1
|
Waldock J, Remarque EJ, Zheng L, Ho S, Hoschler K, Neumann B, Sediri-Schön H, Trombetta CM, Montomoli E, Marchi S, Lapini G, Zhou F, Lartey SL, Cox RJ, Facchini M, Castrucci MR, Friel D, Ollinger T, Caillet C, Music N, Palladino G, Engelhardt OG, the FLUCOP consortium. Haemagglutination inhibition and virus microneutralisation serology assays: use of harmonised protocols and biological standards in seasonal influenza serology testing and their impact on inter-laboratory variation and assay correlation: A FLUCOP collaborative study. Front Immunol 2023; 14:1155552. [PMID: 37143658 PMCID: PMC10151801 DOI: 10.3389/fimmu.2023.1155552] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction The haemagglutination inhibition assay (HAI) and the virus microneutralisation assay (MN) are long-established methods for quantifying antibodies against influenza viruses. Despite their widespread use, both assays require standardisation to improve inter-laboratory agreement in testing. The FLUCOP consortium aims to develop a toolbox of standardised serology assays for seasonal influenza. Building upon previous collaborative studies to harmonise the HAI, in this study the FLUCOP consortium carried out a head-to-head comparison of harmonised HAI and MN protocols to better understand the relationship between HAI and MN titres, and the impact of assay harmonisation and standardisation on inter-laboratory variability and agreement between these methods. Methods In this paper, we present two large international collaborative studies testing harmonised HAI and MN protocols across 10 participating laboratories. In the first, we expanded on previously published work, carrying out HAI testing using egg and cell isolated and propagated wild-type (WT) viruses in addition to high-growth reassortants typically used influenza vaccines strains using HAI. In the second we tested two MN protocols: an overnight ELISA-based format and a 3-5 day format, using reassortant viruses and a WT H3N2 cell isolated virus. As serum panels tested in both studies included many overlapping samples, we were able to look at the correlation of HAI and MN titres across different methods and for different influenza subtypes. Results We showed that the overnight ELISA and 3-5 day MN formats are not comparable, with titre ratios varying across the dynamic range of the assay. However, the ELISA MN and HAI are comparable, and a conversion factor could possibly be calculated. In both studies, the impact of normalising using a study standard was investigated, and we showed that for almost every strain and assay format tested, normalisation significantly reduced inter-laboratory variation, supporting the continued development of antibody standards for seasonal influenza viruses. Normalisation had no impact on the correlation between overnight ELISA and 3-5 day MN formats.
Collapse
Affiliation(s)
- Joanna Waldock
- Influenza Resource Centre, Vaccines, Science Research & Innovation, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | - Edmond J. Remarque
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Lingyi Zheng
- Department of Research and Development, Sanofi, Marcy L’Etoile, France
| | - Sammy Ho
- Respiratory Viruses Unit, UK Health Secruity Agency, Colindale, United Kingdom
| | - Katja Hoschler
- Respiratory Viruses Unit, UK Health Secruity Agency, Colindale, United Kingdom
| | - Britta Neumann
- Section for Viral Vaccines, Virology Division, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Hanna Sediri-Schön
- Section for Viral Vaccines, Virology Division, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Claudia M. Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Fan Zhou
- Influenza Centre, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Sarah L. Lartey
- Influenza Centre, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Rebecca J. Cox
- Influenza Centre, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Marzia Facchini
- World Health Organisation (WHO) National Influenza Centre, Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Rita Castrucci
- World Health Organisation (WHO) National Influenza Centre, Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Catherine Caillet
- Department of Research and Development, Sanofi, Marcy L’Etoile, France
| | | | | | - Othmar G. Engelhardt
- Influenza Resource Centre, Vaccines, Science Research & Innovation, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | | |
Collapse
|
2
|
Waldock J, Weiss CD, Wang W, Levine MZ, Jefferson SN, Ho S, Hoschler K, Londt BZ, Masat E, Carolan L, Sánchez-Ovando S, Fox A, Watanabe S, Akimoto M, Sato A, Kishida N, Buys A, Maake L, Fourie C, Caillet C, Raynaud S, Webby RJ, DeBeauchamp J, Cox RJ, Lartey SL, Trombetta CM, Marchi S, Montomoli E, Sanz-Muñoz I, Eiros JM, Sánchez-Martínez J, Duijsings D, Engelhardt OG. An external quality assessment feasibility study; cross laboratory comparison of haemagglutination inhibition assay and microneutralization assay performance for seasonal influenza serology testing: A FLUCOP study. Front Immunol 2023; 14:1129765. [PMID: 36926342 PMCID: PMC10011125 DOI: 10.3389/fimmu.2023.1129765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction External Quality Assessment (EQA) schemes are designed to provide a snapshot of laboratory proficiency, identifying issues and providing feedback to improve laboratory performance and inter-laboratory agreement in testing. Currently there are no international EQA schemes for seasonal influenza serology testing. Here we present a feasibility study for conducting an EQA scheme for influenza serology methods. Methods We invited participant laboratories from industry, contract research organizations (CROs), academia and public health institutions who regularly conduct hemagglutination inhibition (HAI) and microneutralization (MN) assays and have an interest in serology standardization. In total 16 laboratories returned data including 19 data sets for HAI assays and 9 data sets for MN assays. Results Within run analysis demonstrated good laboratory performance for HAI, with intrinsically higher levels of intra-assay variation for MN assays. Between run analysis showed laboratory and strain specific issues, particularly with B strains for HAI, whilst MN testing was consistently good across labs and strains. Inter-laboratory variability was higher for MN assays than HAI, however both assays showed a significant reduction in inter-laboratory variation when a human sera pool is used as a standard for normalization. Discussion This study has received positive feedback from participants, highlighting the benefit such an EQA scheme would have on improving laboratory performance, reducing inter laboratory variation and raising awareness of both harmonized protocol use and the benefit of biological standards for seasonal influenza serology testing.
Collapse
Affiliation(s)
- Joanna Waldock
- Vaccines, Science Research & Innovation, Medicines and Healthcare Products Regulatory, Potters Bar, United Kingdom
| | - Carol D Weiss
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Wei Wang
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Min Z Levine
- Influenza Division, Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Atlanta, GA, United States
| | - Stacie N Jefferson
- Influenza Division, Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Atlanta, GA, United States
| | - Sammy Ho
- Respiratory Viruses Unit, UK Health Security Agency, Colindale, United Kingdom
| | - Katja Hoschler
- Respiratory Viruses Unit, UK Health Security Agency, Colindale, United Kingdom
| | - Brandon Z Londt
- hVivo The Queen Mary Bioenterprises (QMB) Innovation, London, United Kingdom
| | - Elisa Masat
- hVivo The Queen Mary Bioenterprises (QMB) Innovation, London, United Kingdom
| | - Louise Carolan
- World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephany Sánchez-Ovando
- World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Annette Fox
- World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Shinji Watanabe
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases: Musashi-Murayama, Tokyo, Japan
| | - Miki Akimoto
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases: Musashi-Murayama, Tokyo, Japan
| | - Aya Sato
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases: Musashi-Murayama, Tokyo, Japan
| | - Noriko Kishida
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases: Musashi-Murayama, Tokyo, Japan
| | - Amelia Buys
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Services, Johannesburg, South Africa
| | - Lorens Maake
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Services, Johannesburg, South Africa
| | - Cardia Fourie
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Services, Johannesburg, South Africa
| | | | | | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Jennifer DeBeauchamp
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Rebecca J Cox
- Influenza Centre, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Sarah L Lartey
- Influenza Centre, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Claudia M Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Iván Sanz-Muñoz
- National Influenza Centre of Valladolid, Instituto de Estudios de Ciencias de la Salud de Castilla y León (ICSCYL), Edificio Rondilla, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - José María Eiros
- National Influenza Centre of Valladolid, Instituto de Estudios de Ciencias de la Salud de Castilla y León (ICSCYL), Edificio Rondilla, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Javier Sánchez-Martínez
- National Influenza Centre of Valladolid, Instituto de Estudios de Ciencias de la Salud de Castilla y León (ICSCYL), Edificio Rondilla, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Danny Duijsings
- Viroclinics, Clinical Virology Services, Rotterdam, Netherlands
| | - Othmar G Engelhardt
- Vaccines, Science Research & Innovation, Medicines and Healthcare Products Regulatory, Potters Bar, United Kingdom
| |
Collapse
|
3
|
Abstract
Past pandemic influenza viruses with sustained human-to-human transmissibility have emerged from animal influenza viruses. Employment of experimental models to assess the pandemic risk of emerging zoonotic influenza viruses provides critical information supporting public health efforts. Ferret transmission experiments have been utilized to predict the human-to-human transmission potential of novel influenza viruses. However, small sample sizes and a lack of standardized protocols can introduce interlaboratory variability, complicating interpretation of transmission experimental data. To assess the range of variation in ferret transmission experiments, a global exercise was conducted by 11 laboratories using two common stock H1N1 influenza viruses with different transmission characteristics in ferrets. Parameters known to affect transmission were standardized, including the inoculation route, dose, and volume, as well as a strict 1:1 donor/contact ratio for respiratory droplet transmission. Additional host and environmental parameters likely to affect influenza transmission kinetics were monitored and analyzed. The overall transmission outcomes for both viruses across 11 laboratories were concordant, suggesting the robustness of the ferret model for zoonotic influenza risk assessment. Among environmental parameters that varied across laboratories, donor-to-contact airflow directionality was associated with increased transmissibility. To attain high confidence in identifying viruses with moderate to high transmissibility or low transmissibility under a smaller number of participating laboratories, our analyses support the notion that as few as three but as many as five laboratories, respectively, would need to independently perform viral transmission experiments with concordant results. This exercise facilitates the development of a more homogenous protocol for ferret transmission experiments that are employed for the purposes of risk assessment.
Collapse
|
4
|
Bernard MC, Waldock J, Commandeur S, Strauß L, Trombetta CM, Marchi S, Zhou F, van de Witte S, van Amsterdam P, Ho S, Hoschler K, Lugovtsev V, Weir JP, Montomoli E, Cox RJ, Engelhardt OG, Friel D, Wagner R, Ollinger T, Germain S, Sediri-Schön H. Validation of a Harmonized Enzyme-Linked-Lectin-Assay (ELLA-NI) Based Neuraminidase Inhibition Assay Standard Operating Procedure (SOP) for Quantification of N1 Influenza Antibodies and the Use of a Calibrator to Improve the Reproducibility of the ELLA-NI With Reverse Genetics Viral and Recombinant Neuraminidase Antigens: A FLUCOP Collaborative Study. Front Immunol 2022; 13:909297. [PMID: 35784305 PMCID: PMC9248865 DOI: 10.3389/fimmu.2022.909297] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
Current vaccination strategies against influenza focus on generating an antibody response against the viral haemagglutination surface protein, however there is increasing interest in neuraminidase (NA) as a target for vaccine development. A critical tool for development of vaccines that target NA or include an NA component is available validated serology assays for quantifying anti-NA antibodies. Additionally serology assays have a critical role in defining correlates of protection in vaccine development and licensure. Standardisation of these assays is important for consistent and accurate results. In this study we first validated a harmonized enzyme-linked lectin assay (ELLA)- Neuraminidase Inhibition (NI) SOP for N1 influenza antigen and demonstrated the assay was precise, linear, specific and robust within classical acceptance criteria for neutralization assays for vaccine testing. Secondly we tested this SOP with NA from influenza B viruses and showed the assay performed consistently with both influenza A and B antigens. Third, we demonstrated that recombinant NA (rNA) could be used as a source of antigen in ELLA-NI. In addition to validating a harmonized SOP we finally demonstrated a clear improvement in inter-laboratory agreement across several studies by using a calibrator. Importantly we showed that the use of a calibrator significantly improved agreement when using different sources of antigen in ELLA-NI, namely reverse genetics viruses and recombinant NA. We provide a freely available and detailed harmonized SOP for ELLA-NI. Our results add to the growing body of evidence in support of developing biological standards for influenza serology.
Collapse
Affiliation(s)
| | - Joanna Waldock
- Influenza Resource Centre, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Sylvie Commandeur
- Department of Research and Development, Sanofi Pasteur, Marcy L’Etoile, France
| | - Lea Strauß
- Section viral vaccines, Virology Division, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | | | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Fan Zhou
- Influenza Centre, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | | | | | - Sammy Ho
- UK Health Security Agency, Colindale, United Kingdom
| | | | - Vladimir Lugovtsev
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Jerry P. Weir
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Rebecca J. Cox
- Influenza Centre, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Othmar G. Engelhardt
- Influenza Resource Centre, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | | | - Ralf Wagner
- Section viral vaccines, Virology Division, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | | | | | - Hanna Sediri-Schön
- Section viral vaccines, Virology Division, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
- *Correspondence: Hanna Sediri-Schön,
| |
Collapse
|
5
|
Assay Harmonization and Use of Biological Standards To Improve the Reproducibility of the Hemagglutination Inhibition Assay: a FLUCOP Collaborative Study. mSphere 2021; 6:e0056721. [PMID: 34319129 PMCID: PMC8530177 DOI: 10.1128/msphere.00567-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The hemagglutination inhibition (HAI) assay is an established technique for assessing influenza immunity, through measurement of antihemagglutinin antibodies. Improved reproducibility of this assay is required to provide meaningful data across different testing laboratories. This study assessed the impact of harmonizing the HAI assay protocol/reagents and using standards on interlaboratory variability. Human pre- and postvaccination sera from individuals (n = 30) vaccinated against influenza were tested across six laboratories. We used a design of experiment (DOE) method to evaluate the impact of assay parameters on interlaboratory HAI assay variability. Statistical and mathematical approaches were used for data analysis. We developed a consensus protocol and assessed its performance against in-house HAI testing. We additionally tested the performance of several potential biological standards. In-house testing with four reassortant viruses showed considerable interlaboratory variation (geometric coefficient of variation [GCV] range of 50% to 117%). The age, concentration of turkey red blood cells, incubation duration, and temperature were key assay parameters affecting variability. Use of a consensus protocol with common reagents, including viruses, significantly reduced GCV between laboratories to 22% to 54%. Pooled postvaccination human sera from different vaccination campaigns were effective as biological standards. Our results demonstrate that the harmonization of protocols and critical reagents is effective in reducing interlaboratory variability in HAI assay results and that pools of postvaccination human sera have potential as biological standards that can be used over multiple vaccination campaigns. Moreover, the use of standards together with in-house protocols is as potent as the use of common protocols and reagents in reducing interlaboratory variability. IMPORTANCE The hemagglutination inhibition (HAI) assay is the most commonly used serology assay to detect antibodies from influenza vaccination or influenza virus infection. This assay has been used for decades but requires improved standardization of procedures to provide meaningful data. We designed a large study to assess selected parameters for their contribution to assay variability and developed a standard protocol to promote consistent HAI testing methods across laboratories. The use of this protocol and common reagents resulted in lower levels of variability in results between participating laboratories than achieved using in-house HAI testing. Human sera sourced from vaccination campaigns over several years, and thus including antibody to different influenza vaccine strains, served as effective assay standards. Based on our findings, we recommend the use of a common protocol and/or human serum standards, if available, for testing human sera for the presence of antibodies against seasonal influenza using turkey red blood cells.
Collapse
|
6
|
Carreño JM, McDonald JU, Hurst T, Rigsby P, Atkinson E, Charles L, Nachbagauer R, Behzadi MA, Strohmeier S, Coughlan L, Aydillo T, Brandenburg B, García-Sastre A, Kaszas K, Levine MZ, Manenti A, McDermott AB, Montomoli E, Muchene L, Narpala SR, Perera RAPM, Salisch NC, Valkenburg SA, Zhou F, Engelhardt OG, Krammer F. Development and Assessment of a Pooled Serum as Candidate Standard to Measure Influenza A Virus Group 1 Hemagglutinin Stalk-Reactive Antibodies. Vaccines (Basel) 2020; 8:vaccines8040666. [PMID: 33182279 PMCID: PMC7712758 DOI: 10.3390/vaccines8040666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
The stalk domain of the hemagglutinin has been identified as a target for induction of protective antibody responses due to its high degree of conservation among numerous influenza subtypes and strains. However, current assays to measure stalk-based immunity are not standardized. Hence, harmonization of assay readouts would help to compare experiments conducted in different laboratories and increase confidence in results. Here, serum samples from healthy individuals (n = 110) were screened using a chimeric cH6/1 hemagglutinin enzyme-linked immunosorbent assay (ELISA) that measures stalk-reactive antibodies. We identified samples with moderate to high IgG anti-stalk antibody levels. Likewise, screening of the samples using the mini-hemagglutinin (HA) headless construct #4900 and analysis of the correlation between the two assays confirmed the presence and specificity of anti-stalk antibodies. Additionally, samples were characterized by a cH6/1N5 virus-based neutralization assay, an antibody-dependent cell-mediated cytotoxicity (ADCC) assay, and competition ELISAs, using the stalk-reactive monoclonal antibodies KB2 (mouse) and CR9114 (human). A “pooled serum” (PS) consisting of a mixture of selected serum samples was generated. The PS exhibited high levels of stalk-reactive antibodies, had a cH6/1N5-based neutralization titer of 320, and contained high levels of stalk-specific antibodies with ADCC activity. The PS, along with blinded samples of varying anti-stalk antibody titers, was distributed to multiple collaborators worldwide in a pilot collaborative study. The samples were subjected to different assays available in the different laboratories, to measure either binding or functional properties of the stalk-reactive antibodies contained in the serum. Results from binding and neutralization assays were analyzed to determine whether use of the PS as a standard could lead to better agreement between laboratories. The work presented here points the way towards the development of a serum standard for antibodies to the HA stalk domain of phylogenetic group 1.
Collapse
Affiliation(s)
- Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
| | - Jacqueline U. McDonald
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar EN6 3QG, UK; (J.U.M.); (T.H.); (L.C.)
| | - Tara Hurst
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar EN6 3QG, UK; (J.U.M.); (T.H.); (L.C.)
| | - Peter Rigsby
- Division of Analytical and Biological Sciences, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar EN6 3QG, UK; (P.R.); (E.A.)
| | - Eleanor Atkinson
- Division of Analytical and Biological Sciences, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar EN6 3QG, UK; (P.R.); (E.A.)
| | - Lethia Charles
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar EN6 3QG, UK; (J.U.M.); (T.H.); (L.C.)
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
| | - Mohammad Amin Behzadi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
| | - Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
- Global Health and Emerging Pathogens Institute, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
| | - Boerries Brandenburg
- Janssen Vaccines & Prevention BV, 2333 CP Leiden, The Netherlands; (B.B.); (K.K.); (L.M.); (N.C.S.)
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
- Global Health and Emerging Pathogens Institute, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
| | - Krisztian Kaszas
- Janssen Vaccines & Prevention BV, 2333 CP Leiden, The Netherlands; (B.B.); (K.K.); (L.M.); (N.C.S.)
| | - Min Z. Levine
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
| | | | - Adrian B. McDermott
- Vaccine Immunology Program (VIP), Vaccine Research Center (VRC), National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (A.B.M.); (S.R.N.)
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| | - Leacky Muchene
- Janssen Vaccines & Prevention BV, 2333 CP Leiden, The Netherlands; (B.B.); (K.K.); (L.M.); (N.C.S.)
| | - Sandeep R. Narpala
- Vaccine Immunology Program (VIP), Vaccine Research Center (VRC), National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (A.B.M.); (S.R.N.)
| | - Ranawaka A. P. M. Perera
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (R.A.P.M.P.); (S.A.V.)
| | - Nadine C. Salisch
- Janssen Vaccines & Prevention BV, 2333 CP Leiden, The Netherlands; (B.B.); (K.K.); (L.M.); (N.C.S.)
| | - Sophie A. Valkenburg
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (R.A.P.M.P.); (S.A.V.)
| | - Fan Zhou
- Influenza Center, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
- K.G. Jebsen Center for influenza vaccines, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Othmar G. Engelhardt
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar EN6 3QG, UK; (J.U.M.); (T.H.); (L.C.)
- Correspondence: (O.G.E.); (F.K.)
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA; (J.M.C.); (R.N.); (M.A.B.); (S.S.); (L.C.); (T.A.); (A.G.-S.)
- Correspondence: (O.G.E.); (F.K.)
| |
Collapse
|
7
|
Bianculli RH, Mase JD, Schulz MD. Antiviral Polymers: Past Approaches and Future Possibilities. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01273] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rachel H. Bianculli
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jonathan D. Mase
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael D. Schulz
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
8
|
Meeting report: Convening on the influenza human viral challenge model for universal influenza vaccines, Part 1: Value; challenge virus selection; regulatory, industry and ethical considerations; increasing standardization, access and capacity. Vaccine 2020; 37:4823-4829. [PMID: 31362819 PMCID: PMC6677912 DOI: 10.1016/j.vaccine.2019.06.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 11/23/2022]
Abstract
In response to global interest in the development of a universal influenza vaccine, the Bill & Melinda Gates Foundation, PATH, and the Global Funders Consortium for Universal Influenza Vaccine Development convened a meeting of experts (London, UK, May 2018) to assess the role of a standardized controlled human influenza virus infection model (CHIVIM) towards the development of novel influenza vaccine candidates. This report (in two parts) summarizes those discussions and offers consensus recommendations. This article (Part 1) covers challenge virus selection, regulatory and ethical considerations, and issues concerning standardization, access, and capacity. Part 2 covers specific methodologic considerations. Current methods for influenza vaccine development and licensure require large costly field trials. The CHIVIM requires fewer subjects and the controlled setting allows for better understanding of influenza transmission and host immunogenicity. The CHIVIM can be used to identify immune predictors of disease for at-risk populations and to measure efficacy of potential vaccines for further development. Limitations to the CHIVIM include lack of standardization, limited access to challenge viruses and assays, lack of consensus regarding role of the CHIVIM in vaccine development pathway, and concerns regarding risk to study participants and community. To address these issues, the panel of experts recommended that WHO and other key stakeholders provide guidance on standardization, challenge virus selection, and risk management. A common repository of well-characterized challenge viruses, harmonized protocols, and standardized assays should be made available to researchers. A network of research institutions performing CHIVIM trials should be created, and more study sites are needed to increase capacity. Experts agreed that a research network of institutions working with a standardized CHIVIM could contribute important data to support more rapid development and licensure of novel vaccines capable of providing long-lasting protection against seasonal and pandemic influenza strains.
Collapse
|
9
|
Forster AH, Witham K, Depelsenaire ACI, Veitch M, Wells JW, Wheatley A, Pryor M, Lickliter JD, Francis B, Rockman S, Bodle J, Treasure P, Hickling J, Fernando GJP. Safety, tolerability, and immunogenicity of influenza vaccination with a high-density microarray patch: Results from a randomized, controlled phase I clinical trial. PLoS Med 2020; 17:e1003024. [PMID: 32181756 PMCID: PMC7077342 DOI: 10.1371/journal.pmed.1003024] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 01/27/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The Vaxxas high-density microarray patch (HD-MAP) consists of a high density of microprojections coated with vaccine for delivery into the skin. Microarray patches (MAPs) offer the possibility of improved vaccine thermostability as well as the potential to be safer, more acceptable, easier to use, and more cost-effective for the administration of vaccines than injection by needle and syringe (N&S). Here, we report a phase I trial using the Vaxxas HD-MAP to deliver a monovalent influenza vaccine that was to the best of our knowledge the first clinical trial to evaluate the safety, tolerability, and immunogenicity of lower doses of influenza vaccine delivered by MAPs. METHODS AND FINDINGS HD-MAPs were coated with a monovalent, split inactivated influenza virus vaccine containing A/Singapore/GP1908/2015 H1N1 haemagglutinin (HA). Between February 2018 and March 2018, 60 healthy adults (age 18-35 years) in Melbourne, Australia were enrolled into part A of the study and vaccinated with either: HD-MAPs delivering 15 μg of A/Singapore/GP1908/2015 H1N1 HA antigen (A-Sing) to the volar forearm (FA); uncoated HD-MAPs; intramuscular (IM) injection of commercially available quadrivalent influenza vaccine (QIV) containing A/Singapore/GP1908/2015 H1N1 HA (15 μg/dose); or IM injection of H1N1 HA antigen (15 μg/dose). After 22 days' follow-up and assessment of the safety data, a further 150 healthy adults were enrolled and randomly assigned to 1 of 9 treatment groups. Participants (20 per group) were vaccinated with HD-MAPs delivering doses of 15, 10, 5, 2.5, or 0 μg of HA to the FA or 15 μg HA to the upper arm (UA), or IM injection of QIV. The primary objectives of the study were safety and tolerability. Secondary objectives were to assess the immunogenicity of the influenza vaccine delivered by HD-MAP. Primary and secondary objectives were assessed for up to 60 days post-vaccination. Clinical staff and participants were blind as to which HD-MAP treatment was administered and to administration of IM-QIV-15 or IM-A/Sing-15. All laboratory investigators were blind to treatment and participant allocation. Two further groups in part B (5 participants per group), not included in the main safety and immunological analysis, received HD-MAPs delivering 15 μg HA or uncoated HD-MAPs applied to the forearm. Biopsies were taken on days 1 and 4 for analysis of the cellular composition from the HD-MAP application sites. The vaccine coated onto HD-MAPs was antigenically stable when stored at 40°C for at least 12 months. HD-MAP vaccination was safe and well tolerated; any systemic or local adverse events (AEs) were mild or moderate. Observed systemic AEs were mostly headache or myalgia, and local AEs were application-site reactions, usually erythema. HD-MAP administration of 2.5 μg HA induced haemagglutination inhibition (HAI) and microneutralisation (MN) titres that were not significantly different to those induced by 15 μg HA injected IM (IM-QIV-15). HD-MAP delivery resulted in enhanced humoral responses compared with IM injection with higher HAI geometric mean titres (GMTs) at day 8 in the MAP-UA-15 (GMT 242.5, 95% CI 133.2-441.5), MAP-FA-15 (GMT 218.6, 95% CI 111.9-427.0), and MAP-FA-10 (GMT 437.1, 95% CI 254.3-751.3) groups compared with IM-QIV-15 (GMT 82.8, 95% CI 42.4-161.8), p = 0.02, p = 0.04, p < 0.001 for MAP-UA-15, MAP-FA-15, and MAP-FA-10, respectively. Higher titres were also observed at day 22 in the MAP-FA-10 (GMT 485.0, 95% CI 301.5-780.2, p = 0.001) and MAP-UA-15 (367.6, 95% CI 197.9-682.7, p = 0.02) groups compared with the IM-QIV-15 group (GMT 139.3, 95% CI 79.3-244.5). Results from a panel of exploratory immunoassays (antibody-dependent cellular cytotoxicity, CD4+ T-cell cytokine production, memory B cell (MBC) activation, and recognition of non-vaccine strains) indicated that, overall, Vaxxas HD-MAP delivery induced immune responses that were similar to, or higher than, those induced by IM injection of QIV. The small group sizes and use of a monovalent influenza vaccine were limitations of the study. CONCLUSIONS Influenza vaccine coated onto the HD-MAP was stable stored at temperatures up to 40°C. Vaccination using the HD-MAP was safe and well tolerated and resulted in immune responses that were similar to or significantly enhanced compared with IM injection. Using the HD-MAP, a 2.5 μg dose (1/6 of the standard dose) induced HAI and MN titres similar to those induced by 15 μg HA injected IM. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (ANZCTR.org.au), trial ID 108 ACTRN12618000112268/U1111-1207-3550.
Collapse
Affiliation(s)
| | | | | | - Margaret Veitch
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, TRI, Brisbane, Queensland, Australia
| | - James W. Wells
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, TRI, Brisbane, Queensland, Australia
| | - Adam Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | | | - Barbara Francis
- Avance Clinical Pty Ltd, Thebarton, South Australia, Australia
| | - Steve Rockman
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Seqirus Pty Ltd, Parkville, Victoria, Australia
| | - Jesse Bodle
- Seqirus Pty Ltd, Parkville, Victoria, Australia
| | - Peter Treasure
- Peter Treasure Statistical Services Ltd, Kings Lynn, United Kingdom
| | | | - Germain J. P. Fernando
- Vaxxas Pty Ltd, Brisbane, Queensland, Australia
- The University of Queensland, School of Chemistry & Molecular Biosciences, Faculty of Science, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Kazakova A, Kakkola L, Ziegler T, Syrjänen R, Päkkilä H, Waris M, Soukka T, Julkunen I. Pandemic influenza A(H1N1pdm09) vaccine induced high levels of influenza-specific IgG and IgM antibodies as analyzed by enzyme immunoassay and dual-mode multiplex microarray immunoassay methods. Vaccine 2020; 38:1933-1942. [PMID: 31987689 DOI: 10.1016/j.vaccine.2020.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Influenza A viruses continue to circulate throughout the world as yearly epidemics or occasional pandemics. Influenza infections can be prevented by seasonal multivalent or monovalent pandemic vaccines. In the present study, we describe a novel multiplex microarray immunoassay (MAIA) for simultaneous measurement of virus-specific IgG and IgM antibodies using Pandemrix-vaccinated adult sera collected at day 0 and 28 and 180 days after vaccination as the study material. MAIA showed excellent correlation with a conventional enzyme immunoassay (EIA) in both IgG and IgM anti-influenza A antibodies and good correlation with hemagglutination inhibition (HI) test. Pandemrix vaccine induced 5-30 fold increases in anti-H1N1pdm09 influenza antibodies as measured by HI, EIA or MAIA. A clear increase in virus-specific IgG antibodies was found in 93-97% of vaccinees by MAIA and EIA. Virus-specific IgM antibodies were found in 90-92% of vaccinees by MAIA and EIA, respectively and IgM antibodies persisted for up to 6 months after vaccination in 55-62% of the vaccinees. Pandemic influenza vaccine induced strong anti-influenza A IgG and IgM responses that persisted several months after vaccination. MAIA was demonstrated to be an excellent method for simultaneous measurement of antiviral IgG and IgM antibodies against multiple virus antigens. Thus the method is well suitable for large scale epidemiological and vaccine immunity studies.
Collapse
Affiliation(s)
- Anna Kazakova
- Institute of Biomedicine/Virology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Laura Kakkola
- Institute of Biomedicine/Virology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Thedi Ziegler
- Research Center for Child Psychiatry, University of Turku, Itäinen Pitkäkatu 1, 20520 Turku, Finland
| | - Ritva Syrjänen
- National Institute for Health and Welfare, Mannerheimintie 166, 00300 Helsinki, Finland
| | - Henna Päkkilä
- Department of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Matti Waris
- Institute of Biomedicine/Virology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; Turku University Hospital, Clinical Microbiology, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Tero Soukka
- Department of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine/Virology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; Turku University Hospital, Clinical Microbiology, Kiinamyllynkatu 10, 20520 Turku, Finland.
| |
Collapse
|
11
|
Abstract
The hemagglutination inhibition (HI) assay for influenza A virus has been used since the 1940s. The assay may be utilized to detect or quantify antibodies to influenza A viruses and can be used to characterize differences in antigenic reactivity between influenza isolates. In addition, data from HI assays are routinely used for antigenic cartography, influenza virus surveillance, epidemiology, and vaccine-seed strain selection. For antibody quantification, the HI assay is a fast and inexpensive method; other than a source of red blood cells, no expensive or unusual lab equipment is needed, and results can be obtained within a few hours. Historically, the HI assay has also served as a primary method of subtype identification and is still used widely. However, as gene sequencing technology has evolved to be cheaper and faster, it is replacing the HI assay for this purpose.
Collapse
Affiliation(s)
- Erica Spackman
- Exotic and Emerging Avian Viral Diseases Unit, US National Poultry Research Center, US Department of Agriculture, Agricultural Research Service, Athens, GA, USA.
| | - Ioannis Sitaras
- Exotic and Emerging Avian Viral Diseases Unit, US National Poultry Research Center, US Department of Agriculture, Agricultural Research Service, Athens, GA, USA
| |
Collapse
|
12
|
Krammer F, Weir JP, Engelhardt O, Katz JM, Cox RJ. Meeting report and review: Immunological assays and correlates of protection for next-generation influenza vaccines. Influenza Other Respir Viruses 2019; 14:237-243. [PMID: 31837101 PMCID: PMC7040967 DOI: 10.1111/irv.12706] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND This report summarizes the discussions and conclusions from the "Immunological Assays and Correlates of Protection for Next-Generation Influenza Vaccines" meeting which took place in Siena, Italy, from March 31, 2019, to April 2, 2019. CONCLUSIONS Furthermore, we review current correlates of protection against influenza virus infection and disease and their usefulness for the development of next generation broadly protective and universal influenza virus vaccines.
Collapse
Affiliation(s)
- Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Jerry P Weir
- Division of Viral Products, Food and Drug Administration, Bethesda, MD, USA
| | - Othmar Engelhardt
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, UK
| | - Jacqueline M Katz
- Formerly Influenza Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Rebecca Jane Cox
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Fernando GJP, Hickling J, Jayashi Flores CM, Griffin P, Anderson CD, Skinner SR, Davies C, Witham K, Pryor M, Bodle J, Rockman S, Frazer IH, Forster AH. Safety, tolerability, acceptability and immunogenicity of an influenza vaccine delivered to human skin by a novel high-density microprojection array patch (Nanopatch™). Vaccine 2018; 36:3779-3788. [PMID: 29779922 DOI: 10.1016/j.vaccine.2018.05.053] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Injection using needle and syringe (N&S) is the most widely used method for vaccination, but requires trained healthcare workers. Fear of needles, risk of needle-stick injury, and the need to reconstitute lyophilised vaccines, are also drawbacks. The Nanopatch (NP) is a microarray skin patch comprised of a high-density array of microprojections dry-coated with vaccine that is being developed to address these shortcomings. Here we report a randomised, partly-blinded, placebo-controlled trial that represents the first use in humans of the NP to deliver a vaccine. METHODS Healthy volunteers were vaccinated once with one of the following: (1) NPs coated with split inactivated influenza virus (A/California/07/2009 [H1N1], 15 µg haemagglutinin (HA) per dose), applied to the volar forearm (NP-HA/FA), n = 15; (2) NPs coated with split inactivated influenza virus (A/California/07/2009 [H1N1], 15 µg HA per dose), applied to the upper arm (NP-HA/UA), n = 15; (3) Fluvax® 2016 containing 15 µg of the same H1N1 HA antigen injected intramuscularly (IM) into the deltoid (IM-HA/D), n = 15; (4) NPs coated with excipients only, applied to the volar forearm (NP-placebo/FA), n = 5; (5) NPs coated with excipients only applied to the upper arm (NP-placebo/UA), n = 5; or (6) Saline injected IM into the deltoid (IM-placebo/D), n = 5. Antibody responses at days 0, 7, and 21 were measured by haemagglutination inhibition (HAI) and microneutralisation (MN) assays. FINDINGS NP vaccination was safe and acceptable; all adverse events were mild or moderate. Most subjects (55%) receiving patch vaccinations (HA or placebo) preferred the NP compared with their past experience of IM injection with N&S (preferred by 24%). The antigen-vaccinated groups had statistically higher HAI titres at day 7 and 21 compared with baseline (p < 0.0001), with no statistical differences between the treatment groups (p > 0.05), although the group sizes were small. The geometric mean HAI titres at day 21 for the NP-HA/FA, NP-HA/UA and IM-HA/D groups were: 335 (189-593 95% CI), 160 (74-345 95% CI), and 221 (129-380 95% CI) respectively. A similar pattern of responses was seen with the MN assays. Application site reactions were mild or moderate, and more marked with the influenza vaccine NPs than with the placebo or IM injection. INTERPRETATION Influenza vaccination using the NP appeared to be safe, and acceptable in this first time in humans study, and induced similar immune responses to vaccination by IM injection.
Collapse
Affiliation(s)
- Germain J P Fernando
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia
| | | | - Cesar M Jayashi Flores
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia
| | - Paul Griffin
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Q-Pharm Pty Ltd, Brisbane, QLD, Australia; Department of Medicine and Infectious Dieases, Mater Hospital and Mater Research Institute, Brisbane, QLD, Australia; The University of Queensland, Brisbane, QLD, Australia
| | - Christopher D Anderson
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkӧping University, Linkӧping, Sweden; Department of Dermatology and Venereology, Heart and Medicine Centre, Region Ӧstergötland, Sweden
| | - S Rachel Skinner
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Cristyn Davies
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Katey Witham
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia
| | - Melinda Pryor
- 360biolabs Pty Ltd, Burnet Institute, Melbourne, VIC, Australia
| | | | - Steve Rockman
- Seqirus Pty Ltd, Melbourne, VIC, Australia; University of Melbourne, Melbourne, VIC, Australia
| | - Ian H Frazer
- The University of Queensland, Brisbane, QLD, Australia
| | - Angus H Forster
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| |
Collapse
|
14
|
Pavlova S, D'Alessio F, Houard S, Remarque EJ, Stockhofe N, Engelhardt OG. Workshop report: Immunoassay standardisation for "universal" influenza vaccines. Influenza Other Respir Viruses 2017; 11:194-201. [PMID: 28146323 PMCID: PMC5410724 DOI: 10.1111/irv.12445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
The development of broadly reactive influenza vaccines raises the need to identify the most appropriate immunoassays that can be used for the evaluation of so-called universal influenza vaccines and to explore a path towards the standardisation of such assays. More than fifty experts from the global influenza vaccine research and development field met to initiate such discussion at a workshop co-organised by the EDUFLUVAC consortium, a European Union funded project coordinated by the European Vaccine Initiative, and the National Institutes of Health/National Institute of Allergy and Infectious Diseases, USA. The workshop audience agreed that it was not possible to establish a single immunoassay for "universal" influenza vaccines because the current approaches differ in the vaccines' nature and immunogenicity properties. Therefore, different scientific rationales for the immunoassay selection are required. To avoid dilution of efforts, the choice of the primary evaluation criteria (eg serological assays or T-cell assays) should drive the effort of harmonisation. However, at an early phase of clinical development, more efforts on exploratory assessments should be undertaken to better define the immune profile in response to immunisation with new vaccines. The workshop concluded that each laboratory should aim towards validation of the appropriate immunoassays used during the entire process of vaccine development from antigen discovery up to establishment of correlates of protection, including the different steps of quality control (eg potency assays), animal studies and human clinical development. Standardisation of the immunoassays is the ultimate goal, and there is a long way to go.
Collapse
Affiliation(s)
- Sophia Pavlova
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Flavia D'Alessio
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Sophie Houard
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | | | - Norbert Stockhofe
- Wageningen Bioveterinary Research/Wageningen University & Re-search, Lelystad, The Netherlands
| | - Othmar G Engelhardt
- National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, South Mimms, Potters Bar, Hertfordshire, UK
| |
Collapse
|
15
|
Esposito S, Principi N. Clinical trial research in focus: factors that hamper the development and evaluation of influenza vaccines. THE LANCET RESPIRATORY MEDICINE 2017; 5:164-166. [PMID: 28266323 DOI: 10.1016/s2213-2600(17)30058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06129 Perugia, Italy; Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy.
| | - Nicola Principi
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
16
|
Sikkema RS, Freidl GS, de Bruin E, Koopmans M. Weighing serological evidence of human exposure to animal influenza viruses - a literature review. ACTA ACUST UNITED AC 2016; 21:30388. [PMID: 27874827 PMCID: PMC5114483 DOI: 10.2807/1560-7917.es.2016.21.44.30388] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/30/2016] [Indexed: 02/02/2023]
Abstract
Assessing influenza A virus strains circulating in animals and their potential to cross the species barrier and cause human infections is important to improve human influenza surveillance and preparedness. We reviewed studies describing serological evidence of human exposure to animal influenza viruses. Comparing serological data is difficult due to a lack of standardisation in study designs and in laboratory methods used in published reports. Therefore, we designed a scoring system to assess and weigh specificity of obtained serology results in the selected articles. Many studies report reliable evidence of antibodies to swine influenza viruses among persons occupationally exposed to pigs. Most avian influenza studies target H5, H7 and H9 subtypes and most serological evidence of human exposure to avian influenza viruses is reported for these subtypes. Avian influenza studies receiving a low grade in this review often reported higher seroprevalences in humans compared with studies with a high grade. Official surveillance systems mainly focus on avian H5 and H7 viruses. Swine influenza viruses and avian subtypes other than H5 and H7 (emphasising H9) should be additionally included in official surveillance systems. Surveillance efforts should also be directed towards understudied geographical areas, such as Africa and South America.
Collapse
Affiliation(s)
- Reina Saapke Sikkema
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), Bilthoven, the Netherlands.,Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Gudrun Stephanie Freidl
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), Bilthoven, the Netherlands.,Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Erwin de Bruin
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Marion Koopmans
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), Bilthoven, the Netherlands.,Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
17
|
Wijnans L, Voordouw B. A review of the changes to the licensing of influenza vaccines in Europe. Influenza Other Respir Viruses 2016; 10:2-8. [PMID: 26439108 PMCID: PMC4687503 DOI: 10.1111/irv.12351] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 01/25/2023] Open
Abstract
In 2014, the European Committee for Medicinal Products for Human Use (CHMP) published a draft regulatory guideline for the evaluation of influenza vaccines. Following a public consultation round, the final guidance will be published in the near future. Here, we highlight the main changes in the clinical section in this guideline and discuss the background to these changes and whether the new consolidated guidance document can be expected to achieve a better understanding of the performance of seasonal, zoonotic and pandemic influenza vaccines during the regulatory licensing process. The new influenza guideline reflects a changed approach to the regulatory assessment of influenza vaccines, resulting in the abolition of serological criteria, known as the CHMP criteria, which have been the mainstay for evaluating the influenza vaccine immunogenicity for several decades. The new guideline adopts a more diversified approach to the measurement and reporting of the immune response to influenza vaccines and sets a requirement to conduct clinical outcome trials in young children. Importantly, more emphasis is placed on the post‐licensure monitoring of the benefit risk of influenza vaccines, including a request for continuous monitoring of efficacy and enhanced safety surveillance. Despite the improvements these new requirements will expectedly bring to the regulatory assessment of influenza vaccines, major challenges remain which cannot be overcome by new guidance alone. Ongoing initiatives in which academia, manufacturers, public health institutes and regulators work together to address these challenges are central to the development of robust tools to evaluate and monitor performance of influenza vaccines in the future.
Collapse
|
18
|
Evaluation of Antihemagglutinin and Antineuraminidase Antibodies as Correlates of Protection in an Influenza A/H1N1 Virus Healthy Human Challenge Model. mBio 2016; 7:e00417-16. [PMID: 27094330 PMCID: PMC4959521 DOI: 10.1128/mbio.00417-16] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Despite long-term investment, influenza continues to be a significant worldwide problem. The cornerstone of protection remains vaccination, and approved vaccines seek to elicit a hemagglutination inhibition (HAI) titer of ≥1:40 as the primary correlate of protection. However, recent poor vaccine performance raises questions regarding the protection afforded and whether other correlates of protection should be targeted. A healthy volunteer challenge study was performed with a wild-type 2009 A(H1N1)pdm influenza A challenge virus at the NIH Clinical Center to evaluate two groups of participants with HAI titers of ≥1:40 and <1:40. The primary objective was to determine whether participants with HAI titers of ≥1:40 were less likely to develop mild to moderate influenza disease (MMID) after intranasal inoculation. HAI titers of ≥1:40 were protective against MMID but did not reduce the incidence of symptoms alone. Although the baseline HAI titer correlated with some reduction in disease severity measures, overall, the baseline NAI titer correlated more significantly with all disease severity metrics and had a stronger independent effect on outcome. This study demonstrates the importance of examining other immunological correlates of protection rather than solely HAI titers. This challenge study confirms the importance of NAI titer as a correlate and for the first time establishes that it can be an independent predictor of reduction of all aspects of influenza disease. This suggests that NAI titer may play a more significant role than previously thought and that neuraminidase immunity should be considered when studying susceptibility after vaccination and as a critical target in future influenza vaccine platforms. This study represents the first time the current gold standard for evaluating influenza vaccines as set by the U.S. Food and Drug Administration and the European Medicines Agency Committee for Medicinal Products for Human Use, a “protective” hemagglutination inhibition (HAI) titer of ≥1:40, has been evaluated in a well-controlled healthy volunteer challenge study since the cutoff was established. We used our established wild-type influenza A healthy volunteer human challenge model to evaluate how well this antibody titer predicts a reduction in influenza virus-induced disease. We demonstrate that although higher HAI titer is predictive of some protection, there is stronger evidence to suggest that neuraminidase inhibition (NAI) titer is more predictive of protection and reduced disease. This is the first time NAI titer has been clearly identified in a controlled trial of this type to be an independent predictor of a reduction in all aspects of influenza.
Collapse
|
19
|
Trombetta CM, Montomoli E. Influenza immunology evaluation and correlates of protection: a focus on vaccines. Expert Rev Vaccines 2016; 15:967-76. [PMID: 26954563 DOI: 10.1586/14760584.2016.1164046] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vaccination is the most effective method of controlling seasonal influenza infections and preventing possible pandemic events. Although influenza vaccines have been licensed and used for decades, the potential correlates of protection induced by these vaccines are still a matter of discussion. Currently, inactivated vaccines are the most common and the haemagglutination inhibition antibody titer is regarded as an immunological correlate of protection and the best available parameter for predicting protection from influenza infection. However, the assay shows some limitations, such as its low sensitivity to B and avian strains and inter-laboratory variability. Additional assays and next-generation vaccines have been evaluated to overcome the limitations of the traditional serological techniques and to elicit broad immune responses, underlining the need to revise the current correlates of protection. The aim of this review is to provide an overview of the current scenario regarding the immunological evaluation and correlates of protection of influenza vaccines.
Collapse
Affiliation(s)
| | - Emanuele Montomoli
- a Department of Molecular and Developmental Medicine , University of Siena , Siena , Italy.,b VisMederi srl , Enterprise of services in Life Sciences , Siena , Italy
| |
Collapse
|
20
|
Standardization of Hemagglutination Inhibition Assay for Influenza Serology Allows for High Reproducibility between Laboratories. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:236-42. [PMID: 26818953 DOI: 10.1128/cvi.00613-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/14/2016] [Indexed: 11/20/2022]
Abstract
Standardization of the hemagglutination inhibition (HAI) assay for influenza serology is challenging. Poor reproducibility of HAI results from one laboratory to another is widely cited, limiting comparisons between candidate vaccines in different clinical trials and posing challenges for licensing authorities. In this study, we standardized HAI assay materials, methods, and interpretive criteria across five geographically dispersed laboratories of a multidisciplinary influenza research network and then evaluated intralaboratory and interlaboratory variations in HAI titers by repeatedly testing standardized panels of human serum samples. Duplicate precision and reproducibility from comparisons between assays within laboratories were 99.8% (99.2% to 100%) and 98.0% (93.3% to 100%), respectively. The results for 98.9% (95% to 100%) of the samples were within 2-fold of all-laboratory consensus titers, and the results for 94.3% (85% to 100%) of the samples were within 2-fold of our reference laboratory data. Low-titer samples showed the greatest variability in comparisons between assays and between sites. Classification of seroprotection (titer ≥ 40) was accurate in 93.6% or 89.5% of cases in comparison to the consensus or reference laboratory classification, respectively. This study showed that with carefully chosen standardization processes, high reproducibility of HAI results between laboratories is indeed achievable.
Collapse
|
21
|
Cox NJ, Hickling J, Jones R, Rimmelzwaan GF, Lambert LC, Boslego J, Rudenko L, Yeolekar L, Robertson JS, Hombach J, Ortiz JR. Report on the second WHO integrated meeting on development and clinical trials of influenza vaccines that induce broadly protective and long-lasting immune responses: Geneva, Switzerland, 5-7 May 2014. Vaccine 2015; 33:6503-10. [PMID: 26478203 PMCID: PMC8218335 DOI: 10.1016/j.vaccine.2015.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/02/2015] [Accepted: 10/06/2015] [Indexed: 11/22/2022]
Abstract
On 5-7 May 2014, the World Health Organization (WHO) convened the second integrated meeting on "influenza vaccines that induce broadly protective and long-lasting immune responses". Around 100 invited experts from academia, the vaccine industry, research and development funders, and regulatory and public health agencies attended the meeting. Areas covered included mechanisms of protection in natural influenza-virus infection and vaccine-induced immunity, new approaches to influenza-vaccine design and production, and novel routes of vaccine administration. A timely focus was on how this knowledge could be applied to both seasonal influenza and emerging viruses with pandemic potential such as influenza A (H7N9), currently circulating in China. Special attention was given to the development of possible universal influenza vaccines, given that the Global Vaccine Action Plan calls for at least one licensed universal influenza vaccine by 2020. This report highlights some of the topics discussed and provides an update on studies published since the report of the previous meeting.
Collapse
Affiliation(s)
- Nancy J Cox
- Influenza Division, National Center for Infectious Diseases, 1600 Clifton Road NE, Atlanta, GA 30333, United States
| | | | - Rebecca Jones
- Working in Tandem Ltd, Cambridge CB1 7AB, United Kingdom
| | - Guus F Rimmelzwaan
- Department of Virology, Erasmus Medical Center, Dr Molewaterplein 50, Rotterdam CE 3015, The Netherlands
| | - Linda C Lambert
- Respiratory Diseases Branch, Division of Microbiology and Infectious Diseases, NIAID/NIH/DHHS, 5601 Fishers Lane, Bethesda, MD 20892, United States
| | - John Boslego
- PATH, 445 Massachusetts Avenue, NW Suite 1000, Washington, DC 20001, United States
| | - Larisa Rudenko
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, 12 Acad. Pavlov Street, St Petersburg 197376, Russian Federation
| | - Leena Yeolekar
- Vaccine Production, Serum Institute of India, 212/2 Hadapsar, Pune, India
| | | | - Joachim Hombach
- Initiative for Vaccine Research (IVR), Immunization, Vaccines and Biologicals (IVB), World Health Organization, Switzerland
| | - Justin R Ortiz
- Initiative for Vaccine Research (IVR), Immunization, Vaccines and Biologicals (IVB), World Health Organization, Switzerland
| |
Collapse
|
22
|
Sridhar S, Brokstad KA, Cox RJ. Influenza Vaccination Strategies: Comparing Inactivated and Live Attenuated Influenza Vaccines. Vaccines (Basel) 2015; 3:373-89. [PMID: 26343192 PMCID: PMC4494344 DOI: 10.3390/vaccines3020373] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 11/16/2022] Open
Abstract
Influenza is a major respiratory pathogen causing annual outbreaks and occasional pandemics. Influenza vaccination is the major method of prophylaxis. Currently annual influenza vaccination is recommended for groups at high risk of complications from influenza infection such as pregnant women, young children, people with underlying disease and the elderly, along with occupational groups such a healthcare workers and farm workers. There are two main types of vaccines available: the parenteral inactivated influenza vaccine and the intranasal live attenuated influenza vaccine. The inactivated vaccines are licensed from 6 months of age and have been used for more than 50 years with a good safety profile. Inactivated vaccines are standardized according to the presence of the viral major surface glycoprotein hemagglutinin and protection is mediated by the induction of vaccine strain specific antibody responses. In contrast, the live attenuated vaccines are licensed in Europe for children from 2-17 years of age and provide a multifaceted immune response with local and systemic antibody and T cell responses but with no clear correlate of protection. Here we discuss the immunological immune responses elicited by the two vaccines and discuss future work to better define correlates of protection.
Collapse
Affiliation(s)
| | - Karl A Brokstad
- Broeglemann Research Laboratory, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway.
| | - Rebecca J Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway.
- Department of Research and Development, Haukeland University Hospital, N-5021 Bergen, Norway.
- Jebsen Centre for Influenza Vaccine Research, University of Bergen, N-5021 Bergen, Norway.
| |
Collapse
|
23
|
Reber A, Katz J. Immunological assessment of influenza vaccines and immune correlates of protection. Expert Rev Vaccines 2013; 12:519-36. [PMID: 23659300 DOI: 10.1586/erv.13.35] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Influenza vaccines remain the primary public health tool in reducing the ever-present burden of influenza and its complications. In seeking more immunogenic, more effective and more broadly cross-protective influenza vaccines, the landscape of influenza vaccines is rapidly expanding, both in near-term advances and next-generation vaccine design. Although the first influenza vaccines were licensed over 60 years ago, the hemagglutination-inhibition antibody titer is currently the only universally accepted immune correlate of protection against influenza. However, hemagglutination-inhibition titers appear to be less effective at predicting protection in populations at high risk for severe influenza disease; older adults, young children and those with certain medical conditions. The lack of knowledge and validated methods to measure alternate immune markers of protection against influenza remain a substantial barrier to the development of more immunogenic, broadly cross-reactive and effective influenza vaccines. Here, the authors review the knowledge of immune effectors of protection against influenza and discuss assessment methods for a broader range of immunological parameters that could be considered in the evaluation of traditional or new-generation influenza vaccines.
Collapse
Affiliation(s)
- Adrian Reber
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road Atlanta, GA 30333, USA
| | | |
Collapse
|
24
|
Wagner R, Pfleiderer M. Reproducibility of assays for influenza vaccine immunogenicity determination: progress towards consistency. Expert Rev Vaccines 2013; 11:881-3. [PMID: 23002967 DOI: 10.1586/erv.12.62] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Unusual patterns of IgG avidity in some young children following two doses of the adjuvanted pandemic H1N1 (2009) influenza virus vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:459-67. [PMID: 23345582 DOI: 10.1128/cvi.00619-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During the 2009-2010 H1N1 influenza pandemic, an adjuvanted monovalent vaccine containing ∼25% of the normal antigen dose and AS03 adjuvant was widely used in Canada. This vaccine was found to be well-tolerated and immunogenic in young children (D. W. Scheifele et al., Pediatr. Infect. Dis. J. 30:402-407, 2011). We report here additional analyses to further characterize the humoral response to this vaccine. We measured standard hemagglutination inhibition (HAI) and microneutralization (MN) titers, as well as influenza virus-specific IgG avidity and subclass distribution by enzyme-linked immunosorbent assay in 73 subjects. Sera were collected before (day 0) and 3 weeks after each dose of vaccine (days 21 and 42). Most children (55/73) had undetectable HAI and MN titers at day 0 (presumed to be antigen naive) and mounted good responses at days 21 and 42. The majority of these children (43/55) had the expected pattern of an increasing IgG avidity index (AI) after each dose of vaccine (not detected [ND], 0.30, and 2.97 at days 0, 21, and 42, respectively). The avidity responses in the remaining children (12/55) were quite different, with AIs increasing abruptly after the first dose and then declining after the second dose of vaccine (ND, 8.83, and 7.15, respectively). These children also had higher concentrations of influenza virus-specific IgG1 and IgG3 antibodies at day 21. Although the antibody titers were similar, some antigen-naive children demonstrated an unusual pattern of avidity maturation after two immunizations with AS03-adjuvanted, low-dose influenza virus vaccine. These data suggest the presence of subtle differences in the quality of the antibodies produced by some subjects in response to this vaccine.
Collapse
|
26
|
Cox RJ. Correlates of protection to influenza virus, where do we go from here? Hum Vaccin Immunother 2013; 9:405-8. [PMID: 23291930 DOI: 10.4161/hv.22908] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Influenza vaccination is the cornerstone of prophylaxis. The regulatory authorities currently annually license vaccines based on serum antibodies directed toward the major surface glycoprotein haemagglutinin (HA). The most commonly used serological test, the haemagglutination inhibition (HI) assay utilizes red blood cells, which show considerable biological variation. There is a need for validated, standardized assays to reduce laboratory variation steps that are currently being taken by the regulatory agencies. Here we examine the historical evidence for defining the HI titer ≥ 40 as a surrogate correlate of protection and examine alternative assays. Moreover, the immune response to influenza is multifacated and there are probably multiple correlates of protection. We conclude there is a need for detailed immunological analysis including kinetic studies and head to head comparison of vaccines by a range of immunological assays to further define correlates of protection.
Collapse
Affiliation(s)
- Rebecca J Cox
- Department of Clinical Science; University of Bergen; Haukeland University Hospital; Bergen, Norway; Department of Research & Development; Haukeland University Hospital; Bergen, Norway
| |
Collapse
|