historical perspective. Antiviral Res 2014; 114:67-85. [PMID: 25512228 PMCID: PMC7173292 DOI: 10.1016/j.antiviral.2014.12.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
Abstract
The study of flaviviruses, which cause some of the most important emerging tropical and sub-tropical human arbovirus diseases, has greatly benefited from the use of reverse genetic systems since its first development for yellow fever virus in 1989. Reverse genetics technology has completely revolutionized the study of these viruses, making it possible to manipulate their genomes and evaluate the direct effects of these changes on their biology and pathogenesis. The most commonly used reverse genetics system is the infectious clone technology. Whilst flavivirus infectious clones provide a powerful tool, their construction as full-length cDNA molecules in bacterial vectors can be problematic, laborious and time consuming, because they are often unstable, contain unwanted induced substitutions and may be toxic for bacteria due to viral protein expression. The incredible technological advances that have been made during the past 30years, such as the use of PCR or new sequencing methods, have allowed the development of new approaches to improve preexisting systems or elaborate new strategies that overcome these problems. This review summarizes the evolution and major technical breakthroughs in the development of flavivirus reverse genetics technologies and their application to the further understanding and control of these viruses and their diseases.
Collapse
|
8
|
Multiplexed digital mRNA profiling of the inflammatory response in the West Nile Swiss Webster mouse model. PLoS Negl Trop Dis 2014; 8:e3216. [PMID: 25340818 PMCID: PMC4207670 DOI: 10.1371/journal.pntd.0003216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 08/26/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE The ability to track changes in gene expression following viral infection is paramount to understanding viral pathogenesis. This study was undertaken to evaluate the nCounter, a high throughput digital gene expression system, as a means to better understand West Nile virus (WNV) dissemination and the inflammatory response against WNV in the outbred Swiss Webster (SW) mouse model over the course of infection. METHODOLOGY The nCounter Mouse Inflammation gene expression kit containing 179 inflammation related genes was used to analyze gene expression changes in multiple tissues over a nine day course of infection in SW mice following intraperitoneal injection with WNV. Protein expression levels for a subset of these cytokine/chemokine genes were determined using a multiplex protein detection system (BioPlex) and comparisons of protein/RNA expression levels made. RESULTS Expression analysis of spleen, lung, liver, kidney and brain of SW mice infected with WNV revealed that Cxcl10 and Il12b are differentially expressed in all tissues tested except kidney. Data stratification of positively confirmed infected (WNV (+)) versus non-infected (WNV (-) tissues allowed differentiation of the systemic inflammatory gene response from tissue-specific responses arising from WNV infection. Significant (p<0.05) decrease in C3ar1 was found in WNV (-) spleen. Il23a was significantly upregulated, while Il10rb was down-regulated in WNV (-) lung. Il3 and Mbl2 were down-regulated in WNV (-) liver. In WNV (+) livers, Stat1, Tlr2, chemokines Cxcl1, Cxcl3, Cxcl9, Cxcl10, cytokines Il6, Il18, cytokine-related gene Il1r and cytokine agonist Ilrn were significantly upregulated. In WNV (-) brain tissues, Csf2 and Cxcl10 were significantly upregulated. Similar gene and protein expression kinetics were found for Ccl2, Ccl3, Ccl4 and Ccl5 and correlated with the presence of infectious virus. In summary, the utility of the nCounter platform for rapid identification of gene expression changes in SW mice associated with WNV infection was demonstrated.
Collapse
|
9
|
Amanna IJ, Slifka MK. Current trends in West Nile virus vaccine development. Expert Rev Vaccines 2014; 13:589-608. [PMID: 24689659 DOI: 10.1586/14760584.2014.906309] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that has become endemic in the United States. From 1999-2012, there have been 37088 reported cases of WNV and 1549 deaths, resulting in a 4.2% case-fatality rate. Despite development of effective WNV vaccines for horses, there is no vaccine to prevent human WNV infection. Several vaccines have been tested in preclinical studies and to date there have been eight clinical trials, with promising results in terms of safety and induction of antiviral immunity. Although mass vaccination is unlikely to be cost effective, implementation of a targeted vaccine program may be feasible if a safe and effective vaccine can be brought to market. Further evaluation of new and advanced vaccine candidates is strongly encouraged.
Collapse
Affiliation(s)
- Ian J Amanna
- Najít Technologies, Inc., 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | |
Collapse
|
10
|
Development of a live attenuated vaccine candidate against duck Tembusu viral disease. Virology 2014; 450-451:233-42. [PMID: 24503086 DOI: 10.1016/j.virol.2013.12.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/30/2013] [Accepted: 12/19/2013] [Indexed: 01/13/2023]
Abstract
Duck Tembusu virus (DTMUV) is a newly emerging pathogenic flavivirus that is causing massive economic loss in the Chinese duck industry. To obtain a live vaccine candidate against the disease, the DTMUV isolate FX2010 was passaged serially in chicken embryo fibroblasts (CEFs). Characterization of FX2010-180P revealed that it was unable to replicate efficiently in chicken embryonated eggs, nor intranasally infect mice or shelducks at high doses of 5.5log10 tissue culture infectious doses (TCID50). FX2010-180P did not induce clinical symptoms, or pathological lesions in ducks at a dose of 5.5log10TCID50. The attenuation of FX2010-180P was due to 19 amino acid changes and 15 synonymous mutations. Importantly, FX2010-180P elicited good immune responses in ducks inoculated at low doses (3.5log10TCID50) and provided complete protection against challenge with a virulent strain. These results indicate that FX2010-180P is a promising candidate live vaccine for prevention of duck Tembusu viral disease.
Collapse
|
11
|
Donadieu E, Lowenski S, Servely JL, Laloy E, Lilin T, Nowotny N, Richardson J, Zientara S, Lecollinet S, Coulpier M. Comparison of the neuropathology induced by two West Nile virus strains. PLoS One 2013; 8:e84473. [PMID: 24367664 PMCID: PMC3867487 DOI: 10.1371/journal.pone.0084473] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/21/2013] [Indexed: 12/11/2022] Open
Abstract
Some strains of West Nile virus (WNV) are neuroinvasive and may induce fatal encephalitis/meningitis in a variety of animal species including humans. Whether, however, there is a strain-specific signature in the brain is as yet unknown. Here we investigated the neuropathogenesis induced by two phylogenetically distant WNV strains of lineage 1, WNVIS98 and WNVKUN35 911. While four-week old C57Bl/6J mice were susceptible to both strains and succumbed rapidly after intraperitoneal inoculation, differences were observed in virulence and clinical disease. WNVKUN35 911, the less virulent strain as judged by determination of LD50, induced typical signs of encephalitis. Such signs were not observed in WNVIS98-infected mice, although they died more rapidly. Histological examination of brain sections also revealed differences, as the level of apoptosis and inflammation was higher in WNVKUN35 911- than WNVIS98-infected mice. Moreover, staining for cleaved caspase 3 showed that the two WNV strains induced apoptotic death through different molecular mechanisms in one particular brain area. Finally, the two strains showed similar tropism in cortex, striatum, brainstem, and cerebellum but a different one in hippocampus. In summary, our data show that, upon peripheral administration, WNVIS98 and WNVKUN35 911 strains induce partially distinct lesions and tissue tropism in the brain. They suggest that the virulence of a WNV strain is not necessarily correlated with the severity of apoptotic and inflammatory lesions in the brain.
Collapse
Affiliation(s)
- Emilie Donadieu
- Virology (UMR1161), French National Institute for Agricultural Research (INRA), Maisons-Alfort, France
- Virology (UMR1161), French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
- Virology (UMR1161), Paris-Est University, National Veterinary School of Alfort, Maisons-Alfort, France
| | - Steeve Lowenski
- Virology (UMR1161), French National Institute for Agricultural Research (INRA), Maisons-Alfort, France
- Virology (UMR1161), French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
- Virology (UMR1161), Paris-Est University, National Veterinary School of Alfort, Maisons-Alfort, France
| | - Jean-Luc Servely
- French National Institute for Agricultural Research (INRA), Nouzilly, France
- Histology and Pathological Anatomy, Paris-Est University, National Veterinary School of Alfort, Maisons-Alfort, France
| | - Eve Laloy
- Histology and Pathological Anatomy, Paris-Est University, National Veterinary School of Alfort, Maisons-Alfort, France
| | - Thomas Lilin
- Biomedical Research Center, Paris-Est University, National Veterinary School of Alfort, Maisons-Alfort, France
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine, Vienna, Austria
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Jennifer Richardson
- Virology (UMR1161), French National Institute for Agricultural Research (INRA), Maisons-Alfort, France
- Virology (UMR1161), French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
- Virology (UMR1161), Paris-Est University, National Veterinary School of Alfort, Maisons-Alfort, France
| | - Stéphan Zientara
- Virology (UMR1161), French National Institute for Agricultural Research (INRA), Maisons-Alfort, France
- Virology (UMR1161), French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
- Virology (UMR1161), Paris-Est University, National Veterinary School of Alfort, Maisons-Alfort, France
| | - Sylvie Lecollinet
- Virology (UMR1161), French National Institute for Agricultural Research (INRA), Maisons-Alfort, France
- Virology (UMR1161), French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
- Virology (UMR1161), Paris-Est University, National Veterinary School of Alfort, Maisons-Alfort, France
| | - Muriel Coulpier
- Virology (UMR1161), French National Institute for Agricultural Research (INRA), Maisons-Alfort, France
- Virology (UMR1161), French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
- Virology (UMR1161), Paris-Est University, National Veterinary School of Alfort, Maisons-Alfort, France
- * E-mail:
| |
Collapse
|
12
|
Brandler S, Tangy F. Vaccines in development against West Nile virus. Viruses 2013; 5:2384-409. [PMID: 24084235 PMCID: PMC3814594 DOI: 10.3390/v5102384] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/21/2013] [Accepted: 09/26/2013] [Indexed: 12/15/2022] Open
Abstract
West Nile encephalitis emerged in 1999 in the United States, then rapidly spread through the North American continent causing severe disease in human and horses. Since then, outbreaks appeared in Europe, and in 2012, the United States experienced a new severe outbreak reporting a total of 5,387 cases of West Nile virus (WNV) disease in humans, including 243 deaths. So far, no human vaccine is available to control new WNV outbreaks and to avoid worldwide spreading. In this review, we discuss the state-of-the-art of West Nile vaccine development and the potential of a novel safe and effective approach based on recombinant live attenuated measles virus (MV) vaccine. MV vaccine is a live attenuated negative-stranded RNA virus proven as one of the safest, most stable and effective human vaccines. We previously described a vector derived from the Schwarz MV vaccine strain that stably expresses antigens from emerging arboviruses, such as dengue, West Nile or chikungunya viruses, and is strongly immunogenic in animal models, even in the presence of MV pre-existing immunity. A single administration of a recombinant MV vaccine expressing the secreted form of WNV envelope glycoprotein elicited protective immunity in mice and non-human primates as early as two weeks after immunization, indicating its potential as a human vaccine.
Collapse
Affiliation(s)
- Samantha Brandler
- Unité de Génomique Virale et Vaccination, INSTITUT PASTEUR, 28 rue du Dr Roux, Paris 75015, France.
| | | |
Collapse
|
13
|
Yu L, Takeda K, Markoff L. Protein-protein interactions among West Nile non-structural proteins and transmembrane complex formation in mammalian cells. Virology 2013; 446:365-77. [PMID: 24074601 DOI: 10.1016/j.virol.2013.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/29/2013] [Accepted: 08/06/2013] [Indexed: 11/26/2022]
Abstract
To study the membrane orientation of flavivirus non-structural proteins (NSPs) in the replication complex, the seven major West Nile (WN) NSPs were separately expressed in monkey cells, and their subcellular localization was investigated by imaging-based techniques. First, we observed by confocal microscopy that four small transmembrane proteins (TP) (NS2A, NS2B, NS4A, and NS4B) were located to the endoplasmic reticulum (ER), whereas the largest NSPs, NS1, NS3, and NS5 were not. We then analyzed the colocalization and the association of WN NSPs using the methods of confocal microscopy, fluorescence resonance energy transfer (FRET), and biologic fluorescence complementation (BiFC). Through these combined imaging techniques, protein-protein interactions (PPI) among WNNSPs were detected. Our data demonstrate that there are interactions between NS2A and NS4A, and interactions of NS2B with three other TPs (NS2A, NS4A, and NS4B) as well as the expected interaction with NS3. PPI between NS2A and NS4B or between NS4A and NS4B were not detected. By the criteria of these techniques, NS5 interacted only with NS3, and NS1 was not shown to be in close proximity with other NSPs. In addition, homo-oligomerization of some NSPs was observed and three-way interactions between NS2A, NS4A, and NA4B with NS2B-NS3 were also observed, respectively. Our results suggest that the four TPs are required for formation of transmembrane complex. NS2B protein seems to play a key role in bringing the TPs together on the ER membrane and in bridging the TPs with non-membrane-associated proteins (NS3 and NS5).
Collapse
Affiliation(s)
- Li Yu
- Laboratory of Vector-Borne Virus Diseases, Division of Viral Products, Office of Vaccines Research and Review, Microscopy and Imaging Core Facility, CBER, FDA, Bethesda, MD, USA.
| | | | | |
Collapse
|
14
|
Bahuon C, Desprès P, Pardigon N, Panthier JJ, Cordonnier N, Lowenski S, Richardson J, Zientara S, Lecollinet S. IS-98-ST1 West Nile virus derived from an infectious cDNA clone retains neuroinvasiveness and neurovirulence properties of the original virus. PLoS One 2012; 7:e47666. [PMID: 23110088 PMCID: PMC3479121 DOI: 10.1371/journal.pone.0047666] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/14/2012] [Indexed: 01/25/2023] Open
Abstract
Infectious clones of West Nile virus (WNV) have previously been generated and used to decipher the role of viral proteins in WNV virulence. The majority of molecular clones obtained to date have been derived from North American, Australian, or African isolates. Here, we describe the construction of an infectious cDNA clone of a Mediterranean WNV strain, IS-98-ST1. We characterized the biological properties of the recovered recombinant virus in cell culture and in mice. The growth kinetics of recombinant and parental WNV were similar in Vero cells. Moreover, the phenotype of recombinant and parental WNV was indistinguishable as regards viremia, viral load in the brain, and mortality in susceptible and resistant mice. Finally, the pathobiology of the infectious clone was examined in embryonated chicken eggs. The capacity of different WNV strains to replicate in embryonated chicken eggs closely paralleled their ability to replicate in mice, suggesting that inoculation of embryonated chicken eggs could provide a practical in vivo model for the study of WNV pathogenesis. In conclusion, the IS-98-ST1 infectious clone will allow assessment of the impact of selected mutations and novel genomic changes appearing in emerging European strains pathogenicity and endemic or epidemic potential. This will be invaluable in the context of an increasing number of outbreaks and enhanced severity of infections in the Mediterranean basin and Eastern Europe.
Collapse
Affiliation(s)
- Céline Bahuon
- UMR 1161 VIROLOGIE ANSES-INRA-ENVA, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Maisons-Alfort, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Phase II, dose ranging study of the safety and immunogenicity of single dose West Nile vaccine in healthy adults ≥ 50 years of age. Vaccine 2012; 30:6656-64. [PMID: 22959989 DOI: 10.1016/j.vaccine.2012.08.063] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/22/2012] [Accepted: 08/28/2012] [Indexed: 01/23/2023]
Abstract
INTRODUCTION ChimeriVax-WN02 is a live, attenuated chimeric vaccine for protection against West Nile virus (WNV) produced by insertion of the genes encoding the pre-membrane (prM) and envelope (E) proteins of WNV (strain NY99) into the yellow fever 7D vaccine virus. This Phase II, randomized, double-blind, placebo-controlled, multi-center study in the US assessed the immunogenicity, viremia, and safety of the ChimeriVax-WN02 vaccine. METHODS The study included adults in general good health. Subjects aged ≥ 50 years were randomized to one of four treatment groups: ChimeriVax-WN02 4 × 10(3) plaque-forming units (pfu) (n=122), 4 × 10(4)pfu (n=124), 4 × 10(5)pfu (n=113), or placebo (n=120). A subset of subjects was randomized to assess viremia after vaccination at three different dose levels. Subjects were followed for safety up to 6 months after vaccination. RESULTS A total of 121 subjects for WN024 × 10(3), 122 for WN02 4 × 10(4), 110 for WN02 4 × 10(5), and 120 for the placebo group completed the study up to the 6-month safety follow-up. Seroconversion, as measured by plaque reduction neutralization test (PRNT), was achieved at Day 28 by 92.1%, 93.2%, and 95.4% of subjects in the WN02 4 × 10(3), the WN02 4 × 10(4), and the WN02 4 × 10(5) groups, respectively. Viremia was transient, detected between Days 2 and 14 but not at Day 28, and in most cases did not reach the quantification threshold. The percentage of subjects reporting at least one event of reactogenicity was similar in the placebo and active vaccine groups and showed no dose relationship. CONCLUSIONS The ChimeriVax-WN02 vaccine was highly immunogenic and well tolerated among subjects ≥ 50 years old at all dose levels.
Collapse
|
16
|
Identification of RNA-protein interaction networks involved in the norovirus life cycle. J Virol 2012; 86:11977-90. [PMID: 22933270 DOI: 10.1128/jvi.00432-12] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human noroviruses are one of the major causes of acute gastroenteritis in the developed world, yet our understanding of their molecular mechanisms of genome translation and replication lags behind that for many RNA viruses. Due to the nonculturable nature of human noroviruses, many related members of the Caliciviridae family of small RNA viruses are often used as model systems to dissect the finer details of the norovirus life cycle. Murine norovirus (MNV) has provided one such system with which to study the basic mechanisms of norovirus translation and replication in cell culture. In this report we describe the use of riboproteomics to identify host factors that interact with the extremities of the MNV genome. This network of RNA-protein interactions contains many well-characterized host factors, including PTB, La, and DDX3, which have been shown to play a role in the life cycle of other RNA viruses. By using RNA coimmunoprecipitation, we confirmed that a number of the factors identified using riboproteomics are associated with the viral RNA during virus replication in cell culture. We further demonstrated that RNA inhibition-mediated knockdown of the intracellular levels of a number of these factors inhibits or slows norovirus replication in cell culture, allowing identification of new intracellular targets for this important group of pathogens.
Collapse
|
17
|
Affiliation(s)
- Pyung Ok Lim
- Department of Science Education, Jeju National University, Jeju, Korea
| | - Tae Hee Lee
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Chonju, Chonbuk, Korea
- Institute for Medical Science, Chonbuk National University Medical School, Chonju, Chonbuk, Korea
| | - Kyung Min Chung
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Chonju, Chonbuk, Korea
- Institute for Medical Science, Chonbuk National University Medical School, Chonju, Chonbuk, Korea
| |
Collapse
|
18
|
Beasley DWC. Vaccines and immunotherapeutics for the prevention and treatment of infections with West Nile virus. Immunotherapy 2011; 3:269-85. [PMID: 21322763 DOI: 10.2217/imt.10.93] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The emergence of West Nile virus (WNV) in North America in 1999 as a cause of severe neurological disease in humans, horses and birds stimulated development of vaccines for human and veterinary use, as well as polyclonal/monoclonal antibodies and other immunomodulating compounds for use as therapeutics. Although disease incidence in North America has declined since the peak epidemics in 2002-2003, the virus has continued to be annually transmitted in the Americas and to cause periodic epidemics in Europe and the Middle East. Continued transmission of the virus with human and animal disease suggests that vaccines and therapeutics for the prevention and treatment of WNV disease could be of great benefit. This article focuses on progress in development and evaluation of vaccines and immunotherapeutics for the prevention and treatment of WNV disease in humans and animals.
Collapse
Affiliation(s)
- David W C Beasley
- Department of Microbiology & Immunology, Sealy Center for Vaccine Development, Center for Biodefense & Emerging Infectious Diseases, Institute for Human Infections & Immunity, & Galveston National Laboratory, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA.
| |
Collapse
|
19
|
Ohtaki N, Takahashi H, Kaneko K, Gomi Y, Ishikawa T, Higashi Y, Kurata T, Sata T, Kojima A. Immunogenicity and efficacy of two types of West Nile virus-like particles different in size and maturation as a second-generation vaccine candidate. Vaccine 2010; 28:6588-96. [DOI: 10.1016/j.vaccine.2010.07.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/14/2010] [Accepted: 07/18/2010] [Indexed: 11/16/2022]
|
20
|
Functional analysis of RNA structures present at the 3' extremity of the murine norovirus genome: the variable polypyrimidine tract plays a role in viral virulence. J Virol 2010; 84:2859-70. [PMID: 20053745 DOI: 10.1128/jvi.02053-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Interactions of host cell factors with RNA sequences and structures in the genomes of positive-strand RNA viruses play various roles in the life cycles of these viruses. Our understanding of the functional RNA elements present in norovirus genomes to date has been limited largely to in vitro analysis. However, we recently used reverse genetics to identify evolutionarily conserved RNA structures and sequences required for norovirus replication. We have now undertaken a more detailed analysis of RNA structures present at the 3' extremity of the murine norovirus (MNV) genome. Biochemical data indicate the presence of three stable stem-loops, including two in the untranslated region, and a single-stranded polypyrimidine tract [p(Y)] of variable length between MNV isolates, within the terminal stem-loop structure. The well-characterized host cell pyrimidine binding proteins PTB and PCBP bound the 3'-untranslated region via an interaction with this variable sequence. Viruses lacking the p(Y) tract were viable both in cell culture and upon mouse infection, demonstrating that this interaction was not essential for virus replication. However, competition analysis with wild-type MNV in cell culture indicated that the loss of the p(Y) tract was associated with a fitness cost. Furthermore, a p(Y)-deleted mutant showed a reduction in virulence in the STAT1(-/-) mouse model, highlighting the role of RNA structures in norovirus pathogenesis. This work highlights how, like with other positive-strand RNA viruses, RNA structures present at the termini of the norovirus genome play important roles in virus replication and virulence.
Collapse
|
21
|
Whiteman MC, Li L, Wicker JA, Kinney RM, Huang C, Beasley DW, Chung KM, Diamond MS, Solomon T, Barrett AD. Development and characterization of non-glycosylated E and NS1 mutant viruses as a potential candidate vaccine for West Nile virus. Vaccine 2010; 28:1075-83. [DOI: 10.1016/j.vaccine.2009.10.112] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 10/15/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
|