1
|
Wang WC, Sayedahmed EE, Alhashimi M, Elkashif A, Gairola V, Murala MST, Sambhara S, Mittal SK. Adenoviral Vector-Based Vaccine Expressing Hemagglutinin Stem Region with Autophagy-Inducing Peptide Confers Cross-Protection Against Group 1 and 2 Influenza A Viruses. Vaccines (Basel) 2025; 13:95. [PMID: 39852874 PMCID: PMC11769558 DOI: 10.3390/vaccines13010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: An effective universal influenza vaccine is urgently needed to overcome the limitations of current seasonal influenza vaccines, which are ineffective against mismatched strains and unable to protect against pandemic influenza. Methods: In this study, bovine and human adenoviral vector-based vaccine platforms were utilized to express various combinations of antigens. These included the H5N1 hemagglutinin (HA) stem region or HA2, the extracellular domain of matrix protein 2 of influenza A virus, HA signal peptide (SP), trimerization domain, excretory peptide, and the autophagy-inducing peptide C5 (AIP-C5). The goal was to identify the optimal combination for enhanced immune responses and cross-protection. Mice were immunized using a prime-boost strategy with heterologous adenoviral (Ad) vectors. Results: The heterologous Ad vectors induced robust HA stem-specific humoral and cellular immune responses in the immunized mice. Among the tested combinations, Ad vectors expressing SP + HA stem + AIP-C5 conferred significant protection against group 1 (H1N1 and H5N1) and group 2 (H3N2) influenza A viruses. This protection was demonstrated by lower lung viral titers and reduced morbidity and mortality. Conclusions: The findings support further investigation of heterologous Ad vaccine platforms expressing SP + HA stem + AIP-C5. This combination shows promise as a potential universal influenza vaccine, providing broader protection against influenza A viruses.
Collapse
Affiliation(s)
- Wen-Chien Wang
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| | - Marwa Alhashimi
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| | - Ahmed Elkashif
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| | - Vivek Gairola
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| | - Muralimanohara S. T. Murala
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| |
Collapse
|
2
|
Zhang J, Hu F, Aras O, Chai Y, An F. Small Molecule-Drug Conjugates: Opportunities for the Development of Targeted Anticancer Drugs. ChemMedChem 2024; 19:e202300720. [PMID: 38396351 DOI: 10.1002/cmdc.202300720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
Conventional chemotherapy is insufficient for precise cancer treatment due to its lack of selectivity and inevitable side effects. Targeted drugs have emerged as a promising solution for precise cancer treatment. A common strategy is to conjugate therapeutic agents with ligands that can specifically bind to tumor cells, providing targeted therapy. Similar to the more successful antibody drug conjugates (ADCs), small molecule drug conjugates (SMDCs) are another promising class of targeted drugs, consisting of three parts: targeting ligand, cleavable linker and payload. Compared to ADCs, SMDCs have the advantages of smaller size, better permeability, simpler preparation process and non-immunogenicity, making them a promising alternative to ADCs. This review describes the characteristics of the targeting ligand, linker and payload of SMDCs and the criteria for selecting a suitable one. We also discuss recently reported SMDCs and list some successful SMDCs that have entered clinical trials.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Fanchun Hu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yichao Chai
- Department of Oncology, The Second Affiliated Hospital of Xi'an, Jiaotong University, No.157 Xiwu Road, Xincheng District, Xi'an, Shaanxi, 710004, China
| | - Feifei An
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
3
|
Gao N, Wang J, Fang C, Bai P, Sun Y, Wu W, Shan A. Combating bacterial infections with host defense peptides: Shifting focus from bacteria to host immunity. Drug Resist Updat 2024; 72:101030. [PMID: 38043443 DOI: 10.1016/j.drup.2023.101030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The increasing prevalence of multidrug-resistant bacterial infections necessitates the exploration of novel paradigms for anti-infective therapy. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), have garnered extensive recognition as immunomodulatory molecules that leverage natural host mechanisms to enhance therapeutic benefits. The unique immune mechanism exhibited by certain HDPs that involves self-assembly into supramolecular nanonets capable of inducing bacterial agglutination and entrapping is significantly important. This process effectively prevents microbial invasion and subsequent dissemination and significantly mitigates selective pressure for the evolution of microbial resistance, highlighting the potential of HDP-based antimicrobial therapy. Recent advancements in this field have focused on developing bio-responsive materials in the form of supramolecular nanonets. A comprehensive overview of the immunomodulatory and bacteria-agglutinating activities of HDPs, along with a discussion on optimization strategies for synthetic derivatives, is presented in this article. These optimized derivatives exhibit improved biological properties and therapeutic potential, making them suitable for future clinical applications as effective anti-infective therapeutics.
Collapse
Affiliation(s)
- Nan Gao
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiajun Wang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| | - Chunyang Fang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Pengfei Bai
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu Sun
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Wanpeng Wu
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
4
|
Chen M, Cai L, Xiang Y, Zhong L, Shi J. Advances in non-radioactive PSMA-targeted small molecule-drug conjugates in the treatment of prostate cancer. Bioorg Chem 2023; 141:106889. [PMID: 37813074 DOI: 10.1016/j.bioorg.2023.106889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/05/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Most patients with advanced prostate cancer (PCa) will develop metastatic castration-resistant prostate cancer (mCRPC) after androgen deprivation therapy, at this time the tumor enters the end stage, and the clinical treatment is very complicated, which requires rationalization of drugs to prolong the life of patients while improving their quality of life. Prostate-specific membrane antigen (PSMA) is a promising biological target for drug delivery in mCRPC due to its high level of specific expression in PCa cell membranes and low expression in normal tissues. Non-radioactive PSMA-targeted small molecule-drug conjugates (SMDCs) are gradually becoming a heat of discovery due to their good affinity and specificity; simple synthesis steps and transport management methods. Non-radioactive PSMA-targeted SMDCs under investigation can be divided into two categories: SMDCs and dual-ligand coupled drugs, among which SMDCs are the most widespread form of this type of conjugate. SMDCs have three key components: cytotoxic load, linker, and small molecule targeting ligands. SMDCs are internalized into the cell after binding to PSMA on the cell membrane and stored in endosomes and lysosomes, where they are usually enzymatically cleaved to allow precise release of cytotoxic molecules and uniform diffusion into the tumor tissue. More than a dozen non-radioactive PSMA-targeted SMDCs have been developed, many of which have shown favorable properties in both in vitro and in vivo evaluations, demonstrating more favorable results than unmodified cytotoxic drugs. Therefore, non-radioactive PSMA-targeted SMDCs have great therapeutic potential for mCRPC as a form of targeted therapy.
Collapse
Affiliation(s)
- Min Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Linxuan Cai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Mytle N, Leyrer S, Inglefield JR, Harris AM, Hickey TE, Minang J, Lu H, Ma Z, Andersen H, Grubaugh ND, Guina T, Skiadopoulos MH, Lacy MJ. Influenza Antigens NP and M2 Confer Cross Protection to BALB/c Mice against Lethal Challenge with H1N1, Pandemic H1N1 or H5N1 Influenza A Viruses. Viruses 2021; 13:1708. [PMID: 34578289 PMCID: PMC8473317 DOI: 10.3390/v13091708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/01/2023] Open
Abstract
Influenza hemagglutinin (HA) is considered a major protective antigen of seasonal influenza vaccine but antigenic drift of HA necessitates annual immunizations using new circulating HA versions. Low variation found within conserved non-HA influenza virus (INFV) antigens may maintain protection with less frequent immunizations. Conserved antigens of influenza A virus (INFV A) that can generate cross protection against multiple INFV strains were evaluated in BALB/c mice using modified Vaccinia virus Ankara (MVA)-vectored vaccines that expressed INFV A antigens hemagglutinin (HA), matrix protein 1 (M1), nucleoprotein (NP), matrix protein 2 (M2), repeats of the external portion of M2 (M2e) or as tandem repeats (METR), and M2e with transmembrane region and cytoplasmic loop (M2eTML). Protection by combinations of non-HA antigens was equivalent to that of subtype-matched HA. Combinations of NP and forms of M2e generated serum antibody responses and protected mice against lethal INFV A challenge using PR8, pandemic H1N1 A/Mexico/4108/2009 (pH1N1) or H5N1 A/Vietnam/1203/2004 (H5N1) viruses, as demonstrated by reduced lung viral burden and protection against weight loss. The highest levels of protection were obtained with NP and M2e antigens delivered as MVA inserts, resulting in broadly protective immunity in mice and enhancement of previous natural immunity to INFV A.
Collapse
Affiliation(s)
- Nutan Mytle
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- Biomedical Advanced Research and Development Agency, U.S. Department of Health and Human Services, Washington, DC 20201, USA
| | - Sonja Leyrer
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Jon R. Inglefield
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Andrea M. Harris
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
| | - Thomas E. Hickey
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- National Cancer Institute, National Institutes of Health, Frederick, MD 20814, USA
| | - Jacob Minang
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- Optimal Health Care, 11377 Robinwood Dr, Hagerstown, MD 21742, USA
| | - Hang Lu
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
| | - Zhidong Ma
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
| | - Hanné Andersen
- BIOQUAL, Inc., 12301 Parklawn Dr, Rockville, MD 20852, USA;
| | - Nathan D. Grubaugh
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Tina Guina
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- AstraZeneca, Gaithersburg, MD 20878, USA
| | - Mario H. Skiadopoulos
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- U.S. Department of Health and Human Services, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J. Lacy
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
| |
Collapse
|
6
|
Tan MP, Tan WS, Mohamed Alitheen NB, Yap WB. M2e-Based Influenza Vaccines with Nucleoprotein: A Review. Vaccines (Basel) 2021; 9:739. [PMID: 34358155 PMCID: PMC8310010 DOI: 10.3390/vaccines9070739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022] Open
Abstract
Discovery of conserved antigens for universal influenza vaccines warrants solutions to a number of concerns pertinent to the currently licensed influenza vaccines, such as annual reformulation and mismatching with the circulating subtypes. The latter causes low vaccine efficacies, and hence leads to severe disease complications and high hospitalization rates among susceptible and immunocompromised individuals. A universal influenza vaccine ensures cross-protection against all influenza subtypes due to the presence of conserved epitopes that are found in the majority of, if not all, influenza types and subtypes, e.g., influenza matrix protein 2 ectodomain (M2e) and nucleoprotein (NP). Despite its relatively low immunogenicity, influenza M2e has been proven to induce humoral responses in human recipients. Influenza NP, on the other hand, promotes remarkable anti-influenza T-cell responses. Additionally, NP subunits are able to assemble into particles which can be further exploited as an adjuvant carrier for M2e peptide. Practically, the T-cell immunodominance of NP can be transferred to M2e when it is fused and expressed as a chimeric protein in heterologous hosts such as Escherichia coli without compromising the antigenicity. Given the ability of NP-M2e fusion protein in inducing cross-protective anti-influenza cell-mediated and humoral immunity, its potential as a universal influenza vaccine is therefore worth further exploration.
Collapse
Affiliation(s)
- Mei Peng Tan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.P.T.); (N.B.M.A.)
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.P.T.); (N.B.M.A.)
| | - Wei Boon Yap
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Biomedical Science Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
7
|
Pahlavanzadeh M, Sadeghi AA, Mousavi SN, Chamani M. Influence of spleen meal and hydrolyzed yeast on growth performance, blood cells, antibody titres and IL-2 gene expression in broiler chickens. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1941051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Masoud Pahlavanzadeh
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Asghar Sadeghi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Naser Mousavi
- Department of Animal Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Mohammad Chamani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Khan MA. Targeted Drug Delivery Using Tuftsin-bearing Liposomes: Implications in the Treatment of Infectious Diseases and Tumors. Curr Drug Targets 2021; 22:770-778. [PMID: 33243117 DOI: 10.2174/1389450121999201125200756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/04/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
Tuftsin, a tetrapeptide (Thr-Lys-Pro-Arg), acts as an immunopotentiating molecule with its ability to bind and activate many immune cells, including macrophages or monocytes, neutrophils and dendritic cells. The specific targeting activity of tuftsin has been further increased by its palmitoylation followed by its incorporation into the lipid bilayer of liposomes. Tuftsin-bearing liposomes (Tuft-liposomes) possess several characteristics that enable them to act as a potential drug and vaccine carriers. Tuft-liposomes-loaded anti-microbial drugs have been shown to be highly effective against many infectious diseases, including tuberculosis, leishmaniasis, malaria, candidiasis and cryptococosis. Moreover, Tuft-liposomes also increased the activity of anticancer drug etoposide against fibrosarcoma in mice. Tuft-liposomes showed the immune-potentiating effect and rejuvenated the immune cells in the leukopenic mice. In addition, antigens encapsulated in Tuftsin-bearing liposomes demonstrated greater immunogenicity by increasing the T cell proliferation and antibody secretion. Keeping into consideration their specific targeting and immunopotentiating effects, Tuft-liposomes may potentially be used as promising drug and vaccine delivery systems.
Collapse
Affiliation(s)
- Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
9
|
Patel TK, Adhikari N, Amin SA, Biswas S, Jha T, Ghosh B. Small molecule drug conjugates (SMDCs): an emerging strategy for anticancer drug design and discovery. NEW J CHEM 2021. [DOI: 10.1039/d0nj04134c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanisms of how SMDCs work. Small molecule drugs are conjugated with the targeted ligand using pH sensitive linkers which allow the drug molecule to get released at lower lysosomal pH. It helps to accumulate the chemotherapeutic agents to be localized in the tumor environment upon cleaving of the pH-labile bonds.
Collapse
Affiliation(s)
- Tarun Kumar Patel
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| | - Nilanjan Adhikari
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Sk. Abdul Amin
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| | - Tarun Jha
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| |
Collapse
|
10
|
Kim SY, Kim D, Kim S, Lee D, Mun SJ, Cho E, Son W, Jang K, Yang CS. Mycobacterium tuberculosis Rv2626c-derived peptide as a therapeutic agent for sepsis. EMBO Mol Med 2020; 12:e12497. [PMID: 33258196 PMCID: PMC7721357 DOI: 10.15252/emmm.202012497] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
The Rv2626c protein of Mycobacterium tuberculosis is a promising vaccine candidate owing to its strong serum antibody response in patients with tuberculosis. However, there is limited information regarding the intracellular response induced by Rv2626c in macrophages. In this study, we demonstrated that Rv2626c interacts with the RING domain of TRAF6 and inhibits lysine (K) 63‐linked polyubiquitination of TRAF6 (E3 ubiquitin ligase activity); this results in the suppression of TLR4 inflammatory signaling in macrophages. Furthermore, we showed that the C‐terminal 123–131‐amino acid Rv2626c motif promotes macrophage recruitment, phagocytosis, M2 macrophage polarization, and subsequent bacterial clearance. We developed rRv2626c‐CA, a conjugated peptide containing the C‐terminal 123–131‐amino acid Rv2626c that targets macrophages, penetrates the cell membrane, and has demonstrated significant therapeutic effects in a mouse model of cecal ligation and puncture‐induced sepsis. This multifunctional rRv2626c‐CA has considerably improved potency, with an IC50 that is 250‐fold (in vitro) or 1,000‐fold (in vivo) lower than that of rRv2626c‐WT. We provide evidence for new peptide‐based drugs with anti‐inflammatory and antibacterial properties for the treatment of sepsis.
Collapse
Affiliation(s)
- Sun Young Kim
- Department of Bionano Technology, Hanyang University, Seoul, South Korea
| | - Donggyu Kim
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea.,Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Sojin Kim
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea
| | - Daeun Lee
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea
| | - Seok-Jun Mun
- Department of Bionano Technology, Hanyang University, Seoul, South Korea.,Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Euni Cho
- Department of Bionano Technology, Hanyang University, Seoul, South Korea.,Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Wooic Son
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea.,Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul, South Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea.,Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| |
Collapse
|
11
|
Grin MA, Suvorov NV, Mironov AF. Natural chlorins as a promising platform for creating targeted theranostics in oncology. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Ben-Ami Shor D, Lachnish J, Bashi T, Dahan S, Shemer A, Segal Y, Shovman O, Halpert G, Volkov A, Barshack I, Amital H, Blank M, Shoenfeld Y. Immunomodulation of Murine Chronic DSS-Induced Colitis by Tuftsin-Phosphorylcholine. J Clin Med 2019; 9:E65. [PMID: 31888063 PMCID: PMC7019495 DOI: 10.3390/jcm9010065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
Helminths or their products can immunomodulate the host immune system, and this phenomenon may be applied as the basis of new anti-inflammatory treatments. Previously, we have shown the efficacy of tuftsin-phosphorylcholine (TPC), based on a helminth product, in four animal models of autoimmune diseases: arthritis, colitis, systemic lupus erythematosus, and experimental autoimmune encephalomyelitis. We demonstrated that TPC reduced inflammatory process ex vivo in peripheral blood lymphocytes (PBLs) and in biopsies from giant-cell arteritis. In the present study, we assessed the therapeutic potential of TPC treatment on a chronic colitis murine model. C57BL/6 mice with chronic colitis were treated with TPC after the third cycle of 2% dextran sodium sulfate (DSS). Oral TPC treatment resulted in amelioration of the colitis clinical manifestations exemplified by reduced disease activity index (DAI) score, expansion of mesenteric lymph nodes (MLN) T regulatory cells (shown by Fluorescence Activated Cell Sorting (FACS)), significant reduction in the expression of pro-inflammatory cytokines (IL-1β, IL17, IL-6, TNFα), and elevation in the expression of anti-inflammatory cytokine IL-10 (shown by RT-PCR). This study demonstrated the potential immunomodulatory effects of oral administration of TPC in a chronic colitis murine model. Further clinical trials are needed in order to evaluate this novel approach for the treatment of patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Dana Ben-Ami Shor
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 52620, Israel; (J.L.); (T.B.); (S.D.); (A.S.); (Y.S.); (O.S.); (G.H.); (H.A.); (M.B.); (Y.S.)
- Department of Gastroenterology, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6423906, Israel
| | - Jordan Lachnish
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 52620, Israel; (J.L.); (T.B.); (S.D.); (A.S.); (Y.S.); (O.S.); (G.H.); (H.A.); (M.B.); (Y.S.)
| | - Tomer Bashi
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 52620, Israel; (J.L.); (T.B.); (S.D.); (A.S.); (Y.S.); (O.S.); (G.H.); (H.A.); (M.B.); (Y.S.)
| | - Shani Dahan
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 52620, Israel; (J.L.); (T.B.); (S.D.); (A.S.); (Y.S.); (O.S.); (G.H.); (H.A.); (M.B.); (Y.S.)
| | - Asaf Shemer
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 52620, Israel; (J.L.); (T.B.); (S.D.); (A.S.); (Y.S.); (O.S.); (G.H.); (H.A.); (M.B.); (Y.S.)
| | - Yahel Segal
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 52620, Israel; (J.L.); (T.B.); (S.D.); (A.S.); (Y.S.); (O.S.); (G.H.); (H.A.); (M.B.); (Y.S.)
| | - Ora Shovman
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 52620, Israel; (J.L.); (T.B.); (S.D.); (A.S.); (Y.S.); (O.S.); (G.H.); (H.A.); (M.B.); (Y.S.)
| | - Gilad Halpert
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 52620, Israel; (J.L.); (T.B.); (S.D.); (A.S.); (Y.S.); (O.S.); (G.H.); (H.A.); (M.B.); (Y.S.)
| | - Alexander Volkov
- Institute of Pathology, Sheba Medical Center Tel Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 52620, Israel; (A.V.); (I.B.)
| | - Iris Barshack
- Institute of Pathology, Sheba Medical Center Tel Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 52620, Israel; (A.V.); (I.B.)
| | - Howard Amital
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 52620, Israel; (J.L.); (T.B.); (S.D.); (A.S.); (Y.S.); (O.S.); (G.H.); (H.A.); (M.B.); (Y.S.)
| | - Miri Blank
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 52620, Israel; (J.L.); (T.B.); (S.D.); (A.S.); (Y.S.); (O.S.); (G.H.); (H.A.); (M.B.); (Y.S.)
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 52620, Israel; (J.L.); (T.B.); (S.D.); (A.S.); (Y.S.); (O.S.); (G.H.); (H.A.); (M.B.); (Y.S.)
| |
Collapse
|
13
|
Ghiasikhou S, Cazzamalli S, Scheuermann J, Neri D, Zenobi R. Automated and enhanced extraction of a small molecule-drug conjugate using an enzyme-inhibitor interaction based SPME tool followed by direct analysis by ESI-MS. Anal Bioanal Chem 2019; 411:7387-7398. [DOI: 10.1007/s00216-019-02165-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/20/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
|
14
|
Shemer A, Kivity S, Shovman O, Bashi T, Perry O, Watad A, Ben-Ami Shor D, Volkov A, Barshack I, Bragazzi NL, Krule A, Fridkin M, Amital H, Blank M, Shoenfeld Y. Tuftsin-phosphorylcholine (TPC) equally effective to methylprednisolone in ameliorating lupus nephritis in a mice model. Clin Exp Immunol 2019; 193:160-166. [PMID: 29698559 DOI: 10.1111/cei.13137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022] Open
Abstract
The role of helminth treatment in autoimmune diseases is growing constantly. Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease with challenging treatment options. Tuftsin-phosphorylcholine (TPC) is a novel helminth-based compound that modulates the host immune network. This study was conducted to evaluate the potential value of TPC in ameliorating lupus nephritis in a murine model and specifically to compare the efficacy of TPC to the existing first-line therapy for SLE: corticosteroids (methylprednisolone). Lupus-prone NZBxW/F1 mice were treated with TPC (5 µg/mouse), methylprednisolone (MP; 5 mg/body weight) or phosphate-buffered saline (PBS) (control) three times per week once glomerulonephritis, defined as proteinuria of grade > 100 mg/dl, was established. Levels of anti-dsDNA autoantibodies were evaluated by enzyme-linked immunosorbent assay (ELISA), splenic cytokines were measured in vitro and the kidney microscopy was analysed following staining. TPC and MP treatments improved lupus nephritis significantly and prolonged survival in NZBxW/F1 mice. TPC-treated mice showed a significantly decreased level of proteinuria (P < 0·001) and anti-dsDNA antibodies (P < 0·001) compared to PBS-treated mice. Moreover, TPC and MP inhibited the production of the proinflammatory cytokines interferon IFN-γ, interleukin IL-1β and IL-6 (P < 0·001) and enhanced expression of the anti-inflammatory cytokine IL-10 (P < 0·001). Finally, microscopy analysis of the kidneys demonstrated that TPC-treated mice maintained normal structure equally to MP-treated mice. These data indicate that the small molecule named TPC hinders lupus development in genetically lupus-prone mice equally to methylprednisolone in most of the cases. Hence, TCP may be employed as a therapeutic potential for lupus nephritis.
Collapse
Affiliation(s)
- A Shemer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - S Kivity
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - O Shovman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - T Bashi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - O Perry
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Watad
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel.,Department of Medicine B, Sheba Medical Center, Tel Hashomer, Israel
| | - D Ben-Ami Shor
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - A Volkov
- Institute of Pathology, Sheba Medical Center, Tel Hashomer, Israel
| | - I Barshack
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Pathology, Sheba Medical Center, Tel Hashomer, Israel
| | - N L Bragazzi
- Department of Health Sciences (DISSAL), School of Public Health, University of Genoa, Genoa, Italy
| | - A Krule
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - M Fridkin
- Department of Organic Chemistry, The Weizmann Institute of Sciences, Rehovot, Israel
| | - H Amital
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel.,Department of Medicine B, Sheba Medical Center, Tel Hashomer, Israel
| | - M Blank
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Y Shoenfeld
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel.,Incumbent of the Laura Schwarz-Kipp Chair for Research of Autoimmune Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Paul R, Ilamaran M, Khatri V, Amdare N, Reddy MVR, Kaliraj P. Immunological evaluation of fusion protein of Brugia malayi abundant larval protein transcript-2 (BmALT-2) and Tuftsin in experimental mice model. Parasite Epidemiol Control 2019; 4:e00092. [PMID: 30847408 PMCID: PMC6378782 DOI: 10.1016/j.parepi.2019.e00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 12/01/2022] Open
Abstract
Introduction Filariasis, a neglected tropical helminth disease needs vaccine besides mass drug administration for its successful eradication. Methods An attempt was made to produce a fusion protein (P-TUFT-ALT-2) of abundant larval transcript protein-2 and Tuftsin to enhance its immunogenicity. The fusion construct was expressed in Pichia pastoris, a nonexpensive commercial expression system. This study focused on the evaluation of immunological response produced by P-TUFT-ALT-2 in Balb/c mice. Result and discussion P-TUFT-ALT-2 showed an enhanced IgG peak titre compared to E. coli expressed E-ALT-2 and P. pastoris expressed P-ALT-2. IgG2b, IgG2a and IgG1 production were predominant indicating a balanced Th1/Th2 response. P-TUFT-ALT-2 also induced about 28% and 9.5% higher splenocyte proliferation over control and E-ALT-2 respectively. Splenocytes produced predominant IFN-γ followed by IL-5, IL-2 and IL-10 specifying a balanced Th1/Th2 response. P-TUFT-ALT-2 showed 55% to 80% with an average of 65% cytotoxicity in B. malayi L3 larvae in in vitro ADCC assay. Conclusion This experiment validates P-TUFT-ALT-2 as a potential vaccine candidate for human lymphatic filariasis.
Collapse
Affiliation(s)
- Rajkumar Paul
- Centre for Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, Tamil Nadu, India
| | - Meganathan Ilamaran
- Centre for Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, Tamil Nadu, India
| | - Vishal Khatri
- Department of Biochemistry & J.B. Tropical Disease Research Centre, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Maharashtra, India
| | - Nitin Amdare
- Department of Biochemistry & J.B. Tropical Disease Research Centre, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Maharashtra, India
| | - Maryada Venkata Rami Reddy
- Department of Biochemistry & J.B. Tropical Disease Research Centre, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Maharashtra, India
| | - Perumal Kaliraj
- Centre for Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, Tamil Nadu, India
| |
Collapse
|
16
|
Antibody-cytokine fusion proteins: Biopharmaceuticals with immunomodulatory properties for cancer therapy. Adv Drug Deliv Rev 2019; 141:67-91. [PMID: 30201522 DOI: 10.1016/j.addr.2018.09.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/07/2023]
Abstract
Cytokines have long been used for therapeutic applications in cancer patients. Substantial side effects and unfavorable pharmacokinetics limit their application and may prevent dose escalation to therapeutically active regimens. Antibody-cytokine fusion proteins (often referred to as immunocytokines) may help localize immunomodulatory cytokine payloads to the tumor, thereby activating anticancer immune responses. A variety of formats (e.g., intact IgGs or antibody fragments), molecular targets (e.g., extracellular matrix components and cell membrane antigens) and cytokine payloads have been considered for the development of this novel class of biopharmaceuticals. This review presents the basic concepts on the design and engineering of immunocytokines, reviews their potential limitations, points out emerging opportunities and summarizes key features of preclinical and clinical-stage products.
Collapse
|
17
|
Zhuang C, Guan X, Ma H, Cong H, Zhang W, Miao Z. Small molecule-drug conjugates: A novel strategy for cancer-targeted treatment. Eur J Med Chem 2019; 163:883-895. [DOI: 10.1016/j.ejmech.2018.12.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
|
18
|
Song L, Xiong D, Kang X, Jiao Y, Zhou X, Wu K, Zhou Y, Jiao X, Pan Z. The optimized fusion protein HA1-2-FliCΔD2D3 promotes mixed Th1/Th2 immune responses to influenza H7N9 with low induction of systemic proinflammatory cytokines in mice. Antiviral Res 2018; 161:10-19. [PMID: 30389471 DOI: 10.1016/j.antiviral.2018.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 01/17/2023]
Abstract
H7N9 influenza virus has an unusually high fatality rate of approximately 40%, and a safe and effective vaccine against this subtype is urgently needed. Flagellin, a Toll-like receptor (TLR) 5 agonist, has been deemed as a potent adjuvant candidate. However, its high antigenicity and potential for causing inflammatory injury might restrict its clinical application. Previously, we demonstrated that a fusion protein, HA1-2-FliC, comprising the hemagglutinin globular head protein (HA1-2) of H7N9 influenza virus and the full-length Salmonella typhimurium flagellin protein (FliC), had high efficiency against H7N9 in mouse and chicken models. Here, we constructed an improved fusion protein, HA1-2-FliCΔD2D3, with HA1-2 fused to the FliCΔD2D3 (lacking the hypervariable-region domains D2 and D3 of FliC). HA1-2-FliCΔD2D3 exhibited efficient immunoreactivity and TLR5 agonist efficacy, and promoted innate immune-response activation in mouse macrophages, peripheral blood mononuclear cells, and splenocytes, based on cytokine- and chemokine-expression profiles. Mice immunized with HA1-2-FliCΔD2D3 showed significantly lower systemic inflammatory responses (compared with HA1-2-FliC) and highly reduced flagellin-specific antibody production, without affecting HA1-2-specific antibody production and cellular immune responses. Enhanced IFN-γ/IL-4 generation suggested that HA1-2-FliCΔD2D3 maintained balanced Th1/Th2 immune responses. Furthermore, virus challenge was performed in a chicken model. The results showed that chickens receiving FliCΔD2D3 adjuvant vaccine induced high levels of serum neutralizing antibodies, and exhibited a significant reduction of viral loads in throat and cloaca compared to chickens receiving only HA1-2. In conclusion, we constructed the H7N9 influenza subunit vaccine candidate HA1-2-FliCΔD2D3, with reduced immunogenicity against FliC and lower adverse events. The improved adjuvant FliCΔD2D3 can potentially help in developing safe and effective universal protein-based influenza vaccines for humans.
Collapse
Affiliation(s)
- Li Song
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Dan Xiong
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xilong Kang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yang Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaohui Zhou
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China; Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT 06269, USA
| | - Kaiyue Wu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yi Zhou
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Zhiming Pan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
19
|
Paul R, Karthik S, Vimalraj P, Meenakshisundaram S, Kaliraj P. Cloning, large-scale production and characterization of fusion protein (P-TUFT-ALT-2) of Brugian abundant larval transcript-2 with tuftsin in Pichia pastoris. Prep Biochem Biotechnol 2018; 48:823-833. [PMID: 30303452 DOI: 10.1080/10826068.2018.1514511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Lymphatic filariasis is a "disease of poor people" due to a large section of affected people with economic backwardness. Therefore, successful elimination of this disease requires a cost-effective prophylactic agent such as vaccine along with conventional drugs. The Abundant Larval Transcript-2 (BmALT-2) protein of Brugia malayi has been recognized as the most potential vaccine candidate. Tuftsin, a tetra-peptide immunopotentiator has already shown the enhanced immunogenicity of various vaccine antigens in earlier studies. This study deals with the development of tuft-alt-2 fusion construct and a suitable culture condition for its large-scale production in Pichia pastoris. The recombinant P. pastoris/tuft-alt-2 with 9-11 copies of the gene construct exhibited the highest expression level. The molecular weight of P-TUFT-ALT-2 was determined as 28 kDa in SDS-PAGE including 3 kDa due to glycosylation. The dry cell biomass was 57.4 gL-1 in the bioreactor. The P-TUFT-ALT-2 expression was measured as about 35 mg L-1, which was 102% higher than flask culture. The P-TUFT-ALT-2 produced the highest 65,000 IgG peak titer in Balb/c mice. Moreover, P-TUFT-ALT-2 exhibited about 9.46% higher splenocyte proliferation than E. coli expressed E-ALT-2 alone. The enhanced secreted production of P-TUFT-ALT-2 in bioreactor would step up its commercialization as an inexpensive commercial vaccine for human lymphatic filariasis.
Collapse
Affiliation(s)
- Rajkumar Paul
- a Centre for Biotechnology , Anna University , Chennai , India
| | | | | | | | - Perumal Kaliraj
- a Centre for Biotechnology , Anna University , Chennai , India
| |
Collapse
|
20
|
Paul R, Jaiswal S, Mahalakshmi N, Kaliraj P. Elucidation of immunological response and its regulatory network by P-TUFT-ALT-2: a promising fusion protein vaccine for human lymphatic filariasis. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172039. [PMID: 29892388 PMCID: PMC5990782 DOI: 10.1098/rsos.172039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Human lymphatic filariasis, a mosquito-borne neglected tropical parasitic disease, needs an early development of prophylactic agents such as a vaccine for its successful elimination. Our earlier study suggested the enhanced immunological response by fusion protein (P-TUFT-ALT-2) of Tuftsin and ALT-2 in a mice model. We cultured human peripheral blood mononuclear cells (PBMCs) and treated cells with Escherichia coli-expressed ALT-2 (E-ALT-2) and P-TUFT-ALT-2. Real-time polymerase chain reaction was performed to identify the mRNA copy number of various cytokine and transcription factor genes. The recombinant vaccine candidate was also validated for humans by immunoreactivity with human sera samples of natural infection. In this study, P-TUFT-ALT-2 stimulated 12% higher PBMC proliferation in endemic normal (EN) individuals than E-ALT-2 alone. There was enhanced production of IFN γ, IL-2, IL-5 and IL-12, indicating a balanced Th1/Th2 response. However, higher expression of IL-5 and lower IL-4 validate the humoral response through an IL-5-dependent manner. Also, high level of IL-17 indicates a strong Th/Treg regulation over T-cell activation. The upregulated T-bet might have enhanced IFN-γ production, whereas GATA-3 was supposed to enhance IL-5 expression. The fusion protein also exhibited 15-16% higher reactivity with EN clinical sera, exposing the upregulation of IgG1 and IgM in natural infection. The higher reactivity of P-TUFT-ALT-2 with sera of natural infection (EN) was validated indirectly by B-cell activation through various cytokines and regulatory genes produced from different T cells. Thus, these findings endorse P-TUFT-ALT-2 as a potential vaccine candidate for human lymphatic filariasis.
Collapse
|
21
|
Gao YL, Yu MM, Shou ST, Yao Y, Liu YC, Wang LJ, Lu B, Chai YF. Tuftsin prevents the negative immunoregulation of neuropilin-1highCD4+CD25+Regulatory T cells and improves survival rate in septic mice. Oncotarget 2018; 7:81791-81805. [PMID: 27835904 PMCID: PMC5348430 DOI: 10.18632/oncotarget.13235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/28/2016] [Indexed: 01/13/2023] Open
Abstract
Our previous research showed that neuropilin (Nrp) -1highCD4+CD25+Regulatory T cells (Tregs) exhibited primary negative immunoregulation in sepsis induced immune dysfunction. Tuftsin is the typical ligand of Nrp-1. Herein, we investigated the potential therapeutic value and mechanisms of tuftsin in sepsis. Sepsis per se markedly decreased the serum concentration of tuftsin, administration of tuftsin improved the survival rate of septic mice with cecal ligation and puncture (CLP). In vitro study, tuftsin prevented the negative immunoregulation of Nrp-1highCD4+CD25+Tregs, including weakening the expression of forkhead/winged helix transcription factor (Foxp)- 3/cytotoxic T lymphocyte associated antigen (CTLA)-4, inhibiting the secretion of transforming growth factor (TGF)-β, and weakening the immunosuppressive function of Nrp-1highCD4+CD25+Tregs to conventional CD4+CD25-T cells. Tuftsin markedly inhibited the demethylation of Foxp3-Tregs specific demethylated region (TSDR) of Nrp-1highCD4+CD25+Tregs. Tuftsin could represent a new potential therapeutic agentia to improve the outcome of septic mice, and associate with preventing the negative immunoregulation of Tregs via Nrp-1.
Collapse
Affiliation(s)
- Yu-Lei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Mu-Ming Yu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Song-Tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ying Yao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yan-Cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Li-Jun Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Bin Lu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yan-Fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
22
|
Development of a novel dual-domain nanoparticle antigen construct for universal influenza vaccine. Vaccine 2017; 35:7026-7032. [PMID: 29102171 DOI: 10.1016/j.vaccine.2017.10.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/07/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022]
Abstract
A highly effective antigen construct for presenting conserved antigen domains is essential to the development of a universal influenza vaccine. We have developed a novel dual-domain nanoparticle fusion protein (DDNFP) which allows independent presentation of two conserved domains. The conserved domains used were from two separate viral surface proteins, M2e of M2 and fusion peptide (FP) or long alpha helix (CD) of HA2. The carrier is a novel nanoparticle protein - the dodecameric DNA binding protein from starved cells (Dps) of bacteria or archaea. Dps was found to be uniquely capable of simultaneous fusion and surface presentation at both N- and C-termini while retaining the ability to form nanoparticles. Thus, DDNFPs with M2e and FP or CD fused at N- and C-termini of Dps from E. coli (EcDps) or other bacteria were first constructed based on the H1 subtype sequences along with corresponding single-domain nanoparticle fusion proteins (SDNFPs). They were expressed at high levels in bacteria and found to form nanoparticles of the expected size (∼9 nm). They were stable against treatment at high temperatures. The DDNFPs (M2e-EcDps-FP and M2e-EcDps-CD) induced strong antibody responses against individual antigen domains and provided full protection against lethal challenge with PR8 virus (H1N1). Importantly, the protection by DDNFPs was synergistically enhanced as compared to SDNFPs. The M2e-EcDps-CD provided an even stronger protection than M2e-EcDps-FP and therefore appeared to be the superior construct. Together, with novel domain combination, enhanced protection and ease of production, this M2e/CD DDNFP could potentially be a highly effective antigen construct for the universal influenza vaccine.
Collapse
|
23
|
Łęga T, Weiher P, Obuchowski M, Nidzworski D. Presenting Influenza A M2e Antigen on Recombinant Spores of Bacillus subtilis. PLoS One 2016; 11:e0167225. [PMID: 27902762 PMCID: PMC5130239 DOI: 10.1371/journal.pone.0167225] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/10/2016] [Indexed: 11/19/2022] Open
Abstract
Effective vaccination against influenza virus infection is a serious problem mainly due to antigenic variability of the virus. Among many of investigated antigens, the extracellular domain of the M2 protein (M2e) features high homology in all strains of influenza A viruses and antibodies against M2e and is protective in animal models; this makes it a potential candidate for generation of a universal influenza vaccine. However, due to the low immunogenicity of the M2e, formulation of a vaccine based on this antigen requires some modification to induce effective immune responses. In this work we evaluated the possible use of Bacillus subtilis spores as a carrier of the Influenza A M2e antigen in mucosal vaccination. A tandem repeat of 4 consensus sequences coding for human-avian-swine-human M2e (M2eH-A-S-H) peptide was fused to spore coat proteins and stably exposed on the spore surface, as demonstrated by the immunostaining of intact, recombinant spores. Oral immunization of mice with recombinant endospores carrying M2eH-A-S-H elicited specific antibody production without the addition of adjuvants. Bacillus subtilis endospores can serve as influenza antigen carriers. Recombinant spores constructed in this work showed low immunogenicity although were able to induce antibody production. The System of influenza antigen administration presented in this work is attractive mainly due to the omitting time-consuming and cost-intensive immunogen production and purification. Therefore modification should be made to increase the immunogenicity of the presented system.
Collapse
Affiliation(s)
- Tomasz Łęga
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Paulina Weiher
- Department of Recombinant Vaccine, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Obuchowski
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-GUMed, Medical University of Gdańsk, Gdańsk, Poland
| | - Dawid Nidzworski
- Department of Recombinant Vaccine, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
24
|
Immunopotentiation of Different Adjuvants on Humoral and Cellular Immune Responses Induced by HA1-2 Subunit Vaccines of H7N9 Influenza in Mice. PLoS One 2016; 11:e0150678. [PMID: 26930068 PMCID: PMC4773109 DOI: 10.1371/journal.pone.0150678] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/16/2016] [Indexed: 11/19/2022] Open
Abstract
In spring 2013, human infections with a novel avian influenza A (H7N9) virus were reported in China. The number of cases has increased with over 200 mortalities reported to date. However, there is currently no vaccine available for the H7 subtype of influenza A virus. Virus-specific cellular immune responses play a critical role in virus clearance during influenza infection. In this study, we undertook a side-by-side evaluation of two different adjuvants, Salmonella typhimurium flagellin (fliC) and polyethyleneimine (PEI), through intraperitoneal administration to assess their effects on the immunogenicity of the recombinant HA1-2 subunit vaccine of H7N9 influenza. The fusion protein HA1-2-fliC and HA1-2 combined with PEI could induce significantly higher HA1-2-specific IgG and hemagglutination inhibition titers than HA1-2 alone at 12 days post-boost, with superior HA1-2 specific IgG titers in the HA1-2-fliC group compared with the PEI adjuvanted group. The PEI adjuvanted vaccine induced higher IgG1/IgG2a ratio and significantly increased numbers of IFN-γ- and IL-4-producing cells than HA1-2 alone, suggesting a mixed Th1/Th2-type cellular immune response with a Th2 bias. Meanwhile, the HA1-2-fliC induced higher IgG2a and IgG1 levels, which is indicative of a mixed Th1/Th2-type profile. Consistent with this, significant levels, and equal numbers, of IFN-γ- and IL-4-producing cells were detected after HA1-2-fliC vaccination. Moreover, the marked increase in CD69 expression and the proliferative index with the HA1-2-fliC and PEI adjuvanted vaccines indicated that both adjuvanted vaccine candidates effectively induced antigen-specific cellular immune responses. Taken together, our findings indicate that the two adjuvanted vaccine candidates elicit effective and HA1-2-specific humoral and cellular immune responses, offering significant promise for the development of a successful recombinant HA1-2 subunit vaccine for H7N9 influenza.
Collapse
|
25
|
Mu X, Hu K, Shen M, Kong N, Fu C, Yan W, Wei A. Protection against influenza A virus by vaccination with a recombinant fusion protein linking influenza M2e to human serum albumin (HSA). J Virol Methods 2016; 228:84-90. [DOI: 10.1016/j.jviromet.2015.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 11/26/2022]
|
26
|
Tuftsin-derived T-peptide prevents cellular immunosuppression and improves survival rate in septic mice. Sci Rep 2015; 5:16725. [PMID: 26577833 PMCID: PMC4649719 DOI: 10.1038/srep16725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/19/2015] [Indexed: 12/29/2022] Open
Abstract
The primary mechanisms of sepsis induced cellular immunesuppression involve immune dysfunction of T lymphocytes and negative immunoregulation of regulatory T cells (Tregs). It has been found that tuftsin is an immune modulating peptide derived from IgG in spleen. T-peptide is one of tuftsin analogs. Herein, we examined the effect of T-peptide on cell-mediated immunity in the presence of lipopolysaccharide (LPS) and the survival rate in septic mice. T-peptide regulated the proliferative ability of CD4+CD25− T cells in dual responses. Meanwhile, 10 and 100 μg/ml T-peptides were able to enhance the apoptotic rate of CD4+CD25− T cells compared with 1 μg/ml T-peptide, but markedly lowered interleukin (IL)-2 levels. When CD4+CD25+ Tregs were treated with T-peptide for 24 hours, and co-cultured with normal CD4+CD25− T cells, the suppressive ability of CD4+CD25+ Tregs on CD4+CD25− T cells was significantly lowered, along with decreased expression in forkhead/winged helix transcription factor p-3 (Foxp-3) as well as cytotoxic T lymphocyte-associated antigen (CTLA)-4, and secretion of transforming growth factor (TGF)-β. Moreover, T-peptide has the ability to improve outcome of septic mice in a dose- and time- dependent manner, and associated with improvement in the microenvironment of cellular immunosuppression in septic mice.
Collapse
|
27
|
Guimarães LE, Baker B, Perricone C, Shoenfeld Y. Vaccines, adjuvants and autoimmunity. Pharmacol Res 2015; 100:190-209. [PMID: 26275795 PMCID: PMC7129276 DOI: 10.1016/j.phrs.2015.08.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/15/2022]
Abstract
Vaccines and autoimmunity are linked fields. Vaccine efficacy is based on whether host immune response against an antigen can elicit a memory T-cell response over time. Although the described side effects thus far have been mostly transient and acute, vaccines are able to elicit the immune system towards an autoimmune reaction. The diagnosis of a definite autoimmune disease and the occurrence of fatal outcome post-vaccination have been less frequently reported. Since vaccines are given to previously healthy hosts, who may have never developed the disease had they not been immunized, adverse events should be carefully accessed and evaluated even if they represent a limited number of occurrences. In this review of the literature, there is evidence of vaccine-induced autoimmunity and adjuvant-induced autoimmunity in both experimental models as well as human patients. Adjuvants and infectious agents may exert their immune-enhancing effects through various functional activities, encompassed by the adjuvant effect. These mechanisms are shared by different conditions triggered by adjuvants leading to the autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome). In conclusion, there are several case reports of autoimmune diseases following vaccines, however, due to the limited number of cases, the different classifications of symptoms and the long latency period of the diseases, every attempt for an epidemiological study has so far failed to deliver a connection. Despite this, efforts to unveil the connection between the triggering of the immune system by adjuvants and the development of autoimmune conditions should be undertaken. Vaccinomics is a field that may bring to light novel customized, personalized treatment approaches in the future.
Collapse
Affiliation(s)
- Luísa Eça Guimarães
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Britain Baker
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Carlo Perricone
- Reumatologia, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Italy
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel; Incumbent of the Laura Schwarz-kipp chair for research of autoimmune diseases, Sackler Faculty of Medicine, Tel-Aviv University, Israel.
| |
Collapse
|
28
|
Wheatley AK, Kent SJ. Prospects for antibody-based universal influenza vaccines in the context of widespread pre-existing immunity. Expert Rev Vaccines 2015; 14:1227-39. [DOI: 10.1586/14760584.2015.1068125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Adam Kenneth Wheatley
- 1 Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- 2 The University of Melbourne, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Victoria, Australia
| | - Stephen John Kent
- 1 Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- 2 The University of Melbourne, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Victoria, Australia
- 3 Melbourne Sexual Health Centre, Central Clinical School, Monash University, Carlton, Victoria, Australia
| |
Collapse
|
29
|
Abstract
Immune adjuvants have been used in cancer biotherapies to stimulate immune response to tumor cells. Despite their potential as anticancer reagents, there are several impediments to their use in clinical applications. In this study, we aim to modify the existing tuftsin structure and evaluate its antitumor activity in preclinical models. We synthesized a novel tuftsin derivative, namely, the T peptide (TP), by linking four tuftsin peptides, which showed enhanced stability in vivo. We then evaluated its anticancer activity in a postoperative residual tumor model in mice, where we surgically removed most of the primary tumor from the host, a procedure mimicking clinically postoperative patients. Despite the limited effect in intact solid tumors, TP strongly inhibited relapsed growth of residual tumors in postsurgical mice. Surgical resection of tumors accelerated residual tumor growth, but TP slowed down this process significantly. Interestingly, TP showed similar effects in human xenograft residual models. As an immunomodulator, TP could synergize the functions of macrophages, thus inhibiting the growth of cocultured tumor cells in vitro. Furthermore, TP could shift the macrophages to the tumor-suppressive M1 type and mobilize them to produce elevated cytotoxic TNF-α and NO. As a result, TP effectively prolonged the survival time of tumor-resected mice. Using the postoperative residual tumor models, we provide a body of evidence showing the antitumor activity of TP, which causes no obvious toxicity. Our study highlights the potential of TP as a postoperative adjuvant in cancer therapies.
Collapse
|
30
|
Development of a candidate influenza vaccine based on virus-like particles displaying influenza M2e peptide into the immunodominant region of hepatitis B core antigen: Broad protective efficacy of particles carrying four copies of M2e. Vaccine 2015; 33:3398-406. [PMID: 25976545 DOI: 10.1016/j.vaccine.2015.04.073] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/15/2015] [Accepted: 04/18/2015] [Indexed: 11/23/2022]
Abstract
A long-term objective when designing influenza vaccines is to create one with broad cross-reactivity that will provide effective control over influenza, no matter which strain has caused the disease. Here we summarize the results from an investigation into the immunogenic and protective capacities inherent in variations of a recombinant protein, HBc/4M2e. This protein contains four copies of the ectodomain from the influenza virus protein M2 (M2e) fused within the immunodominant loop of the hepatitis B virus core antigen (HBc). Variations of this basic design include preparations containing M2e from the consensus human influenza virus; the M2e from the highly pathogenic avian A/H5N1 virus and a combination of two copies from human and two copies from avian influenza viruses. Intramuscular delivery in mice with preparations containing four identical copies of M2e induced high IgG titers in blood sera and bronchoalveolar lavages. It also provoked the formation of memory T-cells and antibodies were retained in the blood sera for a significant period of time post immunization. Furthermore, these preparations prevented the death of 75-100% of animals, which were challenged with lethal doses of virus. This resulted in a 1.2-3.5 log10 decrease in viral replication within the lungs. Moreover, HBc particles carrying only "human" or "avian" M2e displayed cross-reactivity in relation to human (A/H1N1, A/H2N2 and A/H3N2) or A/H5N1 and A(H1N1)pdm09 viruses, respectively; however, with the particles carrying both "human" and "avian" M2e this effect was much weaker, especially in relation to influenza virus A/H5N1. It is apparent from this work that to quickly produce vaccine for a pandemic it would be necessary to have several variations of a recombinant protein, containing four copies of M2e (each one against a group of likely influenza virus strains) with these relevant constructs housed within a comprehensive collection Escherichia coli-producers and maintained ready for use.
Collapse
|
31
|
Successful modulation of murine lupus nephritis with tuftsin-phosphorylcholine. J Autoimmun 2015; 59:1-7. [DOI: 10.1016/j.jaut.2015.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 12/26/2022]
|
32
|
Enhanced mucosal immune responses induced by a combined candidate mucosal vaccine based on Hepatitis A virus and Hepatitis E virus structural proteins linked to tuftsin. PLoS One 2015; 10:e0123400. [PMID: 25875115 PMCID: PMC4395237 DOI: 10.1371/journal.pone.0123400] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/18/2015] [Indexed: 11/20/2022] Open
Abstract
Hepatitis A virus (HAV) and Hepatitis E virus (HEV) are the most common causes of infectious hepatitis. These viruses are spread largely by the fecal-oral route and lead to clinically important disease in developing countries. To evaluate the potential of targeting hepatitis A and E infection simultaneously, a combined mucosal candidate vaccine was developed with the partial open reading frame 2 (ORF2) sequence (aa 368–607) of HEV (HE-ORF2) and partial virus protein 1 (VP1) sequence (aa 1–198) of HAV (HA-VP1), which included the viral neutralization epitopes. Tuftsin is an immunostimulatory peptide which can enhance the immunogenicity of a protein by targeting it to macrophages and dendritic cells. Here, we developed a novel combined protein vaccine by conjugating tuftsin to HE-ORF2 and HA-VP1 and used synthetic CpG oligodeoxynucleotides (ODNs) as the adjuvant. Subsequent experiments in BALB/c mice demonstrated that tuftsin enhanced the serum-specific IgG and IgA antibodies against HEV and HAV at the intestinal, vaginal and pulmonary interface when delivered intranasally. Moreover, mice from the intranasally immunized tuftsin group (HE-ORF2-tuftsin + HA-VP1-tuftsin + CpG) showed higher levels of IFN-γ-secreting splenocytes (Th1 response) and ratio of CD4+/CD8+ T cells than those of the no-tuftsin group (HE-ORF2 + HA-VP1 + CpG). Thus, the tuftsin group generated stronger humoral and cellular immune responses compared with the no-tuftsin group. Moreover, enhanced responses to the combined protein vaccine were obtained by intranasal immunization compared with intramuscular injection. By integrating HE-ORF2, HA-VP1 and tuftsin in a vaccine, this study validated an important concept for further development of a combined mucosal vaccine against hepatitis A and E infection.
Collapse
|
33
|
Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov 2015; 14:203-19. [DOI: 10.1038/nrd4519] [Citation(s) in RCA: 476] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Ben-Ami Shor D, Bashi T, Lachnish J, Fridkin M, Bizzaro G, Barshak I, Blank M, Shoenfeld Y. Phosphorylcholine-tuftsin compound prevents development of dextransulfate-sodium-salt induced murine colitis: implications for the treatment of human inflammatory bowel disease. J Autoimmun 2014; 56:111-7. [PMID: 25479760 DOI: 10.1016/j.jaut.2014.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/12/2014] [Accepted: 11/12/2014] [Indexed: 12/25/2022]
Abstract
Improved clinical findings of inflammatory bowel disease (IBD) upon treatment with helminthes and their ova were proven in animal models of IBD and in human clinical studies. The immunomodulatory properties of several helminthes were attributed to the phosphorylcholine (PC) molecule. We assessed the therapeutic potential of tuftsin-PC conjugate (TPC) to attenuate murine colitis. Colitis was induced by Dextransulfate-Sodium-Salt (DSS) in drinking water. TPC was given by daily oral ingestion (50 μg/0.1 ml/mouse or PBS) starting at day -2. Disease activity index (DAI) score was followed daily and histology of the colon was performed by H&E staining. Analysis of the cytokines profile in distal colon lysates was performed by immunoblot. Treatment of DSS induced colitis with TPC prevented the severity of colitis, including a reduction in the DAI score, less shortening of the colon and less inflammatory activity in histology. The immunoblot showed that the colitis preventive activity of TPC was associated with downregulation of colon pro-inflammatory IL-1β, TNFα and IL-17 cytokines expression, and enhancement of anti-inflammatory IL-10 cytokine expression. In the current study, we demonstrated that TPC treatment can prevent significantly experimental colitis induction in naïve mice. We propose the TPC as a novel potential small synthetic molecule to treat colitis.
Collapse
Affiliation(s)
- Dana Ben-Ami Shor
- Department of Gastroenterology, Sheba Medical Center affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Tomer Bashi
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Jordan Lachnish
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Mati Fridkin
- Department of Organic Chemistry, The Weizmann Institute of Sciences, Rehovot, Israel
| | - Giorgia Bizzaro
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Iris Barshak
- Institute of Pathology, Sheba Medical Center, affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Miri Blank
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Israel; Incumbent of the Laura Schwarz-Kipp Chair for Research of Autoimmune Diseases, Tel-Aviv University, Israel.
| |
Collapse
|
35
|
Liu WJ, Liu XJ, Li L, Li Y, Zhang SH, Zhen YS. Tuftsin-based, EGFR-targeting fusion protein and its enediyne-energized analog show high antitumor efficacy associated with CD47 down-regulation. Cancer Immunol Immunother 2014; 63:1261-72. [PMID: 25164878 PMCID: PMC11029470 DOI: 10.1007/s00262-014-1604-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 08/15/2014] [Indexed: 01/13/2023]
Abstract
Tuftsin (TF) is an immunomodulator tetrapeptide (Thr-Lys-Pro-Arg) that binds to the receptor neuropilin-1 (Nrp1) on the surface of cells. Many reports have described anti-tumor activity of tuftsin to relate with nonspecific activation of the host immune system. Lidamycin (LDM) that displays extremely potent cytotoxicity to cancer cells is composed of an apoprotein (LDP) and an enediyne chromophore (AE). In addition, Ec is an EGFR-targeting oligopeptide. In the present study, LDP was used as protein scaffold and the specific carrier for the highly potent AE. Genetically engineered fusion proteins LDP-TF and Ec-LDP-TF were prepared; then, the enediyne-energized fusion protein Ec-LDM-TF was generated by integration of AE into Ec-LDP-TF. The tuftsin-based fusion proteins LDP-TF and Ec-LDP-TF significantly enhanced the phagocytotic activity of macrophages as compared with LDP (P < 0.05). Ec-LDP-TF effectively bound to tumor cells and macrophages; furthermore, it markedly suppressed the growth of human epidermoid carcinoma A431 xenograft in athymic mice by 84.2 % (P < 0.05) with up-regulated expression of TNF-α and IFN-γ. Ec-LDM-TF further augmented the therapeutic efficacy, inhibiting the growth of A431 xenograft by 90.9 % (P < 0.05); notably, the Ec-LDM-TF caused marked down-regulation of CD47 in A431 cells. Moreover, the best therapeutic effect was recorded in the group of animals treated with the combination of Ec-LDP-TF with Ec-LDM-TF. The results suggest that tuftsin-based, enediyne-energized, and EGFR-targeting fusion proteins exert highly antitumor efficacy with CD47 modulation. Tuftsin-based fusion proteins are potentially useful for treatment of EGFR- and CD47-overexpressing cancers.
Collapse
Affiliation(s)
- Wen-Juan Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Tiantan Xili, Beijing, 100050 China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, 250117 Shandong China
| | - Xiu-Jun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Tiantan Xili, Beijing, 100050 China
| | - Liang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Tiantan Xili, Beijing, 100050 China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Tiantan Xili, Beijing, 100050 China
| | - Sheng-Hua Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Tiantan Xili, Beijing, 100050 China
| | - Yong-Su Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Tiantan Xili, Beijing, 100050 China
| |
Collapse
|
36
|
Yang P, Wang W, Gu H, Li Z, Zhang K, Wang Z, Li R, Duan Y, Zhang S, Wang X. Protection against influenza H7N9 virus challenge with a recombinant NP–M1–HSP60 protein vaccine construct in BALB/c mice. Antiviral Res 2014; 111:1-7. [DOI: 10.1016/j.antiviral.2014.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 01/08/2023]
|
37
|
Gómez-Pérez GP, van Bruggen R, Grobusch MP, Dobaño C. Plasmodium falciparum malaria and invasive bacterial co-infection in young African children: the dysfunctional spleen hypothesis. Malar J 2014; 13:335. [PMID: 25158979 PMCID: PMC4161853 DOI: 10.1186/1475-2875-13-335] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/21/2014] [Indexed: 12/25/2022] Open
Abstract
Children with recent or acute malaria episodes are at increased risk of invasive bacterial infections (IBI). However, the exact nature of the malaria-IBI association is still unclear. Young children have an age-related spleen immunologic immaturity, mainly due to the still ongoing development of the marginal zone (MZ) B cell subset. By mounting a rapid antibody response against encapsulated bacteria, these cells are critical for the defence against highly pathogenic microorganisms that do not elicit classical T cell-dependent responses. There is increasing evidence that the anatomy of the spleen becomes disorganized during malaria infection, with complete dissolution of the MZ and apoptosis of MZ B cells. Correspondingly, a reduction in the frequency of the peripheral equivalent of the MZ B cells has been found in malaria endemic areas. A remarkable similarity exists in IBI susceptibility between African children with malaria and hyposplenic or splenectomized patients. However, studies specifically assessing the immune function of the spleen in controlling bacterial infections in young children with malaria are scarce. Here, it is hypothesized that Plasmodium falciparum malaria infection constitutes a detrimental factor in the still immature spleen function of young children, resulting in a factually hyposplenic state during malaria episodes, putting children with malaria at a high risk to develop life-threatening bacterial infections. Studies to confirm or reject this hypothesis are greatly needed, as well as the development of affordable and feasible tools to assess the immune spleen function against encapsulated bacteria in children with malaria.
Collapse
Affiliation(s)
- Gloria P Gómez-Pérez
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona 08036, Spain.
| | | | | | | |
Collapse
|
38
|
ZHANG JUN, YANG JIANMIN, FAN DAIMING, TAO HOUQUAN, WANG HUIJU, YU TONG. Peptide FLNPDVLDI of heparanase is a novel HLA-A2-restricted CTL epitope and elicits potent immunological antitumor effects in vitro with an 8-branched design. Oncol Rep 2013; 29:1955-61. [DOI: 10.3892/or.2013.2347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/20/2013] [Indexed: 11/05/2022] Open
|
39
|
García-Sastre A, Mena I. Novel vaccine strategies against emerging viruses. Curr Opin Virol 2013; 3:210-6. [PMID: 23477832 PMCID: PMC3644304 DOI: 10.1016/j.coviro.2013.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/04/2013] [Indexed: 11/04/2022]
Abstract
One of the main public health concerns of emerging viruses is their potential introduction into and sustained circulation among populations of immunologically naïve, susceptible hosts. The induction of protective immunity through vaccination can be a powerful tool to prevent this concern by conferring protection to the population at risk. Conventional approaches to develop vaccines against emerging pathogens have significant limitations: lack of experimental tools for several emerging viruses of concern, poor immunogenicity, safety issues, or lack of cross-protection against antigenic variants. The unpredictability of the emergence of future virus threats demands the capability to rapidly develop safe, effective vaccines. We describe some recent advances in new vaccine strategies that are being explored as alternatives to classical attenuated and inactivated vaccines, and provide examples of potential novel vaccines for emerging viruses. These approaches might be applied to the control of many other emerging pathogens.
Collapse
Affiliation(s)
- Adolfo García-Sastre
- Department of Microbiology, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, United States.
| | | |
Collapse
|
40
|
Orsi A, Ansaldi F, de Florentiis D, Ceravolo A, Parodi V, Canepa P, Coppelli M, Icardi G, Durando P. Cross-protection against drifted influenza viruses: options offered by adjuvanted and intradermal vaccines. Hum Vaccin Immunother 2013; 9:582-90. [PMID: 23295230 DOI: 10.4161/hv.23239] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Antigenic drift, the evolutionary mechanism of influenza viruses, results in an increased susceptibility of vaccinated subjects against circulating viruses. New vaccines able to grant a broader and cross-reactive immune response against drifted influenza variants are needed. Several strategies were explored to enhance the immunogenicity of plain vaccines: adjuvants, carriers and intradermal administration of influenza vaccine emerge as a promising options. To evaluate the ability of a MF59-adjuvanted and intradermal influenza vaccine to elicit an effective antibody response against circulating viruses presenting antigenic patterns different from those of the vaccine strains, we compared antibody responses elicited by "implemented" vaccines and conventional intramuscular trivalent inactivated vaccine against heterologous circulating influenza A viruses. Different studies, simulating different epidemiological pictures produced by the natural antigenic drift of seasonal influenza viruses, highlighted the superior cross-reactivity of the antibodies elicited by MF59 and intradermal vaccines, compared with subunit or split vaccine against heterologous viruses.
Collapse
Affiliation(s)
- Andrea Orsi
- Department of Health Sciences; University of Genoa; Genoa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|