1
|
Amini Y, Kabiri M, Jamehdar SA, Sankian M, Meshkat Z, Zare S, Soleimanpour S, Farsiani H, Moradi B, Tafaghodi M. Assessment of immunogenicity and protective efficiency of multi-epitope antigen-loaded in mannan decorated PLGA nanoparticles against tuberculosis. J Pharm Sci 2025; 114:1133-1141. [PMID: 39631524 DOI: 10.1016/j.xphs.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
The antigen-targeting to dendritic cells (DCs) has gained increasing attention as the potential approach for immunotherapy in recent years due to the ability of DCs to regulate innate and adaptive immunity. In the present study, the immunogenicity and protective efficiency of mannan-decorated PLGA nanoparticles (NPs) loaded with multi-epitopes mycobacterium tuberculosis antigen (HspX-Ppe44-EsxV) were evaluated as a targeted delivery system to DCs. For this purpose, PLGA nanoparticle formulations were prepared and subsequently decorated by mannan. The physicochemical properties and level of mannan incorporation, as well as encapsulation efficiency and antigen release, were assessed. The potential of formulated NPs for antigen targeting to DCs, and immunogenicity against tuberculosis (TB) were investigated using immunofluorescence assay and in-vivo experiments. Mannan incorporation enhanced the uptake of fusion-loaded PLGA by DCs. The cytokine and antibody assays demonstrated that mannosylation of NPs and BCG-primed mice boosted by mannan-PLGA could significantly elevate Th1-biased immune responses relative to the BCG and non-modified PLGA NPs. Our findings also proved that the mannosylated vaccine in the presence of CpG could evoke Th1 and Th17 responses with appropriate protective efficiency against TB in mice. This result illustrated that the active targeting of DCs by mannan-PLGA NPs could induce a proper anti-tuberculosis response, which is essential for protection against tuberculosis.
Collapse
Affiliation(s)
- Yousef Amini
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Microbiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mona Kabiri
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Amel Jamehdar
- Microbiology and Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Microbiology and Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirwan Zare
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Microbiology and Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Microbiology and Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bagher Moradi
- Esfarayen Faculty of Medical Sciences, Esfarayen, Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Wei J, Guo F, Song Y, Feng T, Wang Y, Xu K, Song J, Kaysar E, Abdukayyum R, Lin F, Li K, Li B, Qian Z, Wang X, Wang H, Xu T. Analysis of the components of Mycobacterium tuberculosis heat-resistant antigen (Mtb-HAg) and its regulation of γδ T-cell function. Cell Mol Biol Lett 2024; 29:70. [PMID: 38741147 PMCID: PMC11089708 DOI: 10.1186/s11658-024-00585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Mycobacterium tuberculosis heat-resistant antigen (Mtb-HAg) is a peptide antigen released from the mycobacterial cytoplasm into the supernatant of Mycobacterium tuberculosis (Mtb) attenuated H37Ra strain after autoclaving at 121 °C for 20 min. Mtb-HAg can specifically induce γδ T-cell proliferation in vitro. However, the exact composition of Mtb-HAg and the protein antigens that are responsible for its function are currently unknown. METHODS Mtb-HAg extracted from the Mtb H37Ra strain was subjected to LC‒MS mass spectrometry. Twelve of the identified protein fractions were recombinantly expressed in Escherichia coli by genetic engineering technology using pET-28a as a plasmid and purified by Ni-NTA agarose resin to stimulate peripheral blood mononuclear cells (PBMCs) from different healthy individuals. The proliferation of γδ T cells and major γδ T-cell subset types as well as the production of TNF-α and IFN-γ were determined by flow cytometry. Their proliferating γδ T cells were isolated and purified using MACS separation columns, and Mtb H37Ra-infected THP-1 was co-cultured with isolated and purified γδ T cells to quantify Mycobacterium viability by counting CFUs. RESULTS In this study, Mtb-HAg from the attenuated Mtb H37Ra strain was analysed by LC‒MS mass spectrometry, and a total of 564 proteins were identified. Analysis of the identified protein fractions revealed that the major protein components included heat shock proteins and Mtb-specific antigenic proteins. Recombinant expression of 10 of these proteins in by Escherichia coli genetic engineering technology was used to successfully stimulate PBMCs from different healthy individuals, but 2 of the proteins, EsxJ and EsxA, were not expressed. Flow cytometry results showed that, compared with the IL-2 control, HspX, GroEL1, and GroES specifically induced γδ T-cell expansion, with Vγ2δ2 T cells as the main subset, and the secretion of the antimicrobial cytokines TNF-α and IFN-γ. In contrast, HtpG, DnaK, GroEL2, HbhA, Mpt63, EsxB, and EsxN were unable to promote γδ T-cell proliferation and the secretion of TNF-α and IFN-γ. None of the above recombinant proteins were able to induce the secretion of TNF-α and IFN-γ by αβ T cells. In addition, TNF-α, IFN-γ-producing γδ T cells inhibit the growth of intracellular Mtb. CONCLUSION Activated γδ T cells induced by Mtb-HAg components HspX, GroES, GroEL1 to produce TNF-α, IFN-γ modulate macrophages to inhibit intracellular Mtb growth. These data lay the foundation for subsequent studies on the mechanism by which Mtb-HAg induces γδ T-cell proliferation in vitro, as well as the development of preventive and therapeutic vaccines and rapid diagnostic reagents.
Collapse
MESH Headings
- Humans
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Antigens, Bacterial/genetics
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/genetics
- Cell Proliferation
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Interferon-gamma/metabolism
- Interferon-gamma/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/immunology
- Bacterial Proteins/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
Collapse
Affiliation(s)
- Jing Wei
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Fangzheng Guo
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Yamin Song
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Tong Feng
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Ying Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Kun Xu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Jianhan Song
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Eldana Kaysar
- Xinjiang Key Laboratory of Hotan Characteristic Chinese Traditional Medicine Research, College of Xinjiang Uyghur Medicine, Hotan, 848099, China
| | - Reyima Abdukayyum
- Xinjiang Key Laboratory of Hotan Characteristic Chinese Traditional Medicine Research, College of Xinjiang Uyghur Medicine, Hotan, 848099, China
| | - Feiyang Lin
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Kangsheng Li
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Baiqing Li
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Zhongqing Qian
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Bengbu Medical University, Bengbu, 233000, China
| | - Hongtao Wang
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China.
- Xinjiang Key Laboratory of Hotan Characteristic Chinese Traditional Medicine Research, College of Xinjiang Uyghur Medicine, Hotan, 848099, China.
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China.
| | - Tao Xu
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China.
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China.
| |
Collapse
|
3
|
Barik S, Panda AK, Biswas VK, Das S, Chakraborty A, Beura S, Modak R, Raghav SK, Kar RK, Biswas A. Lysine acetylation of Hsp16.3: Effect on its structure, chaperone function and influence towards the growth of Mycobacterium tuberculosis. Int J Biol Macromol 2024; 268:131763. [PMID: 38657928 DOI: 10.1016/j.ijbiomac.2024.131763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/09/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Hsp16.3 plays a vital role in the slow growth of Mycobacterium tuberculosis via its chaperone function. Many secretory proteins, including Hsp16.3 undergo acetylation in vivo. Seven lysine (K) residues (K64, K78, K85, K114, K119, K132 and K136) in Hsp16.3 are acetylated inside pathogen. However, how lysine acetylation affects its structure, chaperone function and pathogen's growth is still elusive. We examined these aspects by executing in vitro chemical acetylation (acetic anhydride modification) and by utilizing a lysine acetylation mimic mutant (Hsp16.3-K64Q/K78Q/K85Q/K114Q/K119Q/K132Q/K136Q). Far- and near-UV CD measurements revealed that the chemically acetylated proteins(s) and acetylation mimic mutant has altered secondary and tertiary structure than unacetylated/wild-type protein. The chemical modification and acetylation mimic mutation also disrupted the oligomeric assembly, increased surface hydrophobicity and reduced stability of Hsp16.3, as revealed by GF-HPLC, 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid binding and urea denaturation experiments, respectively. These structural changes collectively led to an enhancement in chaperone function (aggregation and thermal inactivation prevention ability) of Hsp16.3. Moreover, when the H37Rv strain expressed the acetylation mimic mutant protein, its growth was slower in comparison to the strain expressing the wild-type/unacetylated Hsp16.3. Altogether, these findings indicated that lysine acetylation improves the chaperone function of Hsp16.3 which may influence pathogen's growth in host environment.
Collapse
Affiliation(s)
- Subhashree Barik
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Alok Kumar Panda
- Environmental Science Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Viplov Kumar Biswas
- Immunogenomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha 751023, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Sheetal Das
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Center for Nanotechnology, Indian Institute of Technology Guwahati, Assam, India
| | - Ayon Chakraborty
- University Institute of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, India
| | - Shibangini Beura
- Infection and Epigenetics Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Rahul Modak
- Infection and Epigenetics Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Sunil Kumar Raghav
- Immunogenomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha 751023, India
| | - Rajiv K Kar
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Center for Nanotechnology, Indian Institute of Technology Guwahati, Assam, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| |
Collapse
|
4
|
Chugh S, Bahal RK, Dhiman R, Singh R. Antigen identification strategies and preclinical evaluation models for advancing tuberculosis vaccine development. NPJ Vaccines 2024; 9:57. [PMID: 38461350 PMCID: PMC10924964 DOI: 10.1038/s41541-024-00834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024] Open
Abstract
In its myriad devastating forms, Tuberculosis (TB) has existed for centuries, and humanity is still affected by it. Mycobacterium tuberculosis (M. tuberculosis), the causative agent of TB, was the foremost killer among infectious agents until the COVID-19 pandemic. One of the key healthcare strategies available to reduce the risk of TB is immunization with bacilli Calmette-Guerin (BCG). Although BCG has been widely used to protect against TB, reports show that BCG confers highly variable efficacy (0-80%) against adult pulmonary TB. Unwavering efforts have been made over the past 20 years to develop and evaluate new TB vaccine candidates. The failure of conventional preclinical animal models to fully recapitulate human response to TB, as also seen for the failure of MVA85A in clinical trials, signifies the need to develop better preclinical models for TB vaccine evaluation. In the present review article, we outline various approaches used to identify protective mycobacterial antigens and recent advancements in preclinical models for assessing the efficacy of candidate TB vaccines.
Collapse
Affiliation(s)
- Saurabh Chugh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India
| | - Ritika Kar Bahal
- Marshall Centre, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India.
| |
Collapse
|
5
|
Srivastava S, Dey S, Mukhopadhyay S. Vaccines against Tuberculosis: Where Are We Now? Vaccines (Basel) 2023; 11:vaccines11051013. [PMID: 37243117 DOI: 10.3390/vaccines11051013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Tuberculosis (TB) is among the top 10 leading causes of death in low-income countries. Statistically, TB kills more than 30,000 people each week and leads to more deaths than any other infectious disease, such as acquired immunodeficiency syndrome (AIDS) and malaria. TB treatment is largely dependent on BCG vaccination and impacted by the inefficacy of drugs, absence of advanced vaccines, misdiagnosis improper treatment, and social stigma. The BCG vaccine provides partial effectiveness in demographically distinct populations and the prevalence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB incidences demands the design of novel TB vaccines. Various strategies have been employed to design vaccines against TB, such as: (a) The protein subunit vaccine; (b) The viral vector vaccine; (c) The inactivation of whole-cell vaccine, using related mycobacteria, (d) Recombinant BCG (rBCG) expressing Mycobacterium tuberculosis (M.tb) protein or some non-essential gene deleted BCG. There are, approximately, 19 vaccine candidates in different phases of clinical trials. In this article, we review the development of TB vaccines, their status and potential in the treatment of TB. Heterologous immune responses generated by advanced vaccines will contribute to long-lasting immunity and might protect us from both drug-sensitive and drug-resistant TB. Therefore, advanced vaccine candidates need to be identified and developed to boost the human immune system against TB.
Collapse
Affiliation(s)
- Shruti Srivastava
- Research and Development Office, Ashoka University, Rajiv Gandhi Education City, Sonipat 131029, Haryana, India
| | - Sajal Dey
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, Telangana, India
| |
Collapse
|
6
|
Nadolinskaia NI, Kotliarova MS, Goncharenko AV. Fighting Tuberculosis: In Search of a BCG Replacement. Microorganisms 2022; 11:microorganisms11010051. [PMID: 36677343 PMCID: PMC9863999 DOI: 10.3390/microorganisms11010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis is one of the most threatening infectious diseases and represents an important and significant reason for mortality in high-burden regions. The only licensed vaccine, BCG, is hardly capable of establishing long-term tuberculosis protection and is highly variable in its effectiveness. Even after 100 years of BCG use and research, we still cannot unequivocally answer the question of which immune correlates of protection are crucial to prevent Mycobacterium tuberculosis (Mtb) infection or the progression of the disease. The development of a new vaccine against tuberculosis arises a nontrivial scientific challenge caused by several specific features of the intracellular lifestyle of Mtb and the ability of the pathogen to manipulate host immunity. The purpose of this review is to discuss promising strategies and the possibilities of creating a new vaccine that could replace BCG and provide greater protection. The considered approaches include supplementing mycobacterial strains with immunodominant antigens and genetic engineering aimed at altering the interaction between the bacterium and the host cell, such as the exit from the phagosome. Improved new vaccine strains based on BCG and Mtb undergoing clinical evaluation are also overviewed.
Collapse
|
7
|
Singh S, Saavedra-Avila NA, Tiwari S, Porcelli SA. A century of BCG vaccination: Immune mechanisms, animal models, non-traditional routes and implications for COVID-19. Front Immunol 2022; 13:959656. [PMID: 36091032 PMCID: PMC9459386 DOI: 10.3389/fimmu.2022.959656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
Bacillus Calmette-Guerin (BCG) has been used as a vaccine against tuberculosis since 1921 and remains the only currently approved vaccine for this infection. The recent discovery that BCG protects against initial infection, and not just against progression from latent to active disease, has significant implications for ongoing research into the immune mechanisms that are relevant to generate a solid host defense against Mycobacterium tuberculosis (Mtb). In this review, we first explore the different components of immunity that are augmented after BCG vaccination. Next, we summarize current efforts to improve the efficacy of BCG through the development of recombinant strains, heterologous prime-boost approaches and the deployment of non-traditional routes. These efforts have included the development of new recombinant BCG strains, and various strategies for expression of important antigens such as those deleted during the M. bovis attenuation process or antigens that are present only in Mtb. BCG is typically administered via the intradermal route, raising questions about whether this could account for its apparent failure to generate long-lasting immunological memory in the lungs and the inconsistent level of protection against pulmonary tuberculosis in adults. Recent years have seen a resurgence of interest in the mucosal and intravenous delivery routes as they have been shown to induce a better immune response both in the systemic and mucosal compartments. Finally, we discuss the potential benefits of the ability of BCG to confer trained immunity in a non-specific manner by broadly stimulating a host immunity resulting in a generalized survival benefit in neonates and the elderly, while potentially offering benefits for the control of new and emerging infectious diseases such as COVID-19. Given that BCG will likely continue to be widely used well into the future, it remains of critical importance to better understand the immune responses driven by it and how to leverage these for the design of improved vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Medicine, New York University School of Medicine, New York, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
- *Correspondence: Shivani Singh,
| | | | - Sangeeta Tiwari
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, Texas, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
8
|
Evaluating the Performance of PPE44, HSPX, ESAT-6 and CFP-10 Factors in Tuberculosis Subunit Vaccines. Curr Microbiol 2022; 79:260. [PMID: 35852636 PMCID: PMC9295111 DOI: 10.1007/s00284-022-02949-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/23/2022] [Indexed: 11/26/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is an intracellular pathogen causing long-term infection in humans that mainly attacks macrophages and can escape from the immune system with the various mechanisms. The only FDA-approved vaccine against M. tuberculosis (MTB) is Mycobacterium bovis bacillus Calmette-Guérin (BCG). The protection of this vaccine typically lasts 10–15 years. Due to the increasing number of people becoming ill with MTB each year worldwide, the need to develop a new effective treatment against the disease has been increased. During the past two decades, the research budget for TB vaccine has quadrupled to over half a billion dollars. Most of these research projects were based on amplifying and stimulating the response of T-cells and developing the subunit vaccines. Additionally, these studies have demonstrated that secretory and immunogenic proteins of MTB play a key role in the pathogenesis of the bacteria. Therefore, these proteins were used to develop the new subunit vaccines. In this review, based on the use of these proteins in the successful new subunit vaccines, the PPE44, HSPX, CFP-10 and ESAT-6 antigens were selected and the role of these antigens in designing and developing new subunit vaccines against TB and for the prevention of TB were investigated.
Collapse
|
9
|
Listeria-Vectored Multiantigenic Tuberculosis Vaccine Enhances Protective Immunity against Aerosol Challenge with Virulent Mycobacterium tuberculosis in BCG-Immunized C57BL/6 and BALB/c Mice. mBio 2022; 13:e0068722. [PMID: 35642945 PMCID: PMC9239278 DOI: 10.1128/mbio.00687-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mycobacterium tuberculosis infects approximately one-third of the world's population, causing active tuberculosis (TB) in ~10 million people and death in ~1.5 million people annually. A potent vaccine is needed to boost the level of immunity conferred by the current Mycobacterium bovis BCG vaccine that provides moderate protection against childhood TB but variable protection against adult pulmonary TB. Previously, we developed a recombinant attenuated Listeria monocytogenes (rLm)-vectored M. tuberculosis vaccine expressing the M. tuberculosis 30-kDa major secretory protein (r30/Ag85B), recombinant attenuated L. monocytogenes ΔactA ΔinlB prfA*30 (rLm30), and showed that boosting BCG-primed mice and guinea pigs with rLm30 enhances immunoprotection against challenge with aerosolized M. tuberculosis Erdman strain. To broaden the antigen repertoire and robustness of rLm30, we constructed 16 recombinant attenuated L. monocytogenes vaccine candidates expressing 3, 4, or 5 among 15 selected M. tuberculosis antigens, verified their protein expression, genetic stability, and growth kinetics in macrophages, and evaluated them for capacity to boost protective efficacy in BCG-primed mice. We found that boosting BCG-primed C57BL/6 and BALB/c mice with recombinant attenuated L. monocytogenes multiantigenic M. tuberculosis vaccines, especially the rLm5Ag(30) vaccine expressing a fusion protein of 23.5/Mpt64, TB10.4/EsxH, ESAT6/EsxA, CFP10/EsxB, and r30, enhances BCG-induced protective immunity against M. tuberculosis aerosol challenge. In immunogenicity studies, rLm5Ag(30) strongly boosts M. tuberculosis antigen-specific CD4-positive (CD4+) and CD8+ T cell-mediated TH1-type immune responses in the spleens and lungs of BCG-primed C57BL/6 mice but does so only weakly in BCG-primed BALB/c mice. Hence, rLm5Ag(30) boosts BCG-primed immunoprotection against M. tuberculosis aerosol challenge in both C57BL/6 and BALB/c mice despite major differences in the magnitude of the vaccine-induced Th1 response in these mouse strains. Given the consistency with which recombinant attenuated L. monocytogenes vaccines expressing the 5 M. tuberculosis antigens in rLm5Ag(30) are able to boost the already high level of protection conferred by BCG alone in two rigorous mouse models of pulmonary TB and the broad CD4+ and CD8+ T cell immunity induced by rLm5Ag(30), this vaccine holds considerable promise as a new vaccine to combat the TB pandemic, especially for the majority of the world’s population immunized with BCG in infancy.
Collapse
|
10
|
A century of attempts to develop an effective tuberculosis vaccine: Why they failed? Int Immunopharmacol 2022; 109:108791. [PMID: 35487086 DOI: 10.1016/j.intimp.2022.108791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022]
Abstract
Tuberculosis (TB) remains a major global health problem despite widespread use of the Bacillus BCG vaccine. This situation is worsened by co-infection with HIV, and the development of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains. Thus, novel vaccine candidates and improved vaccination strategies are urgently needed in order to reduce the incidence of TB and even to eradicate TB by 2050. Over the last few decades, 23 novel TB vaccines have entered into clinical trials, more than 13 new vaccines have reached various stages of preclinical development, and more than 50 potential candidates are in the discovery stage as next-generation vaccines. Nevertheless, why has a century of attempts to introduce an effective TB vaccine failed? Who should be blamed -scientists, human response, or Mtb strategies? Literature review reveals that the elimination of latent or active Mtb infections in a given population seems to be an epigenetic process. With a better understanding of the connections between bacterial infections and gene expression conditions in epigenetic events, opportunities arise in designing protective vaccines or therapeutic agents, particularly as epigenetic processes can be reversed. Therefore, this review provides a brief overview of different approaches towards novel vaccination strategies and the mechanisms underlying these approaches.
Collapse
|
11
|
Yokobori N, López B, Ritacco V. The host-pathogen-environment triad: Lessons learned through the study of the multidrug-resistant Mycobacterium tuberculosis M strain. Tuberculosis (Edinb) 2022; 134:102200. [PMID: 35339874 DOI: 10.1016/j.tube.2022.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
Multidrug-resistant tuberculosis is one of the major obstacles that face the tuberculosis eradication efforts. Drug-resistant Mycobacterium tuberculosis clones were initially disregarded as a public health threat, because they were assumed to have paid a high fitness cost in exchange of resistance acquisition. However, some genotypes manage to overcome the impact of drug-resistance conferring mutations, retain transmissibility and cause large outbreaks. In Argentina, the HIV-AIDS epidemics fuelled the expansion of the so-called M strain in the early 1990s, which is responsible for the largest recorded multidrug-resistant tuberculosis cluster of Latin America. The aim of this work is to review the knowledge gathered after nearly three decades of multidisciplinary research on epidemiological, microbiological and immunological aspects of this highly successful strain. Collectively, our results indicate that the successful transmission of the M strain could be ascribed to its unaltered virulence, low Th1/Th17 response, a low fitness cost imposed by the resistance conferring mutations and a high resistance to host-related stress. In the early 2000s, the incident cases due to the M strain steadily declined and stabilized in the latest years. Improvements in the management, diagnosis and treatment of multidrug-resistant tuberculosis along with societal factors such as the low domestic and international mobility of the patients affected by this strain probably contributed to the outbreak containment. This stresses the importance of sustaining the public health interventions to avoid the resurgence of this conspicuous multidrug-resistant strain.
Collapse
Affiliation(s)
- Noemí Yokobori
- Servicio de Micobacterias, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - Beatriz López
- Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina.
| | - Viviana Ritacco
- Servicio de Micobacterias, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| |
Collapse
|
12
|
Nandi SK, Panda AK, Chakraborty A, Rathee S, Roy I, Barik S, Mohapatra SS, Biswas A. Role of ATP-Small Heat Shock Protein Interaction in Human Diseases. Front Mol Biosci 2022; 9:844826. [PMID: 35252358 PMCID: PMC8890618 DOI: 10.3389/fmolb.2022.844826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/18/2022] [Indexed: 01/18/2023] Open
Abstract
Adenosine triphosphate (ATP) is an important fuel of life for humans and Mycobacterium species. Its potential role in modulating cellular functions and implications in systemic, pulmonary, and ocular diseases is well studied. Plasma ATP has been used as a diagnostic and prognostic biomarker owing to its close association with disease’s progression. Several stresses induce altered ATP generation, causing disorders and illnesses. Small heat shock proteins (sHSPs) are dynamic oligomers that are dominantly β-sheet in nature. Some important functions that they exhibit include preventing protein aggregation, enabling protein refolding, conferring thermotolerance to cells, and exhibiting anti-apoptotic functions. Expression and functions of sHSPs in humans are closely associated with several diseases like cataracts, cardiovascular diseases, renal diseases, cancer, etc. Additionally, there are some mycobacterial sHSPs like Mycobacterium leprae HSP18 and Mycobacterium tuberculosis HSP16.3, whose molecular chaperone functions are implicated in the growth and survival of pathogens in host species. As both ATP and sHSPs, remain closely associated with several human diseases and survival of bacterial pathogens in the host, therefore substantial research has been conducted to elucidate ATP-sHSP interaction. In this mini review, the impact of ATP on the structure and function of human and mycobacterial sHSPs is discussed. Additionally, how such interactions can influence the onset of several human diseases is also discussed.
Collapse
Affiliation(s)
- Sandip K. Nandi
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, India
- *Correspondence: Sandip K. Nandi, ; Ashis Biswas,
| | - Alok Kumar Panda
- School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, India
| | - Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Shivani Rathee
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Ipsita Roy
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Subhashree Barik
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | | | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
- *Correspondence: Sandip K. Nandi, ; Ashis Biswas,
| |
Collapse
|
13
|
Yousefi Avarvand A, Meshkat Z, Khademi F, Tafaghodi M. Immunogenicity of HspX/EsxS fusion protein of Mycobacterium tuberculosis along with ISCOMATRIX and PLUSCOM nano-adjuvants after subcutaneous administration in animal model. Microb Pathog 2021; 154:104842. [PMID: 33762199 DOI: 10.1016/j.micpath.2021.104842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/05/2020] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), is one of the most common and dangerous infectious diseases in the world. Despite vaccination with BCG, it is still considered as a major health problem. Therefore, design and production of an effective novel vaccine against TB is necessary. Our aim was to evaluate immunogenicity of HspX/EsxS fusion protein of M. tuberculosis along with ISCOMATRIX, PLUSCOM nano-adjuvants and MPLA through the subcutaneous route in mice model. METHODS HspX/EsxS fused protein of M. tuberculosis was cloned, expressed and purified in the prokaryotic system. ISCOMATRIX and PLUSCOM nano-adjuvants were prepared by film hydration method. Subcutaneous immunization of BALB/c mice was performed by different formulations. IFN-γ, IL-4, IL-17 and TGF-β cytokines levels as well as serum IgG1, IgG2a. RESULTS Our results showed that subcutaneous administration of mice with HspX/EsxS along with three adjuvants, ISCOMATRIX, PLUSCOM and MPLA increased immunogenicity of multi-stage fusion protein of M. tuberculosis. Additionally, HspX/EsxS protein + ISCOMATRIX or + PLUSCOM nano-adjuvants induced stronger Th1, IgG2a and IgG1 immune responses compared to MPLA adjuvant. Totally, HspX/EsxS/ISCOMATRIX/MPLA, HspX/EsxS/PLUSCOM/MPLA and two BCG booster groups could significantly induce higher Th1 and IgG2a immune responses. CONCLUSION With regard to ability of ISCOMATRIX, PLUSCOM and MPLA adjuvants to increase immunogenicity of HspX/EsxS protein through induction of IFN-γ and IgG2a immune responses, it seems that these adjuvants and especially ISCOMATRIX and PLUSCOM, could also improve BCG efficacy as a BCG booster.
Collapse
Affiliation(s)
- Arshid Yousefi Avarvand
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Sefidi-Heris Y, Jahangiri A, Mokhtarzadeh A, Shahbazi MA, Khalili S, Baradaran B, Mosafer J, Baghbanzadeh A, Hejazi M, Hashemzaei M, Hamblin MR, Santos HA. Recent progress in the design of DNA vaccines against tuberculosis. Drug Discov Today 2020; 25:S1359-6446(20)30345-7. [PMID: 32927065 DOI: 10.1016/j.drudis.2020.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
Abstract
Current tuberculosis (TB) vaccines have some disadvantages and many efforts have been undertaken to produce effective TB vaccines. As a result of their advantages, DNA vaccines are promising future vaccine candidates. This review focuses on the design and delivery of novel DNA-based vaccines against TB.
Collapse
Affiliation(s)
- Youssof Sefidi-Heris
- Department of Biology, College of Sciences, Shiraz University, 7146713565, Shiraz, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, 193955487, Tehran, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, 5166614731, Tabriz, Iran.
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Faculty of Sciences, Shahid Rajaee Teacher Training University, 1678815811, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, 5166614731, Tabriz, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, 9516915169, Torbat Heydariyeh, Iran; Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, 9196773117, Mashhad, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, 5166614731, Tabriz, Iran
| | - Maryam Hejazi
- Immunology Research Center, Tabriz University of Medical Sciences, 5166614731, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, 9861615881, Zabol, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
15
|
Moradi B, Sankian M, Amini Y, Gholoobi A, Meshkat Z. A new DNA vaccine expressing HspX-PPE44-EsxV fusion antigens of Mycobacterium tuberculosis induced strong immune responses. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:909-914. [PMID: 32774813 PMCID: PMC7395183 DOI: 10.22038/ijbms.2020.38521.9171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Infection with tuberculosis (TB) is regarded as a major health issue. Due to the emergence of antibiotic resistance during TB treatment, prevention via vaccination is one of the most effective ways of controlling the infection. DNA vaccines are developed at a greater pace due to their ability in generating a long-lasting immune response, higher safety compared to the live vaccines, and relatively lower cost of production. In the present study, we evaluated a new DNA vaccine encoding the fusion HspX-PPE44-EsxV antigens, separately, and in combination with Bacillus Calmette-Guérin (BCG) administration, in a prime-boost method in mice. MATERIALS AND METHODS A novel DNA vaccine encoding HspX-PPE44-EsxV fusion antigen of Mycobacterium tuberculosis was constructed, and RT-PCR and Western blot analysis were performed to verify the expression of the antigen. Female BALB/c mice were divided into five groups (PBS, BCG, pcDNA3.1 (+) vector, pDNA/HspX-PPE44-EsxV vaccine, and the BCG-prime boost groups). In order to evaluate the immunogenicity of the recombinant vector, BALB/c mice were injected with 100 μg of pDNA at 2-week intervals. Then, cytokine assay was conducted using eBioscience ELISA kits (Ebioscience, AUT) according to manufacturers' instructions to evaluate the concentrations of IL-4, IL-12, TGF-β, and IFN-γ. RESULTS The concentrations of INF-γ, IL-12, and TGF-beta were significantly increased compared to the control groups (P<0.001). INF-γ and IL-12 production were increased significantly in pDNA/HspX-PPE44-EsxV+BCG group compared to pDNA/HspX-PPE44-EsxV group (P<0.001). CONCLUSION This study showed that the present DNA vaccine could induce a high level of specific cytokines in mice. It was also shown that using this DNA vaccine in a BCG prime-boost protocol can produce significant amounts of IFN-γ, IL-12, and TGF-β.
Collapse
Affiliation(s)
- Bagher Moradi
- Esfarayen Faculty of Medical Sciences, Esfarayen, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Amini
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Aida Gholoobi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Keikha M, Eslami M, Yousefi B, Karbalaei M. Overview of multistage subunit tuberculosis vaccines: advantages and challenges. REVIEWS IN MEDICAL MICROBIOLOGY 2020; 31:144-149. [DOI: 10.1097/mrm.0000000000000213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To date, tuberculosis (TB) infection, is the most threatening infectious disease in all humans around the world. Mycobacterium tuberculosis is a facultative intracellular bacterium, possesses an exclusive life-cycle inside the macrophages, as one of the most important cells in the innate immune system. As soon as entrance in the lungs, bacteria actively replicate, but intracellular conditions such as hypoxia and nutrient starvation, lead to low replication of bacteria, or nonreplicating state. While Bacillus Calmette-Guerin vaccine is the most usable vaccine, especially in children and against active form, but this vaccine has no more protection in infected adults to latent forms of disease. Among the new generation of vaccines, fusion multistage subunit vaccines have prodigious effect on immune responses. By virtue of simultaneous presence of both expressed antigens from active and latent forms of TB in the structure of these recombinant subunit vaccines, they can strongly induce immune responses against all stages of the disease. The findings suggest subunit vaccines are the best candidates for immunization against TB, by virtue of their high safety, ease of production, specificity, and utilization of mycobacterial immunodominant antigens. Fusion multistage subunit vaccines, as novel subunit vaccines are the most ideal target for proper prevention against TB infection. Due to simultaneous use of both expressed antigens in active and latent forms of TB, these vaccines are able to induce strong immune responses versus all of TB stages.
Collapse
Affiliation(s)
- Masoud Keikha
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad
| | | | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
17
|
Milani A, Basirnejad M, Bolhassani A. Heat-shock proteins in diagnosis and treatment: an overview of different biochemical and immunological functions. Immunotherapy 2020; 11:215-239. [PMID: 30730280 DOI: 10.2217/imt-2018-0105] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heat-shock proteins (HSPs) have been involved in different functions including chaperone activity, protein folding, apoptosis, autophagy and immunity. The HSP families have powerful effects on the stimulation of innate immune responses through Toll-like receptors and scavenger receptors. Moreover, HSP-mediated phagocytosis directly enhances the processing and presentation of internalized antigens via the endocytic pathway in adaptive immune system. These properties of HSPs have been used for development of prophylactic and therapeutic vaccines against infectious and noninfectious diseases. Several studies also demonstrated the relationship between HSPs and drug resistance as well as their use as a novel biomarker for detecting tumors in patients. The present review describes different roles of HSPs in biology and medicine especially biochemical and immunological aspects.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran.,Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | | | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
18
|
Lew MH, Norazmi MN, Tye GJ. Enhancement of immune response against Mycobacterium tuberculosis HspX antigen by incorporation of combined molecular adjuvant (CASAC). Mol Immunol 2019; 117:54-64. [PMID: 31739193 DOI: 10.1016/j.molimm.2019.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB) is one of the deadliest human diseases worldwide caused by mycobacterial infection in the lung. Bacillus Calmette-Guerin (BCG) vaccine protects against disseminated TB in children, but its effectiveness is still questionable due to highly variable protections in adolescence and elderly individuals. Targeting the latency M.tb antigen is a recent therapeutic approach to eradicate dormant pathogen that could possibly lead to disease activation. In this study, we aimed to potentiate immune responses elicited against 16 kDa α-crystalline (HspX) tuberculosis latency antigen by incorporation of Combined Adjuvant for Synergistic Activation of Cellular immunity (CASAC). Histidine-tagged recombinant HspX protein was initially produced in Escherichia coli and purified using Ni-NTA chromatography. To evaluate its adjuvanticity, C57BL/6 mice (n = 5) were initially primed and intradermally immunised in 2-weeks interval for 4 rounds with recombinant HspX, formulated with and without CASAC. Humoral and cell-mediated immune responses elicited against HspX antigen were evaluated using ELISA and Flow Cytometry. Our findings showed that CASAC improved humoral immunity with increased antigen-specific IgG1 and IgG2a antibody response. Stronger CD8+ and Th1-driven immunity was induced by CASAC formulation as supported by elevated level of IFN-γ, TNF-α, IL-12 and IL-17A; and with low IL-10 secretion. Interestingly, adjuvanted HspX vaccine triggered a higher percentage of effector memory T-cell population than those immunised with unadjuvanted vaccine. In conclusion, CASAC adjuvant has great potential to enhance immunogenicity elicited against HspX antigen, which could be an alternative regimen to improve the efficacy of future therapeutic vaccine against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Min Han Lew
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia.
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia.
| |
Collapse
|
19
|
Carvalho Dos Santos C, Rodriguez D, Kanno Issamu A, Cezar De Cerqueira Leite L, Pereira Nascimento I. Recombinant BCG expressing the LTAK63 adjuvant induces increased early and long-term immune responses against Mycobacteria. Hum Vaccin Immunother 2019; 16:673-683. [PMID: 31665996 PMCID: PMC7227645 DOI: 10.1080/21645515.2019.1669414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The development of more effective vaccines against Mycobacterium tuberculosis has become a world priority. Previously, we have shown that a recombinant BCG expressing the LTAK63 adjuvant (rBCG-LTAK63) displayed higher protection than BCG against tuberculosis challenge in mice. In order to elucidate the immune effector mechanisms induced by rBCG-LTAK63, we evaluated the immune response before and after challenge. The potential to induce an innate immune response was investigated by intraperitoneal immunization with BCG or rBCG-LTAK63: both displayed increased cellular infiltration in the peritoneum with high numbers of neutrophils at 24 h and macrophages at 7 d. The rBCG-LTAK63-immunized mice displayed increased production of Nitric Oxide at 24 h and Hydrogen Peroxide at 7 d. The number of lymphocytes was higher in the rBCG-LTAK63 group when compared to BCG. Immunophenotyping of lymphocytes showed that rBCG-LTAK63 immunization increased CD4+ and CD8+ T cells. An increased long-term Th1/Th17 cytokine profile was observed 90 d after subcutaneous immunization with rBCG-LTAK63. The evaluation of immune responses at 15 d after challenge showed that rBCG-LTAK63-immunized mice displayed increased TNF-α-secreting CD4+ T cells and multifunctional IL-2+ TNF-α+ CD4+ T cells as compared to BCG-immunized mice. Our results suggest that immunization with rBCG-LTAK63 induces enhanced innate and long-term immune responses as compared to BCG. These results can be correlated with the superior protection induced against TB.
Collapse
Affiliation(s)
- Carina Carvalho Dos Santos
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | - Dunia Rodriguez
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Alex Kanno Issamu
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Luciana Cezar De Cerqueira Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
20
|
Rv2626c and Rv2032 activate TH1 response and downregulate regulatory T cells in peripheral blood mononuclear cells of tuberculosis patients. Comp Immunol Microbiol Infect Dis 2019; 62:46-53. [DOI: 10.1016/j.cimid.2018.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
|
21
|
Sarmiento ME, Alvarez N, Chin KL, Bigi F, Tirado Y, García MA, Anis FZ, Norazmi MN, Acosta A. Tuberculosis vaccine candidates based on mycobacterial cell envelope components. Tuberculosis (Edinb) 2019; 115:26-41. [PMID: 30948174 DOI: 10.1016/j.tube.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
Even after decades searching for a new and more effective vaccine against tuberculosis, the scientific community is still pursuing this goal due to the complexity of its causative agent, Mycobacterium tuberculosis (Mtb). Mtb is a microorganism with a robust variety of survival mechanisms that allow it to remain in the host for years. The structure and nature of the Mtb envelope play a leading role in its resistance and survival. Mtb has a perfect machinery that allows it to modulate the immune response in its favor and to adapt to the host's environmental conditions in order to remain alive until the moment to reactivate its normal growing state. Mtb cell envelope protein, carbohydrate and lipid components have been the subject of interest for developing new vaccines because most of them are responsible for the pathogenicity and virulence of the bacteria. Many indirect evidences, mainly derived from the use of monoclonal antibodies, support the potential protective role of Mtb envelope components. Subunit and DNA vaccines, lipid extracts, liposomes and membrane vesicle formulations are some examples of technologies used, with encouraging results, to evaluate the potential of these antigens in the protective response against Mtb.
Collapse
Affiliation(s)
- M E Sarmiento
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia
| | - N Alvarez
- Rutgers New Jersey Medical School, Public Health Research Institute, Newark, NJ, USA
| | - K L Chin
- Department of Biomedical Sciences and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Sabah, Malaysia
| | - F Bigi
- Institute of Biotechnology, INTA, Buenos Aires, Argentina
| | - Y Tirado
- Finlay Institute of Vaccines, La Habana, Cuba
| | - M A García
- Finlay Institute of Vaccines, La Habana, Cuba
| | - F Z Anis
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia
| | - M N Norazmi
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia.
| | - A Acosta
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
22
|
Rana A, Thakur S, Kumar G, Akhter Y. Recent Trends in System-Scale Integrative Approaches for Discovering Protective Antigens Against Mycobacterial Pathogens. Front Genet 2018; 9:572. [PMID: 30538722 PMCID: PMC6277634 DOI: 10.3389/fgene.2018.00572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022] Open
Abstract
Mycobacterial infections are one of the deadliest infectious diseases still posing a major health burden worldwide. The battle against these pathogens needs to focus on novel approaches and key interventions. In recent times, availability of genome scale data has revolutionized the fields of computational biology and immunoproteomics. Here, we summarize the cutting-edge ‘omics’ technologies and innovative system scale strategies exploited to mine the available data. These may be targeted using high-throughput technologies to expedite the identification of novel antigenic candidates for the rational next generation vaccines and serodiagnostic development against mycobacterial pathogens for which traditional methods have been failing.
Collapse
Affiliation(s)
- Aarti Rana
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Shweta Thakur
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Girish Kumar
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
23
|
Mycobacterium indicus pranii protein MIP_05962 induces Th1 cell mediated immune response in mice. Int J Med Microbiol 2018; 308:1000-1008. [PMID: 30190103 DOI: 10.1016/j.ijmm.2018.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 08/15/2018] [Accepted: 08/27/2018] [Indexed: 01/25/2023] Open
Abstract
Utility of Mycobacterium indicus pranii (MIP) as a multistage vaccine against mycobacterial infections demands identification of its protective antigens. We explored antigenicity and immunogenicity of a candidate protein MIP_05962 that depicts homology to HSP18 of M. leprae and antigen1 of Mycobacterium tuberculosis. This protein elicited substantial antibody response in immunized mice along with modulation of cellular immune response towards protective Th1 type. Both CD4+ and CD8+ subsets from immunized mice produced hallmark protective cytokines, IFN-γ, TNF-α and IL-2. This protein also enhanced the CD4+ effector memory that could act as first line of defence during infections. These results point to MIP_05962 as a protective antigen that contributes, in conjunction with others, to the protective immunity of this live vaccine candidate.
Collapse
|
24
|
Coppola M, Ottenhoff TH. Genome wide approaches discover novel Mycobacterium tuberculosis antigens as correlates of infection, disease, immunity and targets for vaccination. Semin Immunol 2018; 39:88-101. [PMID: 30327124 DOI: 10.1016/j.smim.2018.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 01/15/2023]
Abstract
Every day approximately six thousand people die of Tuberculosis (TB). Its causative agent, Mycobacterium tuberculosis (Mtb), is an ancient pathogen that through its evolution developed complex mechanisms to evade immune surveillance and acquire the ability to establish persistent infection in its hosts. Currently, it is estimated that one-fourth of the human population is latently infected with Mtb and among those infected 3-10% are at risk of developing active TB disease during their lifetime. The currently available diagnostics are not able to detect this risk group for prophylactic treatment to prevent transmission. Anti-TB drugs are available but only as long regimens with considerable side effects, which could both be reduced if adequate tests were available to monitor the response of TB to treatment. New vaccines are also urgently needed to substitute or boost Bacille Calmette-Guérin (BCG), the only approved TB vaccine: although BCG prevents disseminated TB in infants, it fails to impact the incidence of pulmonary TB in adults, and therefore has little effect on TB transmission. To achieve TB eradication, the discovery of Mtb antigens that effectively correlate with the human response to infection, with the curative host response following TB treatment, and with natural as well as vaccine induced protection will be critical. Over the last decade, many new Mtb antigens have been found and proposed as TB biomarkers and vaccine candidates, but only a very small number of these is being used in commercial diagnostic tests or is being assessed as candidate TB vaccine antigens in human clinical trials, aiming to prevent infection, disease or disease recurrence following treatment. Most of these antigens were discovered decades ago, before the complete Mtb genome sequence became available, and thus did not harness the latest insights from post-genomic antigen discovery strategies and genome wide approaches. These have, for example, revealed critical phase variation in Mtb replication and accompanying gene -and therefore antigen- expression patterns. In this review, we present a brief overview of past methodologies, and subsequently focus on the most important recent Mtb antigen discovery studies which have mined the Mtb antigenome through "unbiased" genome wide approaches. We compare the results for these approaches -as far as we know for the first time-, highlight Mtb antigens that have been identified independently by different strategies and present a comprehensive overview of the Mtb antigens thus discovered.
Collapse
Affiliation(s)
- Mariateresa Coppola
- Dept. Infectious Diseases, LUMC, PO Box 9600, 2300RC Leiden, The Netherlands.
| | - Tom Hm Ottenhoff
- Dept. Infectious Diseases, LUMC, PO Box 9600, 2300RC Leiden, The Netherlands
| |
Collapse
|
25
|
HspX protein as a candidate vaccine against Mycobacterium tuberculosis: an overview. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s11515-018-1494-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Xiong LB, Sun WJ, Liu YJ, Wang FQ, Wei DZ. Enhancement of 9α-Hydroxy-4-androstene-3,17-dione Production from Soybean Phytosterols by Deficiency of a Regulated Intramembrane Proteolysis Metalloprotease in Mycobacterium neoaurum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10520-10525. [PMID: 29131627 DOI: 10.1021/acs.jafc.7b03766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Modification of the sterol catabolism pathway in mycobacteria may result in the accumulation of some valuable steroid pharmaceutical intermediates, such as 9α-hydroxy-4-androstene-3,17-dione (9-OHAD). In previous work, sigma factor D (SigD) was identified as a negative factor of the 9-OHAD production in Mycobacterium neoaurum. Here, the deficiency of rip1 putatively coding for a regulated intramembrane proteolysis metalloprotease (Rip1), which could cleave the negative regulator of SigD (anti-SigD), enhanced the transcription of some key genes (choM1, kshA, and hsd4A) in the sterol catabolic pathway. Furthermore, the deletion of rip1 increased the consumption of phytosterols by 37.8% after 96 h of growth in M. neoaurum. The production of 9-OHAD in the engineered M. neoaurumΔkstD1ΔkstD2ΔkstD3Δrip1 (MnΔk123Δrip1) strain was ultimately increased by 27.3% compared to that in its parental strain M. neoaurumΔkstD1ΔkstD2ΔkstD3 (MnΔk123). This study further confirms the important role of SigD-related factors in the catabolism of sterols.
Collapse
Affiliation(s)
- Liang-Bin Xiong
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Wan-Ju Sun
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Yong-Jun Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Dong-Zhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| |
Collapse
|
27
|
Oliveira TL, Rizzi C, Dellagostin OA. Recombinant BCG vaccines: molecular features and their influence in the expression of foreign genes. Appl Microbiol Biotechnol 2017; 101:6865-6877. [PMID: 28779291 DOI: 10.1007/s00253-017-8439-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 01/17/2023]
Abstract
Recombinant Mycobacterium bovis BCG vaccines (rBCG) were first developed in the 1990s as a means of expressing antigens from multiple pathogens. This review examines the key structural factors of recombinant M. bovis that influence the expression of the heterologous antigens and the generation of genetic and functional stability in rBCG, which are crucial for inducing strong and lasting immune responses. The fundamental aim of this paper is to provide an overview of factors that affect the expression of recombinant proteins in BCG and the generation of the immune response against the target antigens, including mycobacterial promoters, location of foreign antigens, and stability of the vectors. The reporter systems that have been employed for evaluation of these molecular features in BCG are also reviewed here.
Collapse
Affiliation(s)
- Thaís Larré Oliveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Caroline Rizzi
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil. .,Unidade de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário, Caixa Postal 354, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
28
|
Ma J, Teng X, Wang X, Fan X, Wu Y, Tian M, Zhou Z, Li L. A Multistage Subunit Vaccine Effectively Protects Mice Against Primary Progressive Tuberculosis, Latency and Reactivation. EBioMedicine 2017; 22:143-154. [PMID: 28711483 PMCID: PMC5552207 DOI: 10.1016/j.ebiom.2017.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 01/22/2023] Open
Abstract
Adult tuberculosis (TB) is the main cause of TB epidemic and death. The infection results mainly by endogenous reactivation of latent TB infection and secondarily transmitted by exogenous infection. There is no vaccine for adult TB. To this end, we first chose antigens from a potential antigenic reservoir. The antigens strongly recognized T cells from latent and active TB infections that responded to antigens expressed by Mycobacterium tuberculosis cultured under different metabolic states. Fusions of single-stage polyprotein CTT3H, two-stage polyprotein A1D4, and multistage CMFO were constructed. C57BL/6 mice vaccinated with DMT adjuvant ed CMFO (CMFO-DMT) were protected more significantly than by CTT3H-DMT, and efficacy was similar to that of the only licensed vaccine, Bacillus Calmette–Guérin (BCG) and A1D4-DMT in the M. tuberculosis primary infection model. In the setting of BCG priming and latent TB infection, M. tuberculosis in the lung and spleen was eliminated more effectively in mice boosted with CMFO-DMT rather than with BCG, A1D4-DMT, or CTT3H-DMT. In particular, sterile immunity was only conferred by CMFO-DMT, which was associated with expedited homing of interferon-gamma+ CD4+ TEM and interleukin-2+ TCM cells from the spleen to the infected lung. CMFO-DMT represents a promising candidate to prevent the occurrence of adult TB through both prophylactic and therapeutic methods, and warrants assessment in preclinical and clinical trials. CMFO-DMT provides the comparable protection against primary infection with M. tuberculosis as BCG vaccine does. CMFO-DMT boosts an effective protection of BCG primed mice to eliminate latent infection and thwart reactivation. CMFO-DMT is a promising vaccine candidate for the prevention of adult TB disease.
Adult pulmonary TB is the main clinical form of the disease and the main component of TB epidemics. There is no effective vaccine to protect adults from primary and secondary TB. Vaccine candidates were constructed using combinations of one-, two- or multi-stage antigens of M. tuberculosis representing different stages of the infection. The antigen combinations directed at different stages of TB may help control adult TB.
Collapse
Affiliation(s)
- Jilei Ma
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xindong Teng
- Shandong International Travel Healthcare Center, Shandong Entry-Exit Inspection and Quarantine Bureau, Qingdao 266001, People's Republic of China
| | - Xiaochun Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China..
| | - Yaqi Wu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Maopeng Tian
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zijie Zhou
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Longmeng Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
29
|
Prendergast KA, Counoupas C, Leotta L, Eto C, Bitter W, Winter N, Triccas JA. The Ag85B protein of the BCG vaccine facilitates macrophage uptake but is dispensable for protection against aerosol Mycobacterium tuberculosis infection. Vaccine 2016; 34:2608-15. [PMID: 27060378 DOI: 10.1016/j.vaccine.2016.03.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 02/09/2016] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
Abstract
Defining the function and protective capacity of mycobacterial antigens is crucial for progression of tuberculosis (TB) vaccine candidates to clinical trials. The Ag85B protein is expressed by all pathogenic mycobacteria and is a component of multiple TB vaccines under evaluation in humans. In this report we examined the role of the BCG Ag85B protein in host cell interaction and vaccine-induced protection against virulent Mycobacterium tuberculosis infection. Ag85B was required for macrophage infection in vitro, as BCG deficient in Ag85B expression (BCG:(Δ85B)) was less able to infect RAW 264.7 macrophages compared to parental BCG, while an Ag85B-overexpressing BCG strain (BCG:(oex85B)) demonstrated improved uptake. A similar pattern was observed in vivo after intradermal delivery to mice, with significantly less BCG:(Δ85B) present in CD64(hi)CD11b(hi) macrophages compared to BCG or BCG:(oex85B). After vaccination of mice with BCG:(Δ85B) or parental BCG and subsequent aerosol M. tuberculosis challenge, similar numbers of activated CD4(+) and CD8(+) T cells were detected in the lungs of infected mice for both groups, suggesting the reduced macrophage uptake observed by BCG:(Δ85B) did not alter host immunity. Further, vaccination with both BCG:(Δ85B) and parental BCG resulted in a comparable reduction in pulmonary M. tuberculosis load. These data reveal an unappreciated role for Ag85B in the interaction of mycobacteria with host cells and indicates that single protective antigens are dispensable for protective immunity induced by BCG.
Collapse
Affiliation(s)
- Kelly A Prendergast
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, NSW, Australia; Mycobacterial Research Group, Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW, Australia
| | - Claudio Counoupas
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, NSW, Australia; Mycobacterial Research Group, Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW, Australia
| | - Lisa Leotta
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, NSW, Australia; Mycobacterial Research Group, Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW, Australia
| | - Carolina Eto
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, NSW, Australia
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Nathalie Winter
- INRA, Université de Tours, UMR 1282, Infectiologie et Santé Publique, 37380 Nouzilly, France
| | - James A Triccas
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, NSW, Australia; Mycobacterial Research Group, Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW, Australia.
| |
Collapse
|
30
|
de Oliveira FM, Trentini MM, Junqueira-Kipnis AP, Kipnis A. The mc2-CMX vaccine induces an enhanced immune response against Mycobacterium tuberculosis compared to Bacillus Calmette-Guérin but with similar lung inflammatory effects. Mem Inst Oswaldo Cruz 2016; 111:223-31. [PMID: 27074251 PMCID: PMC4830111 DOI: 10.1590/0074-02760150411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/24/2016] [Indexed: 01/15/2023] Open
Abstract
Although the attenuated Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccine has been used since 1921, tuberculosis (TB) control still proceeds at a slow pace. The main reason is the variable efficacy of BCG protection against TB among adults, which ranges from 0-80%. Subsequently, the mc2-CMX vaccine was developed with promising results. Nonetheless, this recombinant vaccine needs to be compared to the standard BCG vaccine. The objective of this study was to evaluate the immune response induced by mc2-CMX and compare it to the response generated by BCG. BALB/c mice were immunised with both vaccines and challenged with Mycobacterium tuberculosis (Mtb). The immune and inflammatory responses were evaluated by ELISA, flow cytometry, and histopathology. Mice vaccinated with mc2-CMX and challenged with Mtb induced an increase in the IgG1 and IgG2 levels against CMX as well as recalled specific CD4+ T-cells that produced T-helper 1 cytokines in the lungs and spleen compared with BCG vaccinated and challenged mice. Both vaccines reduced the lung inflammatory pathology induced by the Mtb infection. The mc2-CMX vaccine induces a humoral and cellular response that is superior to BCG and is efficiently recalled after challenge with Mtb, although both vaccines induced similar inflammatory reductions.
Collapse
Affiliation(s)
- Fábio Muniz de Oliveira
- Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde
Pública, Laboratório de Bacteriologia Molecular, Goiânia, GO, Brasil
| | - Monalisa Martins Trentini
- Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde
Pública, Laboratório de Imunopatologia das Doenças Infecciosas, Goiânia, GO,
Brasil
| | - Ana Paula Junqueira-Kipnis
- Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde
Pública, Laboratório de Imunopatologia das Doenças Infecciosas, Goiânia, GO,
Brasil
| | - André Kipnis
- Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde
Pública, Laboratório de Bacteriologia Molecular, Goiânia, GO, Brasil
| |
Collapse
|
31
|
Teng X, Tian M, Li J, Tan S, Yuan X, Yu Q, Jing Y, Zhang Z, Yue T, Zhou L, Fan X. Immunogenicity and protective efficacy of DMT liposome-adjuvanted tuberculosis subunit CTT3H vaccine. Hum Vaccin Immunother 2016; 11:1456-64. [PMID: 25905680 DOI: 10.1080/21645515.2015.1037057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Different strategies have been proposed for the development of protein subunit vaccine candidates for tuberculosis (TB), which shows better safety than other types of candidates and the currently used Bacillus Calmette-Guérin (BCG) vaccine. In order to develop more effective protein subunits depending on the mechanism of cell-mediated immunity against TB, a polyprotein CTT3H, based on 5 immunodominant antigens (CFP10, TB10.4, TB8.4, Rv3615c, and HBHA) with CD8(+) epitopes of Mycobacterium tuberculosis, was constructed in this study. We vaccinated C57BL/6 mice with a TB subunit CTT3H protein in an adjuvant of dimethyldioctadecylammonium/monophosphoryl lipid A/trehalose 6,6'-dibehenate (DDA/MPL/TDB, DMT) liposome to investigate the immunogenicity and protective efficacy of this novel vaccine. Our results demonstrated that DMT liposome-adjuvanted CTT3H vaccine not only induced an antigen-specific CD4(+) Th1 response, but also raised the number of PPD- and CTT3H-specific IFN-γ(+) CD8(+) T cells and elicited strong CTL responses against TB10.4, which provided more effective protection against a 60 CFU M. tuberculosis aerosol challenge than PBS control and DMT adjuvant alone. Our findings indicate that DMT-liposome is an effective adjuvant to stimulate CD8(+) T cell responses and the DMT-adjuvanted subunit CTT3H vaccine is a promising candidate for the next generation of TB vaccine.
Collapse
Affiliation(s)
- Xindong Teng
- a Department of Pathogen Biology; School of Basic Medicine; Huazhong University of Science & Technology ; Wuhan , PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yuan X, Teng X, Jing Y, Ma J, Tian M, Yu Q, Zhou L, Wang R, Wang W, Li L, Fan X. A live attenuated BCG vaccine overexpressing multistage antigens Ag85B and HspX provides superior protection against Mycobacterium tuberculosis infection. Appl Microbiol Biotechnol 2015; 99:10587-95. [PMID: 26363555 DOI: 10.1007/s00253-015-6962-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/13/2015] [Accepted: 08/23/2015] [Indexed: 11/29/2022]
Abstract
Tuberculosis (TB) remains one of the most menacing infectious diseases, although attenuated Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccine has been widely used to protect children against primary TB. There are increasing evidences that rapid growing and dormant Mycobacterium tuberculosis (M. tuberculosis) coexist in vivo after infection. However, BCG vaccine only elicits cell-mediated immune responses to secretory antigens expressed by rapid growing pathogen. BCG vaccine is thus unable to thwart the reactivation of latent tuberculosis infection (LTBI), and its protection wanes over age after neonatal immunization. In order to extend its ability for a durable protection, a novel recombinant BCG (rBCG) strain, named rBCG::XB, was constructed by overexpressing immunodominant multistage antigens of Ag85B and HspX, which are expressed by both rapid replicating and dormant M. tuberculosis. Long-term protective effect and immunogenicity of rBCG::XB were compared with the parental BCG in vaccinated C57BL/6 mice. Our results demonstrated that rBCG::XB provided the stronger and long-lasting protection against M. tuberculosis H37Rv intranasal infection than BCG. The rBCG::XB not only elicited the more durable multistage antigen-specific CD4(+)Th1-biased immune responses and specific polyfunctional CD4(+)T cells but also augmented the CD8(+) CTL effects against Ag85B in vivo. In particular, higher levels of CD4(+) TEM and CD8(+) TCM cells, dominated by IL2(+) CD4(+) and CD8(+) TCM cells, were obtained in the spleen of rBCG::XB vaccinated mice. Therefore, our findings indicate that rBCG::XB is a promising candidate to improve the efficacy of BCG.
Collapse
Affiliation(s)
- Xuefeng Yuan
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xindong Teng
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yukai Jing
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jilei Ma
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Maopeng Tian
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qi Yu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Lei Zhou
- Beijing Pushikang Pharmaceutical Co., Ltd., Beijing, 100020, People's Republic of China
| | - Ruibo Wang
- Beijing Pushikang Pharmaceutical Co., Ltd., Beijing, 100020, People's Republic of China
| | - Weihua Wang
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, 430030, People's Republic of China
| | - Li Li
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, 430030, People's Republic of China
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
33
|
Marcus SA, Steinberg H, Talaat AM. Protection by novel vaccine candidates, Mycobacterium tuberculosis ΔmosR and ΔechA7, against challenge with a Mycobacterium tuberculosis Beijing strain. Vaccine 2015; 33:5633-5639. [PMID: 26363381 DOI: 10.1016/j.vaccine.2015.08.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/07/2015] [Accepted: 08/28/2015] [Indexed: 11/18/2022]
Abstract
Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), infects over two billion people, claiming around 1.5 million lives annually. The only vaccine approved for clinical use against this disease is the Bacillus Calmette-Guérin (BCG) vaccine. Unfortunately, BCG has limited efficacy against the adult, pulmonary form of tuberculosis. This vaccine was developed from M. bovis with antigen expression and host specificity that differ from M. tuberculosis. To address these problems, we have designed two novel, live attenuated vaccine (LAV) candidates on an M. tuberculosis background: ΔmosR and ΔechA7. These targeted genes are important to M. tuberculosis pathogenicity during infection. To examine the efficacy of these strains, C57BL/6 mice were vaccinated subcutaneously with either LAV, BCG, or PBS. Both LAV strains persisted up to 16 weeks in the spleens or lungs of vaccinated mice, while eliciting minimal pathology prior to challenge. Following challenge with a selected, high virulence M. tuberculosis Beijing strain, protection was notably greater for both groups of LAV vaccinated animals as compared to BCG at both 30 and 60 days post-challenge. Additionally, vaccination with either ΔmosR or ΔechA7 elicited an immune response similar to BCG. Although these strains require further development to meet safety standards, this first evidence of protection by these two new, live attenuated vaccine candidates shows promise.
Collapse
Affiliation(s)
- Sarah A Marcus
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Howard Steinberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Adel M Talaat
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
34
|
Zheng YQ, Naguib YW, Dong Y, Shi YC, Bou S, Cui Z. Applications of bacillus Calmette–Guerin and recombinant bacillus Calmette–Guerin in vaccine development and tumor immunotherapy. Expert Rev Vaccines 2015. [DOI: 10.1586/14760584.2015.1068124] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuan-qiang Zheng
- 1Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot 010059, China
| | - Youssef W Naguib
- 2Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yixuan Dong
- 2Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yan-chun Shi
- 1Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot 010059, China
| | - Shorgan Bou
- 3National Research Center for Animal Transgenic Biotechnology, Inner Mongolia University, Hohhot, China
| | - Zhengrong Cui
- 1Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot 010059, China
- 2Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
35
|
Liang J, Teng X, Yuan X, Zhang Y, Shi C, Yue T, Zhou L, Li J, Fan X. Enhanced and durable protective immune responses induced by a cocktail of recombinant BCG strains expressing antigens of multistage of Mycobacterium tuberculosis. Mol Immunol 2015; 66:392-401. [DOI: 10.1016/j.molimm.2015.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 01/09/2023]
|
36
|
Siddiqui KF, Amir M, Khan N, Rama Krishna G, Sheikh JA, Rajagopal K, Agrewala JN. Prime-boost vaccination strategy with bacillus Calmette-Guérin (BCG) and liposomized alpha-crystalline protein 1 reinvigorates BCG potency. Clin Exp Immunol 2015; 181:286-96. [PMID: 25845290 DOI: 10.1111/cei.12634] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/14/2015] [Accepted: 03/25/2015] [Indexed: 12/18/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG) remains the only available and most widely administered vaccine against Mycobacterium tuberculosis (Mtb), yet it fails to protect vaccinated individuals either from primary infection or reactivation of latent tuberculosis (TB). Despite BCG's variable efficacy against TB, the fact remains that BCG imparts protection in children against the disease, indicating that BCG possesses a wide protective antigenic repertoire. However, its failure to impart protection in adulthood can be linked to its failure to generate long-lived memory response and elicitation of an inadequate immune response against latency-associated antigens. Therefore, to improve the protective efficacy of BCG, a novel vaccination strategy is required. Consequently, in the present study, we have exploited the vaccination potential of liposomized α-crystalline 1 (Acr1L), a latency-associated antigen to induce enduring protective immunity against Mtb in BCG-primed animals. It is noteworthy that an increase in the multi-functional [interferon (IFN)-γ(hi) /tumour necrosis factor (TNF)-α(hi) ] CD4 and CD8 T cells were observed in BCG-primed and Acr1L-boosted (BCG-Acr1L) animals, compared to BCG alone. Further, substantial expansion of both central memory (CD44(hi) /CD62L(hi) ) and effector memory (CD44(hi) /CD62L(lo) ) populations of CD4 and CD8 T cells was noted. Importantly, BCG-Acr1L exhibited significantly better protection than BCG, as evidenced by a reduction in the bacterial burden and histopathological data of the lungs. In essence, BCG-Acr1L could be a potent future vaccination strategy to reinvigorate BCG potency.
Collapse
Affiliation(s)
- K F Siddiqui
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - M Amir
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - N Khan
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - G Rama Krishna
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - J A Sheikh
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - K Rajagopal
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - J N Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
37
|
Belay M, Legesse M, Mihret A, Bekele Y, Ottenhoff THM, Franken KLMC, Bjune G, Abebe F. Pro- and anti-inflammatory cytokines against Rv2031 are elevated during latent tuberculosis: a study in cohorts of tuberculosis patients, household contacts and community controls in an endemic setting. PLoS One 2015; 10:e0124134. [PMID: 25897840 PMCID: PMC4405476 DOI: 10.1371/journal.pone.0124134] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/02/2015] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB) is among the leading causes of morbidity and mortality. The causative agent, Mycobacterium tuberculosis (Mtb), has evolved virulent factors for entry, survival, multiplication and immune evasion. Rv2031 (also called alpha crystallin, hspX, 16-kDa antigen), one of the most immunogenic latency antigens, is believed to play a key role in long-term viability of Mtb. Here, we report the dynamics of pro-inflammatory (IFN-γ, TNF-α) and anti-inflammatory (IL-10) cytokines against Rv2031 using whole blood assay in human cohorts in a TB endemic setting. Cytokine responses to ESAT-6-CFP-10 were also measured for comparison. Blood samples were collected from smear positive pulmonary TB patients and their contacts at baseline, 6 and 12 months, and from community controls at entry. At baseline, 54.4% of controls and 73.2% of contacts were QFT-GIT test positive. Baseline IFN-γ, TNF-α and IL-10 responses to Rv2031 were significantly higher in controls compared to contacts and untreated patients (p<0.001). Furthermore, untreated patients had significantly higher TNF-α and IL-10 responses to Rv2031 compared to contacts (p<0.001). In contacts and treated patients, IFN-γ, TNF-α and IL-10 responses to Rv2031 significantly increased over 12 months (p<0.0001) and became comparable with the corresponding levels in controls. There was a positive and significant correlation between Rv2031 and ESAT-6-CFP-10 specific cytokine responses in each study group. The fact that the levels of IFN-γ, TNF-α and IL-10 against Rv2031 were highest during latent TB infection may indicate their potential as markers of protection against TB. Taken together, the findings of this study suggest the potential of IFN-γ, TNF-α and IL-10 against Rv2031 as biomarkers of the host response to Mtb during convalescence from, and the absence of, active tuberculosis.
Collapse
Affiliation(s)
- Mulugeta Belay
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Community Medicine, Institute of Health and Society, University of Oslo, Oslo, Norway
- * E-mail:
| | - Mengistu Legesse
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Yonas Bekele
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees L. M. C. Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Gunnar Bjune
- Department of Community Medicine, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Fekadu Abebe
- Department of Community Medicine, Institute of Health and Society, University of Oslo, Oslo, Norway
| |
Collapse
|
38
|
Protection against Mycobacterium tuberculosis infection offered by a new multistage subunit vaccine correlates with increased number of IFN-γ+ IL-2+ CD4+ and IFN-γ+ CD8+ T cells. PLoS One 2015; 10:e0122560. [PMID: 25822536 PMCID: PMC4378938 DOI: 10.1371/journal.pone.0122560] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/22/2015] [Indexed: 01/13/2023] Open
Abstract
Protein subunit vaccines present a compelling new area of research for control of tuberculosis (TB). Based on the interaction between Mycobacterium tuberculosis and its host, five stage-specific antigens of M. tuberculosis that participate in TB pathogenesis—Rv1813, Rv2660c, Ag85B, Rv2623, and HspX—were selected. These antigens were verified to be recognized by T cells from a total of 42 whole blood samples obtained from active TB patients, patients with latent TB infections (LTBIs), and healthy control donors. The multistage polyprotein A1D4 was developed using the selected five antigens as a potentially more effective novel subunit vaccine. The immunogenicity and protective efficacy of A1D4 emulsified in the adjuvant MTO [monophosphoryl lipid A (MPL), trehalose-6,6′-dibehenate (TDB), components of MF59] was compared with Bacillus Calmette-Guerin (BCG) in C57BL/6 mice. Our results demonstrated that A1D4/MTO could provide more significant protection against M. tuberculosis infection than the PBS control or MTO adjuvant alone judging from the A1D4-specific Th1-type immune response; however, its efficacy was inferior to BCG as demonstrated by the bacterial load in the lung and spleen, and by the pathological changes in the lung. Antigen-specific single IL-2-secreting cells and different combinations with IL-2-secreting CD4+ T cells were beneficial and correlated with BCG vaccine-induced protection against TB. Antigen-specific IFN-γ+IL-2+ CD4+ T cells were the only effective biomarker significantly induced by A1D4/MTO. Among all groups, A1D4/MTO immunization also conferred the highest number of antigen-specific single IFN-γ+ and IFN-γ+TNF-α+ CD4+ T cells, which might be related to the antigen load in vivo, and single IFN-γ+ CD8+ T cells by mimicking the immune patterns of LTBIs or curable TB patients. Our strategy seems promising for the development of a TB vaccine based on multistage antigens, and subunit antigen A1D4 suspended in MTO adjuvant warrants preclinical evaluation in animal models of latent infection and may boost BCG vaccination.
Collapse
|
39
|
Aghababa H, Mohabati Mobarez A, Khoramabadi N, Behmanesh M, Mahdavi M, Tebianian M, Nejati M. A comparative approach to strategies for cloning, expression, and purification of Mycobacterium tuberculosis mycolyl transferase 85B and evaluation of immune responses in BALB/c mice. Mol Biotechnol 2014; 56:487-97. [PMID: 24619477 DOI: 10.1007/s12033-013-9696-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Protein antigens have drawn a lot of attention from investigators working on tuberculosis vaccines. These proteins can be used to improve the immunogenicity of the new generation BCG vaccines or even replace them completely. Recombinant technology is used to insure the production of pure mycobacterial antigens in high quantities. Mycolyl transferase 85B (Ag85B) is a potent, mycobacterial antigen that significantly stimulates immune responses. Since Ag85B is an apolar protein, production of the water-soluble antigen is of interest. In this work, we report a systematic optimization strategy concerning cloning systems and purification methods, aiming at increasing the yield of recombinant Ag85B. Our optimized method resulted in a yield of 8 mg of recombinant Ag85B from 1 liter of induced culture (400 μg/ml) by using pET32a(+), Escherichia coli Rosseta-gami™(DE3) pLysS and a Ni-NTA agarose-based procedure and on-column re-solubilization. The purified recombinant Ag85B showed strong immunostimulating properties by inducing high levels of TNF-α, IFN-γ, IL-12, and IgG2a in immunized mice, therefore it can effectively be applied in TB vaccine researches.
Collapse
Affiliation(s)
- Haniyeh Aghababa
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
40
|
da Costa AC, Costa-Júnior ADO, de Oliveira FM, Nogueira SV, Rosa JD, Resende DP, Kipnis A, Junqueira-Kipnis AP. A new recombinant BCG vaccine induces specific Th17 and Th1 effector cells with higher protective efficacy against tuberculosis. PLoS One 2014; 9:e112848. [PMID: 25398087 PMCID: PMC4232451 DOI: 10.1371/journal.pone.0112848] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/15/2014] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that is a major public health problem. The vaccine used for TB prevention is Mycobacterium bovis bacillus Calmette-Guérin (BCG), which provides variable efficacy in protecting against pulmonary TB among adults. Consequently, several groups have pursued the development of a new vaccine with a superior protective capacity to that of BCG. Here we constructed a new recombinant BCG (rBCG) vaccine expressing a fusion protein (CMX) composed of immune dominant epitopes from Ag85C, MPT51, and HspX and evaluated its immunogenicity and protection in a murine model of infection. The stability of the vaccine in vivo was maintained for up to 20 days post-vaccination. rBCG-CMX was efficiently phagocytized by peritoneal macrophages and induced nitric oxide (NO) production. Following mouse immunization, this vaccine induced a specific immune response in cells from lungs and spleen to the fusion protein and to each of the component recombinant proteins by themselves. Vaccinated mice presented higher amounts of Th1, Th17, and polyfunctional specific T cells. rBCG-CMX vaccination reduced the extension of lung lesions caused by challenge with Mtb as well as the lung bacterial load. In addition, when this vaccine was used in a prime-boost strategy together with rCMX, the lung bacterial load was lower than the result observed by BCG vaccination. This study describes the creation of a new promising vaccine for TB that we hope will be used in further studies to address its safety before proceeding to clinical trials.
Collapse
Affiliation(s)
- Adeliane Castro da Costa
- Laboratório de Imunopatologia das Doenças Infecciosas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Abadio de Oliveira Costa-Júnior
- Laboratório de Imunopatologia das Doenças Infecciosas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Fábio Muniz de Oliveira
- Laboratório de Bacteriologia Molecular, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Sarah Veloso Nogueira
- Laboratório de Imunopatologia das Doenças Infecciosas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Joseane Damaceno Rosa
- Laboratório de Imunopatologia das Doenças Infecciosas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Danilo Pires Resende
- Laboratório de Imunopatologia das Doenças Infecciosas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - André Kipnis
- Laboratório de Bacteriologia Molecular, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Ana Paula Junqueira-Kipnis
- Laboratório de Imunopatologia das Doenças Infecciosas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- * E-mail:
| |
Collapse
|
41
|
Jung ID, Shin SJ, Lee MG, Kang TH, Han HD, Lee SJ, Kim WS, Kim HM, Park WS, Kim HW, Yun CH, Lee EK, Wu TC, Park YM. Enhancement of tumor-specific T cell-mediated immunity in dendritic cell-based vaccines by Mycobacterium tuberculosis heat shock protein X. THE JOURNAL OF IMMUNOLOGY 2014; 193:1233-45. [PMID: 24990079 DOI: 10.4049/jimmunol.1400656] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite the potential for stimulation of robust antitumor immunity by dendritic cells (DCs), clinical applications of DC-based immunotherapy are limited by the low potency in generating tumor Ag-specific T cell responses. Therefore, optimal conditions for generating potent immunostimulatory DCs that overcome tolerance and suppression are key factors in DC-based tumor immunotherapy. In this study, we demonstrate that use of the Mycobacterium tuberculosis heat shock protein X (HspX) as an immunoadjuvant in DC-based tumor immunotherapy has significant potential in therapeutics. In particular, the treatment aids the induction of tumor-reactive T cell responses, especially tumor-specific CTLs. The HspX protein induces DC maturation and proinflammatory cytokine production (TNF-α, IL-1β, IL-6, and IFN-β) through TLR4 binding partially mediated by both the MyD88 and the TRIF signaling pathways. We employed two models of tumor progression and metastasis to evaluate HspX-stimulated DCs in vivo. The administration of HspX-stimulated DCs increased the activation of naive T cells, effectively polarizing the CD4(+) and CD8(+) T cells to secrete IFN-γ, as well as enhanced the cytotoxicity of splenocytes against HPV-16 E7 (E7)-expressing TC-1 murine tumor cells in therapeutic experimental animals. Moreover, the metastatic capacity of B16-BL6 melanoma cancer cells toward the lungs was remarkably attenuated in mice that received HspX-stimulated DCs. In conclusion, the high therapeutic response rates with tumor-targeted Th1-type T cell immunity as a result of HspX-stimulated DCs in two models suggest that HspX harnesses the exquisite immunological power and specificity of DCs for the treatment of tumors.
Collapse
Affiliation(s)
- In Duk Jung
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Min-Goo Lee
- Department of Physiology, College of Medicine, Korea University, Seoul 136-705, South Korea
| | - Tae Heung Kang
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Hee Dong Han
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Seung Jun Lee
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Hong Min Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Han Wool Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, South Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, South Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Eun Kyung Lee
- Yongsan Hospital College of Medicine, Chung-Ang University, Seoul 156-756, South Korea
| | - T-C Wu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205; Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, MD 21205; Department of Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, MD 21205; and Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Yeong-Min Park
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea;
| |
Collapse
|
42
|
da Costa AC, Nogueira SV, Kipnis A, Junqueira-Kipnis AP. Recombinant BCG: Innovations on an Old Vaccine. Scope of BCG Strains and Strategies to Improve Long-Lasting Memory. Front Immunol 2014; 5:152. [PMID: 24778634 PMCID: PMC3984997 DOI: 10.3389/fimmu.2014.00152] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/23/2014] [Indexed: 11/13/2022] Open
Abstract
Bacille Calmette-Guérin (BCG), an attenuated vaccine derived from Mycobacterium bovis, is the current vaccine of choice against tuberculosis (TB). Despite its protection against active TB in children, BCG has failed to protect adults against TB infection and active disease development, especially in developing countries where the disease is endemic. Currently, there is a significant effort toward the development of a new TB vaccine. This review article aims to address publications on recombinant BCG (rBCG) published in the last 5 years, to highlight the strategies used to develop rBCG, with a focus on the criteria used to improve immunological memory and protection compared with BCG. The literature review was done in April 2013, using the key words TB, rBCG vaccine, and memory. This review discusses the BCG strains and strategies currently used for the modification of BCG, including: overexpression of Mycobacterium tuberculosis (Mtb) immunodominant antigens already present in BCG; gene insertion of immunodominant antigens from Mtb absent in the BCG vaccine; combination of introduction and overexpression of genes that are lost during the attenuation process of BCG; BCG modifications for the induction of CD8+ T-cell immune responses and cytokines expressing rBCG. Among the vaccines discussed, VPM1002, also called rBCGΔureC:hly, is currently in human clinical trials. Much progress has been made in the effort to improve BCG, with some promising candidates, but considerable work is still required to address functional long-lasting memory.
Collapse
Affiliation(s)
- Adeliane Castro da Costa
- Department of Microbiology, Immunology, Parasitology and Pathology, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás , Goiânia , Brazil
| | - Sarah Veloso Nogueira
- Department of Microbiology, Immunology, Parasitology and Pathology, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás , Goiânia , Brazil
| | - André Kipnis
- Department of Microbiology, Immunology, Parasitology and Pathology, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás , Goiânia , Brazil
| | - Ana Paula Junqueira-Kipnis
- Department of Microbiology, Immunology, Parasitology and Pathology, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás , Goiânia , Brazil
| |
Collapse
|
43
|
Alves Da Silva D, Cavalcanti MAR, Muniz De Oliveira F, Trentini MM, Junqueira-Kipnis AP, Kipnis A. Immunogenicity of a recombinant Mycobacterium smegmatis vaccine expressing the fusion protein CMX in cattle from Goiás State, Brazil. J Vet Med Sci 2014; 76:977-84. [PMID: 24681608 PMCID: PMC4143659 DOI: 10.1292/jvms.13-0338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to evaluate the immunogenicity of a recombinant Mycobacterium smegmatis vaccine expressing the CMX fusion protein composed of immunodominant epitopes Ag85C, MPT51 and HspX of Mycobacterium tuberculosis, which are important mycobacteria virulence factors. A group of Nelore heifers that were 10 to 12 months of age and negative for the tuberculin skin test (TST) were immunized with four doses of the recombinant vaccine mc(2)-CMX (M. smegmatis-Ag85C-MPT51-HspX) during a period of one year. Before each immunization, blood was collected to obtain sera for antibody analysis. Serological analysis demonstrated that mc(2)-CMX was able to induce a humoral response with increased levels of specific IgG antibodies against CMX, despite minimum antibody levels being detected for individual Ag85C, MPT51 or HspX recombinant antigens. However, there was no significant increase in specific CD4(+) IFN-γ-positive T cells. Lymphadenomegaly was observed in superficial cervical lymph nodes adjacent to the site of vaccination among mc(2)-CMX-vaccinated bovines, and the histopathological analysis demonstrated follicular hyperplasia without inflammatory infiltrate or granuloma formation. Animals remained negative for the TST until the end of the experiments, showing no cross-reactivity with the recombinant vaccine and tuberculin proteins. We discuss the potential of mc(2)-CMX to induce an immune response in cattle.
Collapse
Affiliation(s)
- Duanne Alves Da Silva
- Tropical Pathology and Public Health Institute, Federal University of Goiás, Rua 235 esquina com 1a Avenida, Setor Universitário, Goiânia, Goiás, CEP 74605-050, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Wieczorek AE, Troudt JL, Knabenbauer P, Taylor J, Pavlicek RL, Karls R, Hess A, Davidson RM, Strong M, Bielefeldt-Ohmann H, Izzo AA, Dobos KM. HspX vaccination and role in virulence in the guinea pig model of tuberculosis. Pathog Dis 2014; 71:315-25. [PMID: 24616427 DOI: 10.1111/2049-632x.12147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/13/2013] [Accepted: 01/14/2014] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) currently infects billions of people; many of whom are latently infection and at risk for reactivation. Mycobacterium bovis Bacille Calmette-Guerin (BCG) while approved as a vaccine, is unable to prevent reactivation of latent tuberculosis infection (LTBI). Subunit vaccines boosting BCG or given alone are being tested for efficacy in LTBI models. Alpha-crystallin (Acr, HspX), is a latency associated protein and subunit vaccine candidate. In this report, three HspX formulas (native and two recombinant variants) were used as vaccines in the guinea pig model of tuberculosis; none were protective during challenge with WT Mtb. However, recombinant HspX was protective in animals challenged with a strain of Mtb lacking hspX (X4-19), indicating protection was driven by molecules co-purifying with HspX or an adjuvant effect of recombinant HspX in this system. Mtb X4-19 was significantly less virulent than WT Mtb. Quantitative PCR and whole genome sequencing identified several genes (Rv2030c-Rv2032, Rv1062, Rv1771, Rv1907, and Rv3479) with altered expression that may contribute to loss of virulence. Physiological differences required for the establishment of Mtb infection in different hosts may affect the potential of subunit vaccines to elicit protection, supporting the need for rigorous biochemical and modeling analyses when developing tuberculosis vaccines.
Collapse
Affiliation(s)
- Agatha E Wieczorek
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Singh S, Saraav I, Sharma S. Immunogenic potential of latency associated antigens against Mycobacterium tuberculosis. Vaccine 2014; 32:712-6. [DOI: 10.1016/j.vaccine.2013.11.065] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
|
46
|
Tan K, Liang J, Teng X, Wang X, Zhang J, Yuan X, Fan X. Comparison of BCG prime-DNA booster and rBCG regimens for protection against tuberculosis. Hum Vaccin Immunother 2013; 10:391-8. [PMID: 24192709 DOI: 10.4161/hv.26969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Developing an effective adult prophylaxis vaccine is a high priority in the global control of tuberculosis (TB), because TB remains an important public health problem and the current widely used BCG vaccine provides effective protection only for children but variable protection against adult TB. BCG priming-heterologous vaccines booster and recombinant BCG technologies have been thought as two important regimens for inducing effective protection against adult TB. Obviously, defining the protective efficacy of the two regimens would benefit more rational design of the future adult TB vaccines. In this study, a recombinant BCG strain (rBCG::685A) expressing the fusion protein of ESAT-6 and Ag85A (r685A) of Mycobacterium tuberculosis was constructed successfully and the secretion of r685A protein from rBCG strain was confirmed by western blotting with anti-ESAT-6 and anti-Ag85A polyclonal antibodies, respectively. The immune responses and protective effects in rBCG::685A vaccinated C57BL/6 mice were compared with that of our previous reported BCG prime-pcD685A booster regimen. Boosting BCG with pcD685A DNA elicited higher level of r685A protein specific IFN-γ secreted by splenocytes and a more significant increase of both TNF-α and iNOS responses in the lung, thus providing better control of bacterial growth in both lung and spleen of immunized mice challenged with virulent M. tuberculosis, compared with mice vaccinated with rBCG::685A or BCG alone. Our results have implications for development of more effective adult TB vaccines for improved control of TB.
Collapse
Affiliation(s)
- Kun Tan
- Department of Pathogen Biology; Lab of Bio-safety, School of Preclinical Medicine; Tongji Medical College; Huazhong University of Science & Technology; Wuhan, PR China
| | - Jinping Liang
- Department of Pathogen Biology; Lab of Bio-safety, School of Preclinical Medicine; Tongji Medical College; Huazhong University of Science & Technology; Wuhan, PR China
| | - Xindong Teng
- Department of Pathogen Biology; Lab of Bio-safety, School of Preclinical Medicine; Tongji Medical College; Huazhong University of Science & Technology; Wuhan, PR China
| | - Xiaochun Wang
- Department of Pathogen Biology; Lab of Bio-safety, School of Preclinical Medicine; Tongji Medical College; Huazhong University of Science & Technology; Wuhan, PR China
| | - Jingyan Zhang
- Department of Pathogen Biology; Lab of Bio-safety, School of Preclinical Medicine; Tongji Medical College; Huazhong University of Science & Technology; Wuhan, PR China
| | - Xuefeng Yuan
- Department of Pathogen Biology; Lab of Bio-safety, School of Preclinical Medicine; Tongji Medical College; Huazhong University of Science & Technology; Wuhan, PR China
| | - Xionglin Fan
- Department of Pathogen Biology; Lab of Bio-safety, School of Preclinical Medicine; Tongji Medical College; Huazhong University of Science & Technology; Wuhan, PR China
| |
Collapse
|
47
|
Wang CC, Zhu B, Fan X, Gicquel B, Zhang Y. Systems approach to tuberculosis vaccine development. Respirology 2013; 18:412-20. [PMID: 23331331 DOI: 10.1111/resp.12052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/26/2012] [Accepted: 01/03/2013] [Indexed: 01/04/2023]
Abstract
Tuberculosis is both highly prevalent across the world and eludes our attempts to control it. The current bacillus Calmette-Guérin vaccine has unreliable protection against adult pulmonary tuberculosis. As a result, tuberculosis vaccine development has been an ongoing area of research for several decades. Only recently have research efforts resulted in the development of several vaccine candidates that are further along in clinical trials. The majority of the barriers surrounding tuberculosis vaccine development are related to the lack of defined biomarkers for tuberculosis protective immunity and the lack of understanding of the complex interactions between the host and pathogen in the human immune system. As a result, testing various antigens discovered through molecular biology techniques have been only with surrogates of protection and do not accurately predict protective immunity. This review will address new discoveries in latency antigens and new next-generation candidate vaccines that promise the possibility of sterile eradication. Also discussed are the potentially important roles of systems biology and vaccinomics in shortening development of an efficacious tuberculosis vaccine through utilization of high-throughput technology, computer modelling and integrative approaches.
Collapse
Affiliation(s)
- Charles C Wang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
48
|
Hu S, Chen H, Ma J, Chen Q, Deng H, Gong F, Huang H, Shi C. CpG7909 adjuvant enhanced immunogenicity efficacy in mice immunized with ESAT6-Ag85A fusion protein, but does not confer significant protection against Mycobacterium tuberculosis infection. J Appl Microbiol 2013; 115:1203-11. [PMID: 23902541 DOI: 10.1111/jam.12315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/21/2013] [Accepted: 07/23/2013] [Indexed: 12/31/2022]
Abstract
AIMS This study aimed to investigate the ability of CpG7909 adjuvant to enhance immunogenicity and protective efficacy of a subunit vaccine composed of ESAT6-Ag85A fusion protein (Pe685a) of Mycobacterium tuberculosis. METHODS AND RESULTS ELISA was used to detect specific antibody and IFN-γ expression in sera; ELISPOT, to detect IFN-γ expression in splenocytes; MTT assay and FACS, to detect T-lymphocytes proliferation in spleens; and RT-PCR, to detect cytokines expression in lungs of mice after immunization. Bacterial load and histopathological lesions in lungs or spleens of mice challenged with Myco. tuberculosis H37Rv strain were analysed. Compared with incomplete Freund's adjuvant, CpG7909 induced more potent production of Pe685a-specific IgG2a/IgG1 antibody and higher expression of IFN-γ in sera, stimulated more generation of antigen-specific IFN-γ-secreting splenocytes, enhanced frequencies of CD3(+) CD4(+) and CD3(+) CD8(+) T-lymphocytes in spleen and increased transcription of TNF-α, IFN-γ, IL-6 and TLR9 in lung. However, lower bacterial load in lung and less severe lung pathology were not observed in CpG7909 group mice. CONCLUSIONS CpG7909 is able to enhance immunological effects of Pe685a subunit vaccine, but does not confer significant protective efficacy against Myco. tuberculosis infection. SIGNIFICANCE AND IMPACT OF THE STUDY CpG7909 as an adjuvant of subunit vaccine against Myco. tuberculosis is worthy of further investigation.
Collapse
Affiliation(s)
- S Hu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Medical College, Jianghan University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kim JS, Kim WS, Choi HG, Jang B, Lee K, Park JH, Kim HJ, Cho SN, Shin SJ. Mycobacterium tuberculosis RpfB drives Th1-type T cell immunity via a TLR4-dependent activation of dendritic cells. J Leukoc Biol 2013; 94:733-49. [PMID: 23825389 DOI: 10.1189/jlb.0912435] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The failure of Mycobacterium bovis BCG as a TB vaccine against TB reactivation suggests that latency-associated proteins should be included in alternative TB vaccine development. Further, antigens known to generate protective immunity against the strong Th1 stimulatory response to reactivated TB should be included in novel vaccine design. Recent studies have emphasized the importance of Rpfs from Mycobacterium tuberculosis in the reactivation process and cellular immunity. However, little is known about how RpfB mediates protective immunity against M. tuberculosis. Here, we investigated the functional roles and signaling mechanisms of RpfB in DCs and its implications in the development of T cell immunity. DCs treated with RpfB displayed features of mature and functional status, with elevated expression of cell surface molecules (CD80, CD86, and MHC class I and II) and proinflammatory cytokine production (TNF-α, IL-1β, IL-6, and IL-12p70). Activation of DCs was mediated by direct binding of RpfB to TLR4, followed by MyD88/TRIF-dependent signaling to MAPKs and NF-κB signaling pathways. Specifically, we found that the RpfB G5 domain is the most important part in RpfB binding to TLR4. RpfB-treated DCs effectively polarized naïve CD4(+) and CD8(+) T cells to secrete IFN-γ and IL-2. Importantly, RpfB induced the expansion of memory CD4(+)/CD8(+)CD44(high)CD62L(low) T cells in the spleen of M. tuberculosis-infected mice. Our data suggest that RpfB regulates innate immunity and activates adaptive immunity through TLR4, a finding that may help in the design of more effective vaccines.
Collapse
Affiliation(s)
- Jong-Seok Kim
- 2.Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Deng YH, He HY, Zhang BS. Evaluation of protective efficacy conferred by a recombinant Mycobacterium bovis BCG expressing a fusion protein of Ag85A-ESAT-6. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2013; 47:48-56. [PMID: 23357605 DOI: 10.1016/j.jmii.2012.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/01/2012] [Accepted: 11/27/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND We previously constructed a recombinant bacille Calmette-Guérin (rBCG-AE) strain that could express a fused Ag85A-ESAT-6 protein. That study suggested that the rBCG-AE strain was able to induce a higher titer of antibody and elicit a more long-lived and stronger Th1-type cellular immune responses than the parental BCG strain, the rBCG-A strain (i.e., expressing Ag85A), or the rBCG-E strain (i.e., expressing ESAT-6). METHODS In the current study, we further investigated the strain's protective efficacy against Mycobacterium tuberculosis H37Rv infection in BALB/c mice through evaluating organ bacterial loads, lung histopathology, lung immunohistochemistry, and net weight gain or loss by using conventional BCG, rBCG-A, and rBCG-E as the controls. RESULTS From the 3rd to 9th weeks after the challenge infection, the bacterial counts were significantly lower in tissues (e.g., spleen and lung tissues) in the mice immunized with rBCG-AE than in the control group, but were higher than the counts in the BCG group. The pathological damage in the lung tissues of the rBCG-AE group gradually improved from the 6th to 9th weeks after being infected with M. tuberculosis H37Rv, but the score of pathological changes in the rBCG-AE group was obviously higher than the score in the BCG group. There was no difference in the percentage of IFN-γ and iNOS positive cells in the lung tissues of the rBCG-AE and BCG groups. CONCLUSION The results suggest that rBCG-AE can not promote protective efficacy against M. tuberculosis H37Rv infection, compared to the BCG vaccine.
Collapse
Affiliation(s)
- Yi-Hao Deng
- Department of Human Anatomy, College of Preclinical Medicine, Dali University, Dali 671000, China.
| | - Hong-Yun He
- Department of Human Anatomy, College of Preclinical Medicine, Dali University, Dali 671000, China
| | - Ben-Si Zhang
- Department of Human Anatomy, College of Preclinical Medicine, Dali University, Dali 671000, China
| |
Collapse
|