1
|
Jiménez-Cabello L, Utrilla-Trigo S, Barreiro-Piñeiro N, Pose-Boirazian T, Martínez-Costas J, Marín-López A, Ortego J. Nanoparticle- and Microparticle-Based Vaccines against Orbiviruses of Veterinary Importance. Vaccines (Basel) 2022; 10:vaccines10071124. [PMID: 35891288 PMCID: PMC9319458 DOI: 10.3390/vaccines10071124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Bluetongue virus (BTV) and African horse sickness virus (AHSV) are widespread arboviruses that cause important economic losses in the livestock and equine industries, respectively. In addition to these, another arthropod-transmitted orbivirus known as epizootic hemorrhagic disease virus (EHDV) entails a major threat as there is a conducive landscape that nurtures its emergence in non-endemic countries. To date, only vaccinations with live attenuated or inactivated vaccines permit the control of these three viral diseases, although important drawbacks, e.g., low safety profile and effectiveness, and lack of DIVA (differentiation of infected from vaccinated animals) properties, constrain their usage as prophylactic measures. Moreover, a substantial number of serotypes of BTV, AHSV and EHDV have been described, with poor induction of cross-protective immune responses among serotypes. In the context of next-generation vaccine development, antigen delivery systems based on nano- or microparticles have gathered significant attention during the last few decades. A diversity of technologies, such as virus-like particles or self-assembled protein complexes, have been implemented for vaccine design against these viruses. In this work, we offer a comprehensive review of the nano- and microparticulated vaccine candidates against these three relevant orbiviruses. Additionally, we also review an innovative technology for antigen delivery based on the avian reovirus nonstructural protein muNS and we explore the prospective functionality of the nonstructural protein NS1 nanotubules as a BTV-based delivery platform.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
| | - Natalia Barreiro-Piñeiro
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA;
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Correspondence:
| |
Collapse
|
2
|
Choudhury SM, Ma X, Dang W, Li Y, Zheng H. Recent Development of Ruminant Vaccine Against Viral Diseases. Front Vet Sci 2021; 8:697194. [PMID: 34805327 PMCID: PMC8595237 DOI: 10.3389/fvets.2021.697194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023] Open
Abstract
Pathogens of viral origin produce a large variety of infectious diseases in livestock. It is essential to establish the best practices in animal care and an efficient way to stop and prevent infectious diseases that impact animal husbandry. So far, the greatest way to combat the disease is to adopt a vaccine policy. In the fight against infectious diseases, vaccines are very popular. Vaccination's fundamental concept is to utilize particular antigens, either endogenous or exogenous to induce immunity against the antigens or cells. In light of how past emerging and reemerging infectious diseases and pandemics were handled, examining the vaccination methods and technological platforms utilized for the animals may provide some useful insights. New vaccine manufacturing methods have evolved because of developments in technology and medicine and our broad knowledge of immunology, molecular biology, microbiology, and biochemistry, among other basic science disciplines. Genetic engineering, proteomics, and other advanced technologies have aided in implementing novel vaccine theories, resulting in the discovery of new ruminant vaccines and the improvement of existing ones. Subunit vaccines, recombinant vaccines, DNA vaccines, and vectored vaccines are increasingly gaining scientific and public attention as the next generation of vaccines and are being seen as viable replacements to conventional vaccines. The current review looks at the effects and implications of recent ruminant vaccine advances in terms of evolving microbiology, immunology, and molecular biology.
Collapse
Affiliation(s)
- Sk Mohiuddin Choudhury
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - XuSheng Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wen Dang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - YuanYuan Li
- Gansu Agricultural University, Lanzhou, China
| | - HaiXue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
3
|
Bréard E, Turpaud M, Beaud G, Postic L, Fablet A, Beer M, Sailleau C, Caignard G, Viarouge C, Hoffmann B, Vitour D, Zientara S. Development and Validation of an ELISA for the Detection of Bluetongue Virus Serotype 4-Specific Antibodies. Viruses 2021; 13:v13091741. [PMID: 34578322 PMCID: PMC8473233 DOI: 10.3390/v13091741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
In this article, we describe the development and evaluation of a double antigen sandwich enzyme-linked immunosorbent assay (ELISA) able to detect serotype 4-specific antibodies from BTV-4 infected or vaccinated animals using a recombinant BTV-4 VP2 protein. The coding sequence of VP2 was inserted into a pVote plasmid by recombination in the Gateway® cloning system. Vaccinia virus (VacV) was used as a vector for the expression of the recombinant VP2. After production in BSR cells, recombinant VP2 was purified by immunoprecipitation using a FLAG tag and then used both as the coated ELISA antigen and as the HRP-tagged conjugate. The performance of the ELISA was evaluated with 1186 samples collected from BTV negative, infected or vaccinated animals. The specificity and sensitivity of the BTV-4 ELISA were above the expected standards for the detection of anti-BTV-4 VP2 antibodies in animals reared in Europe or in the Mediterranean basin. Cross-reactions were observed with reference sera for serotypes 10 and 20, and to a lesser extent with serotypes 12, 17 and 24, due to their genetic proximity to serotype 4. Nevertheless, these serotypes have never been detected in Europe and the Mediterranean area. This ELISA, which requires only the production of a recombinant protein, can be used to detect BTV serotype 4-specific antibodies and is therefore an attractive alternative diagnostic method to serum neutralization.
Collapse
Affiliation(s)
- Emmanuel Bréard
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
- Correspondence:
| | - Mathilde Turpaud
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Georges Beaud
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Lydie Postic
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Aurore Fablet
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.B.); (B.H.)
| | - Corinne Sailleau
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Grégory Caignard
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Cyril Viarouge
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.B.); (B.H.)
| | - Damien Vitour
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Stéphan Zientara
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| |
Collapse
|
4
|
Wang L, Zhang Y, Chen T, Mi L, Sun X, Zhou X, Miao F, Zhang S, Liu Y, Hu R. The Mink Circovirus Capsid Subunit Expressed by Recombinant Baculovirus Protects Minks against Refractory Diarrhea in Field. Viruses 2021; 13:606. [PMID: 33916308 PMCID: PMC8066883 DOI: 10.3390/v13040606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 11/17/2022] Open
Abstract
Mink refractory diarrhea is a seasonal disease that occurs in many mink farms in China. Mink circovirus (MiCV) has been recognized as the causative agent of the disease. The aim of the study was to develop a subunit vaccine against mink refractory diarrhea. A recombinant baculovirus strain expressing the capsid protein was constructed using the baculovirus expression vector system (BEVS). A subunit vaccine was developed based on the capsid protein with appropriate adjuvant. Then, a field trial was carried out in two districts in order to evaluate the efficiency of the subunit vaccine. The field trial indicated that in total, only 1.8% of the minks developed typical diarrhea in the vaccinated group compared with 74.5% in the control group. The vaccination could significantly reduce the infection rate of MiCV among the mink herds and could restrain the virus' shedding from feces. Furthermore, the vaccinated group had a higher average litter size in the following year compared to the control group. Collectively, the results indicated that the subunit vaccine based on the capsid protein can provide reliable protection against MiCV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Rongliang Hu
- Laboratory of Epidemiology, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Jilin 130122, China; (L.W.); (Y.Z.); (T.C.); (L.M.); (X.S.); (X.Z.); (F.M.); (S.Z.); (Y.L.)
| |
Collapse
|
5
|
Wang A, Yin J, Zhou J, Ma H, Chen Y, Liu H, Qi Y, Liang C, Liu Y, Li J, Zhang G. Soluble expression and purification of Bluetongue Virus Type 1 (BTV1) structure protein VP2 in Escherichia coli and its immunogenicity in mice. PeerJ 2021; 9:e10543. [PMID: 33505791 PMCID: PMC7789859 DOI: 10.7717/peerj.10543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/20/2020] [Indexed: 12/05/2022] Open
Abstract
Background The VP2 on the surface of the virus particle is the main structural protein of BTV, which can induce the host to produce neutralizing antibodies and play an important role in the antiviral immunity process. This study aimed to obtain the soluble VP2 and analyze its immunogenicity. Methods The gene encoding the full-length VP2 of BTV1 was amplified by PCR. The products from restriction enzyme digestion and ligase reaction between VP2 and vector pET-28a were transformed into E.coli DH5α. After PCR and sequencing detection, the positive plasmid PET28a-VP2 was transformed into E.coli BL21(DE3) and Rosetta(DE3) competent cells, expression induced by IPTG. The fusion protein was expressed in the optimized conditions with the induction of IPTG, purified by affinity chromatography and identified by SDS-PAGE and Western blotting. A total of 5 Balb/c mice aged 6–8 weeks were immunized with the fusion protein at a dose of 30 µg per mouse. Each mouse was immunized three times at an interval of 3 weeks. Results The recombinant plasmid PET28a-VP2 was successfully constructed. The expression strains were induced by 0.4 mmol/L IPTG at 16 °C for 10 h, and BTV1 VP2 was expressed in a soluble form. The purity of the recombinant VP2 protein (∼109 kDa) was about 90% in the concentration at 0.2 mg/ml afterpurification. The purified VP2 had good immunoreactivity with BTV1 positive serum. Taken together, thisstudy offered a route for producing soluble BTV VP2, which retains activity and immunogenicity, to bebeneficial to the research on developing BTV vaccine, and lay the foundation for further research on BTV.
Collapse
Affiliation(s)
- Aiping Wang
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Jiajia Yin
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Jingming Zhou
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Hongfang Ma
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Yumei Chen
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Hongliang Liu
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Yanhua Qi
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Chao Liang
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Yankai Liu
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Jinge Li
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Gaiping Zhang
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| |
Collapse
|
6
|
Lei L, Li Q, Xu S, Tian M, Zheng X, Bi Y, Huang B. Transplantation of Enterovirus 71 Virion Protein Particle Vaccine Protects Against Enterovirus 71 Infection in a Neonatal Mouse Model. Ann Transplant 2021; 26:e924461. [PMID: 33397838 PMCID: PMC7796071 DOI: 10.12659/aot.924461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Enterovirus 71 (EV71) is the pathogen most likely to cause HFMD in young children (1–5 years old). A small number of virion protein (VP) vaccine candidates are considered as the protective molecules in EV71 models. This study aimed to observe comprehensive immunogenicity for a promising EV71 vaccine depending on VP1 in neonatal mouse EV71 models. Material/Methods VP1 was isolated from patients and associated peptides were synthesized. EV71 particles were inactivated and mixed with Freund’s complete adjuvant to prepare peptide vaccines. An EV71 vaccine was administered to establish the mouse model and the mice were infected with EV71. Hematoxylin and eosin staining was used to examine inflammatory response in EV71-infected neonatal mice. A semi-quantitative reverse transcription-polymerase chain reaction assay was performed to evaluate the levels of EV71 virus in skeletal muscle, small intestines, and brain tissues. Results Three peptides were selected from 20 VP1 peptides due to their exhibition of the highest immunogenicity. The peptide injection improved inflammation and decreased EV71 particle levels in muscle, small intestines, and brain tissues. The injection also decreased lesions in the small intestines of EV71-infected mice and protected brain tissues from the EV71 infection. Conclusions The present study confirmed the immuno-protective effects of VP1 vaccine transplantation in mice infected with EV71 virus. Our results provide valuable information that can be used in further studies investigating the specific mechanism of the anti-EV71 vaccine.
Collapse
Affiliation(s)
- Li Lei
- The Third Affiliated Hospital of Zunyi Medical University/The First People's Hospital of Zunyi, Zunyi, Guizhou, China (mainland).,Graduate School of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Qing Li
- The Third Affiliated Hospital of Zunyi Medical University/The First People's Hospital of Zunyi, Zunyi, Guizhou, China (mainland)
| | - Shuhong Xu
- Graduate School of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Mingyang Tian
- Graduate School of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Xinghui Zheng
- The Third Affiliated Hospital of Zunyi Medical University/The First People's Hospital of Zunyi, Zunyi, Guizhou, China (mainland)
| | - Yunxia Bi
- The Third Affiliated Hospital of Zunyi Medical University/The First People's Hospital of Zunyi, Zunyi, Guizhou, China (mainland)
| | - Bo Huang
- The Third Affiliated Hospital of Zunyi Medical University/The First People's Hospital of Zunyi, Zunyi, Guizhou, China (mainland)
| |
Collapse
|
7
|
Teffera M, Babiuk S. Potential of Using Capripoxvirus Vectored Vaccines Against Arboviruses in Sheep, Goats, and Cattle. Front Vet Sci 2019; 6:450. [PMID: 31921911 PMCID: PMC6932975 DOI: 10.3389/fvets.2019.00450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/27/2019] [Indexed: 11/26/2022] Open
Abstract
The genus capripoxvirus consists of sheeppox virus, goatpox virus, and lumpy skin disease virus, which affect sheep, goats, and cattle, respectively. Together capripoxviruses cause significant economic losses to the sheep, goat, and cattle industry where these diseases are present. These diseases have spread into previously free bordering regions most recently demonstrated with the spread of lumpy skin disease virus into the Middle East, some Eastern European countries, and Russia. This recent spread has highlighted the transboundary nature of these diseases. To control lumpy skin disease virus, live attenuated viral vaccines are used in endemic countries as well as in response to an outbreak. For sheeppox and goatpox, live attenuated viral vaccines are used in endemic countries; these diseases can also be contained through slaughter of infected animals to stamp out the disease. The thermostability, narrow host range, and ability of capripoxviruses to express a wide variety of antigens make capripoxviruses ideal vectors. The ability to immunize animals against multiple diseases simultaneously increases vaccination efficiency by decreasing the number of vaccinations required. Additionally, the use of capripoxvirus vectored vaccines allows the possibility of differentiating infected from vaccinated animals. Arboviruses such as bluetongue virus and Rift Valley fever viruses are also responsible for significant economic losses in endemic countries. In the case of Rift Valley fever virus, vaccination is not routinely practiced unless there is an outbreak making vaccination not as effective, therefore, incorporating Rift Valley fever vaccination into routine capripoxvirus vaccination would be highly beneficial. This review will discuss the potential of using capripoxvirus as a vector expressing protective arboviral antigens.
Collapse
Affiliation(s)
- Mahder Teffera
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
8
|
Rutkowska DA, Mokoena NB, Tsekoa TL, Dibakwane VS, O’Kennedy MM. Plant-produced chimeric virus-like particles - a new generation vaccine against African horse sickness. BMC Vet Res 2019; 15:432. [PMID: 31796116 PMCID: PMC6892175 DOI: 10.1186/s12917-019-2184-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND African horse sickness (AHS) is a severe arthropod-borne viral disease of equids, with a mortality rate of up to 95% in susceptible naïve horses. Due to safety concerns with the current live, attenuated AHS vaccine, alternate safe and effective vaccination strategies such as virus-like particles (VLPs) are being investigated. Transient plant-based expression systems are a rapid and highly scalable means of producing such African horse sickness virus (AHSV) VLPs for vaccine purposes. RESULTS In this study, we demonstrated that transient co-expression of the four AHSV capsid proteins in agroinfiltrated Nicotiana benthamiana dXT/FT plants not only allowed for the assembly of homogenous AHSV-1 VLPs but also single, double and triple chimeric VLPs, where one capsid protein originated from one AHS serotype and at least one other capsid protein originated from another AHS serotype. Following optimisation of a large scale VLP purification procedure, the safety and immunogenicity of the plant-produced, triple chimeric AHSV-6 VLPs was confirmed in horses, the target species. CONCLUSIONS We have successfully shown assembly of single and double chimeric AHSV-7 VLPs, as well as triple chimeric AHSV-6 VLPs, in Nicotiana benthamiana dXT/FT plants. Plant produced chimeric AHSV-6 VLPs were found to be safe for administration into 6 month old foals as well as capable of eliciting a weak neutralizing humoral immune response in these target animals against homologous AHSV virus.
Collapse
Affiliation(s)
| | - Nobalanda B. Mokoena
- Onderstepoort Biological Products SOC Ltd, Private Bag X07, Onderstepoort, 0110 South Africa
| | | | - Vusi S. Dibakwane
- Onderstepoort Biological Products SOC Ltd, Private Bag X07, Onderstepoort, 0110 South Africa
| | | |
Collapse
|
9
|
van Rijn PA. Prospects of Next-Generation Vaccines for Bluetongue. Front Vet Sci 2019; 6:407. [PMID: 31824966 PMCID: PMC6881303 DOI: 10.3389/fvets.2019.00407] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/01/2019] [Indexed: 01/16/2023] Open
Abstract
Bluetongue (BT) is a haemorrhagic disease of wild and domestic ruminants with a huge economic worldwide impact on livestock. The disease is caused by BT-virus transmitted by Culicoides biting midges and disease control without vaccination is hardly possible. Vaccination is the most feasible and cost-effective way to minimize economic losses. Marketed BT vaccines are successfully used in different parts of the world. Inactivated BT vaccines are efficacious and safe but relatively expensive, whereas live-attenuated vaccines are efficacious and cheap but are unsafe because of under-attenuation, onward spread, reversion to virulence, and reassortment events. Both manufactured BT vaccines do not enable differentiating infected from vaccinated animals (DIVA) and protection is limited to the respective serotype. The ideal BT vaccine is a licensed, affordable, completely safe DIVA vaccine, that induces quick, lifelong, broad protection in all susceptible ruminant species. Promising vaccine candidates show improvement for one or more of these main vaccine standards. BTV protein vaccines and viral vector vaccines have DIVA potential depending on the selected BTV antigens, but are less effective and likely more costly per protected animal than current vaccines. Several vaccine platforms based on replicating BTV are applied for many serotypes by exchange of serotype dominant outer shell proteins. These platforms based on one BTV backbone result in attenuation or abortive virus replication and prevent disease by and spread of vaccine virus as well as reversion to virulence. These replicating BT vaccines induce humoral and T-cell mediated immune responses to all viral proteins except to one, which could enable DIVA tests. Most of these replicating vaccines can be produced similarly as currently marketed BT vaccines. All replicating vaccine platforms developed by reverse genetics are classified as genetic modified organisms. This implies extensive and expensive safety trails in target ruminant species, and acceptance by the community could be hindered. Nonetheless, several experimental BT vaccines show very promising improvements and could compete with marketed vaccines regarding their vaccine profile, but none of these next generation BT vaccines have been licensed yet.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
10
|
Dennis SJ, Meyers AE, Hitzeroth II, Rybicki EP. African Horse Sickness: A Review of Current Understanding and Vaccine Development. Viruses 2019; 11:E844. [PMID: 31514299 PMCID: PMC6783979 DOI: 10.3390/v11090844] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 01/05/2023] Open
Abstract
African horse sickness is a devastating disease that causes great suffering and many fatalities amongst horses in sub-Saharan Africa. It is caused by nine different serotypes of the orbivirus African horse sickness virus (AHSV) and it is spread by Culicoid midges. The disease has significant economic consequences for the equine industry both in southern Africa and increasingly further afield as the geographic distribution of the midge vector broadens with global warming and climate change. Live attenuated vaccines (LAV) have been used with relative success for many decades but carry the risk of reversion to virulence and/or genetic re-assortment between outbreak and vaccine strains. Furthermore, the vaccines lack DIVA capacity, the ability to distinguish between vaccine-induced immunity and that induced by natural infection. These concerns have motivated interest in the development of new, more favourable recombinant vaccines that utilize viral vectors or are based on reverse genetics or virus-like particle technologies. This review summarizes the current understanding of AHSV structure and the viral replication cycle and also evaluates existing and potential vaccine strategies that may be applied to prevent or control the disease.
Collapse
Affiliation(s)
- Susan J Dennis
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
| | - Inga I Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa.
| |
Collapse
|
11
|
Mayo C, Lee J, Kopanke J, MacLachlan NJ. A review of potential bluetongue virus vaccine strategies. Vet Microbiol 2017; 206:84-90. [PMID: 28377132 DOI: 10.1016/j.vetmic.2017.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/03/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
Bluetongue (BT) is an economically important, non-zoonotic arboviral disease of certain wild and domestic species of cloven-hooved ungulates. Bluetongue virus (BTV) is the causative agent and the occurrence of BTV infection is distinctly seasonal in temperate regions of the world, and dependent on the presence of vector biting midges (e.g. Culicoides sonorensis in much of North America). In recent years, severe outbreaks have occurred throughout Europe and BTV is endemic in most tropical and temperate regions of the world. Several vaccines have been licensed for commercial use, including modified live (live-attenuated) and inactivated products, and this review summarizes recent strategies developed for BTV vaccines with emphasis on technologies suitable for differentiating naturally infected from vaccinated animals. The goal of this review is to evaluate realistic vaccine strategies that might be utilized to control or prevent future outbreaks of BT.
Collapse
Affiliation(s)
- Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80526, United States.
| | - Justin Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80526, United States
| | - Jennifer Kopanke
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80526, United States
| | - N James MacLachlan
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| |
Collapse
|
12
|
Abstract
The performance of different bluetongue control measures related to both vaccination and protection from bluetongue virus (BTV) vectors was assessed. By means of a mathematical model, it was concluded that when vaccination is applied on 95% of animals even for 3 years, bluetongue cannot be eradicated and is able to re‐emerge. Only after 5 years of vaccination, the infection may be close to the eradication levels. In the absence of vaccination, the disease can persist for several years, reaching an endemic condition with low level of prevalence of infection. Among the mechanisms for bluetongue persistence, the persistence in the wildlife, the transplacental transmission in the host, the duration of viraemia and the possible vertical transmission in vectors were assessed. The criteria of the current surveillance scheme in place in the EU for demonstration of the virus absence need revision, because it was highlighted that under the current surveillance policy bluetongue circulation might occur undetected. For the safe movement of animals, newborn ruminants from vaccinated mothers with neutralising antibodies can be considered protected against infection, although a protective titre threshold cannot be identified. The presence of colostral antibodies interferes with the vaccine immunisation in the newborn for more than 3 months after birth, whereas the minimum time after vaccination of animal to be considered immune can be up to 48 days. The knowledge about vectors ecology, mechanisms of over‐wintering and criteria for the seasonally vector‐free period was updated. Some Culicoides species are active throughout the year and an absolute vector‐free period may not exist at least in some areas in Europe. To date, there is no evidence that the use of insecticides and repellents reduce the transmission of BTV in the field, although this may reduce host/vector contact. By only using pour‐on insecticides, protection of animals is lower than the one provided by vector‐proof establishments. This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2017.EN-1182/full, http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2017.EN-1171/full
Collapse
|
13
|
Replication-Deficient Particles: New Insights into the Next Generation of Bluetongue Virus Vaccines. J Virol 2016; 91:JVI.01892-16. [PMID: 27795442 PMCID: PMC5165199 DOI: 10.1128/jvi.01892-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/18/2016] [Indexed: 01/04/2023] Open
Abstract
Bluetongue virus (BTV) is endemic in many parts of the world, often causing severe hemorrhagic disease in livestock. To date, at least 27 different serotypes have been recognized. Vaccination against all serotypes is necessary to protect susceptible animals and to prevent onward spread of the virus by insect vectors. In our previous studies, we generated replication-deficient (disabled infectious single-cycle [DISC]) virus strains for a number of serotypes and reported preliminary data on their protective efficacy in animals. In this report, to advance the DISC vaccines to the marketplace, we investigated different parameters of these DISC vaccines. First, we demonstrated the genetic stabilities of these vaccine strains and also the complementing cell line. Subsequently, the optimal storage conditions of vaccines, including additives, temperature, and desiccation, were determined and their protective efficacies in animals confirmed. Furthermore, to test if mixtures of different vaccine strains could be tolerated, we tested cocktails of DISC vaccines in combinations of three or six different serotypes in sheep and cattle, the two natural hosts of BTV. Groups of sheep vaccinated with a cocktail of six different vaccines were completely protected from challenge with individual virulent serotypes, both in early challenge and after 5 months of challenge without any clinical disease. There was no interference in protection between the different vaccines. Protection was also achieved in cattle with a mixture of three vaccine strains, albeit at a lesser level than in sheep. Our data support and validate the suitability of these virus strains as the next-generation vaccines for BTV. IMPORTANCE Bluetongue (BT) is a debilitating and in many cases lethal disease that affects ruminants of economic importance. Classical vaccines that afford protection against bluetongue virus, the etiological agent, are not free from secondary and undesirable effects. A surge in new approaches to produce highly attenuated, safer vaccines was evident after the development of the BTV reverse-genetics system that allows the introduction of targeted mutations in the virus genome. We targeted an essential gene to develop disabled virus strains as vaccine candidates. The results presented in this report further substantiate our previous evidence and support the suitability of these virus strains as the next-generation BTV vaccines.
Collapse
|
14
|
Feenstra F, van Rijn PA. Current and next-generation bluetongue vaccines: Requirements, strategies, and prospects for different field situations. Crit Rev Microbiol 2016; 43:142-155. [PMID: 27800699 DOI: 10.1080/1040841x.2016.1186005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bluetongue virus (BTV) causes the hemorrhagic disease bluetongue (BT) in ruminants. The best way to control outbreaks is vaccination. Currently, conventionally modified-live and inactivated vaccines are commercially available, which have been successfully used to control BT, but nonetheless have their specific shortcomings. Therefore, there is a need for improved BT vaccines. The ideal BT vaccine is efficacious, safe, affordable, protective against multiple serotypes and enables the differentiation of infected from vaccinated animals. Different field situations require specific vaccine profiles. Single serotype outbreaks in former BT-free areas need rapid onset of protection against viremia of the respective serotype. In contrary, endemic multiple serotype situations require long-lasting protection against all circulating serotypes. The ideal BT vaccine for all field situations does not exist and balancing between vaccine properties is needed. Many new vaccines candidates, ranging from non-replicating subunits to replicating next-generation reverse genetics based vaccines, have been developed. Some have been tested extensively in large numbers of ruminants, whereas others were developed recently and have only been tested in vitro and in mice models. Most vaccine candidates are promising, but have their specific shortcomings and advantages. In this review, current and next-generation BT vaccines are discussed in the light of prerequisites for different field situations.
Collapse
Affiliation(s)
- Femke Feenstra
- a Department of Virology , Central Veterinary Institute of Wageningen UR , Lelystad , The Netherlands.,b Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine , Utrecht University , Utrecht , The Netherlands
| | - Piet A van Rijn
- a Department of Virology , Central Veterinary Institute of Wageningen UR , Lelystad , The Netherlands.,c Department of Biochemistry , Center for Human Metabolomics, North-West University , Potchefstroom , South Africa
| |
Collapse
|
15
|
Forzan M, Maan S, Mazzei M, Belaganahalli MN, Bonuccelli L, Calamari M, Carrozza ML, Cappello V, Di Luca M, Bandecchi P, Mertens PPC, Tolari F. Generation of virus like particles for epizootic hemorrhagic disease virus. Res Vet Sci 2016; 107:116-122. [PMID: 27473984 DOI: 10.1016/j.rvsc.2016.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 05/17/2016] [Accepted: 05/30/2016] [Indexed: 12/25/2022]
Abstract
Epizootic hemorrhagic disease virus (EHDV) is a distinct species within the genus Orbivirus, within the family Reoviridae. The epizootic hemorrhagic disease virus genome comprises ten segments of linear, double stranded (ds) RNA, which are packaged within each virus particle. The EHDV virion has a three layered capsid-structure, generated by four major viral proteins: VP2 and VP5 (outer capsid layer); VP7 (intermediate, core-surface layer) and VP3 (innermost, sub-core layer). Although EHDV infects cattle sporadically, several outbreaks have recently occurred in this species in five Mediterranean countries, indicating a potential threat to the European cattle industry. EHDV is transmitted by biting midges of the genus Culicoides, which can travel long distances through wind-born movements (particularly over water), increasing the potential for viral spread in new areas/countries. Expression systems to generate self-assembled virus like particles (VLPs) by simultaneous expression of the major capsid-proteins, have been established for several viruses (including bluetongue virus). This study has developed expression systems for production of EHDV VLPs, for use as non-infectious antigens in both vaccinology and serology studies, avoiding the risk of genetic reassortment between vaccine and field strains and facilitating large scale antigen production. Genes encoding the four major-capsid proteins of a field strain of EHDV-6, were isolated and cloned into transfer vectors, to generate two recombinant baculoviruses. The expression of these viral genes was assessed in insect cells by monitoring the presence of specific viral mRNAs and by western blotting. Electron microscopy studies confirmed the formation and purification of assembled VLPs.
Collapse
Affiliation(s)
- Mario Forzan
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | | | - Maurizio Mazzei
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | | | | | | | | | - Valentina Cappello
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation, NEST, Pisa, Italy
| | | | | | | | | |
Collapse
|
16
|
Maree S, Maree FF, Putterill JF, de Beer TA, Huismans H, Theron J. Synthesis of empty african horse sickness virus particles. Virus Res 2016; 213:184-194. [DOI: 10.1016/j.virusres.2015.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 11/05/2015] [Accepted: 12/07/2015] [Indexed: 11/30/2022]
|
17
|
Alshaikhahmed K, Roy P. Generation of virus-like particles for emerging epizootic haemorrhagic disease virus: Towards the development of safe vaccine candidates. Vaccine 2016; 34:1103-8. [PMID: 26805595 DOI: 10.1016/j.vaccine.2015.12.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 11/25/2022]
Abstract
Epizootic haemorrhagic disease virus (EHDV) is an insect-transmitted pathogen which causes high mortality in deer populations and may also cause high morbidity in cattle. EHDV belongs to the Orbivirus genus and is closely related to the prototype Bluetongue virus (BTV). To date seven distinct serotypes have been recognized. However, a live-attenuated vaccine is commercially available against only one serotype namely EHDV-2, which has been responsible for multiple outbreaks in North America, Canada, Asia and Australia. Here we expressed four major capsid proteins (VP2, VP3, VP5 and VP7) of EHDV-1 using baculovirus multiple gene expression systems and demonstrated that three-layered VLPs were assembled mimicking the authentic EHDV particles but lacking the viral genomic RNA segments and the transcriptase complex (TC). Antibodies generated with VLPs not only neutralized EHDV-1 infection in cell culture but also showed cross neutralizing reactivity against two other serotypes, EHDV-2 and EHDV-6. For proof of concept, we demonstrated that EHDV-2 VLPs could be generated rapidly by expressing the EHDV-2 variable outer capsid proteins (VP2, VP5) together with EHDV-1 VP3 and VP7, the two inner capsid proteins, which are highly conserved among the 7 serotypes. Data presented in this study validate the VLPs as a potential vaccine and demonstrate that a vaccine could be developed rapidly in the event of an outbreak of a new serotype.
Collapse
Affiliation(s)
- Kinda Alshaikhahmed
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Polly Roy
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom.
| |
Collapse
|
18
|
Legisa DM, Perez Aguirreburualde MS, Gonzalez FN, Marin-Lopez A, Ruiz V, Wigdorovitz A, Martinez-Escribano JA, Ortego J, Dus Santos MJ. An experimental subunit vaccine based on Bluetongue virus 4 VP2 protein fused to an antigen-presenting cells single chain antibody elicits cellular and humoral immune responses in cattle, guinea pigs and IFNAR(-/-) mice. Vaccine 2015; 33:2614-9. [PMID: 25858859 DOI: 10.1016/j.vaccine.2015.03.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 11/29/2022]
Abstract
Bluetongue virus (BTV), the causative agent of bluetongue disease (BT) in domestic and wild ruminants, is worldwide distributed. A total of 27 serotypes have been described so far, and several outbreaks have been reported. Vaccination is critical for controlling the spread of BTV. In the last years, subunit vaccines, viral vector vaccines and reverse genetic-based vaccines have emerged as new alternatives to conventional ones. In this study, we developed an experimental subunit vaccine against BTV4, with the benefit of targeting the recombinant protein to antigen-presenting cells. The VP2 protein from an Argentine BTV4 isolate was expressed alone or fused to the antigen presenting cell homing (APCH) molecule, in the baculovirus insect cell expression system. The immunogenicity of both proteins was evaluated in guinea pigs and cattle. Titers of specific neutralizing antibodies in guinea pigs and cattle immunized with VP2 or APCH-VP2 were high and similar to those induced by a conventional inactivated vaccine. The immunogenicity of recombinant proteins was further studied in the IFNAR(-/-) mouse model where the fusion of VP2 to APCH enhanced the cellular immune response and the neutralizing activity induced by VP2.
Collapse
Affiliation(s)
- D M Legisa
- Instituto de Virología, CNIA Hurlingham (1686), Buenos Aires, Argentina.
| | | | - F N Gonzalez
- Instituto de Virología, CNIA Hurlingham (1686), Buenos Aires, Argentina
| | - A Marin-Lopez
- Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, Madrid, Spain
| | - V Ruiz
- Instituto de Virología, CNIA Hurlingham (1686), Buenos Aires, Argentina
| | - A Wigdorovitz
- Instituto de Virología, CNIA Hurlingham (1686), Buenos Aires, Argentina
| | | | - J Ortego
- Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, Madrid, Spain
| | - M J Dus Santos
- Instituto de Virología, CNIA Hurlingham (1686), Buenos Aires, Argentina.
| |
Collapse
|
19
|
Vaccines and Vaccination. THE ROLE OF BIOTECHNOLOGY IN IMPROVEMENT OF LIVESTOCK 2015. [PMCID: PMC7122016 DOI: 10.1007/978-3-662-46789-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Livestock vaccines aim to increase livestock product and improve the health and welfare of livestock animals in a cost-efficient manner and prevent disease transmission. Successful livestock vaccines have been generated for pathogens including bacterial, viral, protozoan, and multicellular pathogens. These livestock vaccines have a significant effect on animal health and products and on human health through growing safe food procurement and preventing zoonotic diseases. There are successful production of biotechnological-based animal vaccines licensed for use that include virus-like particle vaccines, gene-deleted marker vaccines, subunit vaccines, DIVA vaccines, and DNA vaccines.
Collapse
|
20
|
Lin SY, Chung YC, Hu YC. Update on baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev Vaccines 2014; 13:1501-21. [DOI: 10.1586/14760584.2014.951637] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Maclachlan NJ, Henderson C, Schwartz-Cornil I, Zientara S. The immune response of ruminant livestock to bluetongue virus: From type I interferon to antibody. Virus Res 2014; 182:71-7. [DOI: 10.1016/j.virusres.2013.09.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/28/2013] [Accepted: 09/29/2013] [Indexed: 10/26/2022]
|
22
|
Scotti N, Rybicki EP. Virus-like particles produced in plants as potential vaccines. Expert Rev Vaccines 2014; 12:211-24. [DOI: 10.1586/erv.12.147] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Mena JA, Kamen AA. Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert Rev Vaccines 2014; 10:1063-81. [DOI: 10.1586/erv.11.24] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Pages N, Bréard E, Urien C, Talavera S, Viarouge C, Lorca-Oro C, Jouneau L, Charley B, Zientara S, Bensaid A, Solanes D, Pujols J, Schwartz-Cornil I. Culicoides midge bites modulate the host response and impact on bluetongue virus infection in sheep. PLoS One 2014; 9:e83683. [PMID: 24421899 PMCID: PMC3885445 DOI: 10.1371/journal.pone.0083683] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/06/2013] [Indexed: 12/04/2022] Open
Abstract
Many haematophagous insects produce factors that help their blood meal and coincidently favor pathogen transmission. However nothing is known about the ability of Culicoides midges to interfere with the infectivity of the viruses they transmit. Among these, Bluetongue Virus (BTV) induces a hemorrhagic fever- type disease and its recent emergence in Europe had a major economical impact. We observed that needle inoculation of BTV8 in the site of uninfected C. nubeculosus feeding reduced viraemia and clinical disease intensity compared to plain needle inoculation. The sheep that developed the highest local inflammatory reaction had the lowest viral load, suggesting that the inflammatory response to midge bites may participate in the individual sensitivity to BTV viraemia development. Conversely compared to needle inoculation, inoculation of BTV8 by infected C. nubeculosus bites promoted viraemia and clinical symptom expression, in association with delayed IFN- induced gene expression and retarded neutralizing antibody responses. The effects of uninfected and infected midge bites on BTV viraemia and on the host response indicate that BTV transmission by infected midges is the most reliable experimental method to study the physio-pathological events relevant to a natural infection and to pertinent vaccine evaluation in the target species. It also leads the way to identify the promoting viral infectivity factors of infected Culicoides in order to possibly develop new control strategies against BTV and other Culicoides transmitted viruses.
Collapse
Affiliation(s)
- Nonito Pages
- Centre de Recerca en Sanitat Animal CReSA, Universitat Autònoma de Barcelona – Institut de Recerca i Tecnologia Agroalimentaries, Bellaterra, Spain
| | - Emmanuel Bréard
- Virologie, Unité Mixte de Recherche UMR1161, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail – Institut National de la Recherche Agronomique – Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Céline Urien
- Virologie et Immunologie Moléculaires, Unité de Recherche UR892, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Sandra Talavera
- Centre de Recerca en Sanitat Animal CReSA, Universitat Autònoma de Barcelona – Institut de Recerca i Tecnologia Agroalimentaries, Bellaterra, Spain
| | - Cyril Viarouge
- Virologie, Unité Mixte de Recherche UMR1161, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail – Institut National de la Recherche Agronomique – Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Cristina Lorca-Oro
- Centre de Recerca en Sanitat Animal CReSA, Universitat Autònoma de Barcelona – Institut de Recerca i Tecnologia Agroalimentaries, Bellaterra, Spain
| | - Luc Jouneau
- Virologie et Immunologie Moléculaires, Unité de Recherche UR892, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Bernard Charley
- Virologie et Immunologie Moléculaires, Unité de Recherche UR892, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Stéphan Zientara
- Virologie, Unité Mixte de Recherche UMR1161, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail – Institut National de la Recherche Agronomique – Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Albert Bensaid
- Centre de Recerca en Sanitat Animal CReSA, Universitat Autònoma de Barcelona – Institut de Recerca i Tecnologia Agroalimentaries, Bellaterra, Spain
| | - David Solanes
- Centre de Recerca en Sanitat Animal CReSA, Universitat Autònoma de Barcelona – Institut de Recerca i Tecnologia Agroalimentaries, Bellaterra, Spain
| | - Joan Pujols
- Centre de Recerca en Sanitat Animal CReSA, Universitat Autònoma de Barcelona – Institut de Recerca i Tecnologia Agroalimentaries, Bellaterra, Spain
| | - Isabelle Schwartz-Cornil
- Virologie et Immunologie Moléculaires, Unité de Recherche UR892, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
25
|
Fernandes F, Teixeira AP, Carinhas N, Carrondo MJT, Alves PM. Insect cells as a production platform of complex virus-like particles. Expert Rev Vaccines 2013; 12:225-36. [PMID: 23414412 DOI: 10.1586/erv.12.153] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Virus-like particles (VLPs) are multiprotein structures that resemble the conformation of native viruses but lack a viral genome, potentiating their application as safer and cheaper vaccines. The production of VLPs has been strongly linked with the use of insect cells and the baculovirus expression vector system, especially those particles composed of two or more structural viral proteins. In fact, this expression platform has been extensively improved over the years to address the challenges of coexpression of multiple proteins and their proper assembly into complexes in the same cell. In this article, the role of insect cell technology in the development and production of complex VLPs is overviewed; recent achievements, current bottlenecks and future trends are also highlighted.
Collapse
Affiliation(s)
- Fabiana Fernandes
- ITQB-Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
26
|
Multiple large foreign protein expression by a single recombinant baculovirus: a system for production of multivalent vaccines. Protein Expr Purif 2013; 91:77-84. [PMID: 23872366 DOI: 10.1016/j.pep.2013.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/02/2013] [Accepted: 07/09/2013] [Indexed: 11/23/2022]
Abstract
Baculovirus expression system offers the advantage of expression of several large proteins simultaneously by a single recombinant virus. To date, expression of multiple large (>100kDa) proteins has been hampered by the need to generate large constructs and repeat use of homologous sequence and promoter. The development of multi-loci baculovirus expression system overcomes these issues by enabling the recombination of large foreign sequences into different regions of the genome. In this paper, we have examined the co-expression of African horse sickness virus (AHSV) VP2 proteins from multiple serotypes in a single recombinant baculovirus. To this end, recombinant baculoviruses expressing multiple AHSV VP2 proteins were generated and it was found that up to six different AHSV serotypes (serotype 1, 3, 4, 5, 7 and 8) VP2 proteins (∼120kDa) could be expressed simultaneously from different loci of baculovirus genome. The expression of VP2 of one serotype was not significantly hindered by the presence of other serotypes, although there were slight differences in expression level between different serotypes. The expression of VP2 of further serotypes from additional loci resulted in a lesser expression level of VP2 proteins. Based on these findings, three additional recombinant baculoviruses encompassing all nine AHSV serotypes were constructed (serotypes 1, 7, 8 or serotypes 2, 4, 5 or serotypes 3, 6, 9) and each of the triple recombinant viruses exhibited similar expression level of each VP2. This system allows for the expression of a number of large proteins that has the potential to be exploited for multivalent vaccines production.
Collapse
|
27
|
Evaluation of the immunogenicity of an experimental subunit vaccine that allows differentiation between infected and vaccinated animals against bluetongue virus serotype 8 in cattle. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1115-22. [PMID: 23720365 DOI: 10.1128/cvi.00229-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bluetongue virus (BTV), the causative agent of bluetongue in ruminants, is an emerging virus in northern Europe. The 2006 outbreak of BTV serotype 8 (BTV-8) in Europe was marked by an unusual teratogenic effect and a high frequency of clinical signs in cattle. Conventional control strategies targeting small ruminants were therefore extended to include cattle. Since cattle were not routinely vaccinated before 2006, the immune responses to BTV have not been studied extensively in this species. With the aims of developing a subunit vaccine against BTV-8 for differentiation between infected and vaccinated animals based on viral protein 7 (VP7) antibody detection and of improving the current understanding of the immunogenicity of BTV proteins in cattle, the immune responses induced by recombinant VP2 (BTV-8) and nonstructural protein 1 (NS1) and NS2 (BTV-2) were studied. Cows were immunized twice (with a 3-week interval) with the experimental vaccine, a commercial inactivated vaccine, or a placebo. The two vaccines induced similar neutralizing antibody responses to BTV-8. Furthermore, the antibody responses detected against VP2, NS1, and NS2 were strongest in the animals immunized with the experimental vaccine, and for the first time, a serotype cross-reactive antibody response to NS2 was shown in cattle vaccinated with the commercial vaccine. The two vaccines evoked measurable T cell responses against NS1, thereby supporting a bovine cross-reactive T cell response. Finally, VP7 seroconversion was observed after vaccination with the commercial vaccine, as in natural infections, but not after vaccination with the experimental vaccine, indicating that the experimental vaccine may allow the differentiation of vaccinated animals from infected animals regardless of BTV serotype. The experimental vaccine will be further evaluated during a virulent challenge in a high-containment facility.
Collapse
|
28
|
Liu F, Wu X, Li L, Ge S, Liu Z, Wang Z. Virus-like particles: promising platforms with characteristics of DIVA for veterinary vaccine design. Comp Immunol Microbiol Infect Dis 2013; 36:343-52. [PMID: 23561290 DOI: 10.1016/j.cimid.2013.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/13/2013] [Accepted: 02/25/2013] [Indexed: 11/27/2022]
Abstract
In general, it is difficult to differentiate infected from vaccinated animals through vaccination with conventional vaccines, thereby impeding the serological surveillance of animal diseases. DIVA (differentiating infected from vaccinated animals) vaccine, originally known as marker vaccine, usually based on the absence of at least one immunogenic protein in the vaccine strain, allows DIVA in conjunction with a diagnostic test that detects antibodies against the antigens lacking in the vaccine strain. Virus-like particles (VLPs), composed of one or more structural proteins but no genomes of native viruses, mimic the organization and conformation of authentic virions but have no ability to self-replicate in cells, potentially yielding safer vaccine candidates. Since VLPs containing either monovalent or multivalent antigen can be produced in compliance with the requirements for serological surveillance, the use of VLP-based vaccines plays a promising role in DIVA vaccination strategies against animal diseases. Here, we critically reviewed VLPs and companion diagnostics with properties of DIVA for veterinary vaccine design, and three different VLPs as promising platforms for DIVA vaccination strategies in animals.
Collapse
Affiliation(s)
- Fuxiao Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | | | | | | | | | | |
Collapse
|
29
|
Pushko P, Pumpens P, Grens E. Development of Virus-Like Particle Technology from Small Highly Symmetric to Large Complex Virus-Like Particle Structures. Intervirology 2013; 56:141-65. [DOI: 10.1159/000346773] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
30
|
Sharma S, Hinds LA. Formulation and delivery of vaccines: Ongoing challenges for animal management. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2012; 4:258-66. [PMID: 23248557 PMCID: PMC3523519 DOI: 10.4103/0975-7406.103231] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 12/30/2011] [Accepted: 03/24/2012] [Indexed: 11/09/2022] Open
Abstract
Development of a commercially successful animal vaccine is not only influenced by various immunological factors, such as type of antigen but also by formulation and delivery aspects. The latter includes the need for a vector or specific delivery system, the choice of route of administration and the nature of the target animal population and their habitat. This review describes the formulation and delivery aspects of various types of antigens such as killed microorganisms, proteins and nucleic acids for the development of efficacious and safe animal vaccines. It also focuses on the challenges associated with the different approaches that might be required for formulating and delivering species specific vaccines, particularly if their intended use is for improved animal management with respect to disease and/or reproductive control.
Collapse
Affiliation(s)
- Sameer Sharma
- Commonwealth Scientific and Industrial Research Organisation, Division of Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2601, Australia
| | | |
Collapse
|
31
|
Stewart M, Dubois E, Sailleau C, Bréard E, Viarouge C, Desprat A, Thiéry R, Zientara S, Roy P. Bluetongue virus serotype 8 virus-like particles protect sheep against virulent virus infection as a single or multi-serotype cocktail immunogen. Vaccine 2012; 31:553-8. [PMID: 23159460 DOI: 10.1016/j.vaccine.2012.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/26/2012] [Accepted: 11/02/2012] [Indexed: 11/15/2022]
Abstract
Since 1998, there have been multiple separate outbreaks of Bluetongue disease (BT) in Europe with the largest outbreak ever recorded in Northern Europe caused by Bluetongue virus serotype 8 (BTV-8). Coinciding with the BTV-8 outbreak, a virulent strain of BTV-1 emerged and co-infections of these two serotypes were reported. In response, we generated VLPs for BTV-8 and tested the efficacy of BTV-8 VLPs as a single immunogen and as a component of a multivalent vaccine, with VLPs of BTV-1 and BTV-2, in order to test if there was any interference between serotypes. All pre-Alps sheep vaccinated with BTV-8 VLPs developed a strong neutralising antibody response to BTV-8 and multivalent VLP vaccinated animals also developed neutralising antibodies to BTV-1 and BTV-2. There were no side effects observed due to the vaccination with either the single- or multivalent VLP cocktail. All VLP-vaccinated animals had no clinical manifestation of BT or viraemia after challenge with a virulent BTV-8 isolate. This data indicates that BTV-8 VLPs delivered as a single immunogen or as a component of a multivalent vaccine are highly efficacious. Moreover, there was no interference on the development of a strong protective immune response due to the combination of different phylogenetically unrelated BTV serotypes in the vaccinated animals. This report further highlights that BTV VLPs are safe and efficacious immunogens that are able to afford complete protection against a virulent virus challenge.
Collapse
Affiliation(s)
- Meredith Stewart
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, WC1E 7HT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Roy P, Noad R. Use of bacterial artificial chromosomes in baculovirus research and recombinant protein expression: current trends and future perspectives. ISRN MICROBIOLOGY 2012; 2012:628797. [PMID: 23762754 PMCID: PMC3671692 DOI: 10.5402/2012/628797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/16/2012] [Indexed: 11/23/2022]
Abstract
The baculovirus expression system is one of the most successful and widely used eukaryotic protein expression methods. This short review will summarise the role of bacterial artificial chromosomes (BACS) as an enabling technology for the modification of the virus genome. For many years baculovirus genomes have been maintained in E. coli as bacterial artificial chromosomes, and foreign genes have been inserted using a transposition-based system. However, with recent advances in molecular biology techniques, particularly targeting reverse engineering of the baculovirus genome by recombineering, new frontiers in protein expression are being addressed. In particular, BACs have facilitated the propagation of disabled virus genomes that allow high throughput protein expression. Furthermore, improvement in the selection of recombinant viral genomes inserted into BACS has enabled the expression of multiprotein complexes by iterative recombineering of the baculovirus genome.
Collapse
Affiliation(s)
- Polly Roy
- Department of Pathogen Molecular Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | |
Collapse
|
33
|
Pérez de Diego AC, Sánchez-Cordón PJ, de las Heras AI, Sánchez-Vizcaíno JM. Characterization of the immune response induced by a commercially available inactivated bluetongue virus serotype 1 vaccine in sheep. ScientificWorldJournal 2012; 2012:147158. [PMID: 22619592 PMCID: PMC3349316 DOI: 10.1100/2012/147158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/22/2011] [Indexed: 11/17/2022] Open
Abstract
The protective immune response generated by a commercial monovalent inactivated vaccine against bluetongue virus serotype 1 (BTV1) was studied. Five sheep were vaccinated, boost-vaccinated, and then challenged against BTV1 ALG/2006. RT-PCR did not detect viremia at any time during the experiment. Except a temperature increase observed after the initial and boost vaccinations, no clinical signs or lesions were observed. A specific and protective antibody response checked by ELISA was induced after vaccination and boost vaccination. This specific antibody response was associated with a significant increase in B lymphocytes confirmed by flow cytometry, while significant increases were not observed in T lymphocyte subpopulations (CD4+, CD8+, and WC1+), CD25+ regulatory cells, or CD14+ monocytes. After challenge with BTV1, the antibody response was much higher than during the boost vaccination period, and it was associated with a significant increase in B lymphocytes, CD14+ monocytes, CD25+ regulatory cells, and CD8+ cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Ana Cristina Pérez de Diego
- VISAVET Health Surveillance Centre and Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Avenida Puerta de Hierro s/n, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
34
|
Stewart M, Dovas CI, Chatzinasiou E, Athmaram TN, Papanastassopoulou M, Papadopoulos O, Roy P. Protective efficacy of Bluetongue virus-like and subvirus-like particles in sheep: presence of the serotype-specific VP2, independent of its geographic lineage, is essential for protection. Vaccine 2012; 30:2131-9. [PMID: 22285887 DOI: 10.1016/j.vaccine.2012.01.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/10/2012] [Accepted: 01/13/2012] [Indexed: 12/31/2022]
Abstract
There have been multiple separate outbreaks of Bluetongue (BT) disease of ruminants in Europe since 1998, often entering via the Mediterranean countries of Italy, Spain and Greece. BT is caused by an orbivirus, Bluetongue virus (BTV), a member of the family Reoviridae. BTV is a non-enveloped double-capsid virus, which encodes 7 structural proteins (VP1-VP7) and several non-structural proteins (NS1, NS2, NS3/3a and NS4) from ten double-stranded RNA segments of the genome. In this report, we have prepared BTV virus-like particles (VLPs, composed of VP2, VP3, VP5 and VP7) and sub-viral, inner core-like particles (CLPs, VP3 and VP7) using a recombinant baculovirus expression system. We compared the protective efficacy of VLPs and CLPs in sheep and investigated the importance of geographical lineages of BTV in the development of vaccines. The Greek crossbred Karagouniko sheep, which display mild to sub-clinical BT, were vaccinated with VLPs or CLPs of BTV-1, derived from western lineage and were challenged with virulent BTV-1 from an eastern lineage. All VLP-vaccinated animals developed a neutralising antibody response to BTV-1 from both lineages prior to challenge. Moreover, post-challenged animals had no clinical manifestation or viraemia and the challenged virus replication was completely inhibited. In contrast, CLP-vaccinated animals did not induce any neutralising antibody response but developed the group specific VP7 antibodies. CLPs also failed to prevent the clinical manifestation and virus replication, but in comparison to controls, the severity of disease manifestation and viraemia was mitigated. The data demonstrated that the outer capsid was essential for complete protection, while the geographical origin of the BTV was not critical for development of a serotype specific vaccine.
Collapse
Affiliation(s)
- M Stewart
- Department of Infectious Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
35
|
Metz SW, Pijlman GP. Arbovirus vaccines; opportunities for the baculovirus-insect cell expression system. J Invertebr Pathol 2011; 107 Suppl:S16-30. [PMID: 21784227 DOI: 10.1016/j.jip.2011.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 02/08/2011] [Accepted: 02/08/2011] [Indexed: 02/06/2023]
Abstract
The baculovirus-insect cell expression system is a well-established technology for the production of heterologous viral (glyco)proteins in cultured cells, applicable for basic scientific research as well as for the development and production of vaccines and diagnostics. Arboviruses form an emerging group of medically important viral pathogens that are transmitted to humans and animals via arthropod vectors, mostly mosquitoes, ticks or midges. Few arboviral vaccines are currently available, but there is a growing need for safe and effective vaccines against some highly pathogenic arboviruses such as Chikungunya, dengue, West Nile, Rift Valley fever and Bluetongue viruses. This comprehensive review discusses the biology and current state of the art in vaccine development for arboviruses belonging to the families Togaviridae, Flaviviridae, Bunyaviridae and Reoviridae and the potential of the baculovirus-insect cell expression system for vaccine antigen production The members of three of these four arbovirus families have enveloped virions and display immunodominant glycoproteins with a complex structure at their surface. Baculovirus expression of viral antigens often leads to correctly folded and processed (glyco)proteins able to induce protective immunity in animal models and humans. As arboviruses occupy a unique position in the virosphere in that they also actively replicate in arthropod cells, the baculovirus-insect cell expression system is well suited to produce arboviral proteins with correct folding and post-translational processing. The opportunities for recombinant baculoviruses to aid in the development of safe and effective subunit and virus-like particle vaccines against arboviral diseases are discussed.
Collapse
Affiliation(s)
- Stefan W Metz
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | |
Collapse
|
36
|
Paton DJ, Taylor G. Developing vaccines against foot-and-mouth disease and some other exotic viral diseases of livestock. Philos Trans R Soc Lond B Biol Sci 2011; 366:2774-81. [PMID: 21893540 DOI: 10.1098/rstb.2011.0107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vaccines remain the main tool for the control of livestock viral diseases that pose a serious threat to animal and occasionally human health, reduce food security, distort trade in animals and their products, and undermine agricultural development in poor countries. Globalization and climate change increase the likelihood for new patterns of emergence and spread of livestock viruses. Conventionally attenuated and killed virus products have had spectacular success, and recent examples include the global eradication of rinderpest and the control of bluetongue in the UK and northern Europe. However, in many cases, livestock vaccines could benefit from improvement in some properties (e.g. stability, speed of onset and duration of immunity, and breadth of cross-protection to different serotypes or strains) and in some cases are not available at all. Compared with human vaccines, uptake of livestock products is highly cost-sensitive and their use may also need to be compatible with post-vaccination screening methods to determine whether or not animals continue to be infected. Requirements and prospects for new or improved vaccines are described for some priority viral diseases with potential for transboundary spread, particularly for foot-and-mouth disease.
Collapse
Affiliation(s)
- David J Paton
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Woking, Surrey GU24 0NF, UK.
| | | |
Collapse
|
37
|
Characterization of protection afforded by a bivalent virus-like particle vaccine against bluetongue virus serotypes 1 and 4 in sheep. PLoS One 2011; 6:e26666. [PMID: 22046324 PMCID: PMC3202233 DOI: 10.1371/journal.pone.0026666] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/30/2011] [Indexed: 12/02/2022] Open
Abstract
Background Bluetongue virus (BTV) is an economically important, arthropod borne, emerging pathogen in Europe, causing disease mainly in sheep and cattle. Routine vaccination for bluetongue would require the ability to distinguish between vaccinated and infected individuals (DIVA). Current vaccines are effective but are not DIVA. Virus-like particles (VLPs) are highly immunogenic structural mimics of virus particles, that only contain a subset of the proteins present in a natural infection. VLPs therefore offer the potential for the development of DIVA compatible bluetongue vaccines. Methodology/Principal Findings Merino sheep were vaccinated with either monovalent BTV-1 VLPs or a bivalent mixture of BTV-1 VLPs and BTV-4 VLPs, and challenged with virulent BTV-1 or BTV-4. Animals were monitored for clinical signs, antibody responses, and viral RNA. 19/20 animals vaccinated with BTV-1 VLPs either alone or in combination with BTV-4 VLPs developed neutralizing antibodies to BTV-1, and group specific antibodies to BTV VP7. The one animal that showed no detectable neutralizing antibodies, or group specific antibodies, had detectable viral RNA following challenge but did not display any clinical signs on challenge with virulent BTV-1. In contrast, all control animals' demonstrated classical clinical signs for bluetongue on challenge with the same virus. Six animals were vaccinated with bivalent vaccine and challenged with virulent BTV-4, two of these animals had detectable viral levels of viral RNA, and one of these showed clinical signs consistent with BTV infection and died. Conclusions There is good evidence that BTV-1 VLPs delivered as monovalent or bivalent immunogen protect from bluetongue disease on challenge with virulent BTV-1. However, it is possible that there is some interference in protective response for BTV-4 in the bivalent BTV-1 and BTV-4 VLP vaccine. This raises the question of whether all combinations of bivalent BTV vaccines are possible, or if immunodominance of particular serotypes could interfere with vaccine efficacy.
Collapse
|
38
|
Matsuo E, Celma CCP, Boyce M, Viarouge C, Sailleau C, Dubois E, Bréard E, Thiéry R, Zientara S, Roy P. Generation of replication-defective virus-based vaccines that confer full protection in sheep against virulent bluetongue virus challenge. J Virol 2011; 85:10213-21. [PMID: 21795358 PMCID: PMC3196398 DOI: 10.1128/jvi.05412-11] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 07/13/2011] [Indexed: 11/20/2022] Open
Abstract
The reverse genetics technology for bluetongue virus (BTV) has been used in combination with complementing cell lines to recover defective BTV-1 mutants. To generate a potential disabled infectious single cycle (DISC) vaccine strain, we used a reverse genetics system to rescue defective virus strains with large deletions in an essential BTV gene that encodes the VP6 protein (segment S9) of the internal core. Four VP6-deficient BTV-1 mutants were generated by using a complementing cell line that provided the VP6 protein in trans. Characterization of the growth properties of mutant viruses showed that each mutant has the necessary characteristics for a potential vaccine strain: (i) viral protein expression in noncomplementing mammalian cells, (ii) no infectious virus generated in noncomplementing cells, and (iii) efficient replication in the complementing VP6 cell line. Further, a defective BTV-8 strain was made by reassorting the two RNA segments that encode the two outer capsid proteins (VP2 and VP5) of a highly pathogenic BTV-8 with the remaining eight RNA segments of one of the BTV-1 DISC viruses. The protective capabilities of BTV-1 and BTV-8 DISC viruses were assessed in sheep by challenge with specific virulent strains using several assay systems. The data obtained from these studies demonstrated that the DISC viruses are highly protective and could offer a promising alternative to the currently available attenuated and killed virus vaccines and are also compliant as DIVA (differentiating infected from vaccinated animals) vaccines.
Collapse
Affiliation(s)
- Eiko Matsuo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Cristina C. P. Celma
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Mark Boyce
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Cyril Viarouge
- UMR 1161 ANSES/INRA/ENVA, 23 Avenue Général de Gaulle, Maisons-Alfort, France
| | - Corinne Sailleau
- UMR 1161 ANSES/INRA/ENVA, 23 Avenue Général de Gaulle, Maisons-Alfort, France
| | - Eric Dubois
- Unit of Ruminant Pathology, ANSES, Sophia-Antipolis, France
| | - Emmanuel Bréard
- UMR 1161 ANSES/INRA/ENVA, 23 Avenue Général de Gaulle, Maisons-Alfort, France
| | - Richard Thiéry
- Unit of Ruminant Pathology, ANSES, Sophia-Antipolis, France
| | - Stéphan Zientara
- UMR 1161 ANSES/INRA/ENVA, 23 Avenue Général de Gaulle, Maisons-Alfort, France
| | - Polly Roy
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| |
Collapse
|
39
|
Brun A, Bárcena J, Blanco E, Borrego B, Dory D, Escribano JM, Le Gall-Reculé G, Ortego J, Dixon LK. Current strategies for subunit and genetic viral veterinary vaccine development. Virus Res 2011; 157:1-12. [PMID: 21316403 DOI: 10.1016/j.virusres.2011.02.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 12/24/2022]
Abstract
Developing vaccines for livestock provides researchers with the opportunity to perform efficacy testing in the natural hosts. This enables the evaluation of different strategies, including definition of effective antigens or antigen combinations, and improvement in delivery systems for target antigens so that protective immune responses can be modulated or potentiated. An impressive amount of knowledge has been generated in recent years on vaccine strategies and consequently a wide variety of antigen delivery systems is now available for vaccine research. This paper reviews several antigen production and delivery strategies other than those based on the use of live viral vectors. Genetic and protein subunit vaccines as well as alternative production systems are considered in this review.
Collapse
Affiliation(s)
- Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, 28130 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chatzinasiou E, Dovas C, Papanastassopoulou M, Georgiadis M, Psychas V, Bouzalas I, Koumbati M, Koptopoulos G, Papadopoulos O. Assessment of bluetongue viraemia in sheep by real-time PCR and correlation with viral infectivity. J Virol Methods 2010; 169:305-15. [DOI: 10.1016/j.jviromet.2010.07.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 07/09/2010] [Accepted: 07/29/2010] [Indexed: 01/10/2023]
|