1
|
Zhang F, Sun L, Lafferty MK, Margolick JB, Garzino-Demo A. Decreased MIP-3α Production from Antigen-Activated PBMCs in Symptomatic HIV-Infected Subjects. Pathogens 2021; 11:pathogens11010007. [PMID: 35055955 PMCID: PMC8778881 DOI: 10.3390/pathogens11010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 11/30/2022] Open
Abstract
CD4+ CCR6+ T cells are highly susceptible to HIV infection, and a high cytokine producing CCR6+ T cell subset is selectively lost during HIV infection. The CCR6 chemokine MIP-3α (CCL20) is produced at sites of infection in SIV animal models. Recently, we have shown that MIP-3α inhibits HIV replication. This inhibition of HIV infection is mediated by CCR6 signaling and eventuates in increased APOBEC3G expression. Since there are few existing reports on the role of MIP-3α in health or disease, we studied its production by PBMCs from HIV-seronegative and HIV+ subjects. We evaluated the ability of PBMCs to produce MIP-3α in response to antigen stimulation using cells obtained from two groups: one composed of HIV-seronegative subjects (n = 16) and the other composed of HIV+ subjects (n = 58), some asymptomatic and some with clinically defined AIDS. Antigens included fragment C of the tetanus toxin, Candida albicans, whole-inactivated HIV, and HIV p24. MIP-3α was detected by ELISA in tissue culture supernatants of antigen-stimulated PBMCs. MIP-3α production by antigen-stimulated PBMCs was readily measured for HIV-negative subjects and for HIV-seropositive asymptomatic subjects, but not for patients with AIDS. These results suggest that subversion of the MIP-3α-CCR6 axis by HIV during the course of infection contributes to the loss of immune function that eventually leads to AIDS.
Collapse
Affiliation(s)
- Fuchun Zhang
- Laboratory of Virus-Host Interactions, Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Department of Microbiology and Immunology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA; (F.Z.); (L.S.); (M.K.L.)
- Department of Infectious Diseases, Guangzhou No. 8 People’s Hospital, Guangzhou Medical College, Guangzhou 510060, China
| | - Lingling Sun
- Laboratory of Virus-Host Interactions, Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Department of Microbiology and Immunology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA; (F.Z.); (L.S.); (M.K.L.)
| | - Mark K. Lafferty
- Laboratory of Virus-Host Interactions, Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Department of Microbiology and Immunology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA; (F.Z.); (L.S.); (M.K.L.)
| | - Joseph B. Margolick
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA;
| | - Alfredo Garzino-Demo
- Laboratory of Virus-Host Interactions, Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Department of Microbiology and Immunology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA; (F.Z.); (L.S.); (M.K.L.)
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
- Correspondence: or
| |
Collapse
|
2
|
Early T Follicular Helper Cell Responses and Germinal Center Reactions Are Associated with Viremia Control in Immunized Rhesus Macaques. J Virol 2019; 93:JVI.01687-18. [PMID: 30463978 DOI: 10.1128/jvi.01687-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022] Open
Abstract
T follicular helper (TFH) cells are fundamental in germinal center (GC) maturation and selection of antigen-specific B cells within secondary lymphoid organs. GC-resident TFH cells have been fully characterized in human immunodeficiency virus (HIV) infection. However, the role of GC TFH cells in GC B cell responses following various simian immunodeficiency virus (SIV) vaccine regimens in rhesus macaques (RMs) has not been fully investigated. We characterized GC TFH cells of RMs over the course of a mucosal/systemic vaccination regimen to elucidate GC formation and SIV humoral response generation. Animals were mucosally primed twice with replicating adenovirus type 5 host range mutant (Ad5hr)-SIV recombinants and systemically boosted with ALVAC-SIVM766Gag/Pro/gp120-TM and SIVM766&CG7V gD-gp120 proteins formulated in alum hydroxide (ALVAC/Env) or DNA encoding SIVenv/SIVGag/rhesus interleukin 12 (IL-12) plus SIVM766&CG7V gD-gp120 proteins formulated in alum phosphate (DNA&Env). Lymph nodes were biopsied in macaque subgroups prevaccination and at day 3, 7, or 14 after the 2nd Ad5hr-SIV prime and the 2nd vector/Env boost. Evaluations of GC TFH and GC B cell dynamics including correlation analyses supported a significant role for early GC TFH cells in providing B cell help during initial phases of GC formation. GC TFH responses at day 3 post-mucosal priming were consistent with generation of Env-specific memory B cells in GCs and elicitation of prolonged Env-specific humoral immunity in the rectal mucosa. GC Env-specific memory B cell responses elicited early post-systemic boosting correlated significantly with decreased viremia postinfection. Our results highlight the importance of early GC TFH cell responses for robust GC maturation and generation of long-lasting SIV-specific humoral responses at mucosal and systemic sites. Further investigation of GC TFH cell dynamics should facilitate development of an efficacious HIV vaccine.IMPORTANCE The modest HIV protection observed in the human RV144 vaccine trial associated antibody responses with vaccine efficacy. T follicular helper (TFH) cells are CD4+ T cells that select antibody secreting cells with high antigenic affinity in germinal centers (GCs) within secondary lymphoid organs. To evaluate the role of TFH cells in eliciting prolonged virus-specific humoral responses, we vaccinated rhesus macaques with a combined mucosal prime/systemic boost regimen followed by repeated low-dose intrarectal challenges with SIV, mimicking human exposure to HIV-1. Although the vaccine regimen did not prevent SIV infection, decreased viremia was observed in the immunized macaques. Importantly, vaccine-induced TFH responses elicited at day 3 postimmunization and robust GC maturation were strongly associated. Further, early TFH-dependent SIV-specific B cell responses were also correlated with decreased viremia. Our findings highlight the contribution of early vaccine-induced GC TFH responses to elicitation of SIV-specific humoral immunity and implicate their participation in SIV control.
Collapse
|
3
|
Gonzalez SM, Taborda NA, Rugeles MT. Role of Different Subpopulations of CD8 + T Cells during HIV Exposure and Infection. Front Immunol 2017; 8:936. [PMID: 28824656 PMCID: PMC5545716 DOI: 10.3389/fimmu.2017.00936] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/21/2017] [Indexed: 01/12/2023] Open
Abstract
During HIV infection, specific responses exhibited by CD8+ T cells are crucial to establish an early, effective, and sustained viral control, preventing severe immune alterations and organ dysfunction. Several CD8+ T cells subsets have been identified, exhibiting differences in terms of activation, functional profile, and ability to limit HIV replication. Some of the most important CD8+ T cells subsets associated with viral control, production of potent antiviral molecules, and strong polyfunctional responses include Th1-like cytokine pattern and Tc17 cells. In addition, the expression of specific activation markers has been also associated with a more effective response of CD8+ T cells, as evidenced in HLA-DR+ CD38− cells. CD8+ T cells in both, peripheral blood and gut mucosa, are particularly important in individuals with a resistant phenotype, including HIV-exposed seronegative individuals (HESNs), long-term non-progressors (LTNPs) and HIV-controllers. Although the role of CD8+ T cells has been extensively explored in the context of an established HIV-1 infection, the presence of HIV-specific cells with effector abilities and a defined functional profile in HESNs, remain poorly understood. Here, we reviewed studies carried out on different subpopulations of CD8+ T cells in relation with natural resistance to HIV infection and progression.
Collapse
Affiliation(s)
- Sandra Milena Gonzalez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Natalia Andrea Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - María Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
4
|
Mohanram V, Demberg T, Musich T, Tuero I, Vargas-Inchaustegui DA, Miller-Novak L, Venzon D, Robert-Guroff M. B Cell Responses Associated with Vaccine-Induced Delayed SIVmac251 Acquisition in Female Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2016; 197:2316-24. [PMID: 27534560 DOI: 10.4049/jimmunol.1600544] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/19/2016] [Indexed: 11/19/2022]
Abstract
An established sex bias in HIV pathogenesis is linked to immune responses. Recently we reported a vaccine-induced sex bias: vaccinated female but not male rhesus macaques exhibited delayed SIV acquisition. This outcome was correlated with SIV Env-specific rectal IgA, rectal memory B cells, and total rectal plasma cells. To uncover additional contributing factors, using samples from the same study, we investigated memory B cell population dynamics in blood, bone marrow, and rectal tissue during immunization and postchallenge; IgG subtypes and Ab avidity; and regulatory B (Breg) cell frequency and function. Few sex differences were seen in Env-specific memory B cell, plasmablast, or plasma cell frequencies in the three compartments. Males had higher IgG Ab titers and avidity indices than females. However, females had elevated levels of Env-specific IgG1, IgG2, and IgG3 Abs compared with males. gp140-specific IgG3 Abs of females but not males were correlated with Ab-dependent cell-mediated cytotoxicity activity against gp120 targets (p = 0.026) and with Ab-dependent phagocytic activity (p = 0.010). IgG3 Ab of females but not males also correlated with decreased peak viremia (p = 0.028). Peripheral blood CD19(+)CD25(+) Breg cells suppressed T cell proliferation compared with CD19(+)CD25(-) cells (p = 0.031) and exhibited increased IL-10 mRNA expression (p = 0.031). Male macaques postvaccination (p = 0.018) and postinfection (p = 0.0048) exhibited higher Breg frequencies than females. Moreover, male Breg frequencies correlated with peak viremia (p = 0.0071). Our data suggest that vaccinated females developed better Ab quality, contributing to better functionality. The elevated Breg frequencies in males may have facilitated SIV acquisition.
Collapse
Affiliation(s)
- Venkatramanan Mohanram
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Thorsten Demberg
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Thomas Musich
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Iskra Tuero
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Diego A Vargas-Inchaustegui
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Leia Miller-Novak
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, Bethesda, MD 20892
| | - Marjorie Robert-Guroff
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
5
|
Immunoregulatory T cells may be involved in preserving CD4 T cell counts in HIV-infected long-term nonprogressors and controllers. J Acquir Immune Defic Syndr 2014; 65:10-8. [PMID: 23995946 DOI: 10.1097/qai.0b013e3182a7c932] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND HIV-infected controllers control viral replication and maintain normal CD4 T cell counts. Long-term nonprogressors (LTNPs) also maintain normal CD4 T cell counts but have ongoing viral replication. We hypothesized that immunoregulatory mechanisms are involved in preserved CD4 T cell counts in controllers and in LTNPs. METHODS Twenty HIV-infected viremic controllers, 5 elite controllers (ECs), and 14 LTNPs were included in this cross-sectional study. For comparison, 25 progressors and 34 healthy controls were included. Regulatory T cells (Tregs), Treg subpopulations, CD161+Th17 cells, and CD3+CD8+CD161(high)Tc17 cells in peripheral blood were measured using flow cytometry. Tregs in lymphoid tissue were determined in tonsil biopsies and evaluated using immunolabeling. The production of transforming growth factor beta (TGF-β), interleukin (IL)-10, and IL-17 upon stimulation with phytohemagglutinin in peripheral blood was determined by Luminex. RESULTS All groups of HIV-infected patients displayed similar percentages of Tregs in both peripheral blood and lymphoid tissue. However, a larger percentage of Tregs in ECs and LTNPs were activated compared with that in controls, progressors, and viremic controllers. Further, ECs as the only group of HIV-infected patients, displayed elevated percentages of CD161+Th17 cells, preserved CD3+CD8+CD161(high)Tc17 cells, and preserved IL-10 production. CONCLUSIONS Overall, Treg percentage was similar in both blood and lymphoid tissue in all groups of patients and controls. However, both ECs and LTNPs displayed a large proportion of activated Tregs suggesting immunoregulatory mechanisms to be involved in preserving CD4 T cell counts in HIV-infected nonprogressors.
Collapse
|
6
|
Demberg T, Brocca-Cofano E, Kuate S, Aladi S, Vargas-Inchaustegui DA, Venzon D, Kalisz I, Kalyanaraman V, Lee EM, Pal R, DiPasquale J, Ruprecht RM, Montefiori DC, Srivastava I, Barnett SW, Robert-Guroff M. Impact of antibody quality and anamnestic response on viremia control post-challenge in a combined Tat/Env vaccine regimen in rhesus macaques. Virology 2013; 440:210-21. [PMID: 23528732 PMCID: PMC3744165 DOI: 10.1016/j.virol.2013.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/03/2012] [Accepted: 02/27/2013] [Indexed: 11/18/2022]
Abstract
Previously, priming rhesus macaques with Adenovirus type 5 host range mutant-recombinants encoding Tat and Env and boosting with Tat and Env protein in MPL-SE controlled chronic viremia by 4 logs following homologous intravenous SHIV89.6P challenge. Here we evaluated Tat, Env, and Tat/Env regimens for immunogenicity and protective efficacy using clade C Env, alum adjuvant, and a heterologous intrarectal SHIV1157ipd3N4 challenge. Despite induction of strong cellular and humoral immunity, Tat/Env group T and B-cell memory responses were not significantly enhanced over Tat- or Env-only groups. Lack of viremia control post-challenge was attributed to lower avidity Env antibodies and no anamnestic ADCC response or SHIV1157ipd3N4 neutralizing antibody development post-challenge. Poor biologic activity of the Tat immunogen may have impaired Tat immunity. In the absence of sterilizing immunity, strong anamnestic responses to heterologous virus can help control viremia. Both antibody breadth and optimal adjuvanticity are needed to elicit high-quality antibody for protective efficacy.
Collapse
Affiliation(s)
- Thorsten Demberg
- Vaccine Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Seraphin Kuate
- Vaccine Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Stanley Aladi
- Vaccine Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Irene Kalisz
- Advanced BioScience Laboratories, Inc., Kensington, MD 20895, USA
| | | | - Eun Mi Lee
- Advanced BioScience Laboratories, Inc., Kensington, MD 20895, USA
| | - Ranajit Pal
- Advanced BioScience Laboratories, Inc., Kensington, MD 20895, USA
| | - Janet DiPasquale
- Vaccine Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
7
|
Major LD, Partridge TS, Gardner J, Kent SJ, de Rose R, Suhrbier A, Schroder WA. Induction of SerpinB2 and Th1/Th2 modulation by SerpinB2 during lentiviral infections in vivo. PLoS One 2013; 8:e57343. [PMID: 23460840 PMCID: PMC3583835 DOI: 10.1371/journal.pone.0057343] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/21/2013] [Indexed: 11/25/2022] Open
Abstract
SerpinB2, also known as plasminogen activator inhibitor type 2, is a major product of activated monocytes/macrophages and is often strongly induced during infection and inflammation; however, its physiological function remains somewhat elusive. Herein we show that SerpinB2 is induced in peripheral blood mononuclear cells following infection of pigtail macaques with CCR5-utilizing (macrophage-tropic) SIVmac239, but not the rapidly pathogenic CXCR4-utilizing (T cell-tropic) SHIVmn229. To investigate the role of SerpinB2 in lentiviral infections, SerpinB2(-/-) mice were infected with EcoHIV, a chimeric HIV in which HIV gp120 has been replaced with gp80 from ecotropic murine leukemia virus. EcoHIV infected SerpinB2(-/-) mice produced significantly lower anti-gag IgG1 antibody titres than infected SerpinB2(+/+) mice, and showed slightly delayed clearance of EcoHIV. Analyses of published microarray studies showed significantly higher levels of SerpinB2 mRNA in monocytes from HIV-1 infected patients when compared with uninfected controls, as well as a significant negative correlation between SerpinB2 and T-bet mRNA levels in peripheral blood mononuclear cells. These data illustrate that SerpinB2 can be induced by lentiviral infection in vivo and support the emerging notion that a physiological role of SerpinB2 is modulation of Th1/Th2 responses.
Collapse
Affiliation(s)
- Lee D. Major
- Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Thomas S. Partridge
- Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Joy Gardner
- Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Robert de Rose
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Andreas Suhrbier
- Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland, Australia
| | - Wayne A. Schroder
- Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Abstract
CD8 Tc17 cells with pro-inflammatory properties have only recently been acknowledged, and Tc17 cells in HIV-infection are not described. CD3CD8CD161 Tc17 cells and the production of interleukin (IL)-17 were examined in untreated and treated HIV-infected patients, HIV-hepatitis C virus co-infected patients, and healthy controls. Depletion of CD3CD8CD161 Tc17 cells and diminished production of IL-17 in HIV-infected patients were found. The level of Tc17 cells was associated with the CD4 cell count in treated patients.
Collapse
|
9
|
Candida and candidiasis in HIV-infected patients: where commensalism, opportunistic behavior and frank pathogenicity lose their borders. AIDS 2012; 26:1457-72. [PMID: 22472853 DOI: 10.1097/qad.0b013e3283536ba8] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this era of efficacious antiretroviral therapy and consequent immune reconstitution, oropharyngeal and esophageal candidiasis (OPC and OEC) still remain two clinically relevant presentations in the global HIV setting. Both diseases are predominantly caused by Candida albicans, a polymorphic fungus which is a commensal microbe in the healthy individual but can become an aggressive pathogen in a debilitated host. Actually, C. albicans commensalism is not the result of a benign behavior of one of the many components of human microbiota, but rather the result of host's potent innate and adaptive immune responses that restrict the growth of a potentially dangerous microrganism on the epithelia. An important asset guarding against the fungus is the Th17 functional subset of T helper cells. The selective loss of these cells with the progression of HIV infection causes the decay of fungal containment on the oral epithelium and allows C. albicans to express its pathogenic potential. An important part of this potential is represented by mechanisms to evade host immunity and enhance inflammation and immunoactivation. In C. albicans, these mechanisms are mostly incorporated into and expressed by characteristic morphogenic transitions such as the yeast-to-hyphal growth and the white-to-opaque switch. In addition, HIV infection generates an 'environment' selecting for overexpression of the virulence potential by the fungus, particularly concerning the secreted aspartyl proteinases (Saps). These enzymes can degrade critical host defense components such as complement and epithelial defensive proteins such as histatin-5 and E-cadherin. It appears that part of this enhanced Candida virulence could be induced by the binding of the fungus to HIV and/or induced by HIV proteins such as GP160 and tat. Both OPC and OEC can be controlled by old and new antimycotics, but in the absence of host collaboration, anticandidal therapy may become ineffective in the long run. For these reasons, new therapeutics targeting virulence factors and specific immune interventions are being addressed. Among these new approaches, vaccination is a promising one. Two subunit vaccines based on antigens dominantly expressed by C. albicans in vivo, that is the Als3 adhesin and Sap2, have recently undergone phase 1 clinical trials. Overall, studies of Candida and candidiasis in the HIV-positive patient while certainly contributing to a more effective control of the microorganism may also provide useful information on HIV-host relationship itself that can assist the fight against the virus.
Collapse
|
10
|
Abstract
Interleukin (IL)-21 is one of a group of cytokines including IL-2, IL-4, IL-7, IL-9 and IL-15 whose receptor complexes share the common γ chain (γ(c)). Secretion of IL-21 is restricted mainly to T follicular helper (TFH) CD4 T cell subset with contributions from Th17, natural killer (NK) T cells, but the effects of IL-21 are pleiotropic, owing to the broad cellular distribution of the IL-21 receptor. The role of IL-21 in sustaining and regulating T cell, B cell and NK cell responses during chronic viral infections has recently come into focus. This chapter reviews current knowledge about the biology of IL-21 in the context of HIV infection.
Collapse
Affiliation(s)
- Suresh Pallikkuth
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | | | | |
Collapse
|