1
|
Van Roy Z, Kielian T. Immune-based strategies for the treatment of biofilm infections. Biofilm 2025; 9:100264. [PMID: 40093652 PMCID: PMC11909721 DOI: 10.1016/j.bioflm.2025.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Biofilms are bacterial communities surrounded by a polymeric matrix that can form on implanted materials and biotic surfaces, resulting in chronic infection that is recalcitrant to immune- and antibiotic-mediated clearance. Therefore, biofilm infections present a substantial clinical challenge, as treatment often involves additional surgical interventions to remove the biofilm nidus, prolonged antimicrobial therapy to clear residual bacteria, and considerable risk of treatment failure or infection recurrence. These factors, combined with progressive increases in antimicrobial resistance, highlight the need for alternative therapeutic strategies to circumvent undue morbidity, mortality, and resource strain on the healthcare system resulting from biofilm infections. One promising option is reprogramming dysfunctional immune responses elicited by biofilm. Here, we review the literature describing immune responses to biofilm infection with a focus on targets or strategies ripe for clinical translation. This represents a complex and dynamic challenge, with context-dependent host-pathogen interactions that differ across infection models, microenvironments, and individuals. Nevertheless, consistencies among these variables exist, which could facilitate the development of immune-based strategies for the future treatment of biofilm infections.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
2
|
Goetz C, Sanschagrin L, Jubinville E, Jacques M, Jean J. Recent progress in antibiofilm strategies in the dairy industry. J Dairy Sci 2024:S0022-0302(24)01335-3. [PMID: 39603496 DOI: 10.3168/jds.2024-25554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Biofilm formation allows microorganisms including bacteria to persist on abiotic or biotic surfaces, to resist treatments with biocides (disinfectants and antibiotics) and to evade the immune response in animal hosts much more than they do in the planktonic form. Bacteria able to form biofilm can be troublesome in the dairy industry, both by causing clinical symptoms in livestock and by colonizing milking devices and milk processing equipment, resulting in dairy products of lower quality and sometimes raising serious food safety issues. In fact, most of the bacterial species isolated frequently in the dairy chain have the ability to form biofilm. Common examples include Staphylococcus aureus and other staphylococci that frequently infect mammary glands, but also Bacillus spp., Listeria monocytogenes and Pseudomonas spp. which cause spoilage of dairy products and sometimes foodborne illnesses. The economic losses due to biofilm formation in the dairy industry are considerable, and scientists are constantly solicited to develop new antibiofilm strategies, especially using biocides of natural origin. Although the number of studies in this subject area has exploded in recent years, the in vivo efficacy of most novel approaches remains to be explored. Used alone or to increase the efficacy of disinfectants or antibiotics, they could allow the implementation of strategies having less impact on the environment. Their use is expected to lead to less reliance on antibiotics to treat intramammary infections in dairy farms and to the use of lower concentrations of chemical disinfectants in dairy processing plants.
Collapse
Affiliation(s)
- Coralie Goetz
- INRAE, L'Institut Agro Rennes-Angers, UMR 1253 STLO, Rennes Cedex, France
| | - Laurie Sanschagrin
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Eric Jubinville
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Mario Jacques
- Regroupement de recherche pour un lait de qualité optimale (Op+lait), Faculté de médecine vétérinaire, Université de Montréal, St Hyacinthe, QC, Canada
| | - Julie Jean
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada.
| |
Collapse
|
3
|
Caldeira JLA, Costa DG, Polveiro RC, Gomes do Rêgo ME, Barbosa WF, de Oliveira LL, Moreira MAS. Short communication: Goat mastitis and the formation of neutrophil extracellular traps (NETs). Vet Immunol Immunopathol 2024; 274:110793. [PMID: 38943998 DOI: 10.1016/j.vetimm.2024.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 07/01/2024]
Abstract
Mastitis, an inflammation of the mammary gland affecting milk production and quality in dairy herds, is often associated with Staphylococcus spp. in goats. Neutrophils are crucial in combating infections by migrating into milk and deploying various defense strategies, including the release of neutrophil extracellular traps (NETs) composed of DNA, histones, and bactericidal proteins. This study investigated whether NETs are released by goat neutrophils stimulated in vitro by Staphylococcus aureus and Staphylococcus warneri, two common pathogens of goat mastitis. PMNs were isolated from blood from healthy adult goats. We evaluated goat NET formation by stimulating cells with: phorbol 12-myristate 13-acetate (PMA) as a positive control, cytochalasin for inhibition of actin polymerization, S. aureus, and S. warneri. NET formation was observed in response to chemical stimulation and bacterial presence, effectively trapping pathogens. Variations in NET formation between S. aureus and S. warneri suggest pathogen-specific responses. These findings suggest that the formation of NETs may be an important complementary mechanism in the defense against mastitis in goats. In conclusion, this study unveils a novel defense mechanism in goats, indicating the role of NETs against S. aureus and S. warneri in mastitis.
Collapse
Affiliation(s)
- Jéssica Lobo Albuquerque Caldeira
- Bacterial Diseases Laboratory, Department of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Daiene Gaione Costa
- Bacterial Diseases Laboratory, Department of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Richard Costa Polveiro
- Bacterial Diseases Laboratory, Department of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maria Eduarda Gomes do Rêgo
- Bacterial Diseases Laboratory, Department of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner Faria Barbosa
- Department of Statistics, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Leandro Licursi de Oliveira
- Immunochemistry and Glycobiology Laboratory, Department of General Biology, Universidade Federal de Viçosa, University Campus, PH Rolfs Avenue, Viçosa, Minas Gerais 36570-000, Brazil
| | - Maria Aparecida Scatamburlo Moreira
- Bacterial Diseases Laboratory, Department of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Michael CK, Lianou DT, Tsilipounidaki K, Gougoulis DA, Giannoulis T, Vasileiou NGC, Mavrogianni VS, Petinaki E, Fthenakis GC. Recovery of Staphylococci from Teatcups in Milking Parlours in Goat Herds in Greece: Prevalence, Identification, Biofilm Formation, Patterns of Antibiotic Susceptibility, Predictors for Isolation. Antibiotics (Basel) 2023; 12:1428. [PMID: 37760724 PMCID: PMC10525802 DOI: 10.3390/antibiotics12091428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The objectives of this work are (a) to describe staphylococci on the teatcups of milking parlours in goat farms and identify predictors for the presence of staphylococcal isolates on the teatcups, (b) to evaluate relationships with total bacterial counts and somatic cell counts in bulk-tank milk, and (c) to establish patterns of susceptibility to antibiotics for the staphylococcal isolates and identify predictors for the recovery of resistant isolates. In a cross-sectional study of 66 goat farms across Greece, swab samples were collected from 303 teatcups (upper and lower part) for staphylococcal recovery, identification, and assessment of biofilm formation. Details regarding health management on the farms (including conditions in the milking parlour) and the socio-demographic characteristics of farmers were collected by means of a structured questionnaire. A total of 87 contaminated teatcups (28.7%) were found on 35 goat farms (53.0%). Staphylococci were more frequently recovered from the upper than the lower part of teatcups: 73 versus 43 teatcups, respectively. After identification, 67 staphylococcal isolates (i.e., excluding similar isolates) were recovered from the teatcups; Staphylococcus aureus, Staphylococcus capitis, and Staphylococcus equorum predominated. Of these isolates, 82.1% were biofilm-forming. In multivariable analysis, the annual incidence of clinical mastitis in the herd emerged as the only significant factor associated with the isolation of staphylococci from the teatcups. Of the 67 isolates, 23 (34.3%) were resistant to at least one antibiotic, and 14 (22.4%) were multi-resistant. Resistance was found most commonly against penicillin and ampicillin (22.4% of isolates), fosfomycin (17.9%), clindamycin (14.9%), erythromycin, and tetracycline (13.4%). In multivariable analysis, the annual incidence of clinical mastitis in the herd and the use of detergent for parlour cleaning emerged as significant factors associated with the isolation of staphylococci resistant to antibiotics.
Collapse
Affiliation(s)
| | - Daphne T. Lianou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece (D.T.L.)
| | | | | | | | | | | | - Efthymia Petinaki
- Department of Microbiology, University Hospital of Larissa, 41110 Larissa, Greece
| | | |
Collapse
|
5
|
Lianou DT, Michael CK, Solomakos N, Vasileiou NGC, Petinaki E, Mavrogianni VS, Tzora A, Voidarou C, Fthenakis GC. Isolation of Biofilm-Forming Staphylococci from the Bulk-Tank Milk of Small Ruminant Farms in Greece. Foods 2023; 12:2836. [PMID: 37569105 PMCID: PMC10417191 DOI: 10.3390/foods12152836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The objectives of this study were (i) to describe staphylococcal isolates recovered from bulk-tank raw milk collected from sheep and goat farms during a countrywide study performed in Greece, (ii) to study management factors potentially associated with their presence in bulk-tank milk and (iii) to provide evidence regarding their association with the quality of the milk. In total, 312 staphylococcal isolates, recovered from samples of bulk-tank raw milk from 444 small ruminant farms in Greece, were evaluated in this work. The in vitro formation of biofilm by the isolates was tested by combining the findings of (a) culture appearance on Congo Red agar plates and (b) results of a microplate adhesion test. The most frequently identified species was Staphylococcus aureus (75 isolates); other frequently recovered species were S. simulans (44 isolates), S. equorum (34 isolates) and S. haemolyticus (26 isolates); in total, 23 species were identified. In total, 224 (71.8%) isolates were biofilm-forming and were recovered from the bulk-tank milk samples of 148 sheep flocks (45.5%) and 55 goat herds (46.2%). There was evidence of seasonality in the isolation of staphylococci: during spring, mostly biofilm-forming isolates were recovered, whilst during summer, mostly non-biofilm-forming isolates were recovered. Among farms applying machine-milking, the proportion of farms from which biofilm-forming isolates were recovered was higher where water with temperature < 50 °C or ≥90 °C was used to clean the milking parlour. In the multivariable analyses, for farms applying machine-milking, the temperature of the water emerged as the only significant variable (p = 0.024), whilst in farms applying hand-milking, the only tendency that emerged was for the frequency of collection of milk from the farm tank (p = 0.08). In sheep flocks, recovery of biofilm-forming staphylococci from the bulk-tank milk was associated with higher somatic cell counts and higher total bacterial counts in the milk. The study identified abiotic factors related to the presence and isolation of these bacteria, specifically the temperature of water used for the cleaning of the milking parlour (in farms where machine-milking is applied) and the frequency of milk collection from the farm tank. These factors apply after the production of milk, and they could thus be regulated appropriately in order to reduce bacterial load and improve the quality of milk delivered to dairy plants. In sheep farms, an association was also seen between recovery of biofilm-forming staphylococci and high somatic cell counts in milk.
Collapse
Affiliation(s)
- Daphne T. Lianou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | | | | | | | - Efthymia Petinaki
- University Hospital of Larissa, University of Thessaly, 41110 Larissa, Greece
| | | | - Athina Tzora
- Faculty of Agriculture, University of Ioannina, 47100 Arta, Greece
| | | | | |
Collapse
|
6
|
Nesse LL, Osland AM, Vestby LK. The Role of Biofilms in the Pathogenesis of Animal Bacterial Infections. Microorganisms 2023; 11:608. [PMID: 36985183 PMCID: PMC10059901 DOI: 10.3390/microorganisms11030608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Biofilms are bacterial aggregates embedded in a self-produced, protective matrix. The biofilm lifestyle offers resilience to external threats such as the immune system, antimicrobials, and other treatments. It is therefore not surprising that biofilms have been observed to be present in a number of bacterial infections. This review describes biofilm-associated bacterial infections in most body systems of husbandry animals, including fish, as well as in sport and companion animals. The biofilms have been observed in the auditory, cardiovascular, central nervous, digestive, integumentary, reproductive, respiratory, urinary, and visual system. A number of potential roles that biofilms can play in disease pathogenesis are also described. Biofilms can induce or regulate local inflammation. For some bacterial species, biofilms appear to facilitate intracellular invasion. Biofilms can also obstruct the healing process by acting as a physical barrier. The long-term protection of bacteria in biofilms can contribute to chronic subclinical infections, Furthermore, a biofilm already present may be used by other pathogens to avoid elimination by the immune system. This review shows the importance of acknowledging the role of biofilms in animal bacterial infections, as this influences both diagnostic procedures and treatment.
Collapse
Affiliation(s)
- Live L. Nesse
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, 1433 Ås, Norway
| | - Ane Mohr Osland
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, 1433 Ås, Norway
| | - Lene K. Vestby
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, 1433 Ås, Norway
| |
Collapse
|
7
|
Vasileiou NGC, Lianou DT, Michael CK, Fthenakis GC, Mavrogianni VS. Vaccination against Bacterial Mastitis in Sheep. Vaccines (Basel) 2022; 10:2088. [PMID: 36560497 PMCID: PMC9786094 DOI: 10.3390/vaccines10122088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
The objective of this review is to discuss the application of vaccination for the prevention of bacterial mastitis in ewes, performed within the frame of health management schemes in sheep flocks. Mastitis is a multi-faceted infection, caused most often by staphylococci; hence, special emphasis is given to staphylococcal mastitis, also given that most relevant studies refer to vaccinations against that infection. Studies regarding various vaccines have been performed; most studies refer to vaccination by using a vaccine making use of cell-free surface polysaccharides in various vehicles, bacterial unbound cells or bacterial cells embedded in their biofilm matrix. Vaccination against mastitis should be better performed during the final stage of pregnancy to allow protection of ewes from lambing and should be considered as one of many control measures for the prevention of the disease. The expected benefits of mastitis vaccination in sheep flocks include the following: (a) reduced incidence risk of clinical and subclinical mastitis, (b) reduced somatic cell counts, optimum chemical composition, absence of staphylococci in milk, (c) increased milk production, (d) reduced dissemination of mastitis-causing pathogens and (e) reduction of antibiotic use in flocks.
Collapse
Affiliation(s)
| | - Daphne T. Lianou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | | | | | | |
Collapse
|
8
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
9
|
Rainard P, Gilbert FB, Germon P, Foucras G. Invited review: A critical appraisal of mastitis vaccines for dairy cows. J Dairy Sci 2021; 104:10427-10448. [PMID: 34218921 DOI: 10.3168/jds.2021-20434] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/23/2021] [Indexed: 11/19/2022]
Abstract
Infections of the mammary gland remain a frequent disease of dairy ruminants that negatively affect animal welfare, milk quality, farmer serenity, and farming profitability and cause an increase in use of antimicrobials. There is a need for efficacious vaccines to alleviate the burden of mastitis in dairy farming, but this need has not been satisfactorily fulfilled despite decades of research. A careful appraisal of past and current research on mastitis vaccines reveals the peculiarities but also the commonalities among mammary gland infections associated with the major mastitis pathogens Escherichia coli, Staphylococcus aureus, Streptococcus uberis, Streptococcus agalactiae, or Streptococcus dysgalactiae. A major pitfall is that the immune mechanisms of effective protection have not been fully identified. Until now, vaccine development has been directed toward the generation of antibodies. In this review, we drew up an inventory of the main approaches used to design vaccines that aim at the major pathogens for the mammary gland, and we critically appraised the current and tentative vaccines. In particular, we sought to relate efficacy to vaccine-induced defense mechanisms to shed light on some possible reasons for current vaccine shortcomings. Based on the lessons learned from past attempts and the recent results of current research, the design of effective vaccines may take a new turn in the years to come.
Collapse
Affiliation(s)
- Pascal Rainard
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, Infectiologie et Santé Publique, 37380 Nouzilly, France.
| | - Florence B Gilbert
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, Infectiologie et Santé Publique, 37380 Nouzilly, France
| | - Pierre Germon
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, Infectiologie et Santé Publique, 37380 Nouzilly, France
| | - Gilles Foucras
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Toulouse, École Nationale Vétérinaire de Toulouse, Interactions Hôtes-Agents Pathogènes, 31076 Toulouse, France
| |
Collapse
|
10
|
Tassi R, Schiavo M, Filipe J, Todd H, Ewing D, Ballingall KT. Intramammary Immunisation Provides Short Term Protection Against Mannheimia haemolytica Mastitis in Sheep. Front Vet Sci 2021; 8:659803. [PMID: 34179160 PMCID: PMC8222732 DOI: 10.3389/fvets.2021.659803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Mastitis affects both dairy and meat/wool sheep industries with losses due to reductions in milk quality and quantity, increased treatment costs and restricted lamb growth. Effective vaccines would be important tools for mastitis control. However, the development of vaccines against mastitis has proved challenging due to the failure to target protective immunity to the mammary gland. In order to target responses to the mammary gland, this study tested whether local administration directly into the gland through the teat canal or in the udder skin confers protection against an intramammary infection. In this study, we tested a vaccine that confers protection against respiratory disease caused by Mannheimia haemolytica to determine if it also protects against intramammary infection by the same organism. No evidence of protection was observed in animals that received a subcutaneous immunisation in the udder skin, however, intramammary immunisation provided almost complete protection against an experimental challenge administered 7 days post immunisation but not if the challenge was delivered 14 days post immunisation. To investigate further the nature of this variation in response, the somatic cell count and concentration of cytokines Interleukin-1β, Interleukin-10 and Interleukin-17A was determined in milk over the course of each study. Intramammary immunisation induced an inflammatory response within the mammary gland, characterised by increases in SCC and in the production of cytokines IL-1β, IL-10, and IL-17A. This response was similar to that observed in un-vaccinated control animals post challenge. The SCC and cytokine levels had returned to levels comparable with un-vaccinated controls prior to challenge at both 7 and 14 days post immunisation. The transient nature of the protective effect is consistent with the priming of an innate antibacterial response within the mammary gland which provides protection against challenge at 7 days but is diminished by 14 days post-vaccination. Further studies are planned to determine the nature of the innate immune mechanisms associated with the protective effect described here to determine whether it may be exploited to improve ruminant udder health.
Collapse
Affiliation(s)
- Riccardo Tassi
- Department of Disease Control, Moredun Research Institute, Penicuik, United Kingdom
| | - Martina Schiavo
- Department of Disease Control, Moredun Research Institute, Penicuik, United Kingdom
| | - Joel Filipe
- Department of Disease Control, Moredun Research Institute, Penicuik, United Kingdom
| | - Helen Todd
- Department of Disease Control, Moredun Research Institute, Penicuik, United Kingdom
| | - David Ewing
- Biomathematics and Statistics Scotland, Edinburgh, United Kingdom
| | - Keith T Ballingall
- Department of Disease Control, Moredun Research Institute, Penicuik, United Kingdom
| |
Collapse
|
11
|
Loera-Muro A, Guerrero-Barrera A, Tremblay D N Y, Hathroubi S, Angulo C. Bacterial biofilm-derived antigens: a new strategy for vaccine development against infectious diseases. Expert Rev Vaccines 2021; 20:385-396. [PMID: 33606569 DOI: 10.1080/14760584.2021.1892492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Microorganisms can develop into a social organization known as biofilms and these communities can be found in virtually all types of environment on earth. In biofilms, cells grow as multicellular communities held together by a self-produced extracellular matrix. Living within a biofilm allows for the emergence of specific properties for these cells that their planktonic counterparts do not have. Furthermore, biofilms are the cause of several infectious diseases and are frequently inhabited by multi-species. These interactions between microbial species are often critical for the biofilm process. Despite the importance of biofilms in disease, vaccine antigens are typically prepared from bacteria grown as planktonic cells under laboratory conditions. Vaccines based on planktonic bacteria may not provide optimal protection against biofilm-driven infections. AREAS COVERED In this review, we will present an overview of biofilm formation, what controls this mode of growth, and recent vaccine development targeting biofilms. EXPERT OPINION Previous and ongoing research provides evidence that vaccine formulation with antigens derived from biofilms is a promising approach to prevent infectious diseases and can enhance the protective efficacy of existing vaccines. Therefore, research focusing on the identification of biofilm-derived antigens merits further investigations.
Collapse
Affiliation(s)
- Abraham Loera-Muro
- CONACYT-CIBNOR, Centro de Investigaciones Biológicas del Noroeste, SC. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, BCS, México
| | - Alma Guerrero-Barrera
- Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Colonia Ciudad Universitaria, Aguascalientes, AGS, México
| | - Yannick Tremblay D N
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Skander Hathroubi
- Cluster of Excellence "Matters of Activity.Image Space Material", Humboldt-Universität zu Berlin, Unter den Liden 6, 10099, Berlin, Germany.,Institüt Für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carlos Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, SC. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, BCS, México
| |
Collapse
|
12
|
The staphylococcal exopolysaccharide PIA - Biosynthesis and role in biofilm formation, colonization, and infection. Comput Struct Biotechnol J 2020. [PMID: 33240473 DOI: 10.1016/jcsbj202010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Exopolysaccharide is a key part of the extracellular matrix that contributes to important mechanisms of bacterial pathogenicity, most notably biofilm formation and immune evasion. In the human pathogens Staphylococcus aureus and S. epidermidis, as well as in many other staphylococcal species, the only exopolysaccharide is polysaccharide intercellular adhesin (PIA), a cationic, partially deacetylated homopolymer of N-acetylglucosamine, whose biosynthetic machinery is encoded in the ica locus. PIA production is strongly dependent on environmental conditions and controlled by many regulatory systems. PIA contributes significantly to staphylococcal biofilm formation and immune evasion mechanisms, such as resistance to antimicrobial peptides and ingestion and killing by phagocytes, and presence of the ica genes is associated with infectivity. Due to its role in pathogenesis, PIA has raised considerable interest as a potential vaccine component or target.
Collapse
|
13
|
Longheu CM, Azara E, Marogna G, Addis MF, Tola S. Identification of secreted and cellular antigens of Staphylococcus aureus causing dairy sheep mastitis and their potential for vaccine development. Vet Immunol Immunopathol 2020; 230:110149. [PMID: 33197719 DOI: 10.1016/j.vetimm.2020.110149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
Staphylococcus aureus is the leading cause of clinical mastitis and is associated with persistent subclinical infections in ewes, significantly compromising the quality and quantity of milk productions. To date, vaccines intended for use in sheep have been mainly focused on biofilm production traits, but many S. aureus pathogenic isolates do not produce biofilm, including those circulating in Sardinia, one of the leading sheep milk producers in Europe. The aim of this work was to identify suitable immunodominant, alternative candidates to biofilm components for vaccine and diagnostic development. An immunoproteomics study was carried out by testing sera from naturally infected sheep with a prevalent S. aureus lineage against cellular and secreted antigens, followed by tandem mass spectrometry identification of the most prominent immunogens. Four cellular and three secreted S. aureus antigens elicited a strong humoral host immune response. The four cellular antigens were the housekeeping proteins pyruvate kinase, elongation Factor Tu, dihydrolipoyl dehydrogenase, and alpha-keto acid dehydrogenase. The three secreted antigens were the bifunctional autolysin (Atl) and the two components of the Panton-Valentine leukocidin, lukF-PV/lukM, demonstrating the carriage of prophage phiPV83 in a sheep isolate and the strong response of the sheep host against them. In consideration of the key role played by these secreted proteins in S. aureus replication and immune evasion, these antigens may represent suitable candidates for developing vaccines eliciting a more successful immunological protection in areas where non-biofilm forming Staphylococcus spp. are the most widespread intramammary pathogens.
Collapse
Affiliation(s)
- Carla Maria Longheu
- Istituto Zooprofilattico Sperimentale della Sardegna"G. Pegreffi", Via Vienna 2, 07100, Sassari, Italy
| | - Elisa Azara
- Istituto Zooprofilattico Sperimentale della Sardegna"G. Pegreffi", Via Vienna 2, 07100, Sassari, Italy
| | - Gavino Marogna
- Istituto Zooprofilattico Sperimentale della Sardegna"G. Pegreffi", Via Vienna 2, 07100, Sassari, Italy
| | - Maria Filippa Addis
- Università degli Studi di Milano, Dipartimento di Medicina Veterinaria, Via dell'Università 6, Lodi, Italy
| | - Sebastiana Tola
- Istituto Zooprofilattico Sperimentale della Sardegna"G. Pegreffi", Via Vienna 2, 07100, Sassari, Italy.
| |
Collapse
|
14
|
Nguyen HTT, Nguyen TH, Otto M. The staphylococcal exopolysaccharide PIA - Biosynthesis and role in biofilm formation, colonization, and infection. Comput Struct Biotechnol J 2020; 18:3324-3334. [PMID: 33240473 PMCID: PMC7674160 DOI: 10.1016/j.csbj.2020.10.027] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022] Open
Abstract
PIA is a key extracellular matrix component in staphylococci and other bacteria. PIA is a cationic, partially deacetylated N-acetylglucosamine polymer. PIA has a major role in bacterial biofilms and biofilm-associated infection.
Exopolysaccharide is a key part of the extracellular matrix that contributes to important mechanisms of bacterial pathogenicity, most notably biofilm formation and immune evasion. In the human pathogens Staphylococcus aureus and S. epidermidis, as well as in many other staphylococcal species, the only exopolysaccharide is polysaccharide intercellular adhesin (PIA), a cationic, partially deacetylated homopolymer of N-acetylglucosamine, whose biosynthetic machinery is encoded in the ica locus. PIA production is strongly dependent on environmental conditions and controlled by many regulatory systems. PIA contributes significantly to staphylococcal biofilm formation and immune evasion mechanisms, such as resistance to antimicrobial peptides and ingestion and killing by phagocytes, and presence of the ica genes is associated with infectivity. Due to its role in pathogenesis, PIA has raised considerable interest as a potential vaccine component or target.
Collapse
Affiliation(s)
- Hoai T T Nguyen
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda 20814, MD, USA.,School of Biotechnology, International University, Vietnam National University of Ho Chi Minh City, Khu Pho 6, Thu Duc, Ho Chi Minh City, Viet Nam
| | - Thuan H Nguyen
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda 20814, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda 20814, MD, USA
| |
Collapse
|
15
|
Vestby LK, Grønseth T, Simm R, Nesse LL. Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics (Basel) 2020; 9:E59. [PMID: 32028684 PMCID: PMC7167820 DOI: 10.3390/antibiotics9020059] [Citation(s) in RCA: 523] [Impact Index Per Article: 104.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/31/2022] Open
Abstract
Recognition of the fact that bacterial biofilm may play a role in the pathogenesis of disease has led to an increased focus on identifying diseases that may be biofilm-related. Biofilm infections are typically chronic in nature, as biofilm-residing bacteria can be resilient to both the immune system, antibiotics, and other treatments. This is a comprehensive review describing biofilm diseases in the auditory, the cardiovascular, the digestive, the integumentary, the reproductive, the respiratory, and the urinary system. In most cases reviewed, the biofilms were identified through various imaging technics, in addition to other study approaches. The current knowledge on how biofilm may contribute to the pathogenesis of disease indicates a number of different mechanisms. This spans from biofilm being a mere reservoir of pathogenic bacteria, to playing a more active role, e.g., by contributing to inflammation. Observations also indicate that biofilm does not exclusively occur extracellularly, but may also be formed inside living cells. Furthermore, the presence of biofilm may contribute to development of cancer. In conclusion, this review shows that biofilm is part of many, probably most chronic infections. This is important knowledge for development of effective treatment strategies for such infections.
Collapse
Affiliation(s)
- Lene K. Vestby
- Department of Immunology and Virology, Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway;
| | - Torstein Grønseth
- Department of Otolaryngology, Head and Neck Surgery, Oslo University Hospital HF, Postboks 4950 Nydalen, 0424 Oslo, Norway;
| | - Roger Simm
- Institute of Oral Biology, University of Oslo, P.O. Box 1052, Blindern, 0316 Oslo, Norway;
| | - Live L. Nesse
- Department of Food Safety and Animal Health Research, Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| |
Collapse
|
16
|
Vasileiou NGC, Cripps PJ, Ioannidi KS, Katsafadou AI, Chatzopoulos DC, Barbagianni MS, Tsioli V, Dermisiadou E, Karavanis E, Papadopoulos N, Lianou DT, Mavrogianni VS, Petinaki E, Fthenakis GC. Experimental study for evaluation of the efficacy of a biofilm-embedded bacteria-based vaccine against Staphylococcus chromogenes-associated mastitis in sheep. Vet Microbiol 2019; 239:108480. [PMID: 31767091 DOI: 10.1016/j.vetmic.2019.108480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023]
Abstract
Although coagulase-negative staphylococci are the primary aetiological agents of subclinical mastitis in ewes, there is little information regarding vaccination against that infection. The objective of this study was to evaluate the efficacy of a vaccine against staphylococcal mastitis in ewes under experimental conditions. The antigen in the vaccine is based on a bacterin of Staphylococcus aureus strain, expressing the exopolysaccharide poly-N-acetylglucosamine (PNAG), which is involved in biofilm formation by these bacteria. Ewes in groups A (n = 17) or B (n = 6) were given an initial vaccination 5 weeks before expected lambing, followed by a repeat administration 21 days later. Ewes in groups C (n = 8) or D (n = 6) were unvaccinated controls. Ewes in group A (n = 17) or C (n = 8) were challenged with a biofilm-forming S. chromogenes; animals in subgroups A1 or C1 were challenged on the 10th and those in A2 or C2 on the 50th day after lambing. Ewes in groups B or D were uninoculated controls. Clinical examinations of ewes, ultrasonographic examinations of udder, milk yield measurements, blood sampling for detection of anti-PNAG specific antibodies and milk sample collection for bacteriological and cytological examinations were performed up to 52nd day post-challenge. Finally, biopsies were performed for mammary tissue collection for histopathological examination. Among group A ewes, 29% developed systemic signs and 59% signs in the inoculated gland; the respective figures for group C were 50% and 100% (P = 0.040 for mammary signs). The median total clinical score was 2.0 for A and 5.5 for C ewes (P = 0.025). For A, but not for C, clinical scores decreased progressively during the study (P = 0.018 and P = 0.47, respectively). The duration of mastitis was shorter in A (4 days) than in C (17.5 days) ewes (P = 0.022). Bacterial counts were lower in milk samples from A than from C ewes, for samples collected from the inoculated and the uninoculated (P < 0.01) mammary glands of these ewes. Somatic cell counts in samples from inoculated and uninoculated mammary glands of A ewes were higher than in samples of C ewes (P < 0.02). There were differences for gray-scale evaluations during ultrasonographic examination and for milk yield measurements between groups (P < 0.01). Median bacterial counts in tissue samples from A ewes (0 cfu g-1) were lower than in ones from C (6.5 cfu g-1) ewes (P = 0.041). The median score for histopathological findings in tissue samples from inoculated glands of A was lower than that for C ewes: 1 versus 2 (P = 0.014). It is concluded that mastitis was less severe in vaccinated animals, as indicated by a wide array of measures.
Collapse
Affiliation(s)
- N G C Vasileiou
- Veterinary Faculty, University of Thessaly, 43100, Karditsa, Greece
| | - P J Cripps
- Institute of Veterinary Science, University of Liverpool, Neston, South Wirral, CH64 7TE, United Kingdom
| | - K S Ioannidi
- Veterinary Faculty, University of Thessaly, 43100, Karditsa, Greece
| | - A I Katsafadou
- Veterinary Faculty, University of Thessaly, 43100, Karditsa, Greece
| | - D C Chatzopoulos
- Veterinary Faculty, University of Thessaly, 43100, Karditsa, Greece
| | - M S Barbagianni
- Veterinary Faculty, University of Thessaly, 43100, Karditsa, Greece
| | - V Tsioli
- Veterinary Faculty, University of Thessaly, 43100, Karditsa, Greece
| | - E Dermisiadou
- Veterinary Faculty, University of Thessaly, 43100, Karditsa, Greece
| | - E Karavanis
- 3rd Veterinary Hospital of Hellenic Army, 57100 Thermi, Greece
| | - N Papadopoulos
- 3rd Veterinary Hospital of Hellenic Army, 57100 Thermi, Greece
| | - D T Lianou
- Veterinary Faculty, University of Thessaly, 43100, Karditsa, Greece
| | - V S Mavrogianni
- Veterinary Faculty, University of Thessaly, 43100, Karditsa, Greece
| | - E Petinaki
- University Hospital of Larissa, 41110 Larissa, Greece
| | - G C Fthenakis
- Veterinary Faculty, University of Thessaly, 43100, Karditsa, Greece.
| |
Collapse
|
17
|
Katsafadou AI, Politis AP, Mavrogianni VS, Barbagianni MS, Vasileiou NGC, Fthenakis GC, Fragkou IA. Mammary Defences and Immunity against Mastitis in Sheep. Animals (Basel) 2019; 9:E726. [PMID: 31561433 PMCID: PMC6826578 DOI: 10.3390/ani9100726] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/26/2022] Open
Abstract
The objectives of this review paper are to present udder defences, including teat of the udder, mammary epithelial cells, leucocytes, immunoglobulins, complement system and chemical antibacterial agents, to describe cooperation and interactions between them and to elaborate on potentials regarding their significance in mammary immunisation strategies. The teat of the udder provides initial protection to the mammary gland. The mammary epithelial cells synthesise antibacterial proteins and the leucocytes produce various inflammation mediators (cytokines or chemokines), phagocytose bacteria and recognise antigenic structures. In the mammary gland, four immunoglobulins (IgG1, IgG2, IgM and IgA) have important roles against bacterial pathogens. The complement system is a collection of proteins, participating in the inflammatory process through various pathways. Other components contributing to humoral mammary defence include lactoferrin, lysozyme and the lactoperoxidase/myeloperoxidase systems, as well as oligosaccharides, gangliosides, reactive oxygen species, acute phase proteins (e.g., haptoglobin and serum amyloid A), ribonucleases and a wide range of antimicrobial peptides. Management practices, genetic variations and nutrition can influence mammary defences and should be taken into account in the formulation of prevention strategies against ovine mastitis.
Collapse
|
18
|
Vasileiou N, Gougoulis D, Katsafadou A, Mavrogianni V, Petinaki E, Fthenakis G. Anti-staphylococcal biofilm antibodies in ewes and association with subclinical mastitis. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Abstract
Staphylococci have been isolated from various sites of the body of healthy sheep, as well as from many infections of those animals, the main one being mastitis. The objective of this review is to appraise the importance and significance of staphylococci in causing mastitis in ewes. The review includes a brief classification and taxonomy of staphylococci and describes the procedures for their isolation and identification, as well as their virulence determinants and the mechanisms of resistance to antibacterial agents. Various staphylococcal species have been implicated in staphylococcal mastitis and the characteristics of isolates are discussed with regards to potential virulence factors. Staphylococcal mastitis is explicitly described, with reference to sources of infection, the course of the disease and the relevant control measures. Finally, the potential significance of staphylococci present in ewes' milk for public health is discussed briefly.
Collapse
|
20
|
Nagasawa Y, Kiku Y, Sugawara K, Hirose A, Kai C, Kitano N, Takahashi T, Nochi T, Aso H, Sawada SI, Akiyoshi K, Hayashi T. Staphylococcus aureus-specific IgA antibody in milk suppresses the multiplication of S. aureus in infected bovine udder. BMC Vet Res 2019; 15:286. [PMID: 31399125 PMCID: PMC6688226 DOI: 10.1186/s12917-019-2025-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background Bovine mastitis caused by Staphylococcus aureus (S. aureus) is extremely difficult to control and new methods for its prevention and management are required. Nasal vaccines may prevent initial bovine mastitis infection caused by S. aureus. However, limited information is available regarding induction of mucosal immune response through nasal immunization with antigen and its suppression of S. aureus multiplication during bovine mastitis. This study sought to investigate whether induction of immunoglobulin A (IgA) in milk by nasal immunization could suppress multiplication of S. aureus in the bovine udder. Results Nasal immunization with formalin-killed S. aureus conjugated with a cationic cholesteryl-group-bearing pullulan-nanogel was performed. Anti-S. aureus-specific IgA antibodies were significantly more abundant in the milk of immunized cows than in non-immunized animals (P < 0.05). S. aureus counts in the quarter were negative in both non-immunized and nasal-immunized cows 1 week after mock infusion. In S. aureus-infused quarters, S. aureus multiplication was significantly suppressed in immunized compared with non-immunized cows (P < 0.05). Furthermore, a significant negative correlation was found between S. aureus-specific IgA antibodies and S. aureus counts in infused quarters of both non-immunized and nasal-immunized cows (r = − 0.811, P < 0.01). Conclusion In conclusion, the present study demonstrates that S. aureus-specific IgA antibodies in milk successfully suppressed the multiplication of S. aureus in infected bovine udders. Although the exact mechanism explaining such suppressive effect remains to be elucidated, nasal vaccines that can induce humoral immunity may help prevent initial infection with S. aureus and the onset of bovine mastitis. Electronic supplementary material The online version of this article (10.1186/s12917-019-2025-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuya Nagasawa
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Yoshio Kiku
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Kazue Sugawara
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Aya Hirose
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Chiaki Kai
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Nana Kitano
- Graduate school of Dairy Science, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Toshihiko Takahashi
- Graduate school of Dairy Science, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Tomonori Nochi
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Hisashi Aso
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomohito Hayashi
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan.
| |
Collapse
|
21
|
Vasileiou NGC, Chatzopoulos DC, Cripps PJ, Ioannidi KS, Gougoulis DA, Chouzouris TM, Lianou DT, Gonzalez-Valerio TC, Vallverdu RG, Argyros S, Cesio M, Font I, Mavrogianni VS, Petinaki E, Fthenakis GC. Evaluation of efficacy of a biofilm-embedded bacteria-based vaccine against staphylococcal mastitis in sheep-A randomized, placebo-controlled field study. J Dairy Sci 2019; 102:9328-9344. [PMID: 31400892 DOI: 10.3168/jds.2019-16287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/30/2019] [Indexed: 01/09/2023]
Abstract
Our objective was to evaluate the efficacy of a vaccine against staphylococcal mastitis in 5 dairy sheep farms, with 316 ewes in the vaccinated (V) group and 307 in the control (C) group studied throughout a lactation period. Two administrations of the vaccine were performed during the last stage of gestation of ewes. Starting 15 d after lambing and at monthly intervals thereafter, up to 9 milk samplings were performed for bacteriological and cytological examinations. Staphylococcal isolates recovered were examined for biofilm formation. Blood samples were collected for measurement of IgG poly-N-acetylglucosamine-specific antibodies. The most frequently isolated bacteria were staphylococci: 56.4 and 76.1%, respectively, of total isolates recovered from ewes of group V and C, respectively; staphylococci as causal agents of mastitis were isolated less frequently from V (5.3%) than in ewes in C (10.3%). Among mastitis-associated staphylococcal isolates recovered from V ewes, a smaller proportion was biofilm-forming than among ones from C: 53.2% versus 74.9% of isolates; biofilm-forming staphylococci as causal agents of mastitis were isolated less frequently from ewes in group V (2.3%) than in ewes in group C (6.0%). Anti-poly-N-acetylglucosamine-specific antibody values increased in V ewes and were higher than in C; a greater proportion of ewes with low antibody titers developed staphylococcal mastitis (41.4%) than of V ewes with high antibody titers (17.0%). Incidence risk of mastitis, staphylococcal mastitis, and biofilm-associated staphylococcal mastitis was smaller in V than in C: 36.7, 17.1, and 8.0% versus 44.3, 30.9, and 18.9%, respectively. The first case of staphylococcal mastitis occurred later in V than in C: third versus second sampling point. Overall, efficacy of the vaccine was 44.6% for staphylococcal mastitis, 57.7% for biofilm-associated staphylococcal mastitis, 33.1% for staphylococcal intramammary infection, and 51.5% for biofilm-associated staphylococcal intramammary infection. Nevertheless, vaccination should not be the only means for controlling mastitis; other udder health management measures should be included therein to improve control of the infection.
Collapse
Affiliation(s)
- N G C Vasileiou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | - D C Chatzopoulos
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | - P J Cripps
- Institute of Veterinary Science, University of Liverpool, Neston, South Wirral, CH64 7TE, United Kingdom
| | - K S Ioannidi
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | - D A Gougoulis
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | - T M Chouzouris
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | - D T Lianou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | | | | | - S Argyros
- Laboratorios Hipra S.A., 17170 Amer (Girona), Spain
| | - M Cesio
- Laboratorios Hipra S.A., 17170 Amer (Girona), Spain
| | - I Font
- Laboratorios Hipra S.A., 17170 Amer (Girona), Spain
| | - V S Mavrogianni
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | - E Petinaki
- University Hospital of Larissa, 41110 Larissa, Greece
| | - G C Fthenakis
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece.
| |
Collapse
|
22
|
Micoli F, Costantino P, Adamo R. Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol Rev 2018; 42:388-423. [PMID: 29547971 PMCID: PMC5995208 DOI: 10.1093/femsre/fuy011] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cell surface carbohydrates have been proven optimal targets for vaccine development. Conjugation of polysaccharides to a carrier protein triggers a T-cell-dependent immune response to the glycan moiety. Licensed glycoconjugate vaccines are produced by chemical conjugation of capsular polysaccharides to prevent meningitis caused by meningococcus, pneumococcus and Haemophilus influenzae type b. However, other classes of carbohydrates (O-antigens, exopolysaccharides, wall/teichoic acids) represent attractive targets for developing vaccines. Recent analysis from WHO/CHO underpins alarming concern toward antibiotic-resistant bacteria, such as the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and additional pathogens such as Clostridium difficile and Group A Streptococcus. Fungal infections are also becoming increasingly invasive for immunocompromised patients or hospitalized individuals. Other emergencies could derive from bacteria which spread during environmental calamities (Vibrio cholerae) or with potential as bioterrorism weapons (Burkholderia pseudomallei and mallei, Francisella tularensis). Vaccination could aid reducing the use of broad-spectrum antibiotics and provide protection by herd immunity also to individuals who are not vaccinated. This review analyzes structural and functional differences of the polysaccharides exposed on the surface of emerging pathogenic bacteria, combined with medical need and technological feasibility of corresponding glycoconjugate vaccines.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena
| | | | | |
Collapse
|
23
|
Vasileiou N, Chatzopoulos D, Gougoulis D, Sarrou S, Katsafadou A, Spyrou V, Mavrogianni V, Petinaki E, Fthenakis G. Slime-producing staphylococci as causal agents of subclinical mastitis in sheep. Vet Microbiol 2018; 224:93-99. [DOI: 10.1016/j.vetmic.2018.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 11/28/2022]
|
24
|
Furukawa M, Yoneyama H, Hata E, Iwano H, Higuchi H, Ando T, Sato M, Hayashi T, Kiku Y, Nagasawa Y, Niimi K, Usami K, Ito K, Watanabe K, Nochi T, Aso H. Identification of a novel mechanism of action of bovine IgG antibodies specific for Staphylococcus aureus. Vet Res 2018; 49:22. [PMID: 29482613 PMCID: PMC5828400 DOI: 10.1186/s13567-018-0517-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 01/21/2018] [Indexed: 11/12/2022] Open
Abstract
Staphylococcus aureus is a major pathogen that causes subclinical mastitis associated with huge economic losses to the dairy industry. A few vaccines for bovine mastitis are available, and they are expected to induce the production of S. aureus-specific antibodies that prevent bacterial adherence to host cells or promote opsonization by phagocytes. However, the efficacy of such vaccines are still under debate; therefore, further research focusing on improving the current vaccines by seeking additional mechanisms of action is required to reduce economic losses due to mastitis in the dairy industry. Here, we generated S. aureus-specific bovine IgG antibodies (anti-S. aureus) that directly inhibited bacterial growth in vitro. Inhibition depended on specificity for anti-S. aureus, not the interaction between Protein A and the fragment crystallizable region of the IgG antibodies or bacterial agglutination. An in vitro culture study using S. aureus strain JE2 and its deletion mutant JE2ΔSrtA, which lacks the gene encoding sortase A, revealed that the effect of anti-S. aureus was sortase-A-independent. Sortase A is involved in the synthesis of cell-wall-associated proteins. Thus, other surface molecules, such as membrane proteins, cell surface polysaccharides, or both, may trigger the inhibition of bacterial growth by anti-S. aureus. Together, our findings contribute insights into developing new strategies to further improve the available mastitis vaccine by designing a novel antigen on the surface of S. aureus to induce inhibitory signals that prevent bacterial growth.
Collapse
Affiliation(s)
- Mutsumi Furukawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Hiroshi Yoneyama
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Eiji Hata
- National Institute of Animal Health, National Agriculture and Food Research Organization, Sapporo, Hokkaido, 062-0045, Japan
| | - Hidetomo Iwano
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
| | - Hidetoshi Higuchi
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
| | - Tasuke Ando
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Mika Sato
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Tomohito Hayashi
- National Institute of Animal Health, National Agriculture and Food Research Organization, Sapporo, Hokkaido, 062-0045, Japan
| | - Yoshio Kiku
- National Institute of Animal Health, National Agriculture and Food Research Organization, Sapporo, Hokkaido, 062-0045, Japan
| | - Yuya Nagasawa
- National Institute of Animal Health, National Agriculture and Food Research Organization, Sapporo, Hokkaido, 062-0045, Japan
| | - Kanae Niimi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Katsuki Usami
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Kumiko Ito
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Kouichi Watanabe
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Tomonori Nochi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan. .,International Research and Development Center for Mucosal Vaccine, The University of Tokyo, Tokyo, 108-8639, Japan.
| | - Hisashi Aso
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| |
Collapse
|
25
|
Abbasi M, BaseriSalehi M, Bahador N, Taherikalani M. Antibiotic Resistance Patterns and Virulence Determinants of Different SCCmec and Pulsotypes of Staphylococcus Aureus Isolated from a Major Hospital in Ilam, Iran. Open Microbiol J 2017; 11:211-223. [PMID: 29204221 PMCID: PMC5688384 DOI: 10.2174/1874285801711010211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/06/2017] [Accepted: 10/07/2017] [Indexed: 11/29/2022] Open
Abstract
Aims & Objectives: The aim of this study is to evaluate genetic relatedness, antibiotic resistance pattern, and virulence characteristics of different types of S. aureus isolated from air, surfaces, staff, and patients in a Public hospital in Ilam. Methods & Materials: A total of 88 of 140 staphylococci identified as S. aureus by conventional and molecular methods were used in this study. Isolate samples were obtained from surfaces, staff, patients, and hospital indoor air. The sampling from staff and surfaces was done through using swab and air by standard pump. Antimicrobial susceptibility testing and presence different resistant and virulence determinants was assessed. Isolates were then typed by pulsed-field gel electrophoresis (PFGE) and SCCmec typing methods. Results: Out of 88isolates, 36 of them (40.9%) were MRSA. Among MRSA isolates, the range of resistance to antibiotic was 0% in vancomycin to 83.3% in gentamycin. The most prevalent resistant genes among gentamicin resistant S. aureus were acc (6')/aph (2”)Ia and aph(3”)IIIa. The most common erythromycin resistant gene was ermC. Surprisingly, SCCmec types I (30.5%), II (25%)were highly distributed. PFGE analysis showed 33 different pulsotypes. Conclusion: This study confirms that different isolates of MSSA and MRSA circulate in Ilam which differ in antimicrobial susceptibility, content of resistance, and virulence determinants.
Collapse
Affiliation(s)
- Mehdi Abbasi
- Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran.,Department of Biology, Ilam Branch, Islamic Azad University, Ilam, Iran
| | - Majid BaseriSalehi
- Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Nima Bahador
- Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Morovat Taherikalani
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
26
|
Rainard P, Foucras G, Fitzgerald JR, Watts JL, Koop G, Middleton JR. Knowledge gaps and research priorities in Staphylococcus aureus mastitis control. Transbound Emerg Dis 2017; 65 Suppl 1:149-165. [PMID: 28984427 DOI: 10.1111/tbed.12698] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 12/31/2022]
Abstract
This study assessed knowledge gaps and suggested research priorities in the field of Staphylococcus aureus mastitis. Staphylococcus aureus infecting the mammary gland remains a major problem to the dairy industry worldwide because of its pathogenicity, contagiousness, persistence in the cow environment, colonization of skin or mucosal epithelia, and the poor curing efficacy of treatments. Staphylococcus aureus also constitutes a threat to public health due to food safety and antibiotic usage issues and the potential for bidirectional transmission of strains between humans and dairy animals (cows and small ruminants). Gaps have been identified in (i) understanding the molecular basis for pathogenesis of S. aureus mastitis, (ii) identifying staphylococcal antigens inducing protection and (iii) determining the cell-mediated immune responses to infection and vaccination. The recommended priorities for research are (i) improved diagnostic methods for early detection of infection and intervention through treatment or management, (ii) development of experimental models to investigate the strategies used by S. aureus to survive within the mammary gland and resist treatment with anti-microbials, (iii) investigation of the basis for cow-to-cow variation in response to S. aureus mastitis, (iv) identification of the immune responses (adaptive and innate) induced by infection or vaccination and (v) antibacterial discovery programmes to develop new, more effective, narrow spectrum antibacterial agents for the treatment of S. aureus mastitis. With the availability and ongoing improvement of molecular research tools, these objectives may not be out of reach in the future.
Collapse
Affiliation(s)
- P Rainard
- ISP, INRA, Université de Tours, UMR1282, Nouzilly, France
| | - G Foucras
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - J R Fitzgerald
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - J L Watts
- Zoetis, External Innovation-Anti-Infectives, VMRD, Kalamazoo, MI, USA
| | - G Koop
- Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - J R Middleton
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
| |
Collapse
|
27
|
Biofilms: Survival and defense strategy for pathogens. Int J Med Microbiol 2017; 307:481-489. [PMID: 28950999 DOI: 10.1016/j.ijmm.2017.09.016] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 01/20/2023] Open
Abstract
Studies on biofilm related infections are gaining prominence owing to their involvement in majority of clinical infections. Biofilm, considered as a generic mechanism for survival used by pathogenic as well as non-pathogenic microorganisms, involves surface attachment and growth of heterogeneous cells encapsulated within a matrix. The matrix provides ecological niche where partnership of cells endows a community like behaviour that not only enables the cohort to survive local microenvironment stress but also channelizes them to evolve, disseminate and cause resurgence of infections. In this mini-review we highlight the mechanisms used by microbes to develop and sustain biofilms, including the influence of the microbiota. Several strategies to target biofilms have been validated on certain groups of microorganisms and these basically target different stages in the life cycle of biofilm, however comprehensive methods to target microbial biofilms are relatively unknown. In the backdrop of recent reports suggesting that biofilms can harbour multiple species of organisms, we need to relook and devise newer strategies against biofilms. Effective anti-biofilm strategies cannot be confined to a single methodology that can disrupt one pathway but should simultaneously target the various routes adopted by the microorganisms for survival within their ecosystem. An overview of the currently available drugs, their mode of action, genomic targets and translational therapies against biofilm related infection are discussed.
Collapse
|
28
|
Ismail ZB. Mastitis vaccines in dairy cows: Recent developments and recommendations of application. Vet World 2017; 10:1057-1062. [PMID: 29062194 PMCID: PMC5639103 DOI: 10.14202/vetworld.2017.1057-1062] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/11/2017] [Indexed: 11/16/2022] Open
Abstract
The objective of this review article was to summarize the most recent clinical field trials that have been published evaluating the use of different types of vaccines against mastitis pathogens in dairy cows. Mastitis is one of the most common and economically important diseases in dairy cows in the world. The disease is considered an important welfare issue facing the dairy industry in addition to the loss of production and premature removal or death of affected cows. Losses are also related to high cost of veterinary medicines and the cost of unsalable milk of treated cows. Mastitis can be caused by either contagious or environmental pathogens both of which are best prevented rather than treated. In addition to the application of best management practices in the parlor during milking, vaccination against common udder pathogens is widely practiced in many dairy farms to prevent or reduce the severity of clinical mastitis. In this review, the most recent clinical field studies that evaluated the use of different types of vaccines in dairy cows are summarized.
Collapse
Affiliation(s)
- Zuhair Bani Ismail
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid 22100, Jordan
| |
Collapse
|
29
|
Guccione J, Pesce A, Pascale M, Salzano C, Tedeschi G, D'Andrea L, De Rosa A, Ciaramella P. Efficacy of a polyvalent mastitis vaccine against Staphylococcus aureus on a dairy Mediterranean buffalo farm: results of two clinical field trials. BMC Vet Res 2017; 13:29. [PMID: 28103866 PMCID: PMC5248485 DOI: 10.1186/s12917-017-0944-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/09/2017] [Indexed: 11/10/2022] Open
Abstract
Background In the last years the knowledges on Mediterranean Buffalo (MB) mastitis is remarkably improving, nevertheless the attention has been never focused on vaccination as preventive strategy for the control of mastitis in these ruminates. The aim of the current study was to assess clinical efficacy over time of two different preventive vaccination protocols against S. aureus mastitis, in primiparous MB.Vaccinated (VG) and not-vaccinated (N-VG) groups, of 30 MB each one, were selected from two different herds (herd A: VG1 and N-VG1; herd B: VG2 and N-VG2) of the same farm. Herd A received a double vaccination (Startvac®, 45 and 10 days before calving, protocol A), while in herd B an additional administration was performed (52 days after calving, protocol B). Bacteriological milk culture and assessment of somatic cell count (SCC) were performed at 10, 30, 60 and 90 days in milk (DIM) from composite milk samples. After 90 DIM, daily milk yields and SCC values were monthly detected until dry-off. Results The overall incidence of positive MB for S. aureus was 40.8% (49/120) in VG1 and 43.3% (52/120) in N-VG1 (Protocol A), while 45.8% (55/120) and 50.8% (61/120) in VG2 and N-VG2 (Protocol B). The latter was associated with a significant decreased in prevalence (at 90 DIM) and incidence of mastitis (animals positive for S. aureus, SCC > 200^103, with or without clinical signs) in the vaccinated MB, while no difference occurred in protocol A. Moreover, herd B showed a significant reduction in prevalence of intramammary infection (animals positive for S. aureus, SCC < 200^103, no clinical signs) in the vaccinated MB at 60 DIM while no differences were detected in herd A, at any sampling time; N-VG2 had significantly higher overall SCC values than VG2 (4.97 ± 4.75 and 4.84 ± 4.60 Log10 cells/mL ± standard deviation, respectively), while no differences were recorded in herd A. Conclusions The current investigation explores for the first time the clinical efficacy of vaccinations against S. aureus infections in MB, showing encouraging results regarding reduction in mastitis and somatic cell count; the polyvalent mastitis vaccine may be considered an additional tool for in-herd S aureus infection and should be associated to other control procedures to maximize its properties.
Collapse
Affiliation(s)
- Jacopo Guccione
- Department of Veterinary Medicine and Animal Productions, University of Napoli "Federico II", Via Delpino 1, 80137, Naples, Italy
| | - Antonella Pesce
- Istituto Zooprofilattico del Mezzogiorno, Via A. Jervolino 19, 81100, Tuoro, Caserta District, Italy
| | | | - Caterina Salzano
- Istituto Zooprofilattico del Mezzogiorno, Via A. Jervolino 19, 81100, Tuoro, Caserta District, Italy
| | - Gianni Tedeschi
- Hipra Italia s.r.l., Via Franciacorta 74, 25038, Rovato, Italy
| | - Luigi D'Andrea
- Department of Veterinary Medicine and Animal Productions, University of Napoli "Federico II", Via Delpino 1, 80137, Naples, Italy
| | - Angela De Rosa
- Department of Veterinary Medicine and Animal Productions, University of Napoli "Federico II", Via Delpino 1, 80137, Naples, Italy
| | - Paolo Ciaramella
- Department of Veterinary Medicine and Animal Productions, University of Napoli "Federico II", Via Delpino 1, 80137, Naples, Italy.
| |
Collapse
|
30
|
Skurnik D, Cywes-Bentley C, Pier GB. The exceptionally broad-based potential of active and passive vaccination targeting the conserved microbial surface polysaccharide PNAG. Expert Rev Vaccines 2016; 15:1041-53. [PMID: 26918288 PMCID: PMC4985264 DOI: 10.1586/14760584.2016.1159135] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/24/2016] [Indexed: 11/08/2022]
Abstract
A challenging component of vaccine development is the large serologic diversity of protective antigens. Remarkably, there is a conserved surface/capsular polysaccharide, one of the most effective vaccine targets, expressed by a large number of bacterial, fungal and eukaryotic pathogens: poly-N-acetyl glucosamine (PNAG). Natural antibodies to PNAG are poorly effective at mediating in vitro microbial killing or in vivo protection. Removing most of the acetate substituents to produce a deacetylated glycoform, or using synthetic oligosaccharides of poly-β-1-6-linked glucosamine conjugated to carrier proteins, results in vaccines that elicit high levels of broad-based immunity. A fully human monoclonal antibody is highly active in laboratory and preclinical studies and has been successfully tested in a phase-I setting. Both the synthetic oligosaccharide conjugate vaccine and MAb will be further tested in humans starting in 2016; but, even if effective against only a fraction of the PNAG-producing pathogens, a major advance in vaccine-preventable diseases will occur.
Collapse
Affiliation(s)
- David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave., Boston, MA 02115, Phone: 617-525-2269; FAX: 617-525-2510
| | - Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave., Boston, MA 02115, Phone: 617-525-2269; FAX: 617-525-2510
| | - Gerald B. Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave., Boston, MA 02115, Phone: 617-525-2269; FAX: 617-525-2510
| |
Collapse
|
31
|
Flores-Valdez MA. Vaccines Directed Against Microorganisms or Their Products Present During Biofilm Lifestyle: Can We Make a Translation as a Broad Biological Model to Tuberculosis? Front Microbiol 2016; 7:14. [PMID: 26834732 PMCID: PMC4720741 DOI: 10.3389/fmicb.2016.00014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/08/2016] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) remains as a global public health problem. In recent years, experimental evidence suggesting the relevance of in vitro pellicle (a type of biofilm formed at the air-liquid interface) production as a phenotype mimicking aspects found by Mycobacterium tuberculosis-complex bacteria during in vivo infection has started to accumulate. There are still opportunities for better diagnostic tools, therapeutic molecules as well as new vaccine candidates to assist in TB control programs worldwide and particularly in less developed nations. Regarding vaccines, despite the availability of a live, attenuated strain (Mycobacterium bovis BCG) since almost a century ago, its variable efficacy and lack of protection against pulmonary and latent disease has prompted basic and applied research leading to preclinical and clinical evaluation of up to 15 new candidates. In this work, I present examples of vaccines based on whole cells grown as biofilms, or specific proteins expressed under such condition, and the effect they have shown in relevant animal models or directly in the natural host. I also discuss why it might be worthwhile to explore these approaches, for constructing and developing new vaccine candidates for testing their efficacy against TB.
Collapse
Affiliation(s)
- Mario A Flores-Valdez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Biotecnología Médica y Farmaceútica Guadalajara, Mexico
| |
Collapse
|
32
|
Lacasta D, Ferrer L, Ramos J, González J, Ortín A, Fthenakis G. Vaccination schedules in small ruminant farms. Vet Microbiol 2015. [DOI: 10.1016/j.vetmic.2015.07.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Landin H, Mörk MJ, Larsson M, Waller KP. Vaccination against Staphylococcus aureus mastitis in two Swedish dairy herds. Acta Vet Scand 2015; 57:81. [PMID: 26608421 PMCID: PMC4660610 DOI: 10.1186/s13028-015-0171-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/14/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is a common udder pathogen in dairy cows, and may cause severe mastitis problems in some herds. In herds where normal control measures are not successful, vaccination might be an additional tool to use if sufficiently efficient. The aim of the present study was to evaluate the efficacy of a commercially available vaccine (Startvac(®), Hipra, Spain) in two commercial Swedish dairy herds where the control programs for S. aureus mastitis had been unsuccessful. Within each herd cows were randomly assigned to vaccine or control groups, and effects on udder health and milk production during 120 days after calving, and survival during the following lactation were evaluated. RESULTS A field study was performed in two high producing Swedish herds having approximately 600 (herd A) and 200 (herd B) cows. During 12 months, cows with odd numbers were vaccinated three times around calving according to label protocol, while cows with even numbers constituted the not vaccinated control group. Quarter milk samples for bacteriological culturing were collected from all cases of clinical and subclinical mastitis. The outcome was evaluated during 120 days after calving using data on SCC and daily milk yield at monthly milk recordings, and incidence of mastitis due to S. aureus, coagulase-negative staphylococci, streptococci and coliforms. Cow survival throughout lactation was also studied. In herd A, 239 and 240 cows were included in the vaccinated and control groups, respectively. Corresponding numbers for herd B was 126 and 151 cows. Significant differences between vaccinated and control groups were not found in any of the parameters investigated. CONCLUSIONS Vaccination with a commercial polyvalent vaccine did not have any beneficial effects on udder health, milk production or survival in two commercial dairy herds with mastitis problems due to S. aureus.
Collapse
|
34
|
Gelasakis AI, Mavrogianni VS, Petridis IG, Vasileiou NGC, Fthenakis GC. Mastitis in sheep--The last 10 years and the future of research. Vet Microbiol 2015. [PMID: 26216457 DOI: 10.1016/j.vetmic.2015.07.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial mastitis is a significant welfare and financial problem in sheep flocks. This paper reviews the recently published literature, including publications that highlight the significance and virulence factors of the causal agents, especially Staphylococcus aureus and Mannheimia haemolytica, the primary causes of the disease. Research has also contributed to the understanding of risk factors, including genetic susceptibility of animals to infections, supporting future strategies for sustainable disease control. Pathogenetic mechanisms, including the role of the local defenses in the teat, have also been described and can assist formulation of strategies that induce local immune responses in the teat of ewes. Further to well-established diagnostic techniques, i.e., bacteriological tests and somatic cell counting, advanced methodologies, e.g., proteomics technologies, will likely contribute to more rapid and accurate diagnostics, in turn enhancing mastitis control efforts.
Collapse
Affiliation(s)
- A I Gelasakis
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | - V S Mavrogianni
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | - I G Petridis
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | - N G C Vasileiou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | - G C Fthenakis
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece.
| |
Collapse
|
35
|
Which are important targets in development of S. aureus mastitis vaccine? Res Vet Sci 2015; 100:88-99. [DOI: 10.1016/j.rvsc.2015.03.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/04/2015] [Accepted: 03/14/2015] [Indexed: 12/21/2022]
|
36
|
A. R, G. M, S. U. R, I. R, K. H, A. A, S. S. Evaluation of humoral immunity and protective efficacy of biofilm producing Staphylococcus aureus bacterin-toxoid prepared from a bovine mastitis isolate in rabbit. IRANIAN JOURNAL OF VETERINARY RESEARCH 2015; 16:69-74. [PMID: 27175154 PMCID: PMC4789243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/23/2014] [Accepted: 08/17/2014] [Indexed: 06/05/2023]
Abstract
Mastitis is a one of the major diseases of dairy animals. Staphylococcus aureus is the most common microorganism associated with this dairy scourge. Cure rates of mastitis associated with this pathogen are appallingly low. Biofilm is an important virulence factor and immunogenic structure of S. aureus that makes it resistant to phagocytosis and antibiotics. Reports on the efficacy of vaccine prepared from a biofilm producing S. aureus are infrequent. The present study was designed to evaluate the role of a bacterin-toxoid prepared from a strong biofilm producing S. aureus in effective immunization of rabbits. The strong biofilm producing S. aureus selected from 64 isolates of staphylococci was used to prepare bacterin-toxoid and aluminum hydroxide gel was added as an adjuvant. The vaccine was evaluated in rabbits by challenge protection assay and humoral immune response. The mortality rates in control and vaccinated groups were 80% and 10% at day 7 post challenge and 100% and 20% at day 15 post challenge, respectively. Serum antibody titer (GMT) was significantly higher (294.0) in vaccinated group as compared to control group of rabbits (2.63) at day 45. The results showed that the vaccine has significantly elicited humoral immune response in rabbit and developed protective efficacy against new infections.
Collapse
Affiliation(s)
- Raza A.
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad G.
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Rahman S. U.
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Rashid I.
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Hanif K.
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Atta A.
- Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Sharif S.
- Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
37
|
Gogoi-Tiwari J, Williams V, Waryah CB, Eto KY, Tau M, Costantino P, Tiwari HK, Mukkur T. Comparative studies of the immunogenicity and protective potential of biofilm vs planktonic Staphylococcus aureus vaccine against bovine mastitis using non-invasive mouse mastitis as a model system. BIOFOULING 2015; 31:543-554. [PMID: 26293793 DOI: 10.1080/08927014.2015.1074681] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study was undertaken to compare the immunogenicity and protective potential of biofilm vs planktonic Staphylococcus aureus vaccine for the prevention of mastitis using the mouse as a model system. Mice immunized with formalin-killed whole cell vaccine of S. aureus residing in a biofilm when delivered via an intramammary route produced a cell mediated immune response. Mice immunized with this biofilm vaccine showed significant reductions in colonization by S. aureus in mammary glands, severity of clinical symptoms and tissue damage in mammary glands in comparison with the mice immunized with formalin-killed whole cells of planktonic S. aureus. The planktonic vaccine administered by a subcutaneous route produced a significantly higher humoral immune response (IgG1 and IgG) than the biofilm vaccine. However, considering the host response, tissue damage, the clinical severity and colonization of S. aureus in mammary glands, the biofilm vaccine performed better in immunogenicity and protective potential when administered by the intramammary route.
Collapse
Affiliation(s)
- Jully Gogoi-Tiwari
- a Faculty of Health Sciences, School of Biomedical Sciences, Curtin Health Innovation Research Institute , Curtin University , Bentley, Perth , Australia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zadoks RN, Tassi R, Martin E, Holopainen J, McCallum S, Gibbons J, Ballingall KT. Comparison of bacteriological culture and PCR for detection of bacteria in ovine milk--sheep are not small cows. J Dairy Sci 2014; 97:6326-33. [PMID: 25108858 DOI: 10.3168/jds.2014-8351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/25/2014] [Indexed: 01/26/2023]
Abstract
Mastitis, inflammation of the mammary gland, is an important cause of disease, mortality, and production losses in dairy and meat sheep. Mastitis is commonly caused by intramammary infection with bacteria, which can be detected by bacterial culture or PCR. PathoProof (Thermo Fisher Scientific Ltd., Vantaa, Finland) is a commercially available real-time PCR system for the detection of bovine mastitis pathogens. Sheep differ from cattle in the bacterial species or bacterial strains that cause mastitis, as well as in the composition of their milk. The aim of this study was to evaluate whether the PathoProof system was suitable for detection of mastitis pathogens in sheep milk. Milk samples were collected aseptically from 219 udder halves of 113 clinically healthy ewes in a single flock. Aliquots were used for bacteriological culture and real-time PCR-based detection of bacteria. For species identified by culture, the diagnosis was confirmed by species-specific conventional PCR or by sequencing of a housekeeping gene. The majority of samples were negative by culture (74.4% of 219 samples) and real-time PCR (82.3% of 192 samples). Agreement was observed for 138 of 192 samples. Thirty-four samples were positive by culture only, mostly due to presence of species that are not covered by primers in the PCR system (e.g., Mannheimia spp.). Two samples were positive for Streptococcus uberis by culture but not by PCR directly from the milk samples. This was not due to inability of the PCR primers to amplify ovine Streptococcus uberis, as diluted DNA extracts from the same samples and DNA extracts from the bacterial isolates were positive by real-time PCR. For samples containing Staphylococcus spp., 11 samples were positive by culture and PCR, 9 by culture only, and 20 by PCR only. Samples that were negative by either method had lower bacterial load than samples that were positive for both methods, whereas no clear relation with species identity was observed. This study provides proof of principle that real-time PCR can be used for detection of mastitis pathogens in ovine milk. Routine use in sheep may require inclusion of primer sets for sheep-specific mastitis pathogens.
Collapse
Affiliation(s)
- Ruth N Zadoks
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK; Institute for Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - Riccardo Tassi
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| | - Elena Martin
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| | - Jani Holopainen
- Thermo Fisher Scientific, Microbiology Division, Ratastie 2, PO Box 100, FI-01621 Vantaa, Finland
| | - Sarah McCallum
- Biobest Laboratories Ltd., 6 Charles Darwin House, The Edinburgh Technopole, Milton Bridge, EH26 0PY, UK
| | - James Gibbons
- The Royal (Dick) School of Veterinary Studies, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Keith T Ballingall
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| |
Collapse
|
39
|
Schukken Y, Bronzo V, Locatelli C, Pollera C, Rota N, Casula A, Testa F, Scaccabarozzi L, March R, Zalduendo D, Guix R, Moroni P. Efficacy of vaccination on Staphylococcus aureus and coagulase-negative staphylococci intramammary infection dynamics in 2 dairy herds. J Dairy Sci 2014; 97:5250-64. [DOI: 10.3168/jds.2014-8008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/15/2014] [Indexed: 01/13/2023]
|
40
|
Tremblay YD, Hathroubi S, Jacques M. [Bacterial biofilms: their importance in animal health and public health]. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2014; 78:110-116. [PMID: 24688172 PMCID: PMC3962273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bacterial biofilms are structured communities of bacterial cells enclosed in a self-produced polymer matrix that is attached to a surface. Biofilms protect and allow bacteria to survive and thrive in hostile environments. Bacteria within biofilms can withstand host immune responses, and are much less susceptible to antibiotics and disinfectants when compared to their planktonic counterparts. The ability to form biofilms is now considered an attribute of many microorganisms. Diseases associated with biofilms require novel methods for their prevention, diagnosis and treatment; this is largely due to the properties of biofilms. Furthermore, the presence of biofilms on surfaces found at farms, slaughterhouses or food processing plants will have an impact on the efficacy of disinfection protocols. Surprisingly, biofilm formation by bacterial pathogens of veterinary or zoonotic importance has received relatively little attention. The objective of this brief Review article is to bring awareness about the importance of biofilms to animal health stakeholders.(Translated by the authors).
Collapse
Affiliation(s)
| | | | - Mario Jacques
- Adresser toute correspondance à Docteur Mario Jacques; téléphone : 450-773-8521 (poste 8348); fax : 450-778-8108; e-mail :
| |
Collapse
|
41
|
Fekete A, Eszenyi D, Herczeg M, Pozsgay V, Borbás A. Preparation of synthetic oligosaccharide-conjugates of poly-β-(1→6)-N-acetyl glucosamine. Carbohydr Res 2014; 386:33-40. [DOI: 10.1016/j.carres.2013.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/23/2013] [Accepted: 12/27/2013] [Indexed: 10/25/2022]
|
42
|
Biofilm matrix exoproteins induce a protective immune response against Staphylococcus aureus biofilm infection. Infect Immun 2013; 82:1017-29. [PMID: 24343648 DOI: 10.1128/iai.01419-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Staphylococcus aureus biofilm mode of growth is associated with several chronic infections that are very difficult to treat due to the recalcitrant nature of biofilms to clearance by antimicrobials. Accordingly, there is an increasing interest in preventing the formation of S. aureus biofilms and developing efficient antibiofilm vaccines. Given the fact that during a biofilm-associated infection, the first primary interface between the host and the bacteria is the self-produced extracellular matrix, in this study we analyzed the potential of extracellular proteins found in the biofilm matrix to induce a protective immune response against S. aureus infections. By using proteomic approaches, we characterized the exoproteomes of exopolysaccharide-based and protein-based biofilm matrices produced by two clinical S. aureus strains. Remarkably, results showed that independently of the nature of the biofilm matrix, a common core of secreted proteins is contained in both types of exoproteomes. Intradermal administration of an exoproteome extract of an exopolysaccharide-dependent biofilm induced a humoral immune response and elicited the production of interleukin 10 (IL-10) and IL-17 in mice. Antibodies against such an extract promoted opsonophagocytosis and killing of S. aureus. Immunization with the biofilm matrix exoproteome significantly reduced the number of bacterial cells inside a biofilm and on the surrounding tissue, using an in vivo model of mesh-associated biofilm infection. Furthermore, immunized mice also showed limited organ colonization by bacteria released from the matrix at the dispersive stage of the biofilm cycle. Altogether, these data illustrate the potential of biofilm matrix exoproteins as a promising candidate multivalent vaccine against S. aureus biofilm-associated infections.
Collapse
|
43
|
Immune response of heifers against a Staphylococcus aureus CP5 whole cell and lysate vaccine formulated with ISCOM Matrix adjuvant. Res Vet Sci 2013; 96:86-94. [PMID: 24210331 DOI: 10.1016/j.rvsc.2013.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/12/2013] [Accepted: 10/15/2013] [Indexed: 12/24/2022]
Abstract
Staphylococcus aureus is the most frequently isolated pathogen from bovine intramammary infections worldwide. Commercially available vaccines for mastitis control are composed either of S. aureus lysates or whole-cells formulated with traditional adjuvants. We recently showed the ability of a S. aureus CP5 whole-cell vaccine adjuvanted with ISCOM Matrix to increase specific antibodies production in blood and milk, improving opsonic capacity, compared with the same vaccine formulated with Al(OH)3. However, there is no information about the use of ISCOM Matrix for the formulation of bacterial lysates. The aim of this study was to characterize the innate and humoral immune responses induced by a S. aureus CP5 whole-cell or lysate vaccine, formulated with ISCOM Matrix after immunization of pregnant heifers. Both immunogens stimulated strong humoral immune responses in blood and milk, raising antibodies that increased opsonic capacity. Lysate formulation generated a higher and longer lasting antibody titer and stimulated a higher expression of regulatory and pro-inflammatory cytokines compared with the whole-cell vaccine.
Collapse
|
44
|
Weaver LG, Singh Y, Blanchfield JT, Burn PL. A simple iterative method for the synthesis of β-(1→6)-glucosamine oligosaccharides. Carbohydr Res 2013; 371:68-76. [DOI: 10.1016/j.carres.2013.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
|
45
|
Factores de virulencia de Staphylococcus aureus asociados con infecciones mamarias en bovinos: relevancia y rol como agentes inmunógenos. Rev Argent Microbiol 2013; 45:119-30. [DOI: 10.1016/s0325-7541(13)70011-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Foreman A, Jervis-Bardy J, Boase SJ, Tan L, Wormald PJ. Noninvasive Staphylococcus aureus biofilm determination in chronic rhinosinusitis by detecting the exopolysaccharide matrix component poly-N-acetylglucosamine. Int Forum Allergy Rhinol 2012; 3:83-8. [PMID: 23136110 DOI: 10.1002/alr.21115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 08/29/2012] [Accepted: 09/25/2012] [Indexed: 01/30/2023]
Abstract
BACKGROUND The role that bacterial biofilms might play in recalcitrant forms of chronic rhinosinusitis (CRS) is increasingly being recognized. However, the detection of bacteria existing in this form, using standard culture, is limited by their unique metabolically inactive properties. All current biofilm diagnostic modalities require invasive mucosal biopsies, which limit their use to the operating theatre. METHODS Twenty CRS patients and 5 controls were enrolled in a prospective study to assess the feasibility of noninvasively diagnosing S. aureus biofilms by detecting the biofilm matrix polysaccharide poly-N-acetylglucosamine (PNAG). An immunofluorescence protocol was developed for PNAG detection and compared with both standard microbiological cultures and fluorescence in situ hybridization (FISH). RESULTS Thirteen of 20 CRS patients had evidence of S. aureus biofilm formation using FISH. Of these, 12 had detectable PNAG. Interestingly none of the S. aureus FISH-negative patients were PNAG-positive despite the presence of coagulase-negative Staphylococci biofilms, some of which may exhibit PNAG in their pathogenic forms. The development of a noninvasive S. aureus biofilm diagnostic test provides a reliable means to identify a high-risk group of CRS patients who harbor S. aureus biofilms. The ability to be used outside of the perioperative period to assess surgical efficacy, guide management, and evaluate new treatment modalities provides a significant advance in this field of research and clinical practice. CONCLUSION This study has confirmed the feasibility of noninvasive detection of S. aureus biofilms with a simple test that produces results comparable to the more invasive methods that are currently relied upon.
Collapse
Affiliation(s)
- Andrew Foreman
- Department of Otorhinolaryngology-Head and Neck Surgery, Discipline of Surgery, University of Adelaide and Flinders University, Adelaide, Australia
| | | | | | | | | |
Collapse
|
47
|
Spiliopoulou AI, Krevvata MI, Kolonitsiou F, Harris LG, Wilkinson TS, Davies AP, Dimitracopoulos GO, Karamanos NK, Mack D, Anastassiou ED. An extracellular Staphylococcus epidermidis polysaccharide: relation to Polysaccharide Intercellular Adhesin and its implication in phagocytosis. BMC Microbiol 2012; 12:76. [PMID: 22594478 PMCID: PMC3431232 DOI: 10.1186/1471-2180-12-76] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 05/17/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The skin commensal and opportunistic pathogen Staphylococcus epidermidis is a leading cause of hospital-acquired and biomaterial-associated infections. The polysaccharide intercellular adhesin (PIA), a homoglycan composed of β-1,6-linked N-acetylglucosamine residues, synthesized by enzymes encoded in icaADBC is a major functional factor in biofilm accumulation, promoting virulence in experimental biomaterial-associated S. epidermidis infection. Extracellular mucous layer extracts of S. epidermidis contain another major polysaccharide, referred to as 20-kDa polysaccharide (20-kDaPS), composed mainly out of glucose, N-acetylglucosamine, and being partially sulfated. 20-kDaPS antiserum prevents adhesion of S. epidermidis on endothelial cells and development of experimental keratitis in rabbits. Here we provide experimental evidence that 20-kDaPS and PIA represent distinct molecules and that 20-kDaPS is implicated in endocytosis of S. epidermidis bacterial cells by human monocyte-derived macrophages. RESULTS Analysis of 75 clinical coagulase-negative staphylococci from blood-cultures and central venous catheter tips indicated that 20-kDaPS is expressed exclusively in S. epidermidis but not in other coagulase-negative staphylococcal species. Tn917-insertion in various locations in icaADBC in mutants M10, M22, M23, and M24 of S. epidermidis 1457 are abolished for PIA synthesis, while 20-kDaPS expression appears unaltered as compared to wild-type strains using specific anti-PIA and anti-20-kDaPS antisera. While periodate oxidation and dispersin B treatments abolish immuno-reactivity and intercellular adhesive properties of PIA, no abrogative activity is exerted towards 20-kDaPS immunochemical reactivity following these treatments. PIA polysaccharide I-containing fractions eluting from Q-Sepharose were devoid of detectable 20-kDaPS using specific ELISA. Preincubation of non-20-kDaPS-producing clinical strain with increasing amounts of 20-kDaPS inhibits endocytosis by human macrophages, whereas, preincubation of 20-kDaPS-producing strain ATCC35983 with 20-kDaPS antiserum enhances bacterial endocytosis by human macrophages. CONCLUSIONS In conclusion, icaADBC is not involved in 20-kDaPS synthesis, while the chemical and chromatographic properties of PIA and 20-kDaPS are distinct. 20-kDaPS exhibits anti-phagocytic properties, whereas, 20-kDaPS antiserum may have a beneficial effect on combating infection by 20-kDaPS-producing S. epidermidis.
Collapse
Affiliation(s)
- Anastasia I Spiliopoulou
- Department of Microbiology, School of Medicine, University of Patras, Patras, Greece
- Medical Microbiology and Infectious Diseases, Institute of Life Science, The College of Medicine, Swansea University, Swansea, UK
| | - Maria I Krevvata
- Department of Microbiology, School of Medicine, University of Patras, Patras, Greece
| | - Fevronia Kolonitsiou
- Department of Microbiology, School of Medicine, University of Patras, Patras, Greece
| | - Llinos G Harris
- Medical Microbiology and Infectious Diseases, Institute of Life Science, The College of Medicine, Swansea University, Swansea, UK
| | - Thomas S Wilkinson
- Medical Microbiology and Infectious Diseases, Institute of Life Science, The College of Medicine, Swansea University, Swansea, UK
| | - Angharad P Davies
- Medical Microbiology and Infectious Diseases, Institute of Life Science, The College of Medicine, Swansea University, Swansea, UK
| | | | - Nikos K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Dietrich Mack
- Medical Microbiology and Infectious Diseases, Institute of Life Science, The College of Medicine, Swansea University, Swansea, UK
| | | |
Collapse
|
48
|
Weaver LG, Foster M, Singh Y, Burn PL, Blanchfield JT. A Direct, Heavy Metal Free Synthesis of the ?-1,6-Linked GlcNAc Disaccharide. Aust J Chem 2011. [DOI: 10.1071/ch11055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The major component of the matrix of many bacterial biofilms is a linear polymer of β-1,6-linked units of N-acetylglucosamine (polysaccharide intercellular adhesin or poly-N-acetyl-β-1,6-d-glucosamine). In order to facilitate synthetic vaccine construction we have developed a direct, inexpensive, and biologically compatible synthesis of the minimal building block of this polymer, a β-1,6-linked GlcNAc disaccharide, namely 6-O-[2-acetamido-2-deoxy-β-d-glucopyranosyl]-2-acetamido-2-deoxy-d-glucopyranose.
Collapse
|
49
|
Abstract
Bacterial biofilms are structured communities of bacterial cells enclosed in a self-produced polymer matrix that is attached to a surface. Biofilms protect and allow bacteria to survive and thrive in hostile environments. Bacteria within biofilms can withstand host immune responses, and are much less susceptible to antibiotics and disinfectants when compared with their planktonic counterparts. The ability to form biofilms is now considered a universal attribute of micro-organisms. Diseases associated with biofilms require novel methods for their prevention, diagnosis and treatment; this is largely due to the properties of biofilms. Surprisingly, biofilm formation by bacterial pathogens of veterinary importance has received relatively little attention. Here, we review the current knowledge of bacterial biofilms as well as studies performed on animal pathogens.
Collapse
|
50
|
Harro JM, Peters BM, O'May GA, Archer N, Kerns P, Prabhakara R, Shirtliff ME. Vaccine development in Staphylococcus aureus: taking the biofilm phenotype into consideration. ACTA ACUST UNITED AC 2010; 59:306-23. [PMID: 20602638 PMCID: PMC2936112 DOI: 10.1111/j.1574-695x.2010.00708.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vaccine development against pathogenic bacteria is an imperative initiative as bacteria are gaining resistance to current antimicrobial therapies and few novel antibiotics are being developed. Candidate antigens for vaccine development can be identified by a multitude of high-throughput technologies that were accelerated by access to complete genomes. While considerable success has been achieved in vaccine development against bacterial pathogens, many species with multiple virulence factors and modes of infection have provided reasonable challenges in identifying protective antigens. In particular, vaccine candidates should be evaluated in the context of the complex disease properties, whether planktonic (e.g. sepsis and pneumonia) and/or biofilm associated (e.g. indwelling medical device infections). Because of the phenotypic differences between these modes of growth, those vaccine candidates chosen only for their efficacy in one disease state may fail against other infections. This review will summarize the history and types of bacterial vaccines and adjuvants as well as present an overview of modern antigen discovery and complications brought about by polymicrobial infections. Finally, we will also use one of the better studied microbial species that uses differential, multifactorial protein profiles to mediate an array of diseases, Staphylococcus aureus, to outline some of the more recently identified problematic issues in vaccine development in this biofilm-forming species.
Collapse
Affiliation(s)
- Janette M Harro
- Department of Microbial Pathogenesis, Dental School, University of Maryland, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|