1
|
Chowdhury N, Kundu A. Nanotechnology Platform for Advancing Vaccine Development against the COVID-19 Virus. Diseases 2023; 11:177. [PMID: 38131983 PMCID: PMC10742622 DOI: 10.3390/diseases11040177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The COVID-19 pandemic has had a profound impact on societies, public health, healthcare systems, and the world economy. With over 771 million people infected worldwide and a staggering death toll exceeding 6,960,783 as of 4 October 2023 (according to the World Health Organization), the urgency for a solution was paramount. Since the outbreak, the demand for immediate treatment for COVID-19 viral infection, as well as for effective vaccination against this virus, was soaring, which led scientists, pharmaceutical/biotech companies, government health agencies, etc., to think about a treatment strategy that could control and minimize this outbreak as soon as possible. Vaccination emerged as the most effective strategy to combat this infectious disease. For vaccination strategies, any conventional vaccine approach using attenuated live or inactivated/engineered virus, as well as other approaches, typically requires years of research and assessment. However, the urgency of the situation promoted a faster and more effective approach to vaccine development against COVID-19. The role of nanotechnology in designing, manufacturing, boosting, and delivering vaccines to the host to counter this virus was unquestionably valued and assessed. Several nanoformulations are discussed here in terms of their composition, physical properties, credibility, and applications in past vaccine development (as well as the possibility of using those used in previous applications for the generation of the COVID-19 vaccine). Controlling and eliminating the spread of the virus and preventing future recurrence requires a safe, tolerable, and effective vaccine strategy. In this review, we discuss the potential of nanoformulations as the basis for an effective vaccine strategy against COVID-19.
Collapse
Affiliation(s)
| | - Anup Kundu
- Department of Biology, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| |
Collapse
|
2
|
Evaluation of the Association of Recombinant Proteins NanH and PknG from Corynebacterium pseudotuberculosis Using Different Adjuvants as a Recombinant Vaccine in Mice. Vaccines (Basel) 2023; 11:vaccines11030519. [PMID: 36992103 DOI: 10.3390/vaccines11030519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Caseous lymphadenitis is a chronic contagious disease that causes economic losses worldwide. Treatments are ineffective, thus demonstrating the importance of vaccination. In this study, rNanH and rPknG proteins from Corynebacterium pseudotuberculosis were associated with saponin or aluminum hydroxide adjuvants. Three experimental groups (10 animals each) were immunized with sterile 0.9% saline solution (G1), rNanH + rPknG + Saponin (G2), rNanH + rPknG + Al(OH)3 (G3). The mice received two vaccine doses 21 days apart. Animals were challenged 21 days after the last immunization and evaluated for 50 days, with endpoint criteria applied when needed. The total IgG production levels of the experimental groups increased significantly on day 42 when compared to the control (p < 0.05). When tested against rNanH, G2 had a better rate of anti-rNanH antibodies compared to G3. In the anti-rPknG ELISA, the levels of total IgG, IgG1, and IgG2a antibodies were higher in G2. The vaccines generated partial protection, with 40% of the animals surviving the challenge. The association of recombinant NanH and PknG proteins led to promising protection rates in mice, and although using different adjuvants did not interfere with the survival rate, it influenced the immune response generated by the vaccine formulations.
Collapse
|
3
|
Gimenez AM, Salman AM, Marques RF, López-Camacho C, Harrison K, Kim YC, Janse CJ, Soares IS, Reyes-Sandoval A. A universal vaccine candidate against Plasmodium vivax malaria confers protective immunity against the three PvCSP alleles. Sci Rep 2021; 11:17928. [PMID: 34504134 PMCID: PMC8429696 DOI: 10.1038/s41598-021-96986-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Malaria is a highly prevalent parasitic disease in regions with tropical and subtropical climates worldwide. Among the species of Plasmodium causing human malaria, P. vivax is the second most prevalent and the most geographically widespread species. A major target of a pre-erythrocytic vaccine is the P. vivax circumsporozoite protein (PvCSP). In previous studies, we fused two recombinant proteins representing three allelic variants of PvCSP (VK210, VK247 and P. vivax-like) to the mumps virus nucleocapsid protein to enhance immune responses against PvCSP. The objective of the present study was to evaluate the protective efficacy of these recombinants in mice challenged with transgenic P. berghei parasites expressing PvCSP allelic variants. Formulations containing Poly (I:C) or Montanide ISA720 as adjuvants elicited high and long-lasting IgG antibody titers specific to each PvCSP allelic variant. Immunized mice were challenged with two existing chimeric P. berghei parasite lines expressing PvCSP-VK210 and PvCSP-VK247. We also developed a novel chimeric line expressing the third allelic variant, PvCSP-P. vivax-like, as a new murine immunization-challenge model. Our formulations conferred partial protection (significant delay in the time to reach 1% parasitemia) against challenge with the three chimeric parasites. Our results provide insights into the development of a vaccine targeting multiple strains of P. vivax.
Collapse
Affiliation(s)
- Alba Marina Gimenez
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK.,Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ahmed M Salman
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Rodolfo F Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - César López-Camacho
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Kate Harrison
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Young Chan Kim
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Chris J Janse
- Department of Parasitology, Leiden Malaria Research Group, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Irene S Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - Arturo Reyes-Sandoval
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK. .,Instituto Politécnico Nacional, IPN, Av. Luis Enrique Erro S/N. Unidad Adolfo López Mateos, Zacatenco, CP 07738, Mexico City, Mexico.
| |
Collapse
|
4
|
Raissi V, Etemadi S, Getso MI, Mehravaran A, Raiesi O. Structure-genetic diversity and recombinant protein of circumsporozoite protein (CSP) of vivax malaria antigen: A potential malaria vaccine candidate. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Pirahmadi S, Zakeri S, Djadid ND, Mehrizi AA. A review of combination adjuvants for malaria vaccines: a promising approach for vaccine development. Int J Parasitol 2021; 51:699-717. [PMID: 33798560 DOI: 10.1016/j.ijpara.2021.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/18/2020] [Accepted: 01/28/2021] [Indexed: 01/16/2023]
Abstract
It is obvious that there is a critical need for an efficient malaria vaccine to accelerate malaria eradication. Currently, recombinant subunit vaccination against malaria using proteins and peptides is gaining attention. However, one of the major drawbacks of this approach is the lack of an efficient and durable immune response. Therefore, subunit vaccines require adjuvants to make the vaccine sufficiently immunogenic. Considering the history of the RTS,S vaccine, it seems likely that no single adjuvant is capable of eliciting all the protective immune responses required in many malarial subunit vaccines and the use of combination adjuvants will be increasingly important as the science of malaria vaccines advances. In light of this, it appears that identifying the most effective mixture of adjuvants with minimal adverse effects offers tremendous opportunities in improving the efficacy of vaccines against malaria. Owing to the importance of a multi-adjuvanted approach in subunit malaria vaccine development, this review paper outlines some of the best known combination adjuvants used in malaria subunit vaccines, focusing on their proposed mechanisms of action, their immunological properties, and their notable results. The aim of the present review is to consolidate these findings to aid the application of these combination adjuvants in experimental malaria vaccines.
Collapse
Affiliation(s)
- Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Navid D Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Akram A Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
De SL, Ntumngia FB, Nicholas J, Adams JH. Progress towards the development of a P. vivax vaccine. Expert Rev Vaccines 2021; 20:97-112. [PMID: 33481638 PMCID: PMC7994195 DOI: 10.1080/14760584.2021.1880898] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Plasmodium vivax causes significant public health problems in endemic regions. A vaccine to prevent disease is critical, considering the rapid spread of drug-resistant parasite strains, and the development of hypnozoites in the liver with potential for relapse. A minimally effective vaccine should prevent disease and transmission while an ideal vaccine provides sterile immunity. AREAS COVERED Despite decades of research, the complex life cycle, technical challenges and a lack of funding have hampered progress of P. vivax vaccine development. Here, we review the progress of potential P. vivax vaccine candidates from different stages of the parasite life cycle. We also highlight the challenges and important strategies for rational vaccine design. These factors can significantly increase immune effector mechanisms and improve the protective efficacy of these candidates in clinical trials to generate sustained protection over longer periods of time. EXPERT OPINION A vaccine that presents functionally-conserved epitopes from multiple antigens from various stages of the parasite life cycle is key to induce broadly neutralizing strain-transcending protective immunity to effectively disrupt parasite development and transmission.
Collapse
Affiliation(s)
- Sai Lata De
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Justin Nicholas
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| |
Collapse
|
7
|
NanH and PknG putative virulence factors as a recombinant subunit immunogen against Corynebacterium pseudotuberculosis infection in mice. Vaccine 2020; 38:8099-8106. [DOI: 10.1016/j.vaccine.2020.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/15/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022]
|
8
|
A Multistage Formulation Based on Full-Length CSP and AMA-1 Ectodomain of Plasmodium vivax Induces High Antibody Titers and T-cells and Partially Protects Mice Challenged with a Transgenic Plasmodium berghei Parasite. Microorganisms 2020; 8:microorganisms8060916. [PMID: 32560380 PMCID: PMC7356588 DOI: 10.3390/microorganisms8060916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 01/23/2023] Open
Abstract
Infections with Plasmodium vivax are predominant in the Americas, representing 75% of malaria cases. Previously perceived as benign, malaria vivax is, in fact, a highly debilitating and economically important disease. Considering the high complexity of the malaria parasite life cycle, it has been hypothesized that an effective vaccine formulation against Plasmodium should contain multiple antigens expressed in different parasite stages. Based on that, we analyzed a recombinant P. vivax vaccine formulation mixing the apical membrane antigen 1 ectodomain (PvAMA-1) and a full-length circumsporozoite protein (PvCSP-AllFL) previously studied by our group, which elicits a potent antibody response in mice. Genetically distinct strains of mice (C57BL/6 and BALB/c) were immunized with the proteins, alone or in combination, in the presence of poly(I:C) adjuvant, a TLR3 agonist. In C57BL/6, high-antibody titers were induced against PvAMA-1 and the three PvCSP variants (VK210, VK247, and P. vivax-like). Meanwhile, mixing PvAMA-1 with PvCSP-AllFL had no impact on total IgG antibody titers, which were long-lasting. Moreover, antibodies from immunized mice recognized VK210 sporozoites and blood-stage parasites by immunofluorescence assay. However, in the BALB/c model, the antibody response against PvCSP-AllFL was relatively low. PvAMA-1-specific CD3+CD4+ and CD3+CD8+ T-cell responses were observed in C57BL/6 mice, and the cellular response was impaired by PvCSP-AllFL combination. More relevant, the multistage vaccine formulation provided partial protection in mice challenged with a transgenic Plasmodium berghei sporozoite expressing the homologous PvCSP protein.
Collapse
|
9
|
Antonelli LR, Junqueira C, Vinetz JM, Golenbock DT, Ferreira MU, Gazzinelli RT. The immunology of Plasmodium vivax malaria. Immunol Rev 2019; 293:163-189. [PMID: 31642531 DOI: 10.1111/imr.12816] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
Plasmodium vivax infection, the predominant cause of malaria in Asia and Latin America, affects ~14 million individuals annually, with considerable adverse effects on wellbeing and socioeconomic development. A clinical hallmark of Plasmodium infection, the paroxysm, is driven by pyrogenic cytokines produced during the immune response. Here, we review studies on the role of specific immune cell types, cognate innate immune receptors, and inflammatory cytokines on parasite control and disease symptoms. This review also summarizes studies on recurrent infections in individuals living in endemic regions as well as asymptomatic infections, a serious barrier to eliminating this disease. We propose potential mechanisms behind these repeated and subclinical infections, such as poor induction of immunological memory cells and inefficient T effector cells. We address the role of antibody-mediated resistance to P. vivax infection and discuss current progress in vaccine development. Finally, we review immunoregulatory mechanisms, such as inhibitory receptors, T regulatory cells, and the anti-inflammatory cytokine, IL-10, that antagonizes both innate and acquired immune responses, interfering with the development of protective immunity and parasite clearance. These studies provide new insights for the clinical management of symptomatic as well as asymptomatic individuals and the development of an efficacious vaccine for vivax malaria.
Collapse
Affiliation(s)
- Lis R Antonelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Caroline Junqueira
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Douglas T Golenbock
- Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marcelo U Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo T Gazzinelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.,Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, Brazil
| |
Collapse
|
10
|
Rostamian M, Niknam HM. Evaluation of the adjuvant effect of agonists of toll-like receptor 4 and 7/8 in a vaccine against leishmaniasis in BALB/c mice. Mol Immunol 2017; 91:202-208. [PMID: 28963929 DOI: 10.1016/j.molimm.2017.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/25/2022]
Abstract
There is no effective vaccine against human leishmaniasis. Achieving successful vaccines seems to need powerful adjuvants. Separate or combined use of toll like receptor (TLR) agonists as adjuvant is a promising approach in Leishmania vaccine research. In present study, we evaluated adjuvant effect of separate or combined use of a TLR7/8 agonist, R848 and a TLR4 agonist, monophosphoryl lipid A (MPL) beside soluble Leishmania antigen (SLA) in BALB/c mice. Mice were vaccinated three times by SLA with separate or combined TLR7/8 and TLR4 agonists and were then challenged by Leishmania major. Delay type hypersensitivity, lesion development, parasite load, and cytokines (interferon gamma, and interleukin-10) response were assessed. Results showed: 1) MPL can slightly assist SLA in parasite load reduction, but it is not able to increase SLA ability in evoking DTH and cytokine responses or decreasing lesion diameter. 2) R848 does not affect the DTH response and parasite load of mice vaccinated with SLA, but it decreases/inhibits cytokine responses induced by SLA, leading to increase lesion diameter. 3) MPL neutralized inhibitory effect of R848. In overall, these data emphasize that MPL slightly assists SLA to make a more potent vaccine, but R848 is not a good adjuvant to induce T cell-dependent immune response in BALB/c mice, and therefore combination of these TLR agonists in the current formulation, is not recommended for making a more powerful adjuvant.
Collapse
Affiliation(s)
- Mosayeb Rostamian
- Immunology Department, Pasteur Institute of Iran, Tehran, 13164, Iran
| | - Hamid M Niknam
- Immunology Department, Pasteur Institute of Iran, Tehran, 13164, Iran.
| |
Collapse
|
11
|
Biological, immunological and functional properties of two novel multi-variant chimeric recombinant proteins of CSP antigens for vaccine development against Plasmodium vivax infection. Mol Immunol 2017; 90:158-171. [PMID: 28800475 DOI: 10.1016/j.molimm.2017.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/31/2017] [Accepted: 06/19/2017] [Indexed: 01/30/2023]
Abstract
The circumsporozoite protein (CSP) of the malaria parasite Plasmodium vivax is a major pre-erythrocyte vaccine candidate. The protein has a central repeat region that belongs to one of repeat families (VK210, VK247, and the P. vivax-like). In the present study, computer modelling was employed to select chimeric proteins, comprising the conserved regions and different arrangements of the repeat elements (VK210 and VK247), whose structure is similar to that of the native counterparts. DNA encoding the selected chimeras (named CS127 and CS712) were synthetically constructed based on E. coli codons, then cloned and expressed. Mouse monoclonal antibodies (mAbs; anti-Pv-210-CDC and -Pv-247-CDC), recognized the chimeric antigens in ELISA, indicating correct conformation and accessibility of the B-cell epitopes. ELISA using IgG from plasma samples collected from 221 Iranian patients with acute P. vivax showed that only 49.32% of the samples reacted to both CS127 and CS712 proteins. The dominant subclass for the two chimeras was IgG1 (48% of the positive responders, OD492=0.777±0.420 for CS127; 48.41% of the positive responders, OD492=0.862±0.423 for CS712, with no statistically significant difference P>0.05; Wilcoxon signed ranks test). Binding assays showed that both chimeric proteins bound to immobilized heparan sulphate and HepG2 hepatocyte cells in a concentration-dependent manner, saturable at 80μg/mL. Additionally, anti-CS127 and -CS712 antibodies raised in mice recognized the native protein on the surface of P. vivax sporozoite with high intensity, confirming the presence of common epitopes between the recombinant forms and the native proteins. In summary, despite structural differences at the molecular level, the expression levels of both chimeras were satisfactory, and their conformational structure retained biological function, thus supporting their potential for use in the development of vivax-based vaccine.
Collapse
|
12
|
Kumsiri R, Troye-Blomberg M, Pattanapanyasat K, Krudsood S, Maneerat Y. IgE low affinity receptor (CD23) expression, Plasmodium falciparum specific IgE and tumor necrosis factor-alpha production in Thai uncomplicated and severe falciparum malaria patients. Acta Trop 2016; 154:25-33. [PMID: 26519199 DOI: 10.1016/j.actatropica.2015.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 10/22/2015] [Accepted: 10/22/2015] [Indexed: 11/17/2022]
Abstract
Previous studies have suggested that Plasmodium falciparum (P. falciparum) specific IgE in the form of immune complexes crosslinking the low-affinity receptor (CD23) on monocyte results in tumor necrosis factor (TNF)-α and nitric oxide (NO) production. However, the roles of these parameters in severity and immune protection are still unclear. This study aimed to determine the association between CD23 expression on monocytes, plasma soluble CD23 (sCD23), total IgE, malaria-specific IgE and IgG, and TNF-α levels in P. falciparum infected patients. We evaluated 64 uncomplicated (UC) and 25 severe patients (S), admitted at the Hospital for Tropical Diseases, Mahidol University, and 34 healthy controls (C) enrolled in 2001. Flow cytometry and enzyme linked immunosorbent assays (ELISA) demonstrated that trends of the CD23 expression, levels of sCD23 and specific IgE were higher in the S group as compared to those in the UC and C groups. Plasma levels of P. falciparum specific IgE in the UC (p=0.011) and S groups (p=0.025) were significantly higher than those in C group. In contrast the TNF-α levels tended to be higher in the UC than those in the S (p=0.343) and significantly higher than those in C (p=0.004) groups. The specific IgG levels in UC were significantly higher than those in S and C (p<0.001) groups. At admission, a strong significant negative correlation was found between specific IgG and sCD23 (r=-0.762, p=0.028), and TNF-α and IgE-IgG complexes (r=-0.715, p=0.002). Significant positive correlations between levels of specific IgE and TNF-α (r=0.575, p=0.010); and sCD23 (r=0.597, p=0.000) were also observed. In conclusion, our data suggest that CD23 expression and malaria-specific IgE levels may be involved in the severity of the disease while TNF-α and the malaria-specific IgG may correlate with protection against falciparum malaria.
Collapse
Affiliation(s)
- Ratchanok Kumsiri
- Pathobiology Unit, Department of Medical Science, Faculty of Science, Rangsit University, Pathumthani 12000, Thailand
| | - Marita Troye-Blomberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE10691 Stockholm, Sweden.
| | - Kovit Pattanapanyasat
- Center of Excellence for Flow Cytometry, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Srivicha Krudsood
- Faculty of Tropical Medicine, Department of Tropical Hygiene, Mahidol University, Bangkok 10400, Thailand
| | - Yaowapa Maneerat
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
13
|
Droppa-Almeida D, Vivas WLP, Silva KKO, Rezende AFS, Simionatto S, Meyer R, Lima-Verde IB, Delagostin O, Borsuk S, Padilha FF. Recombinant CP40 from Corynebacterium pseudotuberculosis confers protection in mice after challenge with a virulent strain. Vaccine 2016; 34:1091-6. [PMID: 26796140 DOI: 10.1016/j.vaccine.2015.12.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 01/30/2023]
Abstract
BACKGROUND Caseous Lymphadenitis (CLA) is a contagious, infectious, chronic disease caused by Corynebacterium pseudotuberculosis, which affects mainly sheep and goats. The clinical prevalence of CLA in Brazil is 30%, resulting in decreased milk production, weight loss, and unusable meat and leather. Prophylaxis is based on vaccination; however, current vaccinations do not offer effective protection against the infection, which makes the development of a new vaccine essential to control this disease. EXPERIMENTAL APPROACH Here, we developed a recombinant vaccine based on CP40 protein (rCP40) combined with an adjuvant (Freund's complete adjuvant or saponin) and evaluated its efficacy in a murine model of CLA. Female BALB/c mice were used in an immunization assay. KEY RESULTS rCP40 induced high levels of IgG2a and IgG2b antibodies. After challenge with a virulent strain of C. pseudotuberculosis C57 (10(4)CFU/mL), the levels of IgG2a and IgG2b were sustained, indicating a Th1 response. The groups immunized with rCP40 protein (GES and GEF groups) showed 100% protection and was statistically significant in the GES and GEF groups (p<0.037 and p<0.0952, respectively). CONCLUSIONS The results indicated the recombinant protein CP40 induced an specific immune response in mice that was able to afford protection after challenge, regardless the adjuvant used in the formulation.
Collapse
Affiliation(s)
- Daniela Droppa-Almeida
- Instituto de Tecnologia e Pesquisa - Universidade Tiradentes, Avenida Murilo Dantas, 300, Farolândia, Aracaju, Sergipe 49032-490, Brazil
| | - Wanessa L P Vivas
- Instituto de Tecnologia e Pesquisa - Universidade Tiradentes, Avenida Murilo Dantas, 300, Farolândia, Aracaju, Sergipe 49032-490, Brazil
| | - Katharina Kelly O Silva
- Instituto de Tecnologia e Pesquisa - Universidade Tiradentes, Avenida Murilo Dantas, 300, Farolândia, Aracaju, Sergipe 49032-490, Brazil
| | - Andrea F S Rezende
- Centro de Biotecnologia - Universidade Federal de Pelotas, Campus Capão do Leão, Capão do Leão, Rio Grande do Sul 96010-900, Brazil
| | - Simone Simionatto
- Faculdade de Ciências Biológicas e Ambientais - Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, Km 12 - Cidade Universitária, Mato Grosso do Sul 79804-970, Brazil
| | - Roberto Meyer
- Instituto de Ciências da Saúde - Universidade Federal da Bahia Avenida Reitor Miguel Calmon s/n, Vale do Canela, Salvador, BA 40110-100, Brazil
| | - Isabel B Lima-Verde
- Instituto de Tecnologia e Pesquisa - Universidade Tiradentes, Avenida Murilo Dantas, 300, Farolândia, Aracaju, Sergipe 49032-490, Brazil
| | - Odir Delagostin
- Centro de Biotecnologia - Universidade Federal de Pelotas, Campus Capão do Leão, Capão do Leão, Rio Grande do Sul 96010-900, Brazil
| | - Sibele Borsuk
- Centro de Biotecnologia - Universidade Federal de Pelotas, Campus Capão do Leão, Capão do Leão, Rio Grande do Sul 96010-900, Brazil.
| | - Francine F Padilha
- Instituto de Tecnologia e Pesquisa - Universidade Tiradentes, Avenida Murilo Dantas, 300, Farolândia, Aracaju, Sergipe 49032-490, Brazil.
| |
Collapse
|
14
|
Wu Y, Narum DL, Fleury S, Jennings G, Yadava A. Particle-based platforms for malaria vaccines. Vaccine 2015; 33:7518-24. [PMID: 26458803 DOI: 10.1016/j.vaccine.2015.09.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022]
Abstract
Recombinant subunit vaccines in general are poor immunogens likely due to the small size of peptides and proteins, combined with the lack or reduced presentation of repetitive motifs and missing complementary signal(s) for optimal triggering of the immune response. Therefore, recombinant subunit vaccines require enhancement by vaccine delivery vehicles in order to attain adequate protective immunity. Particle-based delivery platforms, including particulate antigens and particulate adjuvants, are promising delivery vehicles for modifying the way in which immunogens are presented to both the innate and adaptive immune systems. These particle delivery platforms can also co-deliver non-specific immunostimodulators as additional adjuvants. This paper reviews efforts and advances of the Particle-based delivery platforms in development of vaccines against malaria, a disease that claims over 600,000 lives per year, most of them are children under 5 years of age in sub-Sahara Africa.
Collapse
Affiliation(s)
- Yimin Wu
- Laboratory Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, 5640 Fishers Lane, Rockville, MD, USA.
| | - David L Narum
- Laboratory Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, 5640 Fishers Lane, Rockville, MD, USA
| | - Sylvain Fleury
- Mymetics Corp., 4 Route de la Corniche, 1066 Epalinges, Switzerland
| | - Gary Jennings
- Cytos Biotechnology AG, Wagistrasse 25, 8952 Schlieren, Switzerland
| | - Anjali Yadava
- Malaria Vaccine Branch, U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| |
Collapse
|
15
|
Induction of Multifunctional Broadly Reactive T Cell Responses by a Plasmodium vivax Circumsporozoite Protein Recombinant Chimera. Infect Immun 2015; 83:3749-61. [PMID: 26169267 DOI: 10.1128/iai.00480-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/03/2015] [Indexed: 12/31/2022] Open
Abstract
Plasmodium vivax is the most widespread species of Plasmodium, causing up to 50% of the malaria cases occurring outside sub-Saharan Africa. An effective vaccine is essential for successful control and potential eradication. A well-characterized vaccine candidate is the circumsporozoite protein (CSP). Preclinical and clinical trials have shown that both antibodies and cellular immune responses have been correlated with protection induced by immunization with CSP. On the basis of our reported approach of developing chimeric Plasmodium yoelii proteins to enhance protective efficacy, we designed PvRMC-CSP, a recombinant chimeric protein based on the P. vivax CSP (PvCSP). In this engineered protein, regions of the PvCSP predicted to contain human T cell epitopes were genetically fused to an immunodominant B cell epitope derived from the N-terminal region I and to repeat sequences representing the two types of PvCSP repeats. The chimeric protein was expressed in soluble form with high yield. As the immune response to PvCSP has been reported to be genetically restricted in the murine model, we tested the immunogenicity of PvRMC-CSP in groups of six inbred strains of mice. PvRMC-CSP was able to induce robust antibody responses in all the mouse strains tested. Synthetic peptides representing the allelic forms of the P. vivax CSP were also recognized to a similar extent regardless of the mouse strain. Furthermore, the immunization regimen induced high frequencies of multifunctional CD4(+) and CD8(+) PvRMC-CSP-specific T cells. The depth and breadth of the immune responses elicited suggest that immunization with PvRMC-CSP can circumvent the genetic restriction of the immune response to P. vivax CSP. Interestingly, PvRMC-CSP was also recognized by naturally acquired antibodies from individuals living in areas where malaria is endemic. These features make PvRMC-CSP a promising vaccine candidate for further development.
Collapse
|
16
|
Li H, Zhang J, He Y, Li B, Chen L, Huang W, Zou Q, Wu C. Intranasal immunization with an epitope-based vaccine results in earlier protection, but not better protective efficacy, against Helicobacter pylori compared to subcutaneous immunization. Immunol Res 2015; 62:368-76. [DOI: 10.1007/s12026-015-8666-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Silva JW, Droppa-Almeida D, Borsuk S, Azevedo V, Portela RW, Miyoshi A, Rocha FS, Dorella FA, Vivas WL, Padilha FF, Hernández-Macedo ML, Lima-Verde IB. Corynebacterium pseudotuberculosis cp09 mutant and cp40 recombinant protein partially protect mice against caseous lymphadenitis. BMC Vet Res 2014; 10:965. [PMID: 25527190 PMCID: PMC4297461 DOI: 10.1186/s12917-014-0304-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/11/2014] [Indexed: 11/24/2022] Open
Abstract
Background Caseous lymphadenitis (CLA) is an infectious disease that affects small ruminants and is caused by Corynebacterium pseudotuberculosis. This disease is responsible for high economic losses due to condemnation and trim of infected carcasses, decreased leather and wool yield, loss of sales of breeding stock and deaths from internal involvement. Treatment is costly and ineffective; the most cost-effective strategy is timely immunisation. Various vaccine strategies have been tested, and recombinant vaccines are a promising alternative. Thus, in this study, different vaccine formulations using a recombinant protein (rCP40) and the CP09 live recombinant strain were evaluated. Five groups of 10 mice each were immunised with saline (G1), rCP40 (G2), CP09 (G3), a combination of CP09 and rCP40 (G4) and a heterologous prime-boost strategy (G5). Mice received two immunisations within 15 days. On day 30 after primary immunisation, all groups were challenged with a C. pseudotuberculosis virulent strain. Mice were monitored and mortality was recorded for 30 days after challenge. Results The G2, G4 and G5 groups showed high levels of IgG1 and IgG2a; G2 presented significant IgG2a production after virulent challenge in the absence of IgG1 and IgG3 induction. Thirty days after challenge, the mice survival rates were 20 (G1), 90 (G2), 50 (G3), 70 (G4) and 60% (G5). Conclusions rCP40 is a promising target in the development of vaccines against caseous lymphadenitis.
Collapse
Affiliation(s)
- Judson W Silva
- Technology and Research Institute, Tiradentes University, Av. Murilo Dantas, 300, Aracaju, Sergipe, 49032-490, Brazil.
| | - Daniela Droppa-Almeida
- Technology and Research Institute, Tiradentes University, Av. Murilo Dantas, 300, Aracaju, Sergipe, 49032-490, Brazil.
| | - Sibele Borsuk
- Biotechnology Unit/Center for Technology Development, Federal University of Pelotas, Capão do Leão, Rio Grande do Sul, 96010-900, Brazil.
| | - Vasco Azevedo
- Biological Sciences Institute, General Biology Department, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Minas Gerais, Belo Horizonte, Brazil.
| | - Ricardo W Portela
- Health Sciences Institute, Federal University of Bahia, Avenida Reitor Miguel Calmon s/n, Salvador, BA, 40110-100, Brazil.
| | - Anderson Miyoshi
- Biological Sciences Institute, General Biology Department, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Minas Gerais, Belo Horizonte, Brazil.
| | - Flávia S Rocha
- Biological Sciences Institute, General Biology Department, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Minas Gerais, Belo Horizonte, Brazil.
| | - Fernanda A Dorella
- Biological Sciences Institute, General Biology Department, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Minas Gerais, Belo Horizonte, Brazil.
| | - Wanessa L Vivas
- Technology and Research Institute, Tiradentes University, Av. Murilo Dantas, 300, Aracaju, Sergipe, 49032-490, Brazil.
| | - Francine F Padilha
- Technology and Research Institute, Tiradentes University, Av. Murilo Dantas, 300, Aracaju, Sergipe, 49032-490, Brazil.
| | - Maria L Hernández-Macedo
- Technology and Research Institute, Tiradentes University, Av. Murilo Dantas, 300, Aracaju, Sergipe, 49032-490, Brazil.
| | - Isabel B Lima-Verde
- Technology and Research Institute, Tiradentes University, Av. Murilo Dantas, 300, Aracaju, Sergipe, 49032-490, Brazil.
| |
Collapse
|
18
|
Kim MG, Park JY, Shon Y, Kim G, Shim G, Oh YK. Nanotechnology and vaccine development. Asian J Pharm Sci 2014. [DOI: 10.1016/j.ajps.2014.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
19
|
Arévalo-Herrera M, Forero-Peña DA, Rubiano K, Gómez-Hincapie J, Martínez NL, Lopez-Perez M, Castellanos A, Céspedes N, Palacios R, Oñate JM, Herrera S. Plasmodium vivax sporozoite challenge in malaria-naïve and semi-immune Colombian volunteers. PLoS One 2014; 9:e99754. [PMID: 24963662 PMCID: PMC4070897 DOI: 10.1371/journal.pone.0099754] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/15/2014] [Indexed: 11/19/2022] Open
Abstract
Background Significant progress has been recently achieved in the development of Plasmodium vivax challenge infections in humans, which are essential for vaccine and drug testing. With the goal of accelerating clinical development of malaria vaccines, the outcome of infections experimentally induced in naïve and semi-immune volunteers by infected mosquito bites was compared. Methods Seven malaria-naïve and nine semi-immune Colombian adults (n = 16) were subjected to the bites of 2–4 P. vivax sporozoite-infected Anopheles mosquitoes. Parasitemia levels, malaria clinical manifestations, and immune responses were assessed and compared. Results All volunteers developed infections as confirmed by microscopy and RT-qPCR. No significant difference in the pre-patent period (mean 12.5 and 12.8 days for malaria-naïve and malaria-exposed, respectively) was observed but naïve volunteers developed classical malaria signs and symptoms, while semi-immune volunteers displayed minor or no symptoms at the day of diagnosis. A malaria-naïve volunteer developed a transient low submicroscopic parasitemia that cured spontaneously. Infection induced an increase in specific antibody levels in both groups. Conclusion Sporozoite infectious challenge was safe and reproducible in semi-immune and naïve volunteers. This model will provide information for simultaneous comparison of the protective efficacy of P. vivax vaccines in naïve and semi-immune volunteers under controlled conditions and would accelerate P. vivax vaccine development. Trial Registration clinicaltrials.gov NCT01585077
Collapse
Affiliation(s)
- Myriam Arévalo-Herrera
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
- School of Health, Universidad del Valle, Cali, Colombia
- * E-mail:
| | - David A. Forero-Peña
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
- Caucaseco Scientific Research Center (CSRC), Cali, Colombia
| | - Kelly Rubiano
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
- Caucaseco Scientific Research Center (CSRC), Cali, Colombia
| | - José Gómez-Hincapie
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
- Caucaseco Scientific Research Center (CSRC), Cali, Colombia
| | - Nora L. Martínez
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
- Caucaseco Scientific Research Center (CSRC), Cali, Colombia
| | - Mary Lopez-Perez
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
- Caucaseco Scientific Research Center (CSRC), Cali, Colombia
| | - Angélica Castellanos
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
- Caucaseco Scientific Research Center (CSRC), Cali, Colombia
| | - Nora Céspedes
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
- School of Health, Universidad del Valle, Cali, Colombia
- Caucaseco Scientific Research Center (CSRC), Cali, Colombia
| | | | | | - Sócrates Herrera
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
- Caucaseco Scientific Research Center (CSRC), Cali, Colombia
| |
Collapse
|
20
|
Gupta PK, Mukherjee P, Dhawan S, Pandey AK, Mazumdar S, Gaur D, Jain SK, Chauhan VS. Production and preclinical evaluation of Plasmodium falciparum MSP-119 and MSP-311 chimeric protein, PfMSP-Fu24. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:886-97. [PMID: 24789797 PMCID: PMC4054244 DOI: 10.1128/cvi.00179-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/22/2014] [Indexed: 11/20/2022]
Abstract
A Plasmodium falciparum chimeric protein, PfMSP-Fu24, was constructed by genetically coupling immunodominant, conserved regions of two merozoite surface proteins, the 19-kDa region C-terminal region of merozoite surface protein 1 (PfMSP-119) and an 11-kDa conserved region of merozoite surface protein 3 (PfMSP-311), to augment the immunogenicity potential of these blood-stage malaria vaccine candidates. Here we describe an improved, efficient, and scalable process to produce high-quality PfMSP-Fu24. The chimeric protein was produced in Escherichia coli SHuffle T7 Express lysY cells that express disulfide isomerase DsbC. A two-step purification process comprising metal affinity followed by cation exchange chromatography was developed, and we were able to obtain PfMSP-Fu24 with purity above 99% and with a considerable yield of 23 mg/liter. Immunogenicity of PfMSP-Fu24 formulated with several adjuvants, including Adjuplex, Alhydrogel, Adjuphos, Alhydrogel plus glucopyranosyl lipid adjuvant, aqueous (GLA-AF), Adjuphos+GLA-AF, glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE), and Freund's adjuvant, was evaluated. PfMSP-Fu24 formulated with GLA-SE and Freund's adjuvant in mice and with Alhydrogel and Freund's adjuvant in rabbits produced high titers of PfMSP-119 and PfMSP-311-specific functional antibodies. Some of the adjuvant formulations induced inhibitory antibody responses and inhibited in vitro growth of P. falciparum parasites in the presence as well as in the absence of human monocytes. These results suggest that PfMSP-Fu24 can form a constituent of a multistage malaria vaccine.
Collapse
Affiliation(s)
- Puneet K Gupta
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Paushali Mukherjee
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Shikha Dhawan
- TB Laboratories (PATH), Central TB Division, MoHFW (GoI) Nirman Bhavan, New Delhi, India
| | - Alok K Pandey
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Suman Mazumdar
- Department of Chemical & Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Deepak Gaur
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - S K Jain
- Jamia Hamdard University, Hamdard Nagar, New Delhi, India
| | - Virander S Chauhan
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
21
|
Almeida APMM, Dias MO, Vieira CDAF, Chávez-Olórtegui C, Gazzineli RT, Rodrigues MM, Fujiwara RT, Bruna-Romero O. Long-lasting humoral and cellular immune responses elicited by immunization with recombinant chimeras of the Plasmodium vivax circumsporozoite protein. Vaccine 2014; 32:2181-7. [PMID: 24582631 DOI: 10.1016/j.vaccine.2014.02.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/23/2014] [Accepted: 02/12/2014] [Indexed: 01/16/2023]
Abstract
The circumsporozoite protein (CSP), the most abundant surface antigen of sporozoites, has been extensively studied in different expression platforms as a vaccine candidate. Clinical trials have shown the necessity of broad and highly avid humoral immune responses together with high numbers of CSP-specific TCD4+ and TCD8+ cells, especially those producing IFN-γ, to induce protection. To this aim, we designed two distinct recombinant immunogens based on previously-described antigenic fragments of Plasmodium vivax CSP (PvCSP) to be used as vaccine candidates. The first one is a virus-like particle (VLP) comprising the repeat region of PvCSP (B and TCD4+ epitopes) within the loop of the hepatitis B virus core antigen (HBcAgPvCSP). The second one is a PvCSP multi-epitope polypeptide, rPvCSP-ME, designed based on antigenic regions of PvCSP recognized by lymphocytes of individuals from endemic areas. Mice immunized with 2 doses of these proteins, administered individually or combined and formulated in Montanide ISA 720 adjuvant, were able to induce strong effector and memory humoral responses with IgG titers ranging from 10(4) to 10(5) and avidity indexes toward full-length PvCSP reaching up to 66%, even 3 months after the last immunization. Furthermore, balanced Th1/Th2 responses were generated, as determined by titers of IgG subclasses and further confirmed by ELISPOT analyses, which detected that these vaccination protocols were able to elicit long-term IFN-γ and IL-2-secreting memory T-cells. Overall, these results show that our vaccine candidates generate, in mice, immune responses against regions within PvCSP that have been associated with protection against malaria in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Oscar Bruna-Romero
- Departamento de Microbiologia, Imunologia e Parasitologia, CCB, UFSC, Brazil.
| |
Collapse
|
22
|
Patarroyo MA, Calderón D, Moreno-Pérez DA. Vaccines againstPlasmodium vivax: a research challenge. Expert Rev Vaccines 2014; 11:1249-60. [DOI: 10.1586/erv.12.91] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Vasilakos JP, Tomai MA. The use of Toll-like receptor 7/8 agonists as vaccine adjuvants. Expert Rev Vaccines 2014; 12:809-19. [DOI: 10.1586/14760584.2013.811208] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Vanloubbeeck Y, Pichyangkul S, Bayat B, Yongvanitchit K, Bennett JW, Sattabongkot J, Schaecher K, Ockenhouse CF, Cohen J, Yadava A. Comparison of the immune responses induced by soluble and particulate Plasmodium vivax circumsporozoite vaccine candidates formulated in AS01 in rhesus macaques. Vaccine 2013; 31:6216-24. [DOI: 10.1016/j.vaccine.2013.10.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/26/2013] [Accepted: 10/08/2013] [Indexed: 11/26/2022]
|
25
|
TLR3- and MyD88-dependent signaling differentially influences the development of West Nile virus-specific B cell responses in mice following immunization with RepliVAX WN, a single-cycle flavivirus vaccine candidate. J Virol 2013; 87:12090-101. [PMID: 23986602 DOI: 10.1128/jvi.01469-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recognition of conserved pathogen-associated molecular patterns (PAMPs) by host pattern recognition receptors (PRRs) results in the activation of innate signaling pathways that drive the innate immune response and ultimately shape the adaptive immune response. RepliVAX WN, a single-cycle flavivirus (SCFV) vaccine candidate derived from West Nile virus (WNV), is intrinsically adjuvanted with multiple PAMPs and induces a vigorous anti-WNV humoral response. However, the innate mechanisms that link pattern recognition and development of vigorous antigen-specific B cell responses are not completely understood. Moreover, the roles of individual PRR signaling pathways in shaping the B cell response to this live attenuated SCFV vaccine have not been established. We examined and compared the role of TLR3- and MyD88-dependent signaling in the development of anti-WNV-specific antibody-secreting cell responses and memory B cell responses induced by RepliVAX WN. We found that MyD88 deficiency significantly diminished B cell responses by impairing B cell activation, development of germinal centers (GC), and the generation of long-lived plasma cells (LLPCs) and memory B cells (MBCs). In contrast, TLR3 deficiency had more effect on maintenance of GCs and development of LLPCs, whereas differentiation of MBCs was unaffected. Our data suggest that both TLR3- and MyD88-dependent signaling are involved in the intrinsic adjuvanting of RepliVAX WN and differentially contribute to the development of vigorous WNV-specific antibody and B cell memory responses following immunization with this novel SCFV vaccine.
Collapse
|
26
|
Reyes-Sandoval A, Bachmann MF. Plasmodium vivax malaria vaccines: why are we where we are? Hum Vaccin Immunother 2013; 9:2558-65. [PMID: 23978931 PMCID: PMC4162059 DOI: 10.4161/hv.26157] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Malaria is one of the few diseases in which morbidity is still measured in hundreds of millions of cases every year. Plasmodium vivax and Plasmodium falciparum are responsible for nearly all the malaria cases in the world and despite difficulties in obtaining an exact number, estimates indicate an astonishing 349-552 million clinical cases of malaria due to P. falciparum in 2007 and between 132-391 million clinical episodes due to P. vivax in 2009. It is becoming evident that eradication of malaria will be an arduous task and P. vivax will be one of the most difficult species to eliminate and perhaps become the last standing malaria parasite. Indeed, in countries that succeed in decreasing the disease burden, nearly all the remaining malaria cases are caused by P. vivax. Such resilience is mainly due to the sophisticated mechanism that the parasite has evolved to remain dormant for months or years forming hypnozoites, a small structure in the liver that will be a major hurdle in the efforts toward malaria eradication. Furthermore, while clinical trials of vaccines against P. falciparum are making fast progress, a very different picture is seen with P. vivax, where only few candidates are currently active in clinical trials.
Collapse
Affiliation(s)
| | - Martin F Bachmann
- The Jenner Institute; University of Oxford; Oxford, UK; Dermatology; University Hospital Zurich; Zurich, Switzerland
| |
Collapse
|
27
|
Antigenicity and immunogenicity of a novel chimeric peptide antigen based on the P. vivax circumsporozoite protein. Vaccine 2013; 31:4923-30. [PMID: 23954378 DOI: 10.1016/j.vaccine.2013.05.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 01/12/2023]
Abstract
BACKGROUND Plasmodium vivax circumsporozoite (PvCS) protein is a major sporozoite surface antigen involved in parasite invasion of hepatocytes and is currently being considered as vaccine candidate. PvCS contains a dimorphic central repetitive fragment flanked by conserved regions that contain functional domains. METHODS We have developed a chimeric 137-mer synthetic polypeptide (PvCS-NRC) that includes the conserved region I and region II-plus and the two natural repeat variants known as VK210 and VK247. The antigenicity of PvCS-NRC was tested using human sera from PNG and Colombia endemic areas and its immunogenicity was confirmed in mice with different genetic backgrounds, the polypeptide formulated either in Alum or GLA-SE adjuvants was assessed in inbred C3H, CB6F1 and outbred ICR mice, whereas a formulation in Montanide ISA51 was tested in C3H mice. RESULTS Antigenicity studies indicated that the chimeric peptide is recognized by a high proportion (60-70%) of residents of malaria-endemic areas. Peptides formulated with either GLA-SE or Montanide ISA51 adjuvants induced stronger antibody responses as compared with the Alum formulation. Sera from immunized mice as well as antigen-specific affinity purified human IgG antibodies reacted with sporozoite preparations in immunofluorescence and Western blot assays, and displayed strong in vitro inhibition of sporozoite invasion (ISI) into hepatoma cells. CONCLUSIONS The polypeptide was recognized at high prevalence when tested against naturally induced human antibodies and was able to induce significant immunogenicity in mice. Additionally, specific antibodies were able to recognize sporozoites and were able to block sporozoite invasion in vitro. Further evaluation of this chimeric protein construct in preclinical phase e.g. in Aotus monkeys in order to assess the humoral and cellular immune responses as well as protective efficacy against parasite challenge of the vaccine candidate must be conducted.
Collapse
|
28
|
Immunogenicity of recombinant proteins consisting of Plasmodium vivax circumsporozoite protein allelic variant-derived epitopes fused with Salmonella enterica Serovar Typhimurium flagellin. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1418-25. [PMID: 23863502 DOI: 10.1128/cvi.00312-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A Plasmodium falciparum circumsporozoite protein (CSP)-based recombinant fusion vaccine is the first malaria vaccine to reach phase III clinical trials. Resistance to infection correlated with the production of antibodies to the immunodominant central repeat region of the CSP. In contrast to P. falciparum, vaccine development against the CSP of Plasmodium vivax malaria is far behind. Based on this gap in our knowledge, we generated a recombinant chimeric protein containing the immunodominant central repeat regions of the P. vivax CSP fused to Salmonella enterica serovar Typhimurium-derived flagellin (FliC) to activate the innate immune system. The recombinant proteins that were generated contained repeat regions derived from each of the 3 different allelic variants of the P. vivax CSP or a fusion of regions derived from each of the 3 allelic forms. Mice were subcutaneously immunized with the fusion proteins alone or in combination with the Toll-like receptor 3 (TLR-3) agonist poly(I·C), and the anti-CSP serum IgG response was measured. Immunization with a mixture of the 3 recombinant proteins, each containing immunodominant epitopes derived from a single allelic variant, rather than a single recombinant protein carrying a fusion of regions derived from each of 3 allelic forms elicited a stronger immune response. This response was independent of TLR-4 but required TLR-5/MyD88 activation. Antibody titers significantly increased when poly(I·C) was used as an adjuvant with a mixture of the 3 recombinant proteins. These recombinant fusion proteins are novel candidates for the development of an effective malaria vaccine against P. vivax.
Collapse
|
29
|
Park H, Adamson L, Ha T, Mullen K, Hagen SI, Nogueron A, Sylwester AW, Axthelm MK, Legasse A, Piatak M, Lifson JD, McElrath JM, Picker LJ, Seder RA. Polyinosinic-polycytidylic acid is the most effective TLR adjuvant for SIV Gag protein-induced T cell responses in nonhuman primates. THE JOURNAL OF IMMUNOLOGY 2013; 190:4103-15. [PMID: 23509365 DOI: 10.4049/jimmunol.1202958] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prime-boost immunization with heterologous vaccines elicits potent cellular immunity. In this study, we assessed the influence of various TLR ligands on SIV Gag-specific T cell immunity and protection following prime-boost immunization. Rhesus macaques (RMs) were primed with SIV Gag protein emulsified in Montanide ISA51 with or without TLR3 (polyinosinic-polycytidylic acid [poly-IC]), TLR4 (monophosphoryl lipid A), TLR7/8 (3M-012), TLR9 (CpG), or TLR3 (poly-IC) combined with TLR7/8 ligands, then boosted with replication defective adenovirus 5 expressing SIV Gag (rAd5-Gag). After priming, RMs that received SIV Gag protein plus poly-IC developed significantly higher frequencies of SIV Gag-specific CD4(+) Th1 responses in blood and bronchoalveolar lavage (BAL) fluid lymphocytes compared with all other adjuvants, and low-level SIV Gag-specific CD8(+) T cell responses. After the rAd5-Gag boost, the magnitude and breadth of SIV Gag-specific CD8(+) T cell responses were significantly increased in RM primed with SIV Gag protein plus poly-IC, with or without the TLR7/8 ligand, or CpG. However, the anamnestic, SIV Gag-specific CD8(+) T cell response to SIVmac251 challenge was not significantly enhanced by SIV Gag protein priming with any of the adjuvants. In contrast, the anamnestic SIV Gag-specific CD4(+) T cell response in BAL was enhanced by SIV Gag protein priming with poly-IC or CpG, which correlated with partial control of early viral replication after SIVmac251 challenge. These results demonstrate that prime-boost vaccination with SIV Gag protein/poly-IC improves magnitude, breadth, and durability of CD4(+) T cell immune responses, which could have a role in the control of SIV viral replication.
Collapse
Affiliation(s)
- Haesun Park
- Department of Pathology, Vaccine and Gene Therapy Institute, and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kastenmüller K, Espinosa DA, Trager L, Stoyanov C, Salazar AM, Pokalwar S, Singh S, Dutta S, Ockenhouse CF, Zavala F, Seder RA. Full-length Plasmodium falciparum circumsporozoite protein administered with long-chain poly(I·C) or the Toll-like receptor 4 agonist glucopyranosyl lipid adjuvant-stable emulsion elicits potent antibody and CD4+ T cell immunity and protection in mice. Infect Immun 2013; 81:789-800. [PMID: 23275094 PMCID: PMC3584875 DOI: 10.1128/iai.01108-12] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/29/2012] [Indexed: 01/28/2023] Open
Abstract
The Plasmodium falciparum circumsporozoite (CS) protein (CSP) is a major vaccine target for preventing malaria infection. Thus, developing strong and durable antibody and T cell responses against CSP with novel immunogens and potent adjuvants may improve upon the success of current approaches. Here, we compare four distinct full-length P. falciparum CS proteins expressed in Escherichia coli or Pichia pastoris for their ability to induce immunity and protection in mice when administered with long-chain poly(I · C) [poly(I · C)LC] as an adjuvant. CS proteins expressed in E. coli induced high-titer antibody responses against the NANP repeat region and potent CSP-specific CD4(+) T cell responses. Moreover, E. coli-derived CS proteins in combination with poly(I · C)LC induced potent multifunctional (interleukin 2-positive [IL-2(+)], tumor necrosis factor alpha-positive [TNF-α(+)], gamma interferon-positive [IFN-γ(+)]) CD4(+) effector T cell responses in blood, in spleen, and particularly in liver. Using transgenic Plasmodium berghei expressing the repeat region of P. falciparum CSP [Pb-CS(Pf)], we showed that there was a 1- to 4-log decrease in malaria rRNA in the liver following a high-dose challenge and ~50% sterilizing protection with a low-dose challenge compared to control levels. Protection was directly correlated with high-level antibody titers but not CD4(+) T cell responses. Finally, protective immunity was also induced using the Toll-like receptor 4 agonist glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE) as the adjuvant, which also correlated with high antibody titers yet CD4(+) T cell immunity that was significantly less potent than that with poly(I · C)LC. Overall, these data suggest that full-length CS proteins and poly(I · C)LC or GLA-SE offer a simple vaccine formulation to be used alone or in combination with other vaccines for preventing malaria infection.
Collapse
Affiliation(s)
- Kathrin Kastenmüller
- Vaccine Research Center and Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Diego A. Espinosa
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Lauren Trager
- Vaccine Research Center and Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Cristina Stoyanov
- Vaccine Research Center and Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | - Sheetij Dutta
- Division of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Christian F. Ockenhouse
- Division of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Robert A. Seder
- Vaccine Research Center and Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|