1
|
Echlin H, Iverson A, McKnight A, Rosch JW. A Trivalent Live Vaccine Elicits Cross-Species Protection Against Acute Otitis Media in a Murine Model. Vaccines (Basel) 2024; 12:1432. [PMID: 39772092 PMCID: PMC11728825 DOI: 10.3390/vaccines12121432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Acute otitis media (AOM) is a common pediatric infection worldwide and is the primary basis for pediatric primary care visits and antibiotic prescriptions in children. Current licensed vaccines have been incompletely ineffective at reducing the global burden of AOM, underscoring a major unmet medical need. The complex etiology of AOM presents additional challenges for vaccine development, as it can stem from multiple bacterial species including Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. As such, targeting multiple pathogens simultaneously may be required to significantly impact the overall disease burden. Methods: In this study, we aim to overcome this challenge by engineering a live-attenuated vaccine platform based on an attenuated mutant of S. pneumoniae that expresses H. influenzae and M. catarrhalis surface epitopes to induce protective immunity against all three pathogens. Results: The trivalent live-attenuated vaccine conferred significant protection against all three bacterial otopathogens as measured by seroconversion and the development of AOM, with the inclusion of the additional epitopes providing unexpected synergy and enhanced protection against S. pneumoniae. Conclusions: These data demonstrate a novel mechanism of introducing non-native immunogenic antigens into a live-attenuated vaccine platform to engender protection against AOM from multiple pathogenic species.
Collapse
Affiliation(s)
| | | | | | - Jason W. Rosch
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (H.E.); (A.I.); (A.M.)
| |
Collapse
|
2
|
Obolski U, Swarthout TD, Kalizang'oma A, Mwalukomo TS, Chan JM, Weight CM, Brown C, Cave R, Cornick J, Kamng'ona AW, Msefula J, Ercoli G, Brown JS, Lourenço J, Maiden MC, French N, Gupta S, Heyderman RS. The metabolic, virulence and antimicrobial resistance profiles of colonising Streptococcus pneumoniae shift after PCV13 introduction in urban Malawi. Nat Commun 2023; 14:7477. [PMID: 37978177 PMCID: PMC10656543 DOI: 10.1038/s41467-023-43160-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Streptococcus pneumoniae causes substantial mortality among children under 5-years-old worldwide. Polysaccharide conjugate vaccines (PCVs) are highly effective at reducing vaccine serotype disease, but emergence of non-vaccine serotypes and persistent nasopharyngeal carriage threaten this success. We investigated the hypothesis that following vaccine, adapted pneumococcal genotypes emerge with the potential for vaccine escape. We genome sequenced 2804 penumococcal isolates, collected 4-8 years after introduction of PCV13 in Blantyre, Malawi. We developed a pipeline to cluster the pneumococcal population based on metabolic core genes into "Metabolic genotypes" (MTs). We show that S. pneumoniae population genetics are characterised by emergence of MTs with distinct virulence and antimicrobial resistance (AMR) profiles. Preliminary in vitro and murine experiments revealed that representative isolates from emerging MTs differed in growth, haemolytic, epithelial infection, and murine colonisation characteristics. Our results suggest that in the context of PCV13 introduction, pneumococcal population dynamics had shifted, a phenomenon that could further undermine vaccine control and promote spread of AMR.
Collapse
Affiliation(s)
- Uri Obolski
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Todd D Swarthout
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Akuzike Kalizang'oma
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom
| | | | - Jia Mun Chan
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom
| | - Caroline M Weight
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom
- Faculty of Health and Medicine, Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Comfort Brown
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | - Rory Cave
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom
| | - Jen Cornick
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Clinical Infection, Microbiology and Immunology, Institute of Infection Veterinary & Ecological Science, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Giuseppe Ercoli
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Jeremy S Brown
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Universidade Católica Portuguesa, Faculty of Medicine, Biomedical Research Centre, Lisbon, Portugal
| | - Martin C Maiden
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Neil French
- Clinical Infection, Microbiology and Immunology, Institute of Infection Veterinary & Ecological Science, University of Liverpool, Liverpool, United Kingdom
| | - Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Robert S Heyderman
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi.
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom.
| |
Collapse
|
3
|
Hill H, Mitsi E, Nikolaou E, Blizard A, Pojar S, Howard A, Hyder-Wright A, Devin J, Reiné J, Robinson R, Solórzano C, Jochems SP, Kenny-Nyazika T, Ramos-Sevillano E, Weight CM, Myerscough C, McLenaghan D, Morton B, Gibbons E, Farrar M, Randles V, Burhan H, Chen T, Shandling AD, Campo JJ, Heyderman RS, Gordon SB, Brown JS, Collins AM, Ferreira DM. A Randomized Controlled Clinical Trial of Nasal Immunization with Live Virulence Attenuated Streptococcus pneumoniae Strains Using Human Infection Challenge. Am J Respir Crit Care Med 2023; 208:868-878. [PMID: 37556679 DOI: 10.1164/rccm.202302-0222oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023] Open
Abstract
Rationale: Pneumococcal pneumonia remains a global health problem. Pneumococcal colonization increases local and systemic protective immunity, suggesting that nasal administration of live attenuated Streptococcus pneumoniae (Spn) strains could help prevent infections. Objectives: We used a controlled human infection model to investigate whether nasopharyngeal colonization with attenuated S. pneumoniae strains protected against recolonization with wild-type (WT) Spn (SpnWT). Methods: Healthy adults aged 18-50 years were randomized (1:1:1:1) for nasal administration twice (at a 2-wk interval) with saline solution, WT Spn6B (BHN418), or one of two genetically modified Spn6B strains, SpnA1 (Δfhs/piaA) or SpnA3 (ΔproABC/piaA) (Stage I). After 6 months, participants were challenged with SpnWT to assess protection against the homologous serotype (Stage II). Measurements and Main Results: 125 participants completed both study stages per intention to treat. No serious adverse events were reported. In Stage I, colonization rates were similar among groups: SpnWT, 58.1% (18 of 31); SpnA1, 60% (18 of 30); and SpnA3, 59.4% (19 of 32). Anti-Spn nasal IgG levels after colonization were similar in all groups, whereas serum IgG responses were higher in the SpnWT and SpnA1 groups than in the SpnA3 group. In colonized individuals, increases in IgG responses were identified against 197 Spn protein antigens and serotype 6 capsular polysaccharide using a pangenome array. Participants given SpnWT or SpnA1 in Stage I were partially protected against homologous challenge with SpnWT (29% and 30% recolonization rates, respectively) at stage II, whereas those exposed to SpnA3 achieved a recolonization rate similar to that in the control group (50% vs. 47%, respectively). Conclusions: Nasal colonization with genetically modified live attenuated Spn was safe and induced protection against recolonization, suggesting that nasal administration of live attenuated Spn could be an effective strategy for preventing pneumococcal infections. Clinical trial registered with the ISRCTN registry (ISRCTN22467293).
Collapse
Affiliation(s)
- Helen Hill
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elena Mitsi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Elissavet Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Annie Blizard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ashleigh Howard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Angela Hyder-Wright
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Jack Devin
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jesus Reiné
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Ryan Robinson
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Carla Solórzano
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Simon P Jochems
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Tinashe Kenny-Nyazika
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elisa Ramos-Sevillano
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Caroline M Weight
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Chris Myerscough
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Daniella McLenaghan
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ben Morton
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Emily Gibbons
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Madlen Farrar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Victoria Randles
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Hassan Burhan
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Tao Chen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Joe J Campo
- Antigen Discovery Inc, Irvine, California; and
| | - Robert S Heyderman
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Stephen B Gordon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Malawi Liverpool Wellcome-Trust Programme, Blantyre, Malawi
| | - Jeremy S Brown
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Andrea M Collins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Chan WY, Entwisle C, Ercoli G, Ramos-Sevillano E, McIlgorm A, Cecchini P, Bailey C, Lam O, Whiting G, Green N, Goldblatt D, Wheeler JX, Brown JS. Corrected and Republished from: "A Novel, Multiple-Antigen Pneumococcal Vaccine Protects against Lethal Streptococcus pneumoniae Challenge". Infect Immun 2022; 90:e0084618a. [PMID: 35076289 PMCID: PMC9199499 DOI: 10.1128/iai.00846-18a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022] Open
Abstract
Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Proteomics and immunoblot analyses demonstrated that, compared to standard bacterial lysates, MAV was enriched with Hsps and contained several recognized protective protein antigens, including pneumococcal surface protein A (PspA) and pneumolysin (Ply). Vaccination of rodents with MAV induced robust antibody responses to multiple serotypes, including nonpneumococcal conjugate vaccine serotypes. Homologous and heterologous strains of S. pneumoniae were opsonized after incubation in sera from vaccinated rodents. In mouse models, active vaccination with MAV significantly protected against pneumonia, while passive transfer of rabbit serum from MAV-vaccinated rabbits significantly protected against sepsis caused by both homologous and heterologous S. pneumoniae strains. Direct comparison of MAV preparations made with or without the heat shock step showed no clear differences in protein antigen content and antigenicity, suggesting that the chromatography step rather than Hsp induction improved MAV antigenicity. Overall, these data suggest that the MAV approach may provide serotype-independent protection against S. pneumoniae.
Collapse
Affiliation(s)
- Win-Yan Chan
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| | | | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| | - Elise Ramos-Sevillano
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| | - Ann McIlgorm
- ImmunoBiology Ltd., Babraham, Cambridge, United Kingdom
| | | | | | - Oliver Lam
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Gail Whiting
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Nicola Green
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David Goldblatt
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jun X. Wheeler
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| |
Collapse
|
5
|
Ramos-Sevillano E, Ercoli G, Guerra-Assunção JA, Felgner P, Ramiro de Assis R, Nakajima R, Goldblatt D, Tetteh KKA, Heyderman RS, Gordon SB, Ferreria DM, Brown JS. Protective Effect of Nasal Colonisation with ∆cps/piaA and ∆cps/proABCStreptococcus pneumoniae Strains against Recolonisation and Invasive Infection. Vaccines (Basel) 2021; 9:vaccines9030261. [PMID: 33804077 PMCID: PMC8000150 DOI: 10.3390/vaccines9030261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Nasopharyngeal administration of live virulence-attenuated Streptococcus pneumoniae strains is a potential novel preventative strategy. One target for creating reduced virulence S. pneumoniae strains is the capsule, but loss of the capsule reduces the duration of S. pneumoniae colonisation in mice which could impair protective efficacy against subsequent infection. OBJECTIVES To assess protective efficacy of nasopharyngeal administration of unencapsulated S. pneumoniae strains in murine infection models. METHODS Strains containing cps locus deletions combined with the S. pneumoniae virulence factors psaA (reduces colonisation) or proABC (no effect on colonisation) were constructed and their virulence phenotypes and ability to prevent recolonisation or invasive infection assessed using mouse infection models. Serological responses to colonisation were compared between strains using ELISAs, immunoblots and 254 S. pneumoniae protein antigen array. MEASUREMENTS AND MAIN RESULTS The ∆cps/piaA and ∆cps/proABC strains were strongly attenuated in virulence in both invasive infection models and had a reduced ability to colonise the nasopharynx. ELISAs, immunoblots and protein arrays showed colonisation with either strain stimulated weaker serological responses than the wild type strain. Mice previously colonised with these strains were protected against septicaemic pneumonia but, unlike mice colonised with the wild type strain, not against S. pneumoniae recolonisation. CONCLUSIONS Colonisation with the ∆cps/piaA and ∆cps/proABC strains prevented subsequent septicaemia, but in contrast, to published data for encapsulated double mutant strains they did not prevent recolonisation with S. pneumoniae. These data suggest targeting the cps locus is a less effective option for creating live attenuated strains that prevent S. pneumoniae infections.
Collapse
Affiliation(s)
- Elisa Ramos-Sevillano
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London WC1E 6JF, UK;
- Correspondence: (E.R.-S.); (J.S.B.); Tel.: +44-20-7679-6008 (J.S.B.); Fax: +44-20-7679-6973 (J.S.B.)
| | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London WC1E 6JF, UK;
| | | | - Philip Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697-4560, USA; (P.F.); (R.R.d.A.); (R.N.)
| | - Rafael Ramiro de Assis
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697-4560, USA; (P.F.); (R.R.d.A.); (R.N.)
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697-4560, USA; (P.F.); (R.R.d.A.); (R.N.)
| | - David Goldblatt
- Immunobiology Section, UCL Great Ormond Street Institute of Child Health, NIHR Biomedical Research Centre, London WC1N 1EH, UK;
| | - Kevin Kweku Adjei Tetteh
- Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, London WC1E 7HT, UK;
| | - Robert Simon Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College London, Rayne Institute, London WC1E 6JF, UK;
| | - Stephen Brian Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 30096, Malawi;
| | - Daniela Mulari Ferreria
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Jeremy Stuart Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London WC1E 6JF, UK;
- Correspondence: (E.R.-S.); (J.S.B.); Tel.: +44-20-7679-6008 (J.S.B.); Fax: +44-20-7679-6973 (J.S.B.)
| |
Collapse
|
6
|
Ali MQ, Kohler TP, Burchhardt G, Wüst A, Henck N, Bolsmann R, Voß F, Hammerschmidt S. Extracellular Pneumococcal Serine Proteases Affect Nasopharyngeal Colonization. Front Cell Infect Microbiol 2021; 10:613467. [PMID: 33659218 PMCID: PMC7917122 DOI: 10.3389/fcimb.2020.613467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae has evolved versatile strategies to colonize the nasopharynx of humans. Colonization is facilitated by direct interactions with host cell receptors or via binding to components of the extracellular matrix. In addition, pneumococci hijack host-derived extracellular proteases such as the serine protease plasmin(ogen) for ECM and mucus degradation as well as colonization. S. pneumoniae expresses strain-dependent up to four serine proteases. In this study, we assessed the role of secreted or cell-bound serine proteases HtrA, PrtA, SFP, and CbpG, in adherence assays and in a mouse colonization model. We hypothesized that the redundancy of serine proteases compensates for the deficiency of a single enzyme. Therefore, double and triple mutants were generated in serotype 19F strain EF3030 and serotype 4 strain TIGR4. Strain EF3030 produces only three serine proteases and lacks the SFP encoding gene. In adherence studies using Detroit-562 epithelial cells, we demonstrated that both TIGR4Δcps and 19F mutants without serine proteases or expressing only CbpG, HtrA, or PrtA have a reduced ability to adhere to Detroit-562 cells. Consistent with these results, we show that the mutants of strain 19F, which preferentially colonizes mice, abrogate nasopharyngeal colonization in CD-1 mice after intranasal infection. The bacterial load in the nasopharynx was monitored for 14 days. Importantly, mutants showed significantly lower bacterial numbers in the nasopharynx two days after infection. Similarly, we detected a significantly reduced pneumococcal colonization on days 3, 7, and 14 post-inoculations. To assess the impact of pneumococcal serine proteases on acute infection, we infected mice intranasally with bioluminescent and invasive TIGR4 or isogenic triple mutants expressing only CbpG, HtrA, PrtA, or SFP. We imaged the acute lung infection in real-time and determined the survival of the mice. The TIGR4lux mutant expressing only PrtA showed a significant attenuation and was less virulent in the acute pneumonia model. In conclusion, our results showed that pneumococcal serine proteases contributed significantly to pneumococcal colonization but played only a minor role in pneumonia and invasive diseases. Because colonization is a prerequisite for invasive diseases and transmission, these enzymes could be promising candidates for the development of antimicrobials to reduce pneumococcal transmission.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
7
|
Disruption of the cpsE and endA Genes Attenuates Streptococcus pneumoniae Virulence: Towards the Development of a Live Attenuated Vaccine Candidate. Vaccines (Basel) 2020; 8:vaccines8020187. [PMID: 32326482 PMCID: PMC7349068 DOI: 10.3390/vaccines8020187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
The majority of deaths due to Streptococcus pneumoniae infections are in developing countries. Although polysaccharide-based pneumococcal vaccines are available, newer types of vaccines are needed to increase vaccine affordability, particularly in developing countries, and to provide broader protection across all pneumococcal serotypes. To attenuate pneumococcal virulence with the aim of engineering candidate live attenuated vaccines (LAVs), we constructed knockouts in S. pneumoniae D39 of one of the capsular biosynthetic genes, cpsE that encodes glycosyltransferase, and the endonuclease gene, endA, that had been implicated in the uptake of DNA from the environment as well as bacterial escape from neutrophil-mediated killing. The cpsE gene knockout significantly lowered peak bacterial density, BALB/c mice nasopharyngeal (NP) colonisation but increased biofilm formation when compared to the wild-type D39 strain as well as the endA gene knockout mutant. All constructed mutant strains were able to induce significantly high serum and mucosal antibody response in BALB/c mice. However, the cpsE-endA double mutant strain, designated SPEC, was able to protect mice from high dose mucosal challenge of the D39 wild-type. Furthermore, SPEC showed 23-fold attenuation of virulence compared to the wild-type. Thus, the cpsE-endA double-mutant strain could be a promising candidate for further development of a LAV for S. pneumoniae.
Collapse
|
8
|
Intranasal Immunization with the Commensal Streptococcus mitis Confers Protective Immunity against Pneumococcal Lung Infection. Appl Environ Microbiol 2019; 85:AEM.02235-18. [PMID: 30683742 DOI: 10.1128/aem.02235-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/02/2019] [Indexed: 02/04/2023] Open
Abstract
Streptococcus pneumoniae is a bacterial pathogen that causes various diseases of public health concern worldwide. Current pneumococcal vaccines target the capsular polysaccharide surrounding the cells. However, only up to 13 of more than 90 pneumococcal capsular serotypes are represented in the current conjugate vaccines. In this study, we used two experimental approaches to evaluate the potential of Streptococcus mitis, a commensal that exhibits immune cross-reactivity with S. pneumoniae, to confer protective immunity to S. pneumoniae lung infection in mice. First, we assessed the immune response and protective effect of wild-type S. mitis against lung infection by S. pneumoniae strains D39 (serotype 2) and TIGR4 (serotype 4). Second, we examined the ability of an S. mitis mutant expressing the S. pneumoniae type 4 capsule (S. mitis TIGR4cps) to elicit focused protection against S. pneumoniae TIGR4. Our results showed that intranasal immunization of mice with S. mitis produced significantly higher levels of serum IgG and IgA antibodies reactive to both S. mitis and S. pneumoniae, as well as enhanced production of interleukin 17A (IL-17A), but not gamma interferon (IFN-γ) and IL-4, compared with control mice. The immunization resulted in a reduced bacterial load in respiratory tissues following lung infection with S. pneumoniae TIGR4 or D39 compared with control mice. With S. mitis TIGR4cps, protection upon challenge with S. pneumoniae TIGR4 was superior. Thus, these findings show the potential of S. mitis to elicit natural serotype-independent protection against two pneumococcal serotypes and to provide the benefits of the well-recognized protective effect of capsule-targeting vaccines.IMPORTANCE Streptococcus pneumoniae causes various diseases worldwide. Current pneumococcal vaccines protect against a limited number of more than 90 pneumococcal serotypes, accentuating the urgent need to develop novel prophylactic strategies. S. pneumoniae and the commensal Streptococcus mitis share immunogenic characteristics that make S. mitis an attractive vaccine candidate against S. pneumoniae In this study, we evaluated the potential of S. mitis and its mutant expressing pneumococcal capsule type 4 (S. mitis TIGR4cps) to induce protection against S. pneumoniae lung infection in mice. Our findings show that intranasal vaccination with S. mitis protects against S. pneumoniae strains D39 (serotype 2) and TIGR4 (serotype 4) in a serotype-independent fashion, which is associated with enhanced antibody and T cell responses. Furthermore, S. mitis TIGR4cps conferred additional protection against S. pneumoniae TIGR4, but not against D39. The findings highlight the potential of S. mitis to generate protection that combines both serotype-independent and serotype-specific responses.
Collapse
|
9
|
A Novel, Multiple-Antigen Pneumococcal Vaccine Protects against Lethal Streptococcus pneumoniae Challenge. Infect Immun 2019; 87:IAI.00846-18. [PMID: 30530620 PMCID: PMC6386546 DOI: 10.1128/iai.00846-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/07/2023] Open
Abstract
Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Proteomics and immunoblot analyses demonstrated that, compared to standard bacterial lysates, MAV was enriched with Hsps and contained several recognized protective protein antigens, including pneumococcal surface protein A (PspA) and pneumolysin (Ply). Vaccination of rodents with MAV induced robust antibody responses to multiple serotypes, including nonpneumococcal conjugate vaccine serotypes. Homologous and heterologous strains of S. pneumoniae were opsonized after incubation in sera from vaccinated rodents. In mouse models, active vaccination with MAV significantly protected against pneumonia, while passive transfer of rabbit serum from MAV-vaccinated rabbits significantly protected against sepsis caused by both homologous and heterologous S. pneumoniae strains. Direct comparison of MAV preparations made with or without the heat shock step showed no clear differences in protein antigen content and antigenicity, suggesting that the chromatography step rather than Hsp induction improved MAV antigenicity. Overall, these data suggest that the MAV approach may provide serotype-independent protection against S. pneumoniae.
Collapse
|
10
|
Midouni B, Mehiri E, Ghariani A, Draoui H, Essalah L, Bouzouita I, Raoult D, Slim-Saidi L, Fournier P. Genetic diversity of Streptococcus pneumoniae in Tunisia. Int J Antimicrob Agents 2019; 53:63-69. [DOI: 10.1016/j.ijantimicag.2018.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/26/2018] [Accepted: 09/29/2018] [Indexed: 12/16/2022]
|
11
|
Shekhar S, Khan R, Ferreira DM, Mitsi E, German E, Rørvik GH, Berild D, Schenck K, Kwon K, Petersen F. Antibodies Reactive to Commensal Streptococcus mitis Show Cross-Reactivity With Virulent Streptococcus pneumoniae Serotypes. Front Immunol 2018; 9:747. [PMID: 29713324 PMCID: PMC5911667 DOI: 10.3389/fimmu.2018.00747] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/26/2018] [Indexed: 12/05/2022] Open
Abstract
Current vaccines against Streptococcus pneumoniae, a bacterial species that afflicts people by causing a wide spectrum of diseases, do not protect against all pneumococcal serotypes. Thus, alternative vaccines to fight pneumococcal infections that target common proteins are under investigation. One promising strategy is to take advantage of immune cross-reactivity between commensal and pathogenic microbes for cross-protection. In this study, we examined the antibody-mediated cross-reactivity between S. pneumoniae and Streptococcus mitis, a commensal species closely related to S. pneumoniae. Western blot analysis showed that rabbit antisera raised against S. mitis reacted with multiple proteins of virulent S. pneumoniae strains (6B, TIGR4, and D39). Rabbit anti-S. pneumoniae IgG antibodies also showed binding to S. mitis antigens. Incubation of rabbit antisera raised against S. mitis with heterologous or homologous bacterial lysates resulted in marked inhibition of the developments of bands in the Western blots. Furthermore, plasma IgG antibodies from adult human volunteers intranasally inoculated with S. pneumoniae 6B revealed enhanced S. mitis-specific IgG titers compared with the pre-inoculation samples. Using an on-chip protein microarray representing a number of selected membrane and extracellular S. pneumoniae proteins, we identified choline-binding protein D (CbpD), cell division protein (FtsH), and manganese ABC transporter or manganese-binding adhesion lipoprotein (PsaA) as common targets of the rabbit IgG antibodies raised against S. mitis or S. pneumoniae. Cumulatively, these findings provide evidence on the antibody-mediated cross-reactivity of proteins from S. mitis and S. pneumoniae, which may have implications for development of effective and wide-range pneumococcal vaccines.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Rabia Khan
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elena Mitsi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Esther German
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Dag Berild
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Karl Schenck
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Keehwan Kwon
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, United States
| | - Fernanda Petersen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Seon SH, Choi JA, Yang E, Pyo S, Song MK, Rhee DK. Intranasal Immunization With an Attenuated pep27 Mutant Provides Protection From Influenza Virus and Secondary Pneumococcal Infections. J Infect Dis 2017; 217:637-640. [DOI: 10.1093/infdis/jix594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/13/2017] [Indexed: 01/14/2023] Open
|
13
|
Wilson R, Cohen JM, Reglinski M, Jose RJ, Chan WY, Marshall H, de Vogel C, Gordon S, Goldblatt D, Petersen FC, Baxendale H, Brown JS. Naturally Acquired Human Immunity to Pneumococcus Is Dependent on Antibody to Protein Antigens. PLoS Pathog 2017; 13:e1006137. [PMID: 28135322 PMCID: PMC5279798 DOI: 10.1371/journal.ppat.1006137] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/17/2016] [Indexed: 12/31/2022] Open
Abstract
Naturally acquired immunity against invasive pneumococcal disease (IPD) is thought to be dependent on anti-capsular antibody. However nasopharyngeal colonisation by Streptococcus pneumoniae also induces antibody to protein antigens that could be protective. We have used human intravenous immunoglobulin preparation (IVIG), representing natural IgG responses to S. pneumoniae, to identify the classes of antigens that are functionally relevant for immunity to IPD. IgG in IVIG recognised capsular antigen and multiple S. pneumoniae protein antigens, with highly conserved patterns between different geographical sources of pooled human IgG. Incubation of S. pneumoniae in IVIG resulted in IgG binding to the bacteria, formation of bacterial aggregates, and enhanced phagocytosis even for unencapsulated S. pneumoniae strains, demonstrating the capsule was unlikely to be the dominant protective antigen. IgG binding to S. pneumoniae incubated in IVIG was reduced after partial chemical or genetic removal of bacterial surface proteins, and increased against a Streptococcus mitis strain expressing the S. pneumoniae protein PspC. In contrast, depletion of type-specific capsular antibody from IVIG did not affect IgG binding, opsonophagocytosis, or protection by passive vaccination against IPD in murine models. These results demonstrate that naturally acquired protection against IPD largely depends on antibody to protein antigens rather than the capsule.
Collapse
Affiliation(s)
- Robert Wilson
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Jonathan M. Cohen
- Infectious Diseases & Microbiology Unit, UCL Institute of Child Health, London, United Kingdom
| | - Mark Reglinski
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Ricardo J. Jose
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Win Yan Chan
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Helina Marshall
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Corné de Vogel
- Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Stephen Gordon
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - David Goldblatt
- Institute of Child Health, University College London, London, United Kingdom
| | | | - Helen Baxendale
- Clinical Immunology Department, Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| |
Collapse
|
14
|
Khan SN, Khan AU. Breaking the Spell: Combating Multidrug Resistant 'Superbugs'. Front Microbiol 2016; 7:174. [PMID: 26925046 PMCID: PMC4757689 DOI: 10.3389/fmicb.2016.00174] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022] Open
Abstract
Multidrug-resistant (MDR) bacteria have become a severe threat to community wellbeing. Conventional antibiotics are getting progressively more ineffective as a consequence of resistance, making it imperative to realize improved antimicrobial options. In this review we emphasized the microorganisms primarily reported of being resistance, referred as ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacteriaceae) accentuating their capacity to "escape" from routine antimicrobial regimes. The upcoming antimicrobial agents showing great potential and can serve as alternative therapeutic options are discussed. We also provided succinct overview of two evolving technologies; specifically network pharmacology and functional genomics profiling. Furthermore, In vivo imaging techniques can provide novel targets and a real time tool for potential lead molecule assessment. The employment of such approaches at prelude of a drug development process, will enables more informed decisions on candidate drug selection and will maximize or predict therapeutic potential before clinical testing.
Collapse
Affiliation(s)
| | - Asad U. Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim UniversityAligarh, India
| |
Collapse
|
15
|
Wilson R, Cohen JM, Jose RJ, de Vogel C, Baxendale H, Brown JS. Protection against Streptococcus pneumoniae lung infection after nasopharyngeal colonization requires both humoral and cellular immune responses. Mucosal Immunol 2015; 8:627-39. [PMID: 25354319 PMCID: PMC4351900 DOI: 10.1038/mi.2014.95] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/13/2014] [Indexed: 02/04/2023]
Abstract
Streptococcus pneumoniae is a common cause of pneumonia and infective exacerbations of chronic lung disease, yet there are few data on how adaptive immunity can specifically prevent S. pneumoniae lung infection. We have used a murine model of nasopharyngeal colonization by the serotype 19F S. pneumoniae strain EF3030 followed by lung infection to investigate whether colonization protects against subsequent lung infection and the mechanisms involved. EF3030 colonization induced systemic and local immunoglobulin G against a limited number of S. pneumoniae protein antigens rather than capsular polysaccharide. During lung infection, previously colonized mice had increased early cytokine responses and neutrophil recruitment and reduced bacterial colony-forming units in the lungs and bronchoalveolar lavage fluid compared with control mice. Colonization-induced protection was lost when experiments were repeated in B-cell- or neutrophil-deficient mice. Furthermore, the improved interleukin (IL)-17 response to infection in previously colonized mice was abolished by depletion of CD4+ cells, and prior colonization did not protect against lung infection in mice depleted of CD4+ cells or IL17. Together these data show that naturally acquired protective immunity to S. pneumoniae lung infection requires both humoral and cell-mediated immune responses, providing a template for the design of improved vaccines that can specifically prevent pneumonia or acute bronchitis.
Collapse
Affiliation(s)
- R Wilson
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, UK
| | - J M Cohen
- Infectious Diseases and Microbiology Unit, UCL Institute of Child Health, London, UK
| | - R J Jose
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, UK
| | - C de Vogel
- Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - H Baxendale
- Clinical Immunology Department, Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - J S Brown
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London, UK,()
| |
Collapse
|
16
|
Rosch JW, Iverson AR, Humann J, Mann B, Gao G, Vogel P, Mina M, Murrah KA, Perez AC, Edward Swords W, Tuomanen EI, McCullers JA. A live-attenuated pneumococcal vaccine elicits CD4+ T-cell dependent class switching and provides serotype independent protection against acute otitis media. EMBO Mol Med 2014; 6:141-54. [PMID: 24408968 PMCID: PMC3936495 DOI: 10.1002/emmm.201202150] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 09/06/2013] [Accepted: 09/23/2013] [Indexed: 01/19/2023] Open
Abstract
Acute otitis media (AOM) caused by Streptococcus pneumoniae remains one of the most common infectious diseases worldwide despite widespread vaccination. A major limitation of the currently licensed pneumococcal vaccines is the lack of efficacy against mucosal disease manifestations such as AOM, acute bacterial sinusitis and pneumonia. We sought to generate a novel class of live vaccines that (1) retain all major antigenic virulence proteins yet are fully attenuated and (2) protect against otitis media. A live vaccine candidate based on deletion of the signal recognition pathway component ftsY induced potent, serotype-independent protection against otitis media, sinusitis, pneumonia and invasive pneumococcal disease. Protection was maintained in animals coinfected with influenza virus, but was lost if mice were depleted of CD4(+) T cells at the time of vaccination. The live vaccine induced a strong serum IgG2a and IgG2b response that correlated with CD4(+) T-cell mediated class switching. Deletion of genes required for microbial adaptation to the host environment is a novel live attenuated vaccine strategy yielding the first experimental vaccine effective against pneumococcal otitis media.
Collapse
Affiliation(s)
- Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, USA
| | - Amy R Iverson
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, USA
| | - Jessica Humann
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, USA
| | - Beth Mann
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, USA
| | - Geli Gao
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, USA
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research HospitalMemphis, TN, USA
| | - Michael Mina
- Emory University School of MedicineAtlanta, GA, USA
| | - Kyle A Murrah
- Department of Microbiology and Immunology, Wake Forest School of MedicineWinston-Salem, NC, USA
| | - Antonia C Perez
- Department of Microbiology and Immunology, Wake Forest School of MedicineWinston-Salem, NC, USA
| | - W Edward Swords
- Department of Microbiology and Immunology, Wake Forest School of MedicineWinston-Salem, NC, USA
| | - Elaine I Tuomanen
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, USA
| | - Jonathan A McCullers
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, USA
| |
Collapse
|
17
|
Cohen JM, Wilson R, Shah P, Baxendale HE, Brown JS. Lack of cross-protection against invasive pneumonia caused by heterologous strains following murine Streptococcus pneumoniae nasopharyngeal colonisation despite whole cell ELISAs showing significant cross-reactive IgG. Vaccine 2013; 31:2328-32. [DOI: 10.1016/j.vaccine.2013.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 02/27/2013] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
|