1
|
Senna Dos Santos G, Fonseca BDR, Sousa FSS, Seixas FK, Borsuk S. Evaluation of the immunogenic potential of recombinant Mycobacterium bovis BCG expressing the ASP-2 and TC24 proteins from Trypanosoma cruzi. Acta Trop 2025; 263:107569. [PMID: 40010681 DOI: 10.1016/j.actatropica.2025.107569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/28/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Although drugs have been employed over the past years to treat Chagas disease, they work mostly on the acute phase of infection, where diagnosis is hardly ever made, and present a plethora of negative side effects that ends in discontinuation of treatment. Consequently, to deal with this disease, prophylaxis seems to be a better strategy, with recombinant subunit vaccines showing promising results. Among those, Mycobaterium bovis Bacillus Calmette-Guérin (BCG) has recently been employed as vector for delivering T. cruzi antigens with positive results on immune response stimulus and protection against the infection. Following this perspective, this study aimed to characterize the immune response elicited by recombinant BCG expressing a fraction of the amastigote surface protein 2 (ASP-2) and the 24 kDa flagellar calcium-binding protein (TC24) of T. cruzi. To accomplish this, four groups of BALB/c female mice (n = 10) were vaccinated with 0.9% saline solution (Group 1), non-transformed BCG Pasteur (Group 2), rBCG/pUS977/ASP-2 (Group 3) or rBCG/pUS977/TC24 (Group 4). Cellular responses, assessed by cytokine expression from cultured and protein stimulated splenocytes, were statistically higher for both vaccinal formulations when compared with basal levels (Group 1) and non-transformed BCG (Group 2). Group 3 achieved better results for interleukins 10 and 17, while interferon γ was greatly stimulated by vaccination with Group 4. Even though further analyses are needed to evaluate the full efficacy of the constructions, the here presented results exhibit the potential of BCG vectored vaccines in eliciting Th1/Th2/Th17 mixed immune responses.
Collapse
Affiliation(s)
- Guilherme Senna Dos Santos
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brasil
| | - Bárbara da Rocha Fonseca
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brasil
| | - Fernanda Severo Sabedra Sousa
- Laboratório de Biotecnologia do Câncer, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brasil
| | - Fabiana Kommling Seixas
- Laboratório de Biotecnologia do Câncer, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brasil
| | - Sibele Borsuk
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brasil.
| |
Collapse
|
2
|
Saini I, Joshi J, Kaur S. Unleashing the role of potential adjuvants in leishmaniasis. Int J Pharm 2025; 669:125077. [PMID: 39675537 DOI: 10.1016/j.ijpharm.2024.125077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Leishmaniasis is amongst one of the most neglected tropical disease, caused by an intracellular protozoan of genus Leishmania. Currently, the most promising strategy to combat leishmaniasis, relies on chemotherapy but the toxicity and increasing resistance of the standard drugs, presses the demand for new alternatives. Immunization is arguably the best strategy for cure because an individual once infected becomes immune to the disease. Yet, there is no efficient vaccine capable of providing enduring immunity against the parasite. Achieving the goal of developing highly efficacious and durable vaccine is limited due to lack of an appropriate adjuvant. Adjuvants are recognized as 'immune potentiators' which redirect or amplify the immune response. A number of adjuvants like alum, MPL-A, CpG ODN, GLA-SE, imiquimod, saponins etc. have been used in combination with various classes of Leishmania antigens. However, only few have reached clinical trials. Thus, the choice of an adjuvant is critically dependent on many factors such as the route of administration, the nature of antigen, formulation, the type of required immune response, their mode of action and the immunization schedule. This review provides an updated status on the types of adjuvants used in leishmaniasis so far and their mechanism of action if known.
Collapse
Affiliation(s)
- Isha Saini
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| | - Jyoti Joshi
- Goswami Ganesh Dutta Sanatan Dharma College, Sector-32C, Chandigarh, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India.
| |
Collapse
|
3
|
Mambelli F, de Araujo ACVSC, Farias JP, de Andrade KQ, Ferreira LCS, Minoprio P, Leite LCC, Oliveira SC. An Update on Anti-COVID-19 Vaccines and the Challenges to Protect Against New SARS-CoV-2 Variants. Pathogens 2025; 14:23. [PMID: 39860984 PMCID: PMC11768231 DOI: 10.3390/pathogens14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
The COVID-19 pandemic has posed a significant threat to global health systems, with extensive impacts across many sectors of society. The pandemic has been responsible for millions of deaths worldwide since its first identification in late 2019. Several actions have been taken to prevent the disease, including the unprecedented fast development and global vaccination campaigns, which were pivotal in reducing symptoms and deaths. Given the impact of the pandemic, the continuous changes of the virus, and present vaccine technologies, this review analyzes how, so far, we have met the challenge posed by the emergence of new variants and discusses how next-generation pan-coronavirus vaccines, with enhanced longevity and breadth of immune responses, may be tackled with alternative administration routes and antigen delivery platforms. By addressing these critical aspects, this review aims to contribute to the ongoing efforts to achieve long-term control of COVID-19, stimulating the discussion and work on next-generation vaccines capable of facing future waves of infection.
Collapse
Affiliation(s)
- Fábio Mambelli
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (F.M.); (A.C.V.S.C.d.A.); (K.Q.d.A.)
- Institut Pasteur de São Paulo, São Paulo 05508-020, Brazil; (L.C.S.F.); (P.M.)
| | - Ana Carolina V. S. C. de Araujo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (F.M.); (A.C.V.S.C.d.A.); (K.Q.d.A.)
| | - Jéssica P. Farias
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Kivia Q. de Andrade
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (F.M.); (A.C.V.S.C.d.A.); (K.Q.d.A.)
| | - Luis C. S. Ferreira
- Institut Pasteur de São Paulo, São Paulo 05508-020, Brazil; (L.C.S.F.); (P.M.)
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Paola Minoprio
- Institut Pasteur de São Paulo, São Paulo 05508-020, Brazil; (L.C.S.F.); (P.M.)
| | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Sergio C. Oliveira
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (F.M.); (A.C.V.S.C.d.A.); (K.Q.d.A.)
- Institut Pasteur de São Paulo, São Paulo 05508-020, Brazil; (L.C.S.F.); (P.M.)
| |
Collapse
|
4
|
Khan M, Dong Y, Ullah R, Li M, Huang Q, Hu Y, Yang L, Luo Z. Recent Advances in Bacterium-Based Therapeutic Modalities for Melanoma Treatment. Adv Healthc Mater 2024; 13:e2401076. [PMID: 39375965 DOI: 10.1002/adhm.202401076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/16/2024] [Indexed: 10/09/2024]
Abstract
Melanoma is one of the most severe skin cancer indications with rapid progression and a high risk of metastasis. However, despite the accumulated advances in melanoma treatment including adjuvant radiation, chemotherapy, and immunotherapy, the overall melanoma treatment efficacy in the clinics is still not satisfactory. Interestingly, bacterial therapeutics have demonstrated unique properties for tumor-related therapeutic applications, such as tumor-targeted motility, tailorable cytotoxicity, and immunomodulatory capacity of the tumor microenvironment, which have emerged as a promising platform for melanoma therapy. Indeed, the recent advances in genetic engineering and nanotechnologies have boosted the application potential of bacterium-based therapeutics for treating melanoma by further enhancing their tumor-homing, cell-killing, drug delivery, and immunostimulatory capacities. This review provides a comprehensive summary of the state-of-the-art bacterium-based anti-melanoma modalities, which are categorized according to their unique functional merits, including tumor-specific cytotoxins, tumor-targeted drug delivery platforms, and immune-stimulatory agents. Furthermore, a perspective is provided discussing the potential challenges and breakthroughs in this area. The insights in this review may facilitate the development of more advanced bacterium-based therapeutic modalities for improved melanoma treatment efficacy.
Collapse
Affiliation(s)
- Mubassir Khan
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Yilong Dong
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325016, P. R. China
| | - Razi Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Lab for Vascular Implants College of Bioengineering Chongqing University, Chongqing, 400030, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| | - Qiping Huang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
5
|
Takeishi A, Shaban AK, Kakihana T, Takihara H, Okuda S, Osada H, Suameitria Dewi DNS, Ozeki Y, Yoshida Y, Nishiyama A, Tateishi Y, Aizu Y, Chuma Y, Onishi K, Hayashi D, Yamamoto S, Mukai T, Ato M, Thai DH, Nhi HTT, Shirai T, Shibata S, Obata F, Fujii J, Yamayoshi S, Kiso M, Matsumoto S. Genetic engineering employing MPB70 and its promoter enables efficient secretion and expression of foreign antigen in bacillus Calmette Guérin (BCG) Tokyo. Microbiol Immunol 2024; 68:130-147. [PMID: 38294180 DOI: 10.1111/1348-0421.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024]
Abstract
Vaccination is an important factor in public health. The recombinant bacillus Calmette Guérin (rBCG) vaccine, which expresses foreign antigens, is expected to be a superior vaccine against infectious diseases. Here, we report a new recombination platform in which the BCG Tokyo strain is transformed with nucleotide sequences encoding foreign protein fused with the MPB70 immunogenic protein precursor. By RNA-sequencing, mpb70 was found to be the most transcribed among all known genes of BCG Tokyo. Small oligopeptide, namely, polyhistidine tag, was able to be expressed in and secreted from rBCG through a process in which polyhistidine tag fused with intact MPB70 were transcribed by an mpb70 promoter. This methodology was applied to develop an rBCG expressing the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2. Immunoblotting images and mass spectrometry data showed that RBD was also secreted from rBCG. Sera from mice vaccinated with the rBCG showed a tendency of weak neutralizing capacity. The secretion was retained even after a freeze-drying process. The freeze-dried rBCG was administered to and recovered from mice. Recovered rBCG kept secreting RBD. Collectively, our recombination platform offers stable secretion of foreign antigens and can be applied to the development of practical rBCGs.
Collapse
Affiliation(s)
- Atsuki Takeishi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Amina K Shaban
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Taichi Kakihana
- Department of Virology, School of Medicine, Niigata University, Niigata, Japan
| | - Hayato Takihara
- Medical AI Center, School of Medicine, Niigata University, Niigata, Japan
| | - Shujiro Okuda
- Medical AI Center, School of Medicine, Niigata University, Niigata, Japan
| | - Hidekazu Osada
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- NIPPON ZENYAKU KOGYO CO., LTD, Fukushima, Japan
| | - Desak Nyoman Surya Suameitria Dewi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- Microbiology, Universitas Ciputra, Surabaya, Indonesia
| | - Yuriko Ozeki
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yutaka Yoshida
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yoshitaka Tateishi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yuki Aizu
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
| | - Yasushi Chuma
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
| | - Kazuyo Onishi
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
| | - Daisuke Hayashi
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
| | - Saburo Yamamoto
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsu Mukai
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Duong Huu Thai
- Institute of Vaccines and Medical Biologicals, Nha Trang, Vietnam
| | - Huynh Thi Thao Nhi
- Department of BCG production, Institute of Vaccines and Medical Biologicals, Nha Trang, Vietnam
| | - Tsuyoshi Shirai
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Satoshi Shibata
- Department of Microbiology and Immunology, Division of Bacteriology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Fumiko Obata
- Department of Microbiology and Immunology, Division of Bacteriology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Jun Fujii
- Department of Microbiology and Immunology, Division of Bacteriology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Seiya Yamayoshi
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Maki Kiso
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- Department of Medical Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Division of Research Aids, Hokkaido University Institute for Vaccine Research & Development, Sapporo, Hokkaido, Japan
| |
Collapse
|
6
|
de Araujo ACVSC, Mambelli F, Sanches RO, Marinho FV, Oliveira SC. Current Understanding of Bacillus Calmette-Guérin-Mediated Trained Immunity and Its Perspectives for Controlling Intracellular Infections. Pathogens 2023; 12:1386. [PMID: 38133271 PMCID: PMC10745672 DOI: 10.3390/pathogens12121386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
The bacillus Calmette-Guérin (BCG) is an attenuated bacterium derived from virulent Mycobacterium bovis. It is the only licensed vaccine used for preventing severe forms of tuberculosis in children. Besides its specific effects against tuberculosis, BCG administration is also associated with beneficial non-specific effects (NSEs) following heterologous stimuli in humans and mice. The NSEs from BCG could be related to both adaptive and innate immune responses. The latter is also known as trained immunity (TI), a recently described biological feature of innate cells that enables functional improvement based on metabolic and epigenetic reprogramming. Currently, the mechanisms related to BCG-mediated TI are the focus of intense research, but many gaps are still in need of elucidation. This review discusses the present understanding of TI induced by BCG, exploring signaling pathways that are crucial to a trained phenotype in hematopoietic stem cells and monocytes/macrophages lineage. It focuses on BCG-mediated TI mechanisms, including the metabolic-epigenetic axis and the inflammasome pathway in these cells against intracellular pathogens. Moreover, this study explores the TI in different immune cell types, its ability to protect against various intracellular infections, and the integration of trained innate memory with adaptive memory to shape next-generation vaccines.
Collapse
Affiliation(s)
- Ana Carolina V. S. C. de Araujo
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil;
| | - Fábio Mambelli
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil;
| | - Rodrigo O. Sanches
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.O.S.); (F.V.M.)
| | - Fábio V. Marinho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.O.S.); (F.V.M.)
| | - Sergio C. Oliveira
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil;
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.O.S.); (F.V.M.)
| |
Collapse
|
7
|
Schwarz MGA, Corrêa PR, Mendonça-Lima L. Transcriptional Profiling of Homologous Recombination Pathway Genes in Mycobacterium bovis BCG Moreau. Microorganisms 2023; 11:2534. [PMID: 37894192 PMCID: PMC10609372 DOI: 10.3390/microorganisms11102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 10/29/2023] Open
Abstract
Mycobacterium bovis BCG Moreau is the main Brazilian strain for vaccination against tuberculosis. It is considered an early strain, more like the original BCG, whereas BCG Pasteur, largely used as a reference, belongs to the late strain clade. BCG Moreau, contrary to Pasteur, is naturally deficient in homologous recombination (HR). In this work, using a UV exposure test, we aimed to detect differences in the survival of various BCG strains after DNA damage. Transcription of core and regulatory HR genes was further analyzed using RT-qPCR, aiming to identify the molecular agent responsible for this phenotype. We show that early strains share the Moreau low survival rate after UV exposure, whereas late strains mimic the Pasteur phenotype, indicating that this increase in HR efficiency is linked to the evolutionary clade history. Additionally, RT-qPCR shows that BCG Moreau has an overall lower level of these transcripts than Pasteur, indicating a correlation between this gene expression profile and HR efficiency. Further assays should be performed to fully identify the molecular mechanism that may explain this differential phenotype between early and late BCG strains.
Collapse
Affiliation(s)
- Marcos Gustavo Araujo Schwarz
- Laboratório de Biologia Molecular Aplicada à Micobactérias, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (P.R.C.); (L.M.-L.)
| | | | | |
Collapse
|
8
|
Mambelli F, Marinho FV, Andrade JM, de Araujo ACVSC, Abuna RPF, Fabri VMR, Santos BPO, da Silva JS, de Magalhães MTQ, Homan EJ, Leite LCC, Dias GB, Heck N, Mendes DAGB, Mansur DS, Báfica A, Oliveira SC. Recombinant Bacillus Calmette-Guérin Expressing SARS-CoV-2 Chimeric Protein Protects K18-hACE2 Mice against Viral Challenge. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1925-1937. [PMID: 37098890 PMCID: PMC10247535 DOI: 10.4049/jimmunol.2200731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/24/2023] [Indexed: 04/27/2023]
Abstract
COVID-19 has accounted for more than 6 million deaths worldwide. Bacillus Calmette-Guérin (BCG), the existing tuberculosis vaccine, is known to induce heterologous effects over other infections due to trained immunity and has been proposed to be a potential strategy against SARS-CoV-2 infection. In this report, we constructed a recombinant BCG (rBCG) expressing domains of the SARS-CoV-2 nucleocapsid and spike proteins (termed rBCG-ChD6), recognized as major candidates for vaccine development. We investigated whether rBCG-ChD6 immunization followed by a boost with the recombinant nucleocapsid and spike chimera (rChimera), together with alum, provided protection against SARS-CoV-2 infection in K18-hACE2 mice. A single dose of rBCG-ChD6 boosted with rChimera associated with alum elicited the highest anti-Chimera total IgG and IgG2c Ab titers with neutralizing activity against SARS-CoV-2 Wuhan strain when compared with control groups. Importantly, following SARS-CoV-2 challenge, this vaccination regimen induced IFN-γ and IL-6 production in spleen cells and reduced viral load in the lungs. In addition, no viable virus was detected in mice immunized with rBCG-ChD6 boosted with rChimera, which was associated with decreased lung pathology when compared with BCG WT-rChimera/alum or rChimera/alum control groups. Overall, our study demonstrates the potential of a prime-boost immunization system based on an rBCG expressing a chimeric protein derived from SARS-CoV-2 to protect mice against viral challenge.
Collapse
Affiliation(s)
- Fábio Mambelli
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fábio V. Marinho
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juvana M. Andrade
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana C. V. S. C. de Araujo
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo P. F. Abuna
- Platform of Bi-Institutional Research in Translational Medicine, Oswaldo Cruz Foundation-Fiocruz, Ribeirão Preto, São Paulo, Brazil
| | - Victor M. R. Fabri
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno P. O. Santos
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João S. da Silva
- Platform of Bi-Institutional Research in Translational Medicine, Oswaldo Cruz Foundation-Fiocruz, Ribeirão Preto, São Paulo, Brazil
| | - Mariana T. Q. de Magalhães
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - E. Jane Homan
- ioGenetics LLC, Madison, Wisconsin, United States of America
| | | | - Greicy B.M. Dias
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Nicoli Heck
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel A. G. B. Mendes
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel S. Mansur
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - André Báfica
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Sergio C. Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
dos Santos CC, Walburg KV, van Veen S, Wilson LG, Trufen CEM, Nascimento IP, Ottenhoff THM, Leite LCC, Haks MC. Recombinant BCG-LTAK63 Vaccine Candidate for Tuberculosis Induces an Inflammatory Profile in Human Macrophages. Vaccines (Basel) 2022; 10:vaccines10060831. [PMID: 35746439 PMCID: PMC9227035 DOI: 10.3390/vaccines10060831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
Tuberculosis (TB) is one of the top 10 leading causes of death worldwide. The recombinant BCG strain expressing the genetically detoxified A subunit of the thermolabile toxin from Escherichia coli (LTAK63) adjuvant (rBCG-LTAK63) has previously been shown to confer superior protection and immunogenicity compared to BCG in a murine TB infection model. To further investigate the immunological mechanisms induced by rBCG-LTAK63, we evaluated the immune responses induced by rBCG-LTAK63, BCG, and Mycobacterium tuberculosis (Mtb) H37Rv strains in experimental infections of primary human M1 and M2 macrophages at the transcriptomic and cytokine secretion levels. The rBCG-LTAK63-infected M1 macrophages more profoundly upregulated interferon-inducible genes such as IFIT3, OAS3, and antimicrobial gene CXCL9 compared to BCG, and induced higher levels of inflammatory cytokines such as IL-12(p70), TNF-β, and IL-15. The rBCG-LTAK63-infected M2 macrophages more extensively upregulated transcripts of inflammation-related genes, TAP1, GBP1, SLAMF7, TNIP1, and IL6, and induced higher levels of cytokines related to inflammation and tissue repair, MCP-3 and EGF, as compared to BCG. Thus, our data revealed an important signature of immune responses induced in human macrophages by rBCG-LTAK63 associated with increased inflammation, activation, and tissue repair, which may be correlated with a protective immune response against TB.
Collapse
Affiliation(s)
- Carina C. dos Santos
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil;
- Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo 05508-900, Brazil
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.V.W.); (S.v.V.); (L.G.W.); (T.H.M.O.); (M.C.H.)
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil
- Correspondence: (C.C.d.S.); (L.C.C.L.)
| | - Kimberley V. Walburg
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.V.W.); (S.v.V.); (L.G.W.); (T.H.M.O.); (M.C.H.)
| | - Suzanne van Veen
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.V.W.); (S.v.V.); (L.G.W.); (T.H.M.O.); (M.C.H.)
| | - Louis G. Wilson
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.V.W.); (S.v.V.); (L.G.W.); (T.H.M.O.); (M.C.H.)
| | | | - Ivan P. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.V.W.); (S.v.V.); (L.G.W.); (T.H.M.O.); (M.C.H.)
| | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil;
- Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo 05508-900, Brazil
- Correspondence: (C.C.d.S.); (L.C.C.L.)
| | - Mariëlle C. Haks
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.V.W.); (S.v.V.); (L.G.W.); (T.H.M.O.); (M.C.H.)
| |
Collapse
|
10
|
Bastos RG, Alzan HF, Rathinasamy VA, Cooke BM, Dellagostin OA, Barletta RG, Suarez CE. Harnessing Mycobacterium bovis BCG Trained Immunity to Control Human and Bovine Babesiosis. Vaccines (Basel) 2022; 10:123. [PMID: 35062784 PMCID: PMC8781211 DOI: 10.3390/vaccines10010123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/02/2023] Open
Abstract
Babesiosis is a disease caused by tickborne hemoprotozoan apicomplexan parasites of the genus Babesia that negatively impacts public health and food security worldwide. Development of effective and sustainable vaccines against babesiosis is currently hindered in part by the absence of definitive host correlates of protection. Despite that, studies in Babesia microti and Babesia bovis, major causative agents of human and bovine babesiosis, respectively, suggest that early activation of innate immune responses is crucial for vertebrates to survive acute infection. Trained immunity (TI) is defined as the development of memory in vertebrate innate immune cells, allowing more efficient responses to subsequent specific and non-specific challenges. Considering that Mycobacterium bovis bacillus Calmette-Guerin (BCG), a widely used anti-tuberculosis attenuated vaccine, induces strong TI pro-inflammatory responses, we hypothesize that BCG TI may protect vertebrates against acute babesiosis. This premise is supported by early investigations demonstrating that BCG inoculation protects mice against experimental B. microti infection and recent observations that BCG vaccination decreases the severity of malaria in children infected with Plasmodium falciparum, a Babesia-related parasite. We also discuss the potential use of TI in conjunction with recombinant BCG vaccines expressing Babesia immunogens. In conclusion, by concentrating on human and bovine babesiosis, herein we intend to raise awareness of BCG TI as a strategy to efficiently control Babesia infection.
Collapse
Affiliation(s)
- Reginaldo G. Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA;
| | - Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA;
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Center, Giza 12622, Egypt
| | - Vignesh A. Rathinasamy
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4870, Australia; (V.A.R.); (B.M.C.)
| | - Brian M. Cooke
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4870, Australia; (V.A.R.); (B.M.C.)
| | - Odir A. Dellagostin
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Rio Grande Do Sul, Brazil;
| | - Raúl G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0905, USA;
| | - Carlos E. Suarez
- Animal Disease Research Unit, United States Department of Agriculture-Agricultural Research Service, Pullman, WA 99164-7040, USA
| |
Collapse
|
11
|
Dorneles J, Madruga AB, Seixas Neto ACP, Rizzi C, Bettin ÉB, Hecktheuer AS, Castro CCD, Fernandes CG, Oliveira TL, Dellagostin OA. Protection against leptospirosis conferred by Mycobacterium bovis BCG expressing antigens from Leptospira interrogans. Vaccine 2020; 38:8136-8144. [PMID: 33176938 DOI: 10.1016/j.vaccine.2020.10.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022]
Abstract
Leptospirosis is a zoonotic disease worldwide and caused by the pathogenic spirochetes of the genus Leptospira. Bacterins make up the vaccines used against leptospirosis, but they only succeed in providing short-term and serovar-specific protection. The use of Mycobacterium bovis BCG as a live vaccine vector expressing leptospiral antigens is a promising alternative, particularly due to its adjuvant properties. Four distinct portions P1 (lipL32), P2 (ligAni), P3 (lemA:ligAni) and P4 (lipL32:lemA) of a recombinant chimera composed of the lipL32, lemA and ligANI genes from Leptospira interrogans were cloned individually according to the BioBricks® strategy in the plasmid pUP500/PpAN. These constructs were individually transformed into a BCG Pasteur strain, and protein expression was detected by Western blot. For vaccination, 5 groups of 10 Golden Syrian hamsters were used, aged 4-6 weeks - group 1, rBCG (LipL32); group 2, rBCG (LigAni); group 3, rBCG (LemA:LigAni); group 4, (LipL32:LemA); group 5, wild-type BCG Pasteur (negative control). Two doses containing 106 CFU of rBCG were administered subcutaneously, the challenge was performed with 5 × LD50 of Leptospira interrogans serovar Copenhageni L1-130, and the animals were observed for a 30-day period until the endpoint was reached. Humoral immunity was assessed via indirect ELISA, while renal colonisation was assessed by culture and quantitative real-time PCR. All vaccinated groups were protected against lethal challenge and renal colonisation, in comparison with negative control group (P < 0.05). Recombinant vaccines were not effective at inducing significant humoral immunity, which suggests the induction of cellular immunity - a characteristic of M. bovis BCG. In conclusion, all formulations provide 100% significant protection against leptospirosis in hamsters with no renal colonisation. The use of rBCG as a vaccine vector represents a promising alternative for the control of animal leptospirosis, allowing for protection against clinical signs of leptospirosis and renal colonisation.
Collapse
Affiliation(s)
- Jessica Dorneles
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Andriele Bonemann Madruga
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amilton Clair Pinto Seixas Neto
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Caroline Rizzi
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Éverton Burlamarque Bettin
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amanda Silva Hecktheuer
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Clarissa Caetano de Castro
- Programa de Pós-Graduação em Veterinária, Departamento de Patologia Animal, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Cristina Gevehr Fernandes
- Programa de Pós-Graduação em Veterinária, Departamento de Patologia Animal, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Thaís Larré Oliveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antonio Dellagostin
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
12
|
Bontempi I, Leal K, Prochetto E, Díaz G, Cabrera G, Bortolotti A, Morbidoni HR, Borsuk S, Dellagostin O, Marcipar I. Recombinant Mycobacterium bovis BCG is a promising platform to develop vaccines against Trypansoma cruzi infection. Clin Exp Immunol 2020; 201:306-316. [PMID: 32464684 DOI: 10.1111/cei.13469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/05/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022] Open
Abstract
Chagas disease, caused by the hemoflagelate parasite Trypanosoma cruzi, is one of the most prevalent endemic parasitoses, affecting 7-8 million people. Due to the complexity of the infection, no vaccines are available at present. The extraordinary adjuvant capacity of bacille Calmette-Guérin (BCG) was explored in this work to develop a vaccine candidate to protect against T. cruzi infection using the recombinant BCG (rBCG) vaccine platform. Three antigens of the parasite corresponding to the N and C terminal fragments of the enzyme trans-sialidase (NT-TS and CT-TS, respectively) and a fragment of the cruzipain enzyme (CZf) were cloned into the vectors pUS997 and pUS2000 and transformed into the BCG Pasteur strain. In vaccinated mice, rBCG expressing NT-TS in pUS2000 plasmid provided the highest protection and the lowest parasitemia after challenging BALB/c mice with a 50% lethal dose of parasites. When mice vaccinated with pUS2000-NT-TS were challenged with a 100% lethal dose of parasite, high levels of protection were also obtained, together with a low degree of cardiac lesions 120 days after infection. In immunized mice with pUS2000-NT-TS/rBCG clone, the proliferation of CD4+ cells from splenocytes stimulated with the TS antigen was significant; this stimulation increased interferon (IFN)-γ and interleukin (IL)-17 within CD4⁺ T lymphocytes (LTCD4+ ) cells and IFN-γ and CD107 expression within LTCD8+ cells. Therefore, pUS2000-NT-TS/rBCG conferred high levels of protection, which correlated with an immune response orientated towards a T helper type 1 (Th1)/Th17 profile, together with an LTC-specific response, indicating that rBCG is a promising platform to develop vaccines against T. cruzi.
Collapse
Affiliation(s)
- I Bontempi
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - K Leal
- Núcleo de Biotecnologia, CDTec, Universidade Federal de Pelotas, Pelotas, Brazil
| | - E Prochetto
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - G Díaz
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - G Cabrera
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - A Bortolotti
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - H R Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - S Borsuk
- Núcleo de Biotecnologia, CDTec, Universidade Federal de Pelotas, Pelotas, Brazil
| | - O Dellagostin
- Núcleo de Biotecnologia, CDTec, Universidade Federal de Pelotas, Pelotas, Brazil
| | - I Marcipar
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
13
|
Nascimento LV, Santos CC, Leite LC, Nascimento IP. Characterisation of alternative expression vectors for recombinant Bacillus Calmette-Guérin as live bacterial delivery systems. Mem Inst Oswaldo Cruz 2020; 115:e190347. [PMID: 32428188 PMCID: PMC7227789 DOI: 10.1590/0074-02760190347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/13/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Bacillus Calmette-Guérin (BCG) is considered a promising live bacterial delivery system. However, several proposals for rBCG vaccines have not progressed, mainly due to the limitations of the available expression systems. OBJECTIVES To obtain a set of mycobacterial vectors using a range of promoters with different strengths based on a standard backbone, previously shown to be stable. METHODS Mycobacterial expression vectors based on the pLA71 vector as backbone, were obtained inserting different promoters (PAN, PαAg, PHsp60, PBlaF* and PL5) and the green fluorescence protein (GFP) as reporter gene, to evaluate features such as their relative strengths, and the in vitro (inside macrophages) and in vivo stability. FINDINGS The relative fluorescence observed with the different vectors showed increasing strength of the promoters: PAN was the weakest in both Mycobacterium smegmatis and BCG and PBlaF* was higher than PHsp60 in BCG. The relative fluorescence observed in a macrophage cell line showed that PBlaF* and PHsp60 were comparable. It was not possible to obtain strains transformed with the extrachromosomal expression vector containing the PL5 in either species. MAIN CONCLUSION We have obtained a set of potentially stable mycobacterial vectors with a arrange of expression levels, to be used in the development of rBCG vaccines.
Collapse
Affiliation(s)
- Larissa V Nascimento
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Carina C Santos
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Luciana Cc Leite
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Ivan P Nascimento
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
14
|
Goulart C, Rodriguez D, Kanno AI, Silva JLSC, Leite LCC. Early pneumococcal clearance in mice induced by systemic immunization with recombinant BCG PspA-PdT prime and protein boost correlates with cellular and humoral immune response in bronchoalveolar fluids (BALF). Vaccine X 2020; 4:100049. [PMID: 31891153 PMCID: PMC6928339 DOI: 10.1016/j.jvacx.2019.100049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/03/2022] Open
Abstract
An effective immunological response in the lungs during a pneumococcal infection is a key factor to the bacteria clearance and prevention of sepsis. In order to develop broad-range pneumococcal vaccines several pneumococcal proteins and strong adjuvants have been investigated. Previously, we constructed a recombinant BCG (rBCG) strain expressing a fragment of PspA (Pneumococcal surface protein A) fused to PdT (detoxified form of pneumolysin). Immunization of mice with a priming dose of rBCG PspA-PdT followed by a booster dose of rPspA-PdT fused protein induced a high antibody response in the serum and protected mice against lethal challenge. Here, we investigated the humoral and cellular immune response in the Bronchoalveolar lavage fluid (BALF). Immunization of mice with rBCG PspA-PdT / rPspA-PdT induced rapid clearance of bacteria after challenge, an early control of the cellular influx and reduced inflammatory cytokine levels in the BALF. In addition, rBCG PspA-PdT / rPspA-PdT induced higher lymphocyte recruitment to the lungs at 48 h, showing an increased percentage of CD4+ T cells. Furthermore, BALF samples from mice immunized with rBCG PspA-PdT / PspA-PdT showed high binding of IgG2c and enhanced complement deposition on the pneumococcal surface; antibody binding was specific to PspA as no binding was observed to a PspA-knockout strain. Taken together, our results show that the immunization with rBCG PspA-PdT / rPspA-PdT induces humoral and cellular immune responses in the lungs, promotes an early clearance of pneumococci and protects against the systemic dissemination of pneumococci.
Collapse
Affiliation(s)
- Cibelly Goulart
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Brazil
| | - Dunia Rodriguez
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Brazil
| | - Alex I Kanno
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Brazil
| | - José Lourenço S C Silva
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Brazil.,Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, SP, Brazil
| | - Luciana C C Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Brazil
| |
Collapse
|
15
|
Angelidou A, Diray-Arce J, Conti MG, Smolen KK, van Haren SD, Dowling DJ, Husson RN, Levy O. BCG as a Case Study for Precision Vaccine Development: Lessons From Vaccine Heterogeneity, Trained Immunity, and Immune Ontogeny. Front Microbiol 2020; 11:332. [PMID: 32218774 PMCID: PMC7078104 DOI: 10.3389/fmicb.2020.00332] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Vaccines have been traditionally developed with the presumption that they exert identical immunogenicity regardless of target population and that they provide protection solely against their target pathogen. However, it is increasingly appreciated that vaccines can have off-target effects and that vaccine immunogenicity can vary substantially with demographic factors such as age and sex. Bacille Calmette-Guérin (BCG), the live attenuated Mycobacterium bovis vaccine against tuberculosis (TB), represents a key example of these concepts. BCG vaccines are manufactured under different conditions across the globe generating divergent formulations. Epidemiologic studies have linked early life immunization with certain BCG formulations to an unanticipated reduction (∼50%) in all-cause mortality, especially in low birthweight males, greatly exceeding that attributable to TB prevention. This mortality benefit has been related to prevention of sepsis and respiratory infections suggesting that BCG induces "heterologous" protection against unrelated pathogens. Proposed mechanisms for heterologous protection include vaccine-induced immunometabolic shifts, epigenetic reprogramming of innate cell populations, and modulation of hematopoietic stem cell progenitors resulting in altered responses to subsequent stimuli, a phenomenon termed "trained immunity." In addition to genetic differences, licensed BCG formulations differ markedly in content of viable mycobacteria key for innate immune activation, potentially contributing to differences in the ability of these diverse formulations to induce TB-specific and heterologous protection. BCG immunomodulatory properties have also sparked interest in its potential use to prevent or alleviate autoimmune and inflammatory diseases, including type 1 diabetes mellitus and multiple sclerosis. BCG can also serve as a model: nanoparticle vaccine formulations incorporating Toll-like receptor 8 agonists can mimic some of BCG's innate immune activation, suggesting that aspects of BCG's effects can be induced with non-replicating stimuli. Overall, BCG represents a paradigm for precision vaccinology, lessons from which will help inform next generation vaccines.
Collapse
Affiliation(s)
- Asimenia Angelidou
- Division of Newborn Medicine, Boston Children’s Hospital and Beth Israel Deaconess Medical Center, Boston, MA, United States
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Joann Diray-Arce
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Maria Giulia Conti
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Kinga K. Smolen
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Simon Daniël van Haren
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - David J. Dowling
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Robert N. Husson
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Ofer Levy
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|
16
|
A standardized BioBrick toolbox for the assembly of sequences in mycobacteria. Tuberculosis (Edinb) 2019; 119:101851. [DOI: 10.1016/j.tube.2019.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/02/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022]
|
17
|
Mahdy SE, Sijing L, Lin S, Xiang Z, Hao-Tai C, Xiaofang P, Chuan W. Development of a recombinant vaccine against foot and mouth disease utilizing mutant attenuated Listeria ivanovii strain as a live vector. J Virol Methods 2019; 273:113722. [PMID: 31422118 DOI: 10.1016/j.jviromet.2019.113722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 07/16/2019] [Accepted: 08/14/2019] [Indexed: 12/31/2022]
Abstract
The drawbacks of conventional inactivated Foot and Mouth Disease (FMD) vaccine, such as escaping of the virus during manufacture processes prompted researchers to explore novel types of vaccine to overcome these disadvantages. Listeria ivanovii (LI) is an intracellular microorganism that possesses immune-stimulatory properties, making it appropriate for use as a live bacterial vaccine vector. The Foot and mouth disease virus (FMDV) VP1 protein is the most immunogenic part of FMDV capsid, it has most of the antigenic sites for viral neutralization. The expression of antigen gene cassette in vitro was confirmed by Western blot analysis. Mice were able to eliminate LI△actAplcB-vp1 from the liver and spleen within few days revealed a safety of the candidate vaccine. Two doses of LI△actAplcB-vp1 with 14 days of interval were injected into mice. High levels of specific IgG antibodies and CD8+ and CD4+ T cells secreted cytokines including IFN-γ, TNF-α and IL-2 against FMDV-VP1 were achieved. Based on the obtained results, LI△actAplcB-vp1 candidate vaccine utilizing Listeria ivanovii as a live vector-based vaccine could enhance a specific cellular and humoral immune responses against the inserted FMDV-vp1 heterologous genes. LI△actAplcB-vp1 candidate vaccine could be a modern tool to overcome the disadvantages of the traditional inactivated FMD vaccine.
Collapse
Affiliation(s)
- S E Mahdy
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Liu Sijing
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Su Lin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Zhang Xiang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Chen Hao-Tai
- Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Pei Xiaofang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Wang Chuan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
18
|
Benitez MLR, Bender CB, Oliveira TL, Schachtschneider KM, Collares T, Seixas FK. Mycobacterium bovis BCG in metastatic melanoma therapy. Appl Microbiol Biotechnol 2019; 103:7903-7916. [PMID: 31402426 DOI: 10.1007/s00253-019-10057-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
Abstract
Melanoma is the most aggressive form of skin cancer, with a high mortality rate and with 96,480 new cases expected in 2019 in the USS. BRAFV600E, the most common driver mutation, is found in around 50% of melanomas, contributing to tumor growth, angiogenesis, and metastatic progression. Dacarbazine (DTIC), an alkylate agent, was the first chemotherapeutic agent approved by the US Food and Drug Administration (FDA) used as a standard treatment. Since then, immunotherapies have been approved for metastatic melanoma (MM) including ipilimumab and pembrolizumab checkpoint inhibitors that help decrease the risk of progression. Moreover, Mycobacterium bovis Bacillus Calmette-Guerin (BCG) serves as an adjuvant therapy that induces the recruitment of natural killer NK, CD4+, and CD8+ T cells and contributes to antitumor immunity. BCG can be administered in combination with chemotherapeutic and immunotherapeutic agents and can be genetically manipulated to produce recombinant BCG (rBCG) strains that express heterologous proteins or overexpress immunogenic proteins, increasing the immune response and improving patient survival. In this review, we highlight several studies utilizing rBCG immunotherapy for MM in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Martha Lucia Ruiz Benitez
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Camila Bonnemann Bender
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Thaís Larré Oliveira
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Tiago Collares
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana Kömmling Seixas
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
19
|
Burggraaf MJ, Ates LS, Speer A, van der Kuij K, Kuijl C, Bitter W. Optimization of secretion and surface localization of heterologous OVA protein in mycobacteria by using LipY as a carrier. Microb Cell Fact 2019; 18:44. [PMID: 30841891 PMCID: PMC6402100 DOI: 10.1186/s12934-019-1093-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacterium bovis Bacille Calmette-Guérin (BCG) is not only used as a vaccine against tuberculosis but also protects against leprosy and is used as part of bladder cancer treatment to induce a protective immune response. However, protection by BCG vaccination is not optimal. To improve vaccine efficacy, recombinant BCG expressing heterologous antigens has been put forward to elicit antigen-specific cellular and humoral responses. Cell surface localized or secreted antigens induce better immune responses than their cytosolic counterparts. Optimizing secretion of heterologous proteins or protein fragments holds therefore unexplored potential for improving the efficacy of recombinant BCG vaccine candidates. Secretion of heterologous antigens requires crossing the mycobacterial inner and outer membrane. Mycobacteria have specialized ESX or type VII secretion systems that enable translocation of proteins across both membranes. Probing this secretion system could therefore be a valid approach to surface localize heterologous antigens. RESULTS We show that ESX-5 substrate LipY, a lipase, can be used as a carrier for heterologous secretion of an ovalbumin fragment (OVA). LipY contains a PE domain and a lipase domain, separated by a linker region. This linker domain is processed upon secretion. Fusion of the PE and linker domains of LipY to OVA enabled ESX-5-dependent secretion of the fusion construct LipY-OVA in M. marinum, albeit with low efficiency. Subsequent random mutagenesis of LipY-OVA and screening for increased secretion resulted in mutants with improved heterologous secretion. Detailed analysis identified two mutations in OVA that improved secretion, i.e. an L280P mutation and a protein-extending frameshift mutation. Finally, deletion of the linker domain of LipY enhanced secretion of LipY-OVA, although this mutation also reduced surface association. Further analysis in wild type LipY showed that the linker domain is required for surface association. CONCLUSION We show that the ESX-5 system can be used for heterologous secretion. Furthermore, minor mutations in the substrate can enhance secretion. Especially the C-terminal region seems to be important for this. The linker domain of LipY is involved in surface association. These findings show that non-biased screening approaches aid in optimization of heterologous secretion, which can contribute to heterologous vaccine development.
Collapse
Affiliation(s)
- Maroeska J Burggraaf
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Louis S Ates
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Alexander Speer
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Kim van der Kuij
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Coen Kuijl
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Wilbert Bitter
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands. .,Molecular Microbiology, Vrije Universiteit Amsterdam, de Boelelaan 1105, Amsterdam, Netherlands.
| |
Collapse
|
20
|
A Bivalent Recombinant Mycobacterium bovis BCG Expressing the S1 Subunit of the Pertussis Toxin Induces a Polyfunctional CD4 + T Cell Immune Response. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9630793. [PMID: 30941374 PMCID: PMC6420988 DOI: 10.1155/2019/9630793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/30/2018] [Indexed: 12/15/2022]
Abstract
Background A recombinant BCG strain expressing the genetically detoxified S1 subunit of pertussis toxin 9K/129G (rBCG-S1PT), previously constructed by our research group, demonstrated the ability to develop high protection in mouse models of pertussis challenge which correlated with the induction of a Th1 immune response pattern. The Th1 immune response induced by rBCG-S1PT treatment was also confirmed in the murine orthotopic bladder cancer model, in which the intravesical instillation of rBCG-S1PT resulted in an improved antitumor effect. Based on these observations, we hypothesize that the reengineering of the S1PT expression in BCG could increase the efficiency of the protective Th1 immune response in order to develop a new alternative of immunotherapy in bladder cancer treatment. Objectives To construct rBCG strains expressing S1PT from extrachromosomal (rBCG-S1PT) and integrative vectors (rBCG-Sli), or their combination, generating the bivalent strain (rBCG-S1+S1i), and to evaluate the respective immunogenicity of rBCG strains in mice. Methods Mycobacterial plasmids were constructed by cloning the s1pt gene under integrative and extrachromosomal vectors and used to transform BCG, individually or in combination. Antigen expression and localization were confirmed by Western blot. Mice were immunized with wild-type BCG or the rBCG strains, and cytokines quantification and flow cytometry analysis were performed in splenocytes culture stimulated with mycobacterial-specific proteins. Findings S1PT expression was confirmed in all rBCG strains. The extrachromosomal vector directs S1PT to the cell wall-associated fraction, while the integrative vector directs its expression mainly to the intracellular fraction. Higher levels of IFN-γ were observed in the splenocytes culture from the group immunized with rBCG-S1i in comparison to BCG or rBCG-S1PT. rBCG-S1+S1i showed higher levels of CD4+ IFN-γ+ and double-positive CD4+ IFN-γ+ TNF-α+ T cells. Conclusions rBCG-S1+S1i was able to express the two forms of S1PT and elicited higher induction of polyfunctional CD4+ T cells, indicating enhanced immunogenicity and suggesting its use as immunotherapy for bladder cancer.
Collapse
|
21
|
Oliveira TL, Rizzi C, da Cunha CEP, Dorneles J, Seixas Neto ACP, Amaral MG, Hartwig DD, Dellagostin OA. Recombinant BCG strains expressing chimeric proteins derived from Leptospira protect hamsters against leptospirosis. Vaccine 2019; 37:776-782. [DOI: 10.1016/j.vaccine.2018.12.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/10/2018] [Accepted: 12/30/2018] [Indexed: 01/25/2023]
|
22
|
Kilpeläinen A, Maya-Hoyos M, Saubí N, Soto CY, Joseph Munne J. Advances and challenges in recombinant Mycobacterium bovis BCG-based HIV vaccine development: lessons learned. Expert Rev Vaccines 2018; 17:1005-1020. [PMID: 30300040 DOI: 10.1080/14760584.2018.1534588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome, tuberculosis, and malaria are responsible for most human deaths produced by infectious diseases worldwide. Vaccination against HIV requires generation of memory T cells and neutralizing antibodies, mucosal immunity, and stimulation of an innate immune responses. In this context, the use of Mycobacterium bovis bacillus Calmette-Guérin (BCG) as a live vaccine vehicle is a promising approach for T-cell induction. AREAS COVERED In this review, we provide a comprehensive summary of the literature regarding immunogenicity studies in animal models performed since 2005. Furthermore, we provide expert commentary and 5-year view on how the development of potential recombinant BCG-based HIV vaccines involves careful selection of the HIV antigen, expression vectors, promoters, BCG strain, preclinical animal models, influence of preexisting immunity, and safety issues, for the rational design of recombinant BCG:HIV vaccines to prevent HIV transmission in the general population. EXPERT COMMENTARY The three critical issues to be considered when developing a rBCG:HIV vaccine are codon optimization, antigen localization, and plasmid stability in vivo. The use of integrative expression vectors are likely to improve the mycobacterial vaccine stability and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth.
Collapse
Affiliation(s)
- Athina Kilpeläinen
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| | - Milena Maya-Hoyos
- b Chemistry Department, Faculty of Sciences , Universidad Nacional de Colombia, Ciudad Universitaria , Bogotá , Colombia
| | - Narcís Saubí
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| | - Carlos Y Soto
- b Chemistry Department, Faculty of Sciences , Universidad Nacional de Colombia, Ciudad Universitaria , Bogotá , Colombia
| | - Joan Joseph Munne
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| |
Collapse
|
23
|
Recombinant M. bovis BCG expressing the PLD protein promotes survival in mice challenged with a C. pseudotuberculosis virulent strain. Vaccine 2018; 36:3578-3583. [PMID: 29759378 DOI: 10.1016/j.vaccine.2018.05.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 12/15/2022]
Abstract
The aim of this study was to evaluate the survival of mice inoculated with M. bovis BCG Pasteur recombinant expressing the PLD protein and challenged with a C. pseudotuberculosis virulent strain. Four groups were immunized with a sterile 0.9% saline solution (G1), 106 CFU of M. bovis BCG Pasteur (G2), 106 CFU of M. bovis BCG/pld (G3) or 106 CFU of M. bovis BCG/pld with a booster with rPLD (G4) and challenged with 104 CFU of C. pseudotuberculosis MIC-6 strain. The highest survival rate of 88% was observed in G4, followed by 77% in G3 and 66% in G2. A significant statistical difference was observed in the levels of cytokines IFN-γ and IL-10 in vaccinated groups (G3 and G4) when compared with the control group (G1) (p < 0.05). The results seem promising as the recombinant vaccine elicited a cellular immune response and provided significant survival after a high virulent challenge.
Collapse
|
24
|
Liao TYA, Lau A, Sunil J, Hytönen V, Hmama Z. Expression of Exogenous Antigens in the Mycobacterium bovis BCG Vaccine via Non-genetic Surface Decoration with the Avidin-biotin System. J Vis Exp 2018. [PMID: 29443102 DOI: 10.3791/56421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Tuberculosis (TB) is a serious infectious disease and the only available vaccine M. bovis bacillus Calmette-Guérin (BCG) is safe and effective for protection against children's severe TB meningitis and some forms of disseminated TB, but fails to protect against pulmonary TB, which is the most prevalent form of the disease. Promising strategies to improve BCG currently rely either on its transformation with genes encoding immunodominant M. tuberculosis (Mtb)-specific antigens and/or complementation with genes encoding co-factors that would stimulate antigen presenting cells. Major limitations to these approaches include low efficiency, low stability, and the uncertain level of safety of expression vectors. In this study, we present an alternative approach to vaccine improvement, which consists of BCG complementation with exogenous proteins of interest on the surface of bacteria, rather than transformation with plasmids encoding corresponding genes. First, proteins of interest are expressed in fusion with monomeric avidin in standard E. coli expression systems and then used to decorate the surface of biotinylated BCG. Animal experiments using BCG surface decorated with surrogate ovalbumin antigen demonstrate that the modified bacterium is fully immunogenic and capable of inducing specific T cell responses. Altogether, the data presented here strongly support a novel and efficient method for reshaping the current BCG vaccine that replaces the laborious conventional approach of complementation with exogenous nucleic acids.
Collapse
Affiliation(s)
- Ting-Yu Angela Liao
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia
| | - Alice Lau
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia
| | - Joseph Sunil
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia
| | - Vesa Hytönen
- Institute of Biomedical Technology, University of Tampere
| | - Zakaria Hmama
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia;
| |
Collapse
|
25
|
Oliveira TL, Rizzi C, Dellagostin OA. Recombinant BCG vaccines: molecular features and their influence in the expression of foreign genes. Appl Microbiol Biotechnol 2017; 101:6865-6877. [PMID: 28779291 DOI: 10.1007/s00253-017-8439-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 01/17/2023]
Abstract
Recombinant Mycobacterium bovis BCG vaccines (rBCG) were first developed in the 1990s as a means of expressing antigens from multiple pathogens. This review examines the key structural factors of recombinant M. bovis that influence the expression of the heterologous antigens and the generation of genetic and functional stability in rBCG, which are crucial for inducing strong and lasting immune responses. The fundamental aim of this paper is to provide an overview of factors that affect the expression of recombinant proteins in BCG and the generation of the immune response against the target antigens, including mycobacterial promoters, location of foreign antigens, and stability of the vectors. The reporter systems that have been employed for evaluation of these molecular features in BCG are also reviewed here.
Collapse
Affiliation(s)
- Thaís Larré Oliveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Caroline Rizzi
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil. .,Unidade de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário, Caixa Postal 354, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
26
|
Recombinant BCG expressing a PspA-PdT fusion protein protects mice against pneumococcal lethal challenge in a prime-boost strategy. Vaccine 2017; 35:1683-1691. [PMID: 28242071 DOI: 10.1016/j.vaccine.2017.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/13/2017] [Accepted: 02/14/2017] [Indexed: 11/24/2022]
Abstract
Pneumococcal proteins have been evaluated as genetically-conserved potential vaccine candidates. We have previously demonstrated that a fragment of PspA in fusion with PdT (rPspA-PdT) induced protective immune responses in mice. However, purified proteins have shown poor immunogenicity and often require the combination with strong adjuvants and booster doses. Here, we investigated the use of a Bacillus Calmette-Guérin (BCG) strain, a well-established prophylactic vaccine for tuberculosis with known adjuvant properties, for delivery of the PspA-PdT fusion protein. Immunization of mice in a prime-boost strategy, using rPspA-PdT as a boost, demonstrated that rBCG PspA-PdT/rPspA-PdT was able to induce an antibody response against both proteins, promoting an IgG1 to IgG2 antibody isotype shift. Sera from rBCG PspA-PdT/rPspA-PdT immunized mice showed antibodies able to bind to the pneumococcal surface and promoted higher complement deposition when compared with WT-BCG/rPspA-PdT or a single dose of rPspA-PdT. In addition, these antisera inhibited the cytolytic activity of Ply. Production of interleukin-6 (IL-6), gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α) was increased in splenocytes culture. Furthermore, a higher expression of CD69 early activation molecule was observed on splenic CD4+ T cells from mice immunized with rBCG PspA-PdT before and after the protein booster dose. Finally, immunization with rBCG PspA-PdT/rPspA-PdT protected mice against pneumococcal lethal challenge. These results support the further investigation of recombinant BCG strains to express pneumococcal proteins, which could be administered in early stages of life and lead to protective pneumococcal immunity in infants and children.
Collapse
|
27
|
Deshpande V, Krishnan R, Philip S, Faludi I, Ponnusamy T, Thota LNR, Endresz V, Lu X, Kakkar VV, Mundkur LA. Oral administration of recombinant Mycobacterium smegmatis expressing a tripeptide construct derived from endogenous and microbial antigens prevents atherosclerosis in ApoE(-/-) mice. Cardiovasc Ther 2017; 34:314-24. [PMID: 27241889 DOI: 10.1111/1755-5922.12201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Immunotherapy by inducing oral tolerance to atherogenic self-antigens is gaining importance as an alternative treatment modality for atherosclerosis. The use of live bacterial vectors to express the recombinant antigen in vivo will obviate the need for large-scale purification of recombinant protein and may also augment the efficacy of oral tolerance induction. AIM The objective of the study was to explore the use of recombinant Mycobacterium smegmatis as a live vector for oral delivery of antigens to induce immune tolerance. METHOD AND RESULTS We developed a M. smegmatis vector to secrete a recombinant tripeptide construct (AHC; peptides from Apolipoprotein B, Heat-shock protein 60 and Chlamydia pneumoniae outer membrane protein) expressed in a dendroaspin protein scaffold in pJH154 background. Immune response and oral tolerance to the cloned peptides were studied in C57/BL6 mice. The efficacy of this live vaccine to control atherosclerosis was studied in ApoE(-/-) knockout mice in C57/BL6 background. Oral administration of M. smegmatis secreting the cloned AHC antigen was found to induce tolerance to cloned protein and reduce the development of atherosclerosis by 24.0% compared to control. Protection against atherosclerosis was associated with increase in expression of regulatory T cell-associated markers including CTLA4 (1.8-fold), Foxp3 (2.6-fold), TGF-β (2.8-fold), IL10 (2.9-fold), and reduction in lipids, macrophage infiltration, and expression of inflammatory mediators in aorta. CONCLUSIONS Our results suggest that M. smegmatis can be developed as an oral carrier of recombinant proteins to treat inflammatory autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Sheena Philip
- Molecular Immunology, Thrombosis Research Institute, Bangalore, India
| | - Ildiko Faludi
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | | | | | - Valeria Endresz
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Xinjie Lu
- Molecular Immunology, Thrombosis Research Institute, London, UK
| | - Vijay V Kakkar
- Molecular Immunology, Thrombosis Research Institute, Bangalore, India.,Molecular Immunology, Thrombosis Research Institute, London, UK
| | - Lakshmi A Mundkur
- Molecular Immunology, Thrombosis Research Institute, Bangalore, India.
| |
Collapse
|
28
|
New Recombinant Mycobacterium bovis BCG Expression Vectors: Improving Genetic Control over Mycobacterial Promoters. Appl Environ Microbiol 2016; 82:2240-2246. [PMID: 26850295 PMCID: PMC4959472 DOI: 10.1128/aem.03677-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/25/2016] [Indexed: 12/18/2022] Open
Abstract
The expression of many antigens, stimulatory molecules, or even metabolic pathways in mycobacteria such as Mycobacterium bovis BCG or M. smegmatis was made possible through the development of shuttle vectors, and several recombinant vaccines have been constructed. However, gene expression in any of these systems relied mostly on the selection of natural promoters expected to provide the required level of expression by trial and error. To establish a systematic selection of promoters with a range of strengths, we generated a library of mutagenized promoters through error-prone PCR of the strong PL5 promoter, originally from mycobacteriophage L5. These promoters were cloned upstream of the enhanced green fluorescent protein reporter gene, and recombinant M. smegmatis bacteria exhibiting a wide range of fluorescence levels were identified. A set of promoters was selected and identified as having high (pJK-F8), intermediate (pJK-B7, pJK-E6, pJK-D6), or low (pJK-C1) promoter strengths in both M. smegmatis and M. bovisBCG. The sequencing of the promoter region demonstrated that it was extensively modified (6 to 11%) in all of the plasmids selected. To test the functionality of the system, two different expression vectors were demonstrated to allow corresponding expression levels of the Schistosoma mansoni antigen Sm29 in BCG. The approach used here can be used to adjust expression levels for synthetic and/or systems biology studies or for vaccine development to maximize the immune response.
Collapse
|
29
|
Singh VK, Srivastava R, Srivastava BS. Manipulation of BCG vaccine: a double-edged sword. Eur J Clin Microbiol Infect Dis 2016; 35:535-43. [PMID: 26810060 DOI: 10.1007/s10096-016-2579-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/07/2016] [Indexed: 12/27/2022]
Abstract
Mycobacterium bovis Bacillus Calmette-Guérin (BCG), an attenuated vaccine derived from M. bovis, is the only licensed vaccine against tuberculosis (TB). Despite its protection against TB in children, the protective efficacy in pulmonary TB is variable in adolescents and adults. In spite of the current knowledge of molecular biology, immunology and cell biology, infectious diseases such as TB and HIV/AIDS are still challenges for the scientific community. Genetic manipulation facilitates the construction of recombinant BCG (rBCG) vaccine that can be used as a highly immunogenic vaccine against TB with an improved safety profile, but, still, the manipulation of BCG vaccine to improve efficacy should be carefully considered, as it can bring in both favourable and unfavourable effects. The purpose of this review is not to comprehensively review the interaction between microorganisms and host cells in order to use rBCG expressing M. tuberculosis (Mtb) immunodominant antigens that are available in the public domain, but, rather, to also discuss the limitations of rBCG vaccine, expressing heterologous antigens, during manipulation that pave the way for a promising new vaccine approach.
Collapse
Affiliation(s)
- V K Singh
- Section for Immunology, Department of Experimental Medical Science, Lund University, BMC D14, 22184, Lund, Sweden.
| | - R Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - B S Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| |
Collapse
|
30
|
Liao TYA, Lau A, Joseph S, Hytönen V, Hmama Z. Improving the Immunogenicity of the Mycobacterium bovis BCG Vaccine by Non-Genetic Bacterial Surface Decoration Using the Avidin-Biotin System. PLoS One 2015; 10:e0145833. [PMID: 26716832 PMCID: PMC4696857 DOI: 10.1371/journal.pone.0145833] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/09/2015] [Indexed: 12/18/2022] Open
Abstract
Current strategies to improve the current BCG vaccine attempt to over-express genes encoding specific M. tuberculosis (Mtb) antigens and/or regulators of antigen presentation function, which indeed have the potential to reshape BCG in many ways. However, these approaches often face serious difficulties, in particular the efficiency and stability of gene expression via nucleic acid complementation and safety concerns associated with the introduction of exogenous DNA. As an alternative, we developed a novel non-genetic approach for rapid and efficient display of exogenous proteins on bacterial cell surface. The technology involves expression of proteins of interest in fusion with a mutant version of monomeric avidin that has the feature of reversible binding to biotin. Fusion proteins are then used to decorate the surface of biotinylated BCG. Surface coating of BCG with recombinant proteins was highly reproducible and stable. It also resisted to the freeze-drying shock routinely used in manufacturing conventional BCG. Modifications of BCG surface did not affect its growth in culture media neither its survival within the host cell. Macrophages phagocytized coated BCG bacteria, which efficiently delivered their surface cargo of avidin fusion proteins to MHC class I and class II antigen presentation compartments. Thereafter, chimeric proteins corresponding to a surrogate antigen derived from ovalbumin and the Mtb specific ESAT6 antigen were generated and tested for immunogenicity in vaccinated mice. We found that BCG displaying ovalbumin antigen induces an immune response with a magnitude similar to that induced by BCG genetically expressing the same surrogate antigen. We also found that BCG decorated with Mtb specific antigen ESAT6 successfully induces the expansion of specific T cell responses. This novel technology, therefore, represents a practical and effective alternative to DNA-based gene expression for upgrading the current BCG vaccine.
Collapse
Affiliation(s)
- Ting-Yu Angela Liao
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Alice Lau
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sunil Joseph
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Vesa Hytönen
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - Zakaria Hmama
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
31
|
Moliva JI, Turner J, Torrelles JB. Prospects in Mycobacterium bovis Bacille Calmette et Guérin (BCG) vaccine diversity and delivery: why does BCG fail to protect against tuberculosis? Vaccine 2015; 33:5035-41. [PMID: 26319069 DOI: 10.1016/j.vaccine.2015.08.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 11/26/2022]
Abstract
Mycobacterium tuberculosis (M.tb) infection leads to active tuberculosis (TB), a disease that kills one human every 18s. Current therapies available to combat TB include chemotherapy and the preventative vaccine Mycobacterium bovis Bacille Calmette et Guérin (BCG). Increased reporting of drug resistant M.tb strains worldwide indicates that drug development cannot be the primary mechanism for eradication. BCG vaccination has been used globally for protection against childhood and disseminated TB, however, its efficacy at protecting against pulmonary TB in adult and aging populations is highly variable. In this regard, the immune response generated by BCG vaccination is incapable of sterilizing the lung post M.tb infection as indicated by the large proportion of individuals with latent TB infection that have received BCG. Although many new TB vaccine candidates have entered the development pipeline, only a few have moved to human clinical trials; where they showed no efficacy and/or were withdrawn due to safety regulations. These trials highlight our limited understanding of protective immunity against the development of active TB. Here, we discuss current vaccination strategies and their impact on the generation and sustainability of protective immunity against TB.
Collapse
Affiliation(s)
- Juan I Moliva
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, US
| | - Joanne Turner
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, US; Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, US
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, US; Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, US.
| |
Collapse
|
32
|
Stable Expression of Lentiviral Antigens by Quality-Controlled Recombinant Mycobacterium bovis BCG Vectors. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:726-41. [PMID: 25924766 PMCID: PMC4478521 DOI: 10.1128/cvi.00075-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/22/2015] [Indexed: 12/14/2022]
Abstract
The well-established safety profile of the tuberculosis vaccine strain, Mycobacterium bovis bacille Calmette-Guérin (BCG), makes it an attractive vehicle for heterologous expression of antigens from clinically relevant pathogens. However, successful generation of recombinant BCG strains possessing consistent insert expression has encountered challenges in stability. Here, we describe a method for the development of large recombinant BCG accession lots which stably express the lentiviral antigens, human immunodeficiency virus (HIV) gp120 and simian immunodeficiency virus (SIV) Gag, using selectable leucine auxotrophic complementation. Successful establishment of vaccine stability stems from stringent quality control criteria which not only screen for highly stable complemented BCG ΔleuCD transformants but also thoroughly characterize postproduction quality. These parameters include consistent production of correctly sized antigen, retention of sequence-pure plasmid DNA, freeze-thaw recovery, enumeration of CFU, and assessment of cellular aggregates. Importantly, these quality assurance procedures were indicative of overall vaccine stability, were predictive for successful antigen expression in subsequent passaging both in vitro and in vivo, and correlated with induction of immune responses in murine models. This study has yielded a quality-controlled BCG ΔleuCD vaccine expressing HIV gp120 that retained stable full-length expression after 10(24)-fold amplification in vitro and following 60 days of growth in mice. A second vaccine lot expressed full-length SIV Gag for >10(68)-fold amplification in vitro and induced potent antigen-specific T cell populations in vaccinated mice. Production of large, well-defined recombinant BCG ΔleuCD lots can allow confidence that vaccine materials for immunogenicity and protection studies are not negatively affected by instability or differences between freshly grown production batches.
Collapse
|
33
|
Begnini KR, Buss JH, Collares T, Seixas FK. Recombinant Mycobacterium bovis BCG for immunotherapy in nonmuscle invasive bladder cancer. Appl Microbiol Biotechnol 2015; 99:3741-54. [DOI: 10.1007/s00253-015-6495-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 02/07/2023]
|
34
|
da Silva AJ, Zangirolami TC, Novo-Mansur MTM, Giordano RDC, Martins EAL. Live bacterial vaccine vectors: an overview. Braz J Microbiol 2015; 45:1117-29. [PMID: 25763014 PMCID: PMC4323283 DOI: 10.1590/s1517-83822014000400001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/17/2014] [Indexed: 02/07/2023] Open
Abstract
Genetically attenuated microorganisms, pathogens, and some commensal bacteria can be engineered to deliver recombinant heterologous antigens to stimulate the host immune system, while still offering good levels of safety. A key feature of these live vectors is their capacity to stimulate mucosal as well as humoral and/or cellular systemic immunity. This enables the use of different forms of vaccination to prevent pathogen colonization of mucosal tissues, the front door for many infectious agents. Furthermore, delivery of DNA vaccines and immune system stimulatory molecules, such as cytokines, can be achieved using these special carriers, whose adjuvant properties and, sometimes, invasive capacities enhance the immune response. More recently, the unique features and versatility of these vectors have also been exploited to develop anti-cancer vaccines, where tumor-associated antigens, cytokines, and DNA or RNA molecules are delivered. Different strategies and genetic tools are constantly being developed, increasing the antigenic potential of agents delivered by these systems, opening fresh perspectives for the deployment of vehicles for new purposes. Here we summarize the main characteristics of the different types of live bacterial vectors and discuss new applications of these delivery systems in the field of vaccinology.
Collapse
Affiliation(s)
- Adilson José da Silva
- Departamento de Engenharia Química Universidade Federal de São Carlos São CarlosSP Brazil Departamento de Engenharia Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Teresa Cristina Zangirolami
- Departamento de Engenharia Química Universidade Federal de São Carlos São CarlosSP Brazil Departamento de Engenharia Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Maria Teresa Marques Novo-Mansur
- Departamento de Genética e Evolução Universidade Federal de São Carlos São CarlosSP Brazil Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Roberto de Campos Giordano
- Departamento de Engenharia Química Universidade Federal de São Carlos São CarlosSP Brazil Departamento de Engenharia Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Elizabeth Angélica Leme Martins
- Centro de Biotecnologia Instituto Butantan São PauloSP Brazil Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
35
|
da Costa AC, Costa-Júnior ADO, de Oliveira FM, Nogueira SV, Rosa JD, Resende DP, Kipnis A, Junqueira-Kipnis AP. A new recombinant BCG vaccine induces specific Th17 and Th1 effector cells with higher protective efficacy against tuberculosis. PLoS One 2014; 9:e112848. [PMID: 25398087 PMCID: PMC4232451 DOI: 10.1371/journal.pone.0112848] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/15/2014] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that is a major public health problem. The vaccine used for TB prevention is Mycobacterium bovis bacillus Calmette-Guérin (BCG), which provides variable efficacy in protecting against pulmonary TB among adults. Consequently, several groups have pursued the development of a new vaccine with a superior protective capacity to that of BCG. Here we constructed a new recombinant BCG (rBCG) vaccine expressing a fusion protein (CMX) composed of immune dominant epitopes from Ag85C, MPT51, and HspX and evaluated its immunogenicity and protection in a murine model of infection. The stability of the vaccine in vivo was maintained for up to 20 days post-vaccination. rBCG-CMX was efficiently phagocytized by peritoneal macrophages and induced nitric oxide (NO) production. Following mouse immunization, this vaccine induced a specific immune response in cells from lungs and spleen to the fusion protein and to each of the component recombinant proteins by themselves. Vaccinated mice presented higher amounts of Th1, Th17, and polyfunctional specific T cells. rBCG-CMX vaccination reduced the extension of lung lesions caused by challenge with Mtb as well as the lung bacterial load. In addition, when this vaccine was used in a prime-boost strategy together with rCMX, the lung bacterial load was lower than the result observed by BCG vaccination. This study describes the creation of a new promising vaccine for TB that we hope will be used in further studies to address its safety before proceeding to clinical trials.
Collapse
Affiliation(s)
- Adeliane Castro da Costa
- Laboratório de Imunopatologia das Doenças Infecciosas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Abadio de Oliveira Costa-Júnior
- Laboratório de Imunopatologia das Doenças Infecciosas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Fábio Muniz de Oliveira
- Laboratório de Bacteriologia Molecular, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Sarah Veloso Nogueira
- Laboratório de Imunopatologia das Doenças Infecciosas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Joseane Damaceno Rosa
- Laboratório de Imunopatologia das Doenças Infecciosas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Danilo Pires Resende
- Laboratório de Imunopatologia das Doenças Infecciosas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - André Kipnis
- Laboratório de Bacteriologia Molecular, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Ana Paula Junqueira-Kipnis
- Laboratório de Imunopatologia das Doenças Infecciosas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- * E-mail:
| |
Collapse
|
36
|
Venkataswamy MM, Ng TW, Kharkwal SS, Carreño LJ, Johnson AJ, Kunnath-Velayudhan S, Liu Z, Bittman R, Jervis PJ, Cox LR, Besra GS, Wen X, Yuan W, Tsuji M, Li X, Ho DD, Chan J, Lee S, Frothingham R, Haynes BF, Panas MW, Gillard GO, Sixsmith JD, Korioth-Schmitz B, Schmitz JE, Larsen MH, Jacobs WR, Porcelli SA. Improving Mycobacterium bovis bacillus Calmette-Guèrin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells. PLoS One 2014; 9:e108383. [PMID: 25255287 PMCID: PMC4177913 DOI: 10.1371/journal.pone.0108383] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/20/2014] [Indexed: 01/13/2023] Open
Abstract
Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG) has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT) cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag). We found that the incorporation of the synthetic NKT activating glycolipid α-galactosylceramide (α-GC) into rBCG-SIV gag significantly enhanced CD8+ T cell responses against an immunodominant Gag epitope, compared to responses primed by unmodified rBCG-SIV gag. The abilities of structural analogues of α-GC to enhance CD8+ T cell responses to rBCG were compared in both wild type and partially humanized mice that express human CD1d molecules in place of mouse CD1d. These studies identified an α-GC analogue known as 7DW8-5, which has previously been used successfully as an adjuvant in non-human primates, as a promising compound for enhancing immunogenicity of antigens delivered by rBCG.vectors. Our findings support the incorporation of synthetic glycolipid activators of NKT cells as a novel approach to enhance the immunogenicity of rBCG-vectored antigens for induction of CD8+ T cell responses. The glycolipid adjuvant 7DW8-5 may be a promising candidate for advancing to non-human primate and human clinical studies for the development of HIV vaccines based on rBCG vectors.
Collapse
Affiliation(s)
- Manjunatha M. Venkataswamy
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- National Institute of Mental Health and Neuroscience, Bangalore, Karnataka, India
| | - Tony W. Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shalu S. Kharkwal
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Leandro J. Carreño
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Millennium Institute on Immunology and Immunotherapy, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alison J. Johnson
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shajo Kunnath-Velayudhan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Zheng Liu
- Department of Chemistry and Biochemistry, Queens College of City University of New York, Flushing, New York, United States of America
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of City University of New York, Flushing, New York, United States of America
| | - Peter J. Jervis
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Liam R. Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Xiangshu Wen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - Xiangming Li
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - John Chan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sunhee Lee
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Richard Frothingham
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael W. Panas
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Geoffrey O. Gillard
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jaimie D. Sixsmith
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Birgit Korioth-Schmitz
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joern E. Schmitz
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michelle H. Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
37
|
Liu D, Lu H, Shi K, Su F, Li J, Du R. Immunogenicity of recombinant BCGs expressing predicted antigenic epitopes of bovine viral diarrhea virus E2 gene. Res Vet Sci 2014; 97:430-8. [PMID: 25135492 DOI: 10.1016/j.rvsc.2014.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/09/2014] [Accepted: 07/03/2014] [Indexed: 12/18/2022]
Abstract
To develop a vaccine to prevent diseases caused by Mycobacterium tuberculosis and bovine viral diarrhea virus (BVDV) simultaneously, recombinant Bacillus Calmette-Guerin (rBCG) vaccines expressing different regions of the BVDV E2 gene were constructed. Using DNASTAR 6.0 software, potential antigenic epitopes were predicted, and six regions were chosen to generate recombinant plasmids with the pMV361 vector (pMV361-E2-1, pMV361-E2-2, pMV361-E2-3, pMV361-E2-4, pMV361-E2-5 and pMV361-E2-6, respectively). The recombinant plasmids were transformed into BCG, and protein expression was thermally induced at 45 °C. Mice were immunized with 5 × 10(6) CFU/200 µL of each rBCG strain. Compared with other groups, BVDV E2 specific antibody titers were higher in mice immunized with rBCG-E2-6. Ratios and numbers of CD4+, CD8+ and IL-12 expressing spleen lymphocytes of the rBCG-E2-6 group also were higher than those of other groups. Thus, the rBCG-E2-6 vaccine showed the highest immunogenicity of all groups based on the humoral and cellular responses to vaccination.
Collapse
Affiliation(s)
- Dongxu Liu
- College of Chinese Medicine Material, Jilin Agricultural University, Changchun 130118, China
| | - Huijun Lu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Kun Shi
- College of Chinese Medicine Material, Jilin Agricultural University, Changchun 130118, China
| | - Fengyan Su
- College of Chinese Medicine Material, Jilin Agricultural University, Changchun 130118, China
| | - Jianming Li
- College of Chinese Medicine Material, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicine Material, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
38
|
Wang Q, Chen L, Li J, Zheng J, Cai N, Gong P, Li S, Li H, Zhang X. A novel recombinant BCG vaccine encoding eimeria tenella rhomboid and chicken IL-2 induces protective immunity against coccidiosis. THE KOREAN JOURNAL OF PARASITOLOGY 2014; 52:251-6. [PMID: 25031464 PMCID: PMC4096635 DOI: 10.3347/kjp.2014.52.3.251] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/19/2014] [Accepted: 04/04/2014] [Indexed: 01/31/2023]
Abstract
A novel recombinant Bacille Calmette-Guerin (rBCG) vaccine co-expressed Eimeria tenella rhomboid and cytokine chicken IL-2 (chIL-2) was constructed, and its efficacy against E. tenella challenge was observed. The rhomboid gene of E. tenella and chIL-2 gene were subcloned into integrative expression vector pMV361, producing vaccines rBCG pMV361-rho and pMV361-rho-IL2. Animal experiment via intranasal and subcutaneous route in chickens was carried out to evaluate the immune efficacy of the vaccines. The results indicated that these rBCG vaccines could obviously alleviate cacal lesions and oocyst output. Intranasal immunization with pMV361-rho and pMV361-rho-IL2 elicited better protective immunity against E. tenella than subcutaneous immunization. Splenocytes from chickens immunized with either rBCG pMV361-rho and pMV361-rho-IL2 had increased CD4+ and CD8+ cell production. Our data indicate recombinant BCG is able to impart partial protection against E. tenella challenge and co-expression of cytokine with antigen was an effective strategy to improve vaccine immunity.
Collapse
Affiliation(s)
- Qiuyue Wang
- Hebei Normal University of Science and Technology, Key Laboratory of Preventive Veterinary Medicine of Hebei Province, Qinhuangdao 066600, China
| | - Lifeng Chen
- Hebei Normal University of Science and Technology, Key Laboratory of Preventive Veterinary Medicine of Hebei Province, Qinhuangdao 066600, China
| | - Jianhua Li
- College of Animal Science and Veterinary Medicine, JiLin University, Changchun 130062, China
| | - Jun Zheng
- College of Animal Science and Veterinary Medicine, JiLin University, Changchun 130062, China
| | - Ning Cai
- Hebei Normal University of Science and Technology, Foreign language institute, Qinhuangdao 066600, China
| | - Pengtao Gong
- College of Animal Science and Veterinary Medicine, JiLin University, Changchun 130062, China
| | - Shuhong Li
- College of Animal Science and Veterinary Medicine, JiLin University, Changchun 130062, China
| | - He Li
- College of Animal Science and Veterinary Medicine, JiLin University, Changchun 130062, China
| | - Xichen Zhang
- College of Animal Science and Veterinary Medicine, JiLin University, Changchun 130062, China
| |
Collapse
|
39
|
Xue QJ, Dai J, Li XZ, Zhu W, Si CP, Chen T. Construction of a recombinant-BCG containing the LMP2A and BZLF1 genes and its significance in the Epstein-Barr virus positive gastric carcinoma. J Med Virol 2014; 86:1780-7. [PMID: 24699993 DOI: 10.1002/jmv.23901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2014] [Indexed: 01/28/2023]
Abstract
The signal peptide Ag85B of Bacillus Chalmette-Guerin (BCG) was used to construct a recombinant plasmid of BCG. The BCG-Ag85B gene and fused EBV LMP2A and BZLF1 genes were amplified and successively inserted into the Escherichia coli-BCG shuttle-vector pMV261. The recombinant plasmids were then amplified in E. coli DH5α and transformed into competent BCG. The expression of BZLF1 and LMP2A fusion proteins in recombinant-BCG (rBCG) was shown by Western blot. After the injection of recombinant-BCG into mice, antibodies against the fusion protein BZLF1 and LMP2A were measured by ELISA, and the cellular immune effects were determined by the lactate dehydrogenate (LDH) release assays. The results confirmed that the cloned genes of BCG-Ag85B and Z2A were correctly inserted into the vector pMV261. The recombinant plasmid pMVZ2A expressed Z2A in BCG effectively after transformation. The rBCG proteins were recognized by the BZLF1 (LMP2A) antibody. An ELISA demonstrated that rBCG could stimulate the generation of antibody against the fusion protein. The fusion gene was constructed successfully, and the rBCG induced humoral and cellular immune response in mice.
Collapse
Affiliation(s)
- Qing-Jie Xue
- Department of Pathogenic Biology, Provincial Key Discipline of Medical Immunology, Jining Medical University, Shandong, China
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Abstract
Streptococcus pneumoniae still causes severe morbidity and mortality worldwide, especially in young children and the elderly. Much effort has been dedicated to developing protein-based universal vaccines to conquer the current shortcomings of capsular vaccines and capsular conjugate vaccines, such as serotype replacement, limited coverage and high costs. A recombinant live vector vaccine delivering protective antigens is a promising way to achieve this goal. In this review, we discuss the researches using live recombinant vaccines, mainly live attenuated Salmonella and lactic acid bacteria, to deliver pneumococcal antigens. We also discuss both the limitations and the future of these vaccines.
Collapse
|
42
|
Protective immunity induced by a recombinant BCG vaccine encoding the cyclophilin gene of Toxoplasma gondii. Vaccine 2013; 31:6065-71. [DOI: 10.1016/j.vaccine.2013.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/14/2013] [Accepted: 10/03/2013] [Indexed: 01/18/2023]
|
43
|
Li WC, Zhang XK, Du L, Pan L, Gong PT, Li JH, Yang J, Li H, Zhang XC. Eimeria maxima: efficacy of recombinant Mycobacterium bovis BCG expressing apical membrane antigen1 against homologous infection. Parasitol Res 2013; 112:3825-33. [PMID: 23949244 DOI: 10.1007/s00436-013-3570-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/01/2013] [Indexed: 01/18/2023]
Abstract
Coccidiosis is one of the most important protozoan diseases and inflicts severe economic losses on the poultry industry. The aim of this study was to evaluate the capacity of Bacillus Calmette-Guerin (BCG) to deliver apical membrane antigen1 (AMA1) of Eimeria maxima to stimulate specific cellular and humoral immune responses in chickens. Day-old birds were immunized twice with rBCG/pMV261-AMA1, rBCG/pMV361-AMA1, or BCG via oral, intranasal, and subcutaneous routes and then orally challenged with homologous E. maxima sporulated oocysts. Gain of body weight, fecal oocyst output, lesion scores, serum antibody responses, numbers of splenocyte CD4(+) and CD8(+) T cells, and gut cytokine transcript levels were assessed as measures of protective immunity. Challenge experiments demonstrated that rBCG vaccination via intranasal or subcutaneous routes could increase weight gain, decrease intestinal lesions, and reduce fecal oocyst shedding, and the subcutaneous and intranasal routes were superior to the oral route based on the immune effects. Furthermore, intranasal rBCG immunization could also lead to a significant increase in serum antibody, the percentage of CD4+ and CD8+ T lymphocyte cells, and the levels of IL-1β, IFN-γ, IL-15, and IL-10 mRNAs compared with the control group. These results suggested that intranasal rBCG immunization could induce a strong humoral and cellular response directed against homologous E. maxima infection. This study provides data for the use of rBCG to develop a prophylactic vaccine against coccidiosis.
Collapse
Affiliation(s)
- Wen-Chao Li
- College of Animal Medicine, Jilin University, Changchun, 130062, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yazdanian M, Memarnejadian A, Mahdavi M, Sadat SM, Motevali F, Vahabpour R, Khanahmad H, Siadat SD, Aghasadeghi MR, Roohvand F. Immunization of Mice by BCG Formulated HCV Core Protein Elicited Higher Th1-Oriented Responses Compared to Pluronic-F127 Copolymer. HEPATITIS MONTHLY 2013; 13:e14178. [PMID: 24348641 PMCID: PMC3842517 DOI: 10.5812/hepatmon.14178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/14/2013] [Accepted: 09/25/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND A supreme vaccine for Hepatitis C virus (HCV) infection should elicit strong Th1-oriented cellular responses. In the absence of a Th1-specific adjuvant, immunizations by protein antigens generally induce Th2-type and weak cellular responses. OBJECTIVES To evaluate the adjuvant effect of BCG in comparison with nonionic copolymer-Pluronic F127 (F127) as a classic adjuvant in the formulation of HCV core protein (HCVcp) as a candidate vaccine for induction of Th1 immune responses. MATERIALS AND METHODS Expression of N-terminally His-Tagged HCVcp (1-122) by pIVEX2.4a-core vector harboring the corresponding gene under the control of arabinose-inducible (araBAD) promoter was achieved in BL21-AI strain of E.coli and purified through application of nitrilotriacetic acid (Ni-NTA) chromatography. Mice were immunized subcutaneously (s.c.) in base of the tail with 100 μl of immunogen (F127+HCVcp or BCG+HCVcp; 5 μgHCVcp/mouse/dose) or control formulations (PBS, BCG, F127) at weeks 0, 3, 6. Total and subtypes of IgG, as well as cellular immune responses (Proliferation, In vivo CTL and IFN-γ/IL-4 ELISpot assays against a strong and dominant H2-d restricted, CD8+-epitopic peptide, core 39-48; RRGPRLGVRA of HCVcp) were compared in each group of immunized animals. RESULTS Expression and purification of core protein around the expected size (21 kDa) was confirmed by Western blotting. The HCVcp + BCG vaccinated mice showed significantly higher lymphocyte proliferation and IFN-γ production but lower levels of cell lysis (45% versus 62% in CTL assay) than the HCVcp+F127 immunized animals. "Besides, total anti-core IgG and IgG1 levels were significantly higher in HCVcp + F127 immunized mice as compared to HCVcp + BCG vaccinated animals, indicating relatively higher efficacy of F127 for the stimulation of humoral and Th2-oriented immune responses". CONCLUSIONS Results showed that HCVcp + BCG induced a moderate CTL and mixed Th1/Th2 immune responses with higher levels of cell proliferation and IFN-γ secretion, indicating that BCG may have a better outcome when formulated in HCVcp-based subunit vaccines.
Collapse
Affiliation(s)
- Maryam Yazdanian
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
| | | | - Mehdi Mahdavi
- Virology Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Seyed Mehdi Sadat
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Fatemeh Motevali
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
| | | | - Hossein Khanahmad
- BCG Research Center, Karaj Research and Production Complex, Pasteur Institute of Iran, Karaj, IR Iran
| | | | | | - Farzin Roohvand
- Virology Department, Pasteur Institute of Iran, Tehran, IR Iran
| |
Collapse
|
45
|
Waeckerle-Men Y, Bruffaerts N, Liang Y, Jurion F, Sander P, Kündig TM, Huygen K, Johansen P. Lymph node targeting of BCG vaccines amplifies CD4 and CD8 T-cell responses and protection against Mycobacterium tuberculosis. Vaccine 2012; 31:1057-64. [PMID: 23273509 DOI: 10.1016/j.vaccine.2012.12.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/07/2012] [Accepted: 12/12/2012] [Indexed: 02/01/2023]
Abstract
Vaccination with Mycobacterium bovis BCG provides limited protection against pulmonary tuberculosis and a risk of dissemination in immune-compromised vaccinees. For the development of new TB vaccines that stimulate strong T-cell responses a variety of strategies is being followed, especially recombinant BCG and attenuated M. tuberculosis. The objective of the current study was to test potential benefits of vaccination through direct lymph-node targeting of wildtype BCG; the recommended route of vaccination with BCG is intradermal. C57BL/6 mice were immunised with BCG by intradermal, subcutaneous or intralymphatic injections. Cellular immune responses and protection against M. tuberculosis were determined. Intralymphatic vaccination was 100-1000 times more effective in stimulating BCG-specific immune responses than intradermal or subcutaneous immunisation. Intralymphatic administration stimulated high frequencies of mycobacterium-specific lymphocytes with strong proliferating capacity and production of TNF-α, IL-2, IL-17 and, especially, IFN-γ secretion by. CD4 and CD8 T cells. Most importantly, intralymphatic vaccination with 2×10(3)CFU BCG induced sustained protection against M. tuberculosis in intratracheally challenged C57BL/6 mice, whereas subcutaneous vaccination with 2×10(5)CFU BCG conferred only a transient protection. Hence, direct administration of M. bovis BCG to lymph nodes demonstrates that efficient targeting to lymph nodes may help to overcome the efficacy problems of vaccination with BCG.
Collapse
Affiliation(s)
- Ying Waeckerle-Men
- Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Rizzi C, Bianco MV, Blanco FC, Soria M, Gravisaco MJ, Montenegro V, Vagnoni L, Buddle B, Garbaccio S, Delgado F, Leal KS, Cataldi AA, Dellagostin OA, Bigi F. Vaccination with a BCG strain overexpressing Ag85B protects cattle against Mycobacterium bovis challenge. PLoS One 2012; 7:e51396. [PMID: 23251517 PMCID: PMC3519572 DOI: 10.1371/journal.pone.0051396] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/31/2012] [Indexed: 12/29/2022] Open
Abstract
Mycobacterium bovis is the causative agent of tuberculosis in cattle but also infects other animals, including humans. Previous studies in cattle have demonstrated that the protection induced by BCG is not complete. In order to improve the protection efficacy of BCG, in this study we overexpressed Ag85B in a BCG Pasteur strain, by using an expression system based on the use of an auxotrophic strain for the leucine amino acid, and complementation with leuD. We found that vaccination of cattle with BCG overexpressing Ag85B induced higher production of IL-17 and IL-4 mRNA upon purified protein derivative (PPDB) stimulation of peripheral blood mononuclear cells (PBMCs) than vaccination with BCG. Moreover, the IL-17 mRNA expression after vaccination negatively correlated with disease severity resulting from a subsequent challenge with M. bovis, suggesting that this cytokine is a potential biomarker of cattle protection against bovine tuberculosis. Importantly, vaccination with the recombinant BCG vaccine protected cattle better than the wild-type BCG Pasteur.
Collapse
Affiliation(s)
- Caroline Rizzi
- Núcleo de Biotecnologia, CDTec, Universidade Federal de Pelotas, Pelotas, Brazil
| | - María Verónica Bianco
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y De los Reseros, Buenos Aires, Argentina
| | - Federico Carlos Blanco
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y De los Reseros, Buenos Aires, Argentina
| | - Marcelo Soria
- Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, INBA-CONICET, Ciudad de Buenos Aires, Argentina
| | - María José Gravisaco
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y De los Reseros, Buenos Aires, Argentina
| | - Valeria Montenegro
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y De los Reseros, Buenos Aires, Argentina
| | - Lucas Vagnoni
- Instituto de Patobiología, CICVyA- INTA, N. Repetto y De los Reseros, Buenos Aires, Argentina
| | - Bryce Buddle
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Sergio Garbaccio
- Instituto de Patobiología, CICVyA- INTA, N. Repetto y De los Reseros, Buenos Aires, Argentina
| | - Fernando Delgado
- Instituto de Patobiología, CICVyA- INTA, N. Repetto y De los Reseros, Buenos Aires, Argentina
| | - Karen Silva Leal
- Núcleo de Biotecnologia, CDTec, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Angel Adrián Cataldi
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y De los Reseros, Buenos Aires, Argentina
| | | | - Fabiana Bigi
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y De los Reseros, Buenos Aires, Argentina
| |
Collapse
|
47
|
Nascimento IP, Leite LCC. Recombinant vaccines and the development of new vaccine strategies. Braz J Med Biol Res 2012; 45:1102-11. [PMID: 22948379 PMCID: PMC3854212 DOI: 10.1590/s0100-879x2012007500142] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/22/2012] [Indexed: 11/22/2022] Open
Abstract
Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.
Collapse
Affiliation(s)
- I P Nascimento
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brasil
| | | |
Collapse
|
48
|
Enhanced priming of adaptive immunity by Mycobacterium smegmatis mutants with high-level protein secretion. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1416-25. [PMID: 22787192 DOI: 10.1128/cvi.00131-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacteria have features that make them attractive as potential vaccine vectors. The nonpathogenic and rapidly growing Mycobacterium smegmatis can express both Mycobacterium tuberculosis antigens and heterologous antigens from other pathogens, and it has been used as a viable vector for the development of live vaccines. In order to further improve antigen-specific immunogenicity of M. smegmatis, we screened a random transposon mutant library for mutants displaying enhanced efficiency of protein secretion ("high secretors") and isolated 61 mutants showing enhanced endogenic and transgenic protein secretion. Sequence analysis identified a total of 54 genes involved in optimal secretion of insert proteins, as well as multiple independent transposon insertions localized within the same genomic loci and operons. The majority of transposon insertions occurred in genes that have no known protein secretion function. These transposon mutants were shown to prime antigen-specific CD8(+) T cell responses better than the parental strain. Specifically, upon introducing the simian immunodeficiency virus (SIV) gag gene into these transposon mutant strains, we observed that they primed SIV Gag-specific CD8(+) T cell responses significantly better than the control prime immunization in a heterologous prime/boost regimen. Our results reveal a dependence on bacterial secretion of mycobacterial and foreign antigens for the induction of antigen-specific CD8(+) T cells in vivo. The data also suggest that these M. smegmatis transposon mutants could be used as novel live attenuated vaccine strains to express foreign antigens, such as those of human immunodeficiency virus type 1 (HIV-1), and induce strong antigen-specific T cell responses.
Collapse
|
49
|
Ohara N. Current status of tuberculosis and recombinant bacillus Calmette-Guérin vaccines. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
50
|
Snelgrove RJ, Cornere MM, Edwards L, Dagg B, Keeble J, Rodgers A, Lyonga DE, Stewart GR, Young DB, Walker B, Hussell T. OX40 ligand fusion protein delivered simultaneously with the BCG vaccine provides superior protection against murine Mycobacterium tuberculosis infection. J Infect Dis 2012; 205:975-83. [PMID: 22315280 DOI: 10.1093/infdis/jir868] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mycobacterium tuberculosis infection claims approximately 2 million lives per year, and improved efficacy of the BCG vaccine remains a World Health Organization priority. Successful vaccination against M. tuberculosis requires the induction and maintenance of T cells. Targeting molecules that promote T-cell survival may therefore provide an alternative strategy to classic adjuvants. We show that the interaction between T-cell-expressed OX40 and OX40L on antigen-presenting cells is critical for effective immunity to BCG. However, because OX40L is lost rapidly from antigen-presenting cells following BCG vaccination, maintenance of OX40-expressing vaccine-activated T cells may not be optimal. Delivering an OX40L:Ig fusion protein simultaneously with BCG provided superior immunity to intravenous and aerosol M. tuberculosis challenge even 6 months after vaccination, an effect that depends on natural killer 1.1(+) cells. Attenuated vaccines may therefore lack sufficient innate stimulation to maintain vaccine-specific T cells, which can be replaced by reagents binding inducible T-cell costimulators.
Collapse
|