1
|
Liu C, Zhang Y, Ye C, Zhao F, Chen Y, Han S. Combined strategies for improving the heterologous expression of a novel xylanase from Fusarium oxysporum Fo47 in Pichia pastoris. Synth Syst Biotechnol 2024; 9:426-435. [PMID: 38601209 PMCID: PMC11004072 DOI: 10.1016/j.synbio.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/03/2024] [Accepted: 03/17/2024] [Indexed: 04/12/2024] Open
Abstract
Xylanase, an enzyme capable of hydrolyzing non-starch polysaccharides found in grain structures like wheat, has been found to improve the organizational structure of dough and thus increase its volume. In our past work, one promising xylanase FXYL derived from Fusarium oxysporum Fo47 and first expressed 779.64 U/mL activity in P. pastoris. It has shown significant potential in improving the quality of whole wheat bread, making it become a candidate for development as a new flour improver. After optimization of expression elements and gene dose, the xylanase activity of FXYL strain carrying three-copies reached 4240.92 U/mL in P. pastoris. In addition, 12 factors associated with the three stages of protein expression pathway were co-expressed individually in order in three-copies strain, and the translation factor Pab1 co-expression increased FXYL activity to 8893.53 U/mL. Nevertheless, combining the most effective or synergistic factors from three stages did not exhibit better results than co-expressing them alone. To further evaluate the industrial potential, the xylanase activity and protein concentration reached 81184.51 U/mL and 11.8 g/L in a 5 L fed-batch fermenter. These engineering strategies improved the expression of xylanase FXYL by more than 104-fold, providing valuable insights for the cost-effective industrial application of FXYL in the baking field.
Collapse
Affiliation(s)
- Chun Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yaping Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chunting Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Fengguang Zhao
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yian Chen
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shuangyan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
2
|
Wang Z, Mi J, Wang Y, Wang T, Qi X, Li K, Pan Q, Gao Y, Gao L, Liu C, Zhang Y, Wang X, Cui H. Recombinant Lactococcus Expressing a Novel Variant of Infectious Bursal Disease Virus VP2 Protein Can Induce Unique Specific Neutralizing Antibodies in Chickens and Provide Complete Protection. Viruses 2020; 12:v12121350. [PMID: 33255742 PMCID: PMC7760868 DOI: 10.3390/v12121350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Recent reports of infectious bursal disease virus (IBDV) infections in China, Japan, and North America have indicated the presence of variant, and the current conventional IBDV vaccine cannot completely protect against variant IBDV. In this study, we constructed recombinant Lactococcus lactis (r-L. lactis) expressing a novel variant of IBDV VP2 (avVP2) protein along with the Salmonella resistance to complement killing (RCK) protein, and Western blotting analysis confirmed that r-L. lactis successfully expressed avVP2-RCK fusion protein. We immunized chickens with this vaccine and subsequently challenged them with the very virulent IBDV (vvIBDV) and a novel variant wild IBDV (avIBDV) to evaluate the immune effect of the vaccine. The results show that the r-L. lactis-avVP2-RCK-immunized group exhibited a 100% protection rate when challenged with avIBDV and 100% survival rate to vvIBDV. Furthermore, this immunization resulted in the production of unique neutralizing antibodies that cannot be detected by conventional ELISA. These results indicate that r-L. lactis-avVP2-RCK is a promising candidate vaccine against IBDV infections, which can produce unique neutralizing antibodies that cannot be produced by other vaccines and protect against IBDV infection, especially against the variant strain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiaomei Wang
- Correspondence: (X.W.); (H.C.); Tel.: +86-0451-5105-1693 (H.C.)
| | - Hongyu Cui
- Correspondence: (X.W.); (H.C.); Tel.: +86-0451-5105-1693 (H.C.)
| |
Collapse
|
3
|
An optimized secretory expression system and immunogenicity evaluation for glycosylated gp90 of avian reticuloendotheliosis virus. Vet Res 2020; 51:133. [PMID: 33076991 PMCID: PMC7574338 DOI: 10.1186/s13567-020-00857-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/30/2020] [Indexed: 12/03/2022] Open
Abstract
Reticuloendotheliosis is an important immunosuppressive disease, associated with avian reticuloendotheliosis virus (REV) infection, and causes notable economic losses worldwide. Glycoprotein gp90 is an important structural protein of REV, and considered to be the most important immunogenic antigen, which can induce neutralizing antibodies against REV. In this study, an optimized suspension culture system was developed and applied to secretory express the immunogenic surface antigen gp90. To achieve an optimal glycosylation, the gp90 was designed to secretory expressed into the supernatant of the cell culture, which also occurs in the natural protein maturation procedure of REV. Serum-free culture medium was introduced to simplify the purification process and reduce the production costs. Based on the purified glycosylated gp90, an oil-emulsion subunit REV vaccine candidate was developed and evaluated in chickens. The subunit gp90-based vaccine induced fast immune responses, high levels of antibodies (REV-specific antibody, gp90-specific antibody, and neutralizing antibody against REV), and preferential T helper 2 (Th2) (interleukin-4 secretion) not Th1 (interferon-γ secretion) response. Furthermore, the viremia induced by REV infection was significantly reduced in chickens immunized with the glycosylated gp90. Overall, an optimized secretory expression system for glycosylated gp90 was developed, and the glycosylated gp90 obtained in this study retained good immunogenicity and could be an attractive vaccine candidate to protect chickens against REV horizonal infection.
Collapse
|
4
|
Jing W, Zhou J, Wang C, Qiu J, Guo H, Li H. Preparation of the Secretory Recombinant ALV-J gp85 Protein Using Pichia pastoris and Its Immunoprotection as Vaccine Antigen Combining with CpG-ODN Adjuvant. Viral Immunol 2018; 31:407-416. [PMID: 29698128 DOI: 10.1089/vim.2017.0170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This study focuses on preparing the secretory recombinant J subgroup of avian leukosis virus (ALV-J) gp85 protein using Pichia pastoris and evaluating its immunoprotection as vaccine antigen combining with CpG-ODN adjuvant. The secretory recombinant plasmid pPIC9-gp85 containing ALV-J gp85 gene was designed and was transfected into the genome of P. pastoris (GS115) cells. The recombinant plasmid was expressed under the induction of methanol. The expressed products in the medium of the cells were purified and identified with endoglycosidase digestion assay and western blot mediated with monoclonal antibody (MAb) JE9. The purified product combining with CpG-ODN adjuvant was inoculated intramuscularly into 7-day-old chickens and three booster inoculations were performed on 21 days post first inoculation (dpfi), 42, and 56 dpfi. The antibody responses and cellular immune responses were detected, and the protective effects were analyzed after challenge with ALV-J. The results showed that the secretory pPIC9-gp85 plasmid was successfully constructed and could be stably expressed in GS115 cells. The expressed products were N-acetylglucosylated and could specifically combine with MAb (JE9). The secreted gp85 protein combining with CpG-ODN adjuvant could induce higher antibody response and spleen lymphocyte proliferation response and IFN-γ-inducing response, and could protect all the inoculated chickens against the viremia and the immunosuppressive lesions caused by ALV-J challenge. The results of neutralizing test in vitro suggested that the antisera with some ALV-J antibody titers could neutralize ALV-J strain and inhibit the growth of virus in vitro. The result of IFA showed that IgG antibody in the antisera could specifically combine with ALV-J strain in cells. It can be concluded that the secretory recombinant gp85 protein, as a new acetylglucosylated gp85 protein, was successfully prepared and combining with CpG-ODN adjuvant could protect the inoculated chickens against ALV-J infection. This study first reported the methods on preparing the secretory recombinant ALV-J gp85 protein using P. pastoris and evaluated its immunoprotection.
Collapse
Affiliation(s)
- Weifang Jing
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai'an, China
| | - Jinrun Zhou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai'an, China
| | - Chunyang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai'an, China
| | - Jianhua Qiu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai'an, China
| | - Huijun Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai'an, China
| | - Hongmei Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai'an, China
| |
Collapse
|
5
|
Ren Z, Meng F, Li Q, Wang Y, Liu X, Cui Z, Chang S, Zhao P. Protection induced by a gp90 protein-based vaccine derived from a Reticuloendotheliosis virus strain isolated from a contaminated IBD vaccine. Virol J 2018. [PMID: 29530099 PMCID: PMC5848573 DOI: 10.1186/s12985-018-0948-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Reticuloendotheliosis is an immunosuppressive disease caused by avian reticuloendotheliosis virus (REV). It is commonly found in poultry farms and has caused a notable economic loss worldwide. Despite this, there is currently no effective vaccine available to protect against REV infection. Method In this study, gp90 protein derived from an REV isolated from a contaminated vaccine was co-administered with cytosine-phosphate-guanine oligodeoxynucleotide (CpG-ODN) adjuvant to hens to determine if it protects their chicks against REV infection. To synthesize the gp90 protein, the gp90 gene was amplified using polymerase chain reaction, expressed in Escherichia coli, and purified. The resulting recombinant protein was injected intramuscularly into breeder hens along with CpG-ODN adjuvant and then serum antibody levels were regularly evaluated. After the fertilized eggs from these vaccinated hens had hatched, the resulting chicks were challenged with a 102.7 50% tissue culture infectious dose (TCID50) of REV at 1 day old and the REV antibody levels in these hatched chickens were evaluated before and after the challenge. Viremia and growth rate were measured weekly and statistically analyzed. Results The results suggest that the gp90 recombinant protein was successfully prepared and, when used with CpG-ODN adjuvant to immunize breeder hens, induced serological antibody production against REV in both hens and their hatched chicks. In addition, the maternal antibodies induced by the gp90 protein vaccine effectively protected majority of the chicks from REV infection. Conclusions Overall, we found the gp90 protein obtained in this study may be a potential vaccine candidate that had good immunogenicity and could be an auxiliary measure to accelerate the eradication of REV.
Collapse
Affiliation(s)
- Zhihao Ren
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Fanfeng Meng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Qiuchen Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Xiaofeng Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China. .,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China. .,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China.
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China. .,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China. .,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China.
| |
Collapse
|
6
|
Khairy WOA, Qian K, Shao H, Ye J, Qin A. Identification of two conserved B-cell epitopes in the gp90 of reticuloendothelial virus using peptide microarray. Vet Microbiol 2017; 211:107-111. [PMID: 29102104 DOI: 10.1016/j.vetmic.2017.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
Since the gp90 protein of Reticuloendotheliosis virus (REV) plays vital roles in virus neutralization, so detailed analysis of REV-gp90 epitopes is important for the development of epitope based marker vaccines and diagnostic tools for REV infections. In this study, two monoclonal antibodies (mAbs) namely 6C12 and 09980 were used to map the epitopes in REVgp90 using peptide microarray and ELISA. Peptide microarray revealed that mAbs 6C12 and 09980 recognized 216YHPLA220 and 230DPQTSDILEA239 motifs, respectively. This result was confirmed by ELISA using synthetic peptides. Moreover, homology analysis indicated that mAbs defined epitopes are highly conserved among REV strains used in this study. The mAbs and their epitopes identified in this study may have potential applications in development of diagnostic techniques and epitope-based marker vaccines for control of REV infections.
Collapse
Affiliation(s)
- Wiaam O A Khairy
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North 13314, Sudan.
| | - Kun Qian
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China.
| | - Hongxia Shao
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China.
| | - Jianqiang Ye
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China.
| | - Aijian Qin
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China.
| |
Collapse
|
7
|
Immunoprotection induced by CpG-ODN/Poly(I:C) combined with recombinant gp90 protein in chickens against reticuloendotheliosis virus infection. Antiviral Res 2017; 147:1-10. [PMID: 28465147 DOI: 10.1016/j.antiviral.2017.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/11/2017] [Accepted: 04/28/2017] [Indexed: 11/20/2022]
Abstract
The present study is focused on investigating the immunoprotective effects of CpG-ODN/Poly(I:C) combined with the viral glycoprotein gp90 protein against reticuloendotheliosis virus (REV) infection in chickens. REV's gp90 gene was amplified from the REV-infected cells and expressed in Escherichia coli (E.coli). The expressed products, upon purification, were inoculated into 7-day-old chickens with PBS, CpG-ODN or Poly(I:C) adjuvant; Two booster inoculations were then conducted, and then each chicken was challenged. The presence of REV-antibodies in serum was determined weekly after the first vaccination. The viremia and immunosuppressive effects of REV infection were also monitored after the challenge. The neutralizing effects of the antisera were tested in vitro. The results showed that the recombinant gene containing REV gp90 gene was expressed into the recombinant protein with a size of 51 Kilo Dalton (KD), which could be recognized by a monoclonal antibody (MAb) against the gp90 protein. The viremia and immunosuppressive effects of avian influenza virus (AIV) vaccine caused by REV challenge in CpG-ODN group and in Poly(I:C) group were dramatically decreased. REV antibody with low titers was induced in gp90 group and the inoculated chickens were partly protected. Compared with those in gp90 group, the titers and the positive ratios of REV antibody in CpG+gp90 group were significantly increased, whereas the viremia and immunosuppressive effects of AIV vaccine caused by REV infection were significantly decreased. In the Poly(I:C) +gp90 group, the viremia and immunosuppressive effects caused by REV infection were also dramatically decreased, although REV antibody responses were softly increased. The diluted antisera from the vaccinated chickens in both groups could completely inhibit the replication of REV in chick fibroblast cells (CEF). Hence, it can be concluded that CpG-ODN or the Poly(I:C) adjuvant can enhance the antiviral effects of the REV subunit vaccine against REV infection, which may result from different mechanisms.
Collapse
|
8
|
Feng Q, He Y, Lu J. Virus-Like Particles Produced in Pichia Pastoris Induce Protective Immune Responses Against Coxsackievirus A16 in Mice. Med Sci Monit 2016; 22:3370-3382. [PMID: 27659054 PMCID: PMC5036384 DOI: 10.12659/msm.900380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Coxsackievirus A16 (CA16) is one of the main causative agents of hand, foot, and mouth disease (HFMD), and the development of a safe and effective vaccine has been a top priority among CA16 researchers. MATERIAL AND METHODS In this study, we developed a Pichia pastoris yeast system for secretory expression of the virus-like particles (VLPs) for CA16 by co-expression of the P1 and 3CD proteins of CA16. SDS-PAGE, Western blot, and transmission electron microscopy (TEM) were performed to identify the formation of VLPs. Immunogenicity and vaccine efficacy of the CA16 VLPs were assessed in BABL/c mouse models. RESULTS Biochemical and biophysical analysis showed that the yeast-expressed CA16 VLPs were composed of VP0, VP1, and VP3 capsid subunit proteins, and present spherical particles with a diameter of 30 nm, similar to the parental infectious CA16 virus. Furthermore, CA16 VLPs elicited potent humoral and cellular immune responses, and VLPs-immunized sera conferred efficient protection to neonatal mice against lethal CA16 challenge. CONCLUSIONS Our results demonstrate that VLPs produced in Pichia pastoris represent a safe and effective vaccine strategy for CA16.
Collapse
Affiliation(s)
- Qianjin Feng
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Yaqing He
- Microbiological Lab, Shenzhen Centers for Disease Control and Prevention, Shenzhen, Guangdong, China (mainland)
| | - Jiahai Lu
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
9
|
Wang M, Pan Q, Lu Z, Li K, Gao H, Qi X, Gao Y, Wang X. An optimized, highly efficient, self-assembled, subvirus-like particle of infectious bursal disease virus (IBDV). Vaccine 2016; 34:3508-14. [PMID: 27164218 DOI: 10.1016/j.vaccine.2016.02.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 12/01/2022]
Abstract
Infectious bursal disease virus (IBDV) causes immunosuppression in young chickens, leading to increased susceptibility to other diseases and a reduction in the immune response to other vaccines. Thus, IBDV results in great economic losses to the poultry industry. The most effective method of prevention is vaccination. However, medium-virulence vaccines can cause bursal pathological damage and immunosuppression. Here, we describe a safer, self-assembled, subvirus-like particle (sVP) vaccine without a complex purification process. The IBD-VP2 gene was cloned into Pichia pastoris, and the expressed protein self-assembled into T=1 sVPs (∼23nm). Immunization experiments showed that the sVP vaccine elicited high IBDV-neutralizing antibodies in each group, and all birds survived challenge with very virulent IBDV (vvIBDV). Additionally, IBDV RNA was not detected, and sterile immunity was achieved. In conclusion, the IBD-sVP is a suitable candidate for a recombinant subunit vaccine against IBDV.
Collapse
Affiliation(s)
- Miao Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Qing Pan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Zhen Lu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Honglei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
10
|
The case for plant-made veterinary immunotherapeutics. Biotechnol Adv 2016; 34:597-604. [PMID: 26875776 DOI: 10.1016/j.biotechadv.2016.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/14/2016] [Accepted: 02/11/2016] [Indexed: 12/11/2022]
Abstract
The excessive use of antibiotics in food animal production has contributed to resistance in pathogenic bacteria, thereby triggering regulations and consumer demands to limit their use. Alternatives for disease control are therefore required that are cost-effective and compatible with intensive production. While vaccines are widely used and effective, they are available against a minority of animal diseases, and development of novel vaccines and other immunotherapeutics is therefore needed. Production of such proteins recombinantly in plants can provide products that are effective and safe, can be orally administered with minimal processing, and are easily scalable with a relatively low capital investment. The present report thus advocates the use of plants for producing vaccines and antibodies to protect farm animals from diseases that have thus far been managed with antibiotics; and highlights recent advances in product efficacy, competitiveness, and regulatory approval.
Collapse
|
11
|
Fan K, Jiang J, Wang Z, Yin W, Sun Y, Li H. Expression and purification of the recombinant murine REG3α protein in Pichia pastorisand characterization of its antimicrobial and antitumour efficacy. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1037794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
12
|
Khan MA, Hassan N, Ahmad N, Khan MI, Zafar AU, Khan F, Husnain T. Studies to analyse the relationship between IFNα2b gene dosage and its expression, using a Pichia pastoris-based expression system. Yeast 2013; 31:13-28. [PMID: 24214348 DOI: 10.1002/yea.2990] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 11/09/2022] Open
Abstract
Human interferon α2b (hIFNα2b) is the most important member of the interferon family. Escherichia coli, yeasts, mammalian cell cultures and baculovirus-infected insect cells have been used for expressing recombinant human interferon. Recently a Pichia pastoris-based expression system has emerged as an attractive system for producing functional human recombinant IFNα2b. In this regard, gene dosage is considered an important factor in obtaining the optimum expression of recombinant protein, which may vary from one protein to another. In the present study we have shown the effect of IFNα2b gene dosage on extracellular expression of IFNα2b recombinant protein from P. pastoris. Constructs containing from one to five repeats of IFNα2b-expressing cassettes were created via an in vitro multimerization approach. P. pastoris host strain X-33 was transformed using these expression cassettes. Groups of P. pastoris clones transformed with different copies of the IFNα2b expression cassette were screened for intrachromosomal integration. The IFNα2b expression level of stable transformants was checked. The copy number of integrated IFNα2b was determined by performing qPCR of genomic DNA of recombinant P. patoris clones. It was observed that an increase in copy number generally had a positive effect on the expression level of IFNα2b protein. Regarding the performance of multicopy strains, those obtained from transformation of multicopy vectors showed relatively high expression, compared to those generated using transformation vector having only one copy of IFNα2b. It was also observed that an increase in drug resistance of a clone did not guarantee its high expression, as integration of a marker gene did not always correlate with integration of the gene of interest.
Collapse
Affiliation(s)
- Mohsin Ahmad Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | | | | | | | | | | |
Collapse
|
13
|
WANG DAN, REN HUI, XU JINGWEI, SUN PENGDA, FANG XUEDONG. Expression, purification and characterization of human interferon-γ in Pichia pastoris. Mol Med Rep 2013; 9:715-9. [DOI: 10.3892/mmr.2013.1812] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/14/2013] [Indexed: 11/06/2022] Open
|
14
|
Protection of chickens against reticuloendotheliosis virus infection by DNA vaccination. Vet Microbiol 2013; 166:59-67. [DOI: 10.1016/j.vetmic.2013.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 11/22/2022]
|
15
|
Expression, purification, and immunogenic characterization of Epstein-Barr virus recombinant EBNA1 protein in Pichia pastoris. Appl Microbiol Biotechnol 2013; 97:6251-62. [PMID: 23685476 DOI: 10.1007/s00253-013-4967-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus associated with the development of both lymphoid and epithelial tumors. EBNA1 is the only viral protein expressed in all EBV-associated malignancies and plays important roles in EBV latency. Thus, EBNA1 is thought to be a promising antigen for immunotherapy of all EBV-associated malignancies. This study was undertaken to produce recombinant EBNA1 protein in Pichia pastoris and evaluate its immunogenicity. The truncated EBNA1 (E1ΔGA, codons 390-641) was expressed as a secretory protein with an N-terminal histidine tag in the methylotrophic yeast P. pastoris and purified by Ni-NTA affinity chromatography. The purified proteins were then used as antigens to immunize BALB/c mice for production of polyclonal antibodies. Western blot analysis showed that the polyclonal antibodies specifically recognized the EBNA1 protein in B95-8 cell lysates. The recombinant E1ΔGA also induced strong lymphoproliferative and Th1 cytokine responses in mice. Furthermore, mice immunized with E1ΔGA developed CD4+ and CD8+ T cell responses. These findings showed that the yeast-expressed E1ΔGA retained good immunogenicity and might be a promising vaccine candidate against EBV-associated malignancies.
Collapse
|
16
|
Li K, Gao H, Gao L, Qi X, Gao Y, Qin L, Wang Y, Wang X. Enhancement of humoral and cellular immunity in chickens against reticuloendotheliosis virus by DNA prime-protein boost vaccination. Vaccine 2013; 31:1944-9. [DOI: 10.1016/j.vaccine.2013.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/22/2013] [Accepted: 02/05/2013] [Indexed: 11/17/2022]
|
17
|
Hu H, Gao J, He J, Yu B, Zheng P, Huang Z, Mao X, Yu J, Han G, Chen D. Codon optimization significantly improves the expression level of a keratinase gene in Pichia pastoris. PLoS One 2013; 8:e58393. [PMID: 23472192 PMCID: PMC3589435 DOI: 10.1371/journal.pone.0058393] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/04/2013] [Indexed: 11/19/2022] Open
Abstract
The main keratinase (kerA) gene from the Bacillus licheniformis S90 was optimized by two codon optimization strategies and expressed in Pichia pastoris in order to improve the enzyme production compared to the preparations with the native kerA gene. The results showed that the corresponding mutations (synonymous codons) according to the codon bias in Pichia pastoris were successfully introduced into keratinase gene. The highest keratinase activity produced by P. pastoris pPICZαA-kerAwt, pPICZαA-kerAopti1 and pPICZαA-kerAopti2 was 195 U/ml, 324 U/ml and 293 U/ml respectively. In addition, there was no significant difference in biomass concentration, target gene copy numbers and relative mRNA expression levels of every positive strain. The molecular weight of keratinase secreted by recombinant P. pastori was approx. 39 kDa. It was optimally active at pH 7.5 and 50°C. The recombinant keratinase could efficiently degrade both α-keratin (keratin azure) and β-keratin (chicken feather meal). These properties make the P. pastoris pPICZαA-kerAopti1 a suitable candidate for industrial production of keratinases.
Collapse
Affiliation(s)
- Hong Hu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Jie Gao
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Guoquan Han
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
- * E-mail:
| |
Collapse
|
18
|
Identification of a conserved B-cell epitope on reticuloendotheliosis virus envelope protein by screening a phage-displayed random peptide library. PLoS One 2012. [PMID: 23185456 PMCID: PMC3504085 DOI: 10.1371/journal.pone.0049842] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background The gp90 protein of avian reticuloendotheliosis-associated virus (REV-A) is an important envelope glycoprotein, which is responsible for inducing protective antibody immune responses in animals. B-cell epitopes on the gp90 protein of REV have not been well studied and reported. Methods and Results This study describes the identification of a linear B-cell epitope on the gp90 protein by screening a phage-displayed 12-mer random peptide library with the neutralizing monoclonal antibody (mAb) A9E8 directed against the gp90. The mAb A9E8 recognized phages displaying peptides with the consensus motif SVQYHPL. Amino acid sequence of the motif exactly matched 213SVQYHPL219 of the gp90. Further identification of the displayed B cell epitope was conducted using a set of truncated peptides expressed as GST fusion proteins and the Western blot results indicated that 213SVQYHPL219 was the minimal determinant of the linear B cell epitope recognized by the mAb A9E8. Moreover, an eight amino acid peptide SVQYHPLA was proven to be the minimal unit of the epitope with the maximal binding activity to mAb A9E8. The REV-A-positive chicken serum reacted with the minimal linear epitopes in Western blot, revealing the importance of the eight amino acids of the epitope in antibody-epitope binding activity. Furthermore, we found that the epitope is a common motif shared among REV-A and other members of REV group. Conclusions and Significance We identified 213SVQYHPL219 as a gp90-specific linear B-cell epitope recognized by the neutralizing mAb A9E8. The results in this study may have potential applications in development of diagnostic techniques and epitope-based marker vaccines against REV-A and other viruses of the REV group.
Collapse
|
19
|
Wang M, Jiang S, Wang Y. Recombinant VP1 protein expressed in Pichia pastoris induces protective immune responses against EV71 in mice. Biochem Biophys Res Commun 2012; 430:387-93. [PMID: 23159634 DOI: 10.1016/j.bbrc.2012.11.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/09/2012] [Indexed: 12/17/2022]
Abstract
Human enterovirus 71 (EV71) is one of the major causative agents of hand, foot and mouth disease and is also associated with serious neurological diseases in children. Currently, there are no effective antiviral drugs or vaccines against EV71 infection. VP1, one of the major immunogenic capsid proteins of EV71, is widely considered to be the candidate antigen for an EV71 vaccine. In this study, VP1 of EV71 was expressed as a secretory protein with an N-terminal histidine tag in the methylotrophic yeast Pichia pastoris, and purified by Ni-NTA affinity chromatography. Immunogenicity and vaccine efficacy of the recombinant VP1 were assessed in mouse models. The results showed that the recombinant VP1 could efficiently induce anti-VP1 antibodies in BALB/c mice, which were able to neutralize EV71 viruses in an in vitro neutralization assay. Passive protection of neonatal mice further confirmed the prophylactic efficacy of the antisera from VP1 vaccinated mice. Furthermore, VP1 vaccination induced strong lymphoproliferative and Th1 cytokine responses. Taken together, our study demonstrated that the yeast-expressed VP1 protein retained good immunogenicity and was a potent EV71 vaccine candidate.
Collapse
Affiliation(s)
- Man Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | |
Collapse
|
20
|
Huyck RW, Keightley A, Laity JH. Expression and purification of full length mouse metal response element binding transcription factor-1 using Pichia pastoris. Protein Expr Purif 2012; 85:86-93. [PMID: 22780964 DOI: 10.1016/j.pep.2012.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/31/2012] [Accepted: 06/28/2012] [Indexed: 12/01/2022]
Abstract
The metal response element binding transcription factor-1 (MTF-1) is an important stress response, heavy metal detoxification, and zinc homeostasis factor in eukaryotic organisms from Drosophila to humans. MTF-1 transcriptional regulation is primarily mediated by elevated levels of labile zinc, which direct MTF-1 to bind the metal response element (MRE). This process involves direct zinc binding to the MTF-1 zinc fingers, and zinc dependent interaction of the MTF-1 acidic region with the p300 coactivator protein. Here, the first recombinant expression system for mutant and wild type (WT) mouse MTF-1 (mMTF-1) suitable for biochemical and biophysical studies in vitro is reported. Using the methyltropic yeast Pichia pastoris, nearly half-milligram recombinant WT and mutant mMTF-1 were produced per liter of P. pastoris cell culture, and purified by a FLAG-tag epitope. Using a first pass ammonium sulfate purification, followed by anti-FLAG affinity resin, mMTF-1 was purified to >95% purity. This recombinant mMTF-1 was then assayed for direct protein-protein interactions with p300 by co-immunoprecipitation. Surface plasmon resonance studies on mMTF-1 provided the first quantitative DNA binding affinity measurements to the MRE promotor element (K(d)=5±3 nM). Both assays demonstrated the functional activity of the recombinant mMTF-1, while elucidating the molecular basis for mMTF-1-p300 functional synergy, and provided new insights into the mMTF-1 domain specific roles in DNA binding. Overall, this production system provides accessibility for the first time to a multitude of in vitro studies using recombinant mutant and WT mMTF-1, which greatly facilitates new approaches to understanding the complex and varied functions of this protein.
Collapse
Affiliation(s)
- Ryan W Huyck
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110-2499, United States.
| | | | | |
Collapse
|
21
|
Carbohydrate synthesis and biosynthesis technologies for cracking of the glycan code: recent advances. Biotechnol Adv 2012; 31:17-37. [PMID: 22484115 DOI: 10.1016/j.biotechadv.2012.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 03/06/2012] [Accepted: 03/20/2012] [Indexed: 12/22/2022]
Abstract
The glycan code of glycoproteins can be conceptually defined at molecular level by the sequence of well characterized glycans attached to evolutionarily predetermined amino acids along the polypeptide chain. Functional consequences of protein glycosylation are numerous, and include a hierarchy of properties from general physicochemical characteristics such as solubility, stability and protection of the polypeptide from the environment up to specific glycan interactions. Definition of the glycan code for glycoproteins has been so far hampered by the lack of chemically defined glycoprotein glycoforms that proved to be extremely difficult to purify from natural sources, and the total chemical synthesis of which has been hitherto possible only for very small molecular species. This review summarizes the recent progress in chemical and chemoenzymatic synthesis of complex glycans and their protein conjugates. Progress in our understanding of the ways in which a particular glycoprotein glycoform gives rise to a unique set of functional properties is now having far reaching implications for the biotechnology of important glycodrugs such as therapeutical monoclonal antibodies, glycoprotein hormones, carbohydrate conjugates used for vaccination and other practically important protein-carbohydrate conjugates.
Collapse
|