1
|
Moreira POL, Nogueira PM, Monte-Neto RL. Next-Generation Leishmanization: Revisiting Molecular Targets for Selecting Genetically Engineered Live-Attenuated Leishmania. Microorganisms 2023; 11:microorganisms11041043. [PMID: 37110466 PMCID: PMC10145799 DOI: 10.3390/microorganisms11041043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Despite decades of research devoted to finding a vaccine against leishmaniasis, we are still lacking a safe and effective vaccine for humans. Given this scenario, the search for a new prophylaxis alternative for controlling leishmaniasis should be a global priority. Inspired by leishmanization-a first generation vaccine strategy where live L. major parasites are inoculated in the skin to protect against reinfection-live-attenuated Leishmania vaccine candidates are promising alternatives due to their robust elicited protective immune response. In addition, they do not cause disease and could provide long-term protection upon challenge with a virulent strain. The discovery of a precise and easy way to perform CRISPR/Cas-based gene editing allowed the selection of safer null mutant live-attenuated Leishmania parasites obtained by gene disruption. Here, we revisited molecular targets associated with the selection of live-attenuated vaccinal strains, discussing their function, their limiting factors and the ideal candidate for the next generation of genetically engineered live-attenuated Leishmania vaccines to control leishmaniasis.
Collapse
Affiliation(s)
- Paulo O L Moreira
- Biotechnology Applied to Pathogens (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Belo Horizonte 30190-009, Brazil
| | - Paula M Nogueira
- Biotechnology Applied to Pathogens (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Belo Horizonte 30190-009, Brazil
| | - Rubens L Monte-Neto
- Biotechnology Applied to Pathogens (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Belo Horizonte 30190-009, Brazil
| |
Collapse
|
2
|
Assessment of Risk of Exposure to Leishmania Parasites among Renal Disease Patients from a Renal Unit in a Sri Lankan Endemic Leishmaniasis Focus. Pathogens 2022; 11:pathogens11121553. [PMID: 36558887 PMCID: PMC9786158 DOI: 10.3390/pathogens11121553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Leishmania donovani causes both cutaneous and visceral leishmaniasis (CL and VL) in Sri Lanka, where chronic kidney disease (CKD) and kidney transplant recipients' (KTR) geographical areas overlap. This study aimed to determine the risk of exposure to Leishmania infection among renal patients. This cross-sectional study in a renal unit assessed clinical symptoms and signs of CL and VL in recipients of blood/kidney or immunosuppressives. Sera were tested with Leishmania-specific DAT and rK-39 ELISA. There were 170 participants. A total of 84.1% (n = 143) were males (CKD: 101, KTR; 42, mean age 45) and 27 were females (females: CKD: 23, KTR: 4, mean age 39 years). Recipients of blood transfusion/s within last 2 years: 75.9% (CKD: 115, KTR: 14), on immunosuppressive therapy: 34.1% (CKD: 13, KTR: 45). Two CKD patients repeatedly showed clear positive titres (1: 12,800 and 1: 3200) with Leishmania-DAT and another two (CKD) became marginally positive with rK39-ELISA. Prevalence of anti-Leishmania antibodies: 2.4% (4/170). All four patients were clinically asymptomatic and were recipients of recent blood transfusions. Attributable risk of exposure to Leishmania infection through blood transfusions was 0.032, OR 2.99 (95% CI = 0.16 to 56.45, p = 0.47). Therefore, routine screening of kidney/blood donors and CKD and KTR patients in Sri Lanka may not be necessary.
Collapse
|
3
|
Roberts AJ, Ong HB, Clare S, Brandt C, Harcourt K, Franssen SU, Cotton JA, Müller-Sienerth N, Wright GJ. Systematic identification of genes encoding cell surface and secreted proteins that are essential for in vitro growth and infection in Leishmania donovani. PLoS Pathog 2022; 18:e1010364. [PMID: 35202447 PMCID: PMC8903277 DOI: 10.1371/journal.ppat.1010364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/08/2022] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
Leishmaniasis is an infectious disease caused by protozoan parasites belonging to the genus Leishmania for which there are no approved human vaccines. Infections localise to different tissues in a species-specific manner with the visceral form of the disease caused by Leishmania donovani and L. infantum being the most deadly in humans. Although Leishmania spp. parasites are predominantly intracellular, the visceral disease can be prevented in dogs by vaccinating with a complex mixture of secreted products from cultures of L. infantum promastigotes. With the logic that extracellular parasite proteins make good subunit vaccine candidates because they are directly accessible to vaccine-elicited host antibodies, here we attempt to discover proteins that are essential for in vitro growth and host infection with the goal of identifying subunit vaccine candidates. Using an in silico analysis of the Leishmania donovani genome, we identified 92 genes encoding proteins that are predicted to be secreted or externally anchored to the parasite membrane by a single transmembrane region or a GPI anchor. By selecting a transgenic L. donovani parasite that expresses both luciferase and the Cas9 nuclease, we systematically attempted to target all 92 genes by CRISPR genome editing and identified four that were required for in vitro growth. For fifty-five genes, we infected cohorts of mice with each mutant parasite and by longitudinally quantifying parasitaemia with bioluminescent imaging, showed that nine genes had evidence of an attenuated infection although all ultimately established an infection. Finally, we expressed two genes as full-length soluble recombinant proteins and tested them as subunit vaccine candidates in a murine preclinical infection model. Both proteins elicited significant levels of protection against the uncontrolled development of a splenic infection warranting further investigation as subunit vaccine candidates against this deadly infectious tropical disease. Leishmaniasis is a parasitic infectious disease that is responsible for many tens of thousands of human deaths per year, primarily in impoverished parts of the world. Although there are drugs to treat this parasite infection, resistance is emerging and there are no approved human vaccines. Extracellular parasite proteins can make good vaccine targets because they are directly accessible to host antibodies; however, not all parasite surface proteins can elicit protective immune responses. With the goal of identifying new vaccine targets, we selected over 90 genes that encode parasite cell surface and secreted proteins and used the latest CRISPR gene editing technology to individually target them. Using these mutant parasites, we identified four genes required for parasite growth in the laboratory. We expressed two of the proteins as subunit vaccines and a preclinical infection model was used to determine if they could elicit protective immune responses. We found that two of our candidates were able to confer significant levels of protection in a murine model of visceral leishmaniasis. Our study will contribute to the search for a highly effective vaccine against visceral leishmaniasis to improve the lives of people living in some of the poorest regions on the planet.
Collapse
Affiliation(s)
- Adam J. Roberts
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Han B. Ong
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Simon Clare
- Pathogen Support Team, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Cordelia Brandt
- Pathogen Support Team, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Katherine Harcourt
- Pathogen Support Team, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Susanne U. Franssen
- Parasite Genomics, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - James A. Cotton
- Parasite Genomics, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Nicole Müller-Sienerth
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Live attenuated vaccines, a favorable strategy to provide long-term immunity against protozoan diseases. Trends Parasitol 2021; 38:316-334. [PMID: 34896016 DOI: 10.1016/j.pt.2021.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022]
Abstract
The control of diseases caused by protozoan parasites is one of the United Nations' Sustainable Development Goals. In recent years much research effort has gone into developing a new generation of live attenuated vaccines (LAVs) against malaria, Chagas disease and leishmaniasis. However, there is a bottleneck related to their biosafety, production, and distribution that slows downs further development. The success of irradiated or genetically attenuated sporozoites against malaria, added to the first LAV against leishmaniasis to be evaluated in clinical trials, is indicative that the drawbacks of LAVs are gradually being overcome. However, whether persistence of LAVs is a prerequisite for sustained long-term immunity remains to be clarified, and the procedures necessary for clinical evaluation of vaccine candidates need to be standardized.
Collapse
|
5
|
Parkash V, Kaye PM, Layton AM, Lacey CJ. Vaccines against leishmaniasis: using controlled human infection models to accelerate development. Expert Rev Vaccines 2021; 20:1407-1418. [PMID: 34664543 PMCID: PMC9835556 DOI: 10.1080/14760584.2021.1991795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/07/2021] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Leishmaniasis is a neglected tropical disease that is defined by the World Health Organization as vaccine preventable. Although several new candidate vaccines are in development, no vaccine has successfully reached the market for human use. Several species of Leishmania cause human disease and have co-evolved with their respective sand fly vectors. These unique relationships have implications for initiation of infection and vaccine development. An approach to vaccine development for many infectious diseases is the use of controlled human infection models (CHIMs). AREAS COVERED We describe the history and recent development of experimental and deliberate infection using Leishmania in humans and the rationale for developing a new sand fly-initiated CHIM to progress leishmaniasis vaccine development. Examples from other infectious diseases are discussed in the context of the development of a new leishmaniasis CHIM. We also reflect upon the manufacture of the challenge agent, practical considerations, safety, ethics, and regulatory issues. EXPERT OPINION A new cutaneous Leishmania CHIM is being developed to enable testing of vaccines in the development pipeline. Questions remain about the use of such CHIMs to determine effectiveness of vaccines against visceral leishmaniasis. However, such a CHIM will be invaluable in expediting time to market for vaccines.
Collapse
Affiliation(s)
- Vivak Parkash
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
- Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, UK
| | - Paul M. Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Alison M Layton
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Charles J Lacey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| |
Collapse
|
6
|
Pacheco-Fernandez T, Volpedo G, Gannavaram S, Bhattacharya P, Dey R, Satoskar A, Matlashewski G, Nakhasi HL. Revival of Leishmanization and Leishmanin. Front Cell Infect Microbiol 2021; 11:639801. [PMID: 33816344 PMCID: PMC8010169 DOI: 10.3389/fcimb.2021.639801] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Leishmaniasis includes a spectrum of diseases ranging from debilitating cutaneous to fatal visceral infections. This disease is caused by the parasitic protozoa of the genus Leishmania that is transmitted by infected sandflies. Over 1 billion people are at risk of leishmaniasis with an annual incidence of over 2 million cases throughout tropical and subtropical regions in close to 100 countries. Leishmaniasis is the only human parasitic disease where vaccination has been successful through a procedure known as leishmanization that has been widely used for decades in the Middle East. Leishmanization involved intradermal inoculation of live Leishmania major parasites resulting in a skin lesion that following natural healing provided protective immunity to re-infection. Leishmanization is however no longer practiced due to safety and ethical concerns that the lesions at the site of inoculation that can last for months in some people. New genome editing technologies involving CRISPR has now made it possible to engineer safer attenuated strains of Leishmania, which induce protective immunity making way for a second generation leishmanization that can enter into human trials. A major consideration will be how the test the efficacy of a vaccine in the midst of the visceral leishmaniasis elimination program. One solution will be to use the leishmanin skin test (LST) that was also used for decades to determine exposure and immunity to Leishmania. The LST involves injection of antigen from Leishmania in the skin dermis resulting in a delayed type hypersensitivity (DTH) immune reaction associated with a Th1 immune response and protection against visceral leishmaniasis. Reintroduction of novel approaches for leishmanization and the leishmanin skin test can play a major role in eliminating leishmaniasis.
Collapse
Affiliation(s)
- Thalia Pacheco-Fernandez
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Greta Volpedo
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Abhay Satoskar
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| |
Collapse
|
7
|
Photodynamic inactivation of Leishmania braziliensis doubly sensitized with uroporphyrin and diamino-phthalocyanine activates effector functions of macrophages in vitro. Sci Rep 2020; 10:17065. [PMID: 33051524 PMCID: PMC7555832 DOI: 10.1038/s41598-020-74154-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/11/2020] [Indexed: 11/08/2022] Open
Abstract
Photodynamic inactivation of Leishmania has been shown to render them non-viable, but retain their immunological activities. Installation of dual photodynamic mechanisms ensures complete inactivation of species in the Leishmania subgenus, raising the prospect of their safe and effective application as whole-cell vaccines against leishmaniasis. Here, we report the successful extension of this approach to L. braziliensis in the Viannia subgenus, viz. genetic engineering of promastigotes for cytosolic accumulation of UV-sensitive uroporphyrin (URO) and their loading with red light excitable phthalocyanines (PC) that was cationized by chemical engineering. The transgenic strategy used previously produced L. braziliensis transfectants, which gave the same phenotype of aminolevulinate (ALA)-inducible uroporphyria as found in Leishmania subgenus, indicative of pre-subgenus evolutionary origin for similar genetic deficiencies in porphyrin/heme biosynthesis. In the present study, 12 independent clones were obtained and were invariably ALA-responsive, albeit to different extent for uroporphyrinogenesis and UV-inactivation. In a separate study, L. braziliensis was also found, like other Leishmania spp., to take up diamino-PC (PC2) for red light inactivation. In vitro interactions of a highly uroporphyrinogenic clone with primary macrophages were examined with the intervention of URO/PC2-medated double-photodynamic inactivation to ascertain its complete loss of viability. Doubly sensitized L. braziliensis transfectants were photo-inactivated before (Strategy #1) or after (Strategy #2) loading of macrophages. In both cases, macrophages were found to take up L. braziliensis and degrade them rapidly in contrast to live Leishmania infection. The effector functions of macrophages became upregulated following their loading with L. braziliensis photodynamically inactivated by both strategies, including CD86 expression, and IL6 and NO production. This was in contrast to the immunosuppressive infection of macrophages with live parasites, marked by IL10 production. The results provide evidence that photodynamically inactivated L. braziliensis are susceptible to the degradative pathway of macrophages with upregulation of immunity relevant cytokine and co-stimulatory markers. The relative merits of the two loading strategies with reference to previous experimental vaccination were discussed in light of the present findings with L. braziliensis.
Collapse
|
8
|
Faridnia R, Kalani H, Hezarjaribi HZ, Denny PW, Rafie A, Fakhar M, Virgilio S. Apoptotic blebs from Leishmania major-infected macrophages as a new approach for cutaneous leishmaniasis vaccination. Microb Pathog 2020; 147:104406. [PMID: 32738284 DOI: 10.1016/j.micpath.2020.104406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 11/25/2022]
Abstract
We focused on apoptotic blebs from Leishmania major-infected macrophages as a vaccine for cutaneous leishmaniasis. Apoptosis was induced in L. major-infected J774A.1 cells in order to prepare apoptotic blebs. Test groups of BALB/c mice were immunized with these at doses of 1 × 106, 5 × 106 or 1 × 107 blebs. An immunization control group received Leishmania lysate antigens. The results showed that as the number of apoptotic bodies increased, the lymphocyte proliferation index increased, and this was proportional to IFN-γ level in the test groups. Additionally, the difference of IFN-γ, IL-4, IFN-γ/IL-4 ratio, or total IgG (p < 0.0001) in all groups was statistically significant compared to the negative control group. The highest IFN-γ (514.0 ± 40.92 pg/mL) and IFN-γ/IL-4 ratio (2.94 ± 0.22) were observed in the group that received 1 × 107 apoptotic blebs. The highest levels of IL-4 (244.6 ± 38.8 pg/mL) and total IgG (5626 ± 377 μg/mL) were observed in the immunization control group. Reflecting these data, no lesions were observed in any of the groups vaccinated with apoptotic blebs after 12 weeks. In summary, the use of apoptotic blebs from L. major-infected macrophages is protective against the challenge with L. major in this animal model.
Collapse
Affiliation(s)
- Roghiyeh Faridnia
- Student Research Committee, Pediatric Infectious Diseases Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamed Kalani
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Hajar Ziaei Hezarjaribi
- Toxoplasmosis Research Center, Communicable Diseases Institute, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Paul W Denny
- Department of Biosciences and Centre for Global Infectious Disease, Durham University, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - Alireza Rafie
- Molecular and Cell Biology Research Center, Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- Toxoplasmosis Research Center, Communicable Diseases Institute, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Stela Virgilio
- Department of Cell and Molecular Biology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
9
|
A Comprehensive Review of Cutaneous Leishmaniasis in Sri Lanka and Identification of Existing Knowledge Gaps. Acta Parasitol 2020; 65:300-309. [PMID: 32052240 PMCID: PMC7223001 DOI: 10.2478/s11686-020-00174-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/24/2020] [Indexed: 11/28/2022]
Abstract
Purpose Sri Lanka is endemic to cutaneous leishmaniasis and reported as the latest focus of leishmaniasis in the Asian subcontinent. Annually, the number of leishmaniasis cases is increasing; therefore, more efficient diagnostic tools, treatment methods and effective prevention measures are indispensable. For this reason, many studies were conducted regarding leishmaniasis infections in Sri Lanka; however, some areas need more attention. Thus, in this review, we comprehensively discussed the studies on leishmaniasis carried out in Sri Lanka. Methods Published articles on leishmaniasis in Sri Lanka were searched on PubMed, Google Scholar and ResearchGate databases. Inclusion criteria for the articles were based on keyword searches including ‘Leishmaniasis in Sri Lanka’, ‘Leishmaniasis vector in Sri Lanka’, ‘Sandfly species in Sri Lanka’, ‘Leishmaniasis epidemiology in Sri Lanka’ which are publicly accessible as of 15th July 2019. Results In this study, we evaluated and summarized the leishmaniasis reports in Sri Lanka and mainly focused on clinical presentation of leishmaniasis infection, genetic characteristics of Leishmania donovani Sri Lankan strain, geographical distribution and associated environmental factors, immunological aspects of the infection, vector, reservoir host, risk factors, diagnosis and treatment, and prevention and control. Furthermore, we identified the areas where further research is needed to fill the essential knowledge gaps. Conclusions Leishmaniasis has become a critically important parasitic infection in Sri Lanka, whereas the significant clinical form is cutaneous leishmaniasis. Prevalence of the leishmaniasis infections is reported from all the districts of the country. Therefore, more studies are essential to be carried out to fill the existing knowledge gaps emphasized in this review.
Collapse
|
10
|
Podešvová L, Leštinová T, Horáková E, Lukeš J, Volf P, Yurchenko V. Suicidal Leishmania. Pathogens 2020; 9:pathogens9020079. [PMID: 31991768 PMCID: PMC7168676 DOI: 10.3390/pathogens9020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Leishmania are obligate intracellular parasites known to have developed successful ways of efficient immunity evasion. Because of this, leishmaniasis, a disease caused by these flagellated protists, is ranked as one of the most serious tropical infections worldwide. Neither prophylactic medication, nor vaccination has been developed thus far, even though the infection has usually led to strong and long-lasting immunity. In this paper, we describe a “suicidal” system established in Leishmania mexicana, a human pathogen causing cutaneous leishmaniasis. This system is based on the expression and (de)stabilization of a basic phospholipase A2 toxin from the Bothrops pauloensis snake venom, which leads to the inducible cell death of the parasites in vitro. Furthermore, the suicidal strain was highly attenuated during macrophage infection, regardless of the toxin stabilization. Such a deliberately weakened parasite could be used to vaccinate the host, as its viability is regulated by the toxin stabilization, causing a profoundly reduced pathogenesis.
Collapse
Affiliation(s)
- Lucie Podešvová
- Life Science Research Centre and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Eva Horáková
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia
- Correspondence: ; Tel.: +420-597-092-326
| |
Collapse
|
11
|
Souto EB, Dias-Ferreira J, Craveiro SA, Severino P, Sanchez-Lopez E, Garcia ML, Silva AM, Souto SB, Mahant S. Therapeutic Interventions for Countering Leishmaniasis and Chagas's Disease: From Traditional Sources to Nanotechnological Systems. Pathogens 2019; 8:pathogens8030119. [PMID: 31374930 PMCID: PMC6789685 DOI: 10.3390/pathogens8030119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 02/02/2023] Open
Abstract
The incidence of neglected diseases in tropical countries, such as Leishmaniasis and Chagas's disease, is attributed to a set of biological and ecological factors associated with the socioeconomic context of developing countries and with a significant burden to health care systems. Both Leishmaniasis and Chagas's disease are caused by different protozoa and develop diverse symptoms, which depend on the specific species infecting man. Currently available drugs to treat these disorders have limited therapeutic outcomes, frequently due to microorganisms' drug resistance. In recent years, significant efforts have been made towards the development of innovative drug delivery systems aiming to improve bioavailability and pharmacokinetic profiles of classical drug therapy. This paper discusses the key facts of Leishmaniasis and Chagas's disease, the currently available pharmacological therapies and the new drug delivery systems for conventional drugs.
Collapse
Affiliation(s)
- Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - João Dias-Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Sara A Craveiro
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, Paranhos, 4200-150 Porto, Portugal
| | - Patrícia Severino
- Laboratory of Nanotechnology and Nanomedicine (LNMED), Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil
- University of Tiradentes (UNIT), Industrial Biotechnology Program, Av. Murilo Dantas 300, Aracaju 49032-490, Brazil
| | - Elena Sanchez-Lopez
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain
| | - Maria L Garcia
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain
| | - Amélia M Silva
- Departamento de Biologia e Ambiente, Universidade de Trás-os-Montes e Alto Douro (UTAD), P.O. Box 1013; 5001-801 Vila Real, Portugal
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB-UTAD), 5001-801 Vila Real, Portugal
| | - Selma B Souto
- Department of Endocrinology of Braga Hospital, Sete Fontes, 4710-243 São Victor, Braga, Portugal
| | - Sheefali Mahant
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
12
|
Leishmania major p27 gene knockout as a novel live attenuated vaccine candidate: Protective immunity and efficacy evaluation against cutaneous and visceral leishmaniasis in BALB/c mice. Vaccine 2019; 37:3221-3228. [DOI: 10.1016/j.vaccine.2019.04.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/01/2019] [Accepted: 04/24/2019] [Indexed: 11/20/2022]
|
13
|
Biosynthesis and Potential Applications of Silver and Gold Nanoparticles and Their Chitosan-Based Nanocomposites in Nanomedicine. JOURNAL OF NANOTECHNOLOGY 2018. [DOI: 10.1155/2018/4290705] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biosynthesized or biogenic metallic nanoparticles, particularly silver and gold nanoparticles (AgNPs and AuNPs, respectively), have been increasingly used because of their advantages, including high stability and loading capacity; moreover, these nanoparticles are synthesized using a green and cost-effective method. Previous studies have investigated reducing and/or stabilizing agents from various biological sources, including plants, microorganisms, and marine-derived products, using either a one-pot or a multistep process at different conditions. In addition, extensive studies have been performed to determine the biological or pharmacological effects of these nanoparticles, such as antimicrobial, antitumor, anti-inflammatory, and antioxidant effects. In the recent years, chitosan, a natural cationic polysaccharide, has been increasingly investigated as a reducing and/or stabilizing agent in the synthesis of biogenic metallic nanoparticles with potential applications in nanomedicine. Here, we have reviewed the mechanism of biosynthesis and potential applications of AgNPs and AuNPs and their chitosan-mediated nanocomposites in nanomedicine.
Collapse
|
14
|
Ismail N, Kaul A, Bhattacharya P, Gannavaram S, Nakhasi HL. Immunization with Live Attenuated Leishmania donovani Centrin -/- Parasites Is Efficacious in Asymptomatic Infection. Front Immunol 2017; 8:1788. [PMID: 29312315 PMCID: PMC5732910 DOI: 10.3389/fimmu.2017.01788] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/29/2017] [Indexed: 12/17/2022] Open
Abstract
Currently, there is no vaccine against visceral leishmaniasis (VL). Toward developing an effective vaccine, we have reported extensively on the immunogenicity of live attenuated LdCentrin−/− mutants in naive animal models. In VL endemic areas, asymptomatic carriers outnumber symptomatic cases of VL and are considered to be a reservoir of infection. Vaccination of asymptomatic cases represents a viable strategy to eliminate VL. Immunological correlates of protection thus derived might have limited applicability in conditions where the immunized host has prior exposure to virulent infection. To examine whether LdCen−/− parasites can induce protective immunity in experimental hosts that have low-level parasitemia from a previous exposure mimicking an asymptomatic condition, we infected C57Bl/6 mice with wild-type Leishmania donovani parasites expressing LLO epitope (LdWTLLO 103, i.v.). After 3 weeks, the mice with low levels of parasitemia were immunized with LdCen−/− parasites expressing 2W epitope (LdCen−/−2W 3 × 106 i.v.) to characterize the immune responses in the same host. Antigen experienced CD4+ T cells from the asymptomatic (LdWTLLO infected) LdCen−/−2W immunized, and other control groups were enriched using LLO- and 2W-specific tetramers, followed by Flow cytometric analysis. Our analysis showed that comparable CD4+ T cell proliferation and CD4+ memory T cell responses (TCM) represented by CD62Lhi, CCR7+, and IL-7R+ T cell populations were induced with LdCen−/−2W in both asymptomatic and naive animals that received LdCen−/− immunization. Upon restimulation with peptide, TCM cells differentiated into effector T cells and there was no significant difference in the recall response in animals with asymptomatic infection. Following virulent challenge, comparable reduction in splenic parasite burden was observed in both asymptomatic and naive LdCen−/− immunized animals concomitant with the development of multifunctional CD4+ and CD8+ T cells. Further, LdCen−/−2W immunization resulted in complete clearance of the preexisting asymptomatic infection (LdWTLLO). Our results demonstrate that LdCen−/−2W immunization could be efficacious for use in asymptomatic VL individuals. Further, immunization with LdCen−/− could help in reducing the parasite burden in the asymptomatic cases and aid in controlling the VL in endemic areas.
Collapse
Affiliation(s)
- Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Amit Kaul
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
15
|
De Silva G, Somaratne V, Senaratne S, Vipuladasa M, Wickremasinghe R, Wickremasinghe R, Ranasinghe S. Efficacy of a new rapid diagnostic test kit to diagnose Sri Lankan cutaneous leishmaniasis caused by Leishmania donovani. PLoS One 2017; 12:e0187024. [PMID: 29135995 PMCID: PMC5685575 DOI: 10.1371/journal.pone.0187024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
Background Cutaneous leishmaniasis (CL) in Sri Lanka is caused by Leishmania donovani. This study assessed the diagnostic value of a new rapid diagnostic immunochromatographic strip (CL-Detect™ IC-RDT), that captures the peroxidoxin antigen of Leishmania amastigotes. Methodology/Principal findings We sampled 74 clinically suspected CL lesions, of which 59 (79.7%) were positive by PCR, 43 (58.1%) by Giemsa stained slit skin smear (SSS) and 21 (28.4%) by the new IC-RDT. All samples which were positive either by SSS or IC-RDT or both were positive by PCR. The sensitivities of the IC-RDT and SSS compared to PCR were 36% and 73%, respectively. Fifteen patients from this endemic region were negative by all three tests. Twenty two clinically non-CL skin lesions from a CL non-endemic region were also negative by all three methods. Specificity and PPV of both IC-RDT and SSS compared to PCR were 100%; the NPVs of IC-RDT and SSS were 37% and 58%, respectively. The median parasite grading of the 59 PCR positive samples was 2+ (1–10 parasites/100 HPFs) and IC-RDT positive lesions was 3+ (1–10 parasites /10HPFs). The duration of the lesion was not associated with IC-RDT positivity. Conclusions/Significance The median parasite grade of Sri Lankan CL lesions is low. The low sensitivities of SSS and CL Detect™ IC-RDT may be due to low parasite counts or low expression of peroxidoxin antigen in amastigotes of the Sri Lankan L. donovani strain. Our results indicate that negative SSS has to be combined with PCR for confirmation of CL in Sri Lanka. The current commercially available IC-RDT is not suitable to diagnose CL in Sri Lanka; an IC-RDT with improved sensitivity to detect L. donovani would be a valuable addition in the diagnostic tool kit for Sri Lanka.
Collapse
Affiliation(s)
- Gayani De Silva
- Department of Parasitology, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | - Sujai Senaratne
- Department of Parasitology, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | | | - Renu Wickremasinghe
- Department of Parasitology, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Shalindra Ranasinghe
- Department of Parasitology, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- * E-mail:
| |
Collapse
|
16
|
Gene deleted live attenuated Leishmania vaccine candidates against visceral leishmaniasis elicit pro-inflammatory cytokines response in human PBMCs. Sci Rep 2016; 6:33059. [PMID: 27624408 PMCID: PMC5021981 DOI: 10.1038/srep33059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/08/2016] [Indexed: 02/03/2023] Open
Abstract
Currently no effective vaccine is available for human visceral leishmaniasis(VL) caused by Leishmania donovani. Previously, we showed that centrin1 and p27gene deleted live attenuated Leishmania parasites (LdCen1(-/-) and Ldp27(-/-)) are safe, immunogenic and protective in animal models. Here, to assess the correlates of protection, we evaluated immune responses induced by LdCen1(-/-) and Ldp27(-/-) in human blood samples obtained from healthy, healed VL (HVL), post kala-azar dermal leishmaniasis(PKDL) and VL subjects. Both parasites infected human macrophages, as effectively as the wild type parasites. Further, LdCen1(-/-) and Ldp27(-/-) strongly stimulated production of pro-inflammatory cytokines including, IL-12, IFN-γ, TNF-α, IL-2, IL-6 and IL-17 in the PBMCs obtained from individuals with a prior exposure to Leishmania (HVL and PKDL). There was no significant stimulation of anti-inflammatory cytokines (IL-4 and IL-10). Induction of Th1 biased immune responses was supported by a remarkable increase in IFN-γ secreting CD4(+) and CD8(+) T cells and IL-17 secreting CD4(+) cells in PBMCs from HVL cases with no increase in IL-10 secreting T cells. Hence, LdCen1(-/-) and Ldp27(-/-) are promising as live vaccine candidates against VL since they elicit strong protective immune response in human PBMCs from HVL, similar to the wild type parasite infection, mimicking a naturally acquired protection following cure.
Collapse
|
17
|
Karunaweera ND. Leishmaniasis: Path toward elimination from the Indian subcontinent. Trop Parasitol 2016; 6:2-4. [PMID: 26998429 PMCID: PMC4778179 DOI: 10.4103/2229-5070.175023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Nadira D Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka E-mail:
| |
Collapse
|
18
|
Cargnelutti DE, Salomón MC, Celedon V, García Bustos MF, Morea G, Cuello-Carrión FD, Scodeller EA. Immunization with antigenic extracts of Leishmania associated with Montanide ISA 763 adjuvant induces partial protection in BALB/c mice against Leishmania (Leishmania) amazonensis infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2016; 49:24-32. [DOI: 10.1016/j.jmii.2014.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 12/26/2022]
|
19
|
Ranasinghe S, Wickremasinghe R, Hulangamuwa S, Sirimanna G, Opathella N, Maingon RDC, Chandrasekharan V. Polymerase chain reaction detection of Leishmania DNA in skin biopsy samples in Sri Lanka where the causative agent of cutaneous leishmaniasis is Leishmania donovani. Mem Inst Oswaldo Cruz 2015; 110:1017-23. [PMID: 26676321 PMCID: PMC4708022 DOI: 10.1590/0074-02760150286] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/06/2015] [Indexed: 11/22/2022] Open
Abstract
Leishmania donovani is the known causative agent of both cutaneous
(CL) and visceral leishmaniasis in Sri Lanka. CL is considered to be under-reported
partly due to relatively poor sensitivity and specificity of microscopic diagnosis.
We compared robustness of three previously described polymerase chain reaction (PCR)
based methods to detectLeishmania DNA in 38 punch biopsy samples
from patients presented with suspected lesions in 2010. Both,
Leishmaniagenus-specific JW11/JW12 KDNA and LITSR/L5.8S internal
transcribed spacer (ITS)1 PCR assays detected 92% (35/38) of the samples whereas a
KDNA assay specific forL. donovani (LdF/LdR) detected only 71%
(27/38) of samples. All positive samples showed a L. donovani
banding pattern upon HaeIII ITS1 PCR-restriction fragment length polymorphism
analysis. PCR assay specificity was evaluated in samples containing
Mycobacterium tuberculosis, Mycobacterium
leprae, and human DNA, and there was no cross-amplification in JW11/JW12
and LITSR/L5.8S PCR assays. The LdF/LdR PCR assay did not amplify M.
leprae or human DNA although 500 bp and 700 bp bands were observed in
M. tuberculosis samples. In conclusion, it was successfully shown
in this study that it is possible to diagnose Sri Lankan CL with high accuracy, to
genus and species identification, using Leishmania DNA PCR
assays.
Collapse
Affiliation(s)
- Shalindra Ranasinghe
- Department of Parasitology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Renu Wickremasinghe
- Department of Parasitology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | - Ganga Sirimanna
- Dermatology Unit, National Hospital of Sri Lanka, Colombo, Sri Lanka
| | | | - Rhaiza D C Maingon
- Centre for Applied Entomology and Parasitology, Keele University, Staffordshire, UK
| | | |
Collapse
|
20
|
Romano A, Doria NA, Mendez J, Sacks DL, Peters NC. Cutaneous Infection with Leishmania major Mediates Heterologous Protection against Visceral Infection with Leishmania infantum. THE JOURNAL OF IMMUNOLOGY 2015; 195:3816-27. [PMID: 26371247 DOI: 10.4049/jimmunol.1500752] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022]
Abstract
Visceral leishmaniasis (VL) is a fatal disease of the internal organs caused by the eukaryotic parasite Leishmania. Control of VL would best be achieved through vaccination. However, this has proven to be difficult partly because the correlates of protective immunity are not fully understood. In contrast, protective immunity against nonfatal cutaneous leishmaniasis (CL) is well defined and mediated by rapidly recruited, IFN-γ-producing Ly6C(+)CD4(+) T cells at the dermal challenge site. Protection against CL is best achieved by prior infection or live vaccination with Leishmania major, termed leishmanization. A long-standing question is whether prior CL or leishmanization can protect against VL. Employing an intradermal challenge model in mice, we report that cutaneous infection with Leishmania major provides heterologous protection against visceral infection with Leishmania infantum. Protection was associated with a robust CD4(+) T cell response at the dermal challenge site and in the viscera. In vivo labeling of circulating cells revealed that increased frequencies of IFN-γ(+)CD4(+) T cells at sites of infection are due to recruitment or retention of cells in the tissue, rather than increased numbers of cells trapped in the vasculature. Shortly after challenge, IFN-γ-producing cells were highly enriched for Ly6C(+)T-bet(+) cells in the viscera. Surprisingly, this heterologous immunity was superior to homologous immunity mediated by prior infection with L. infantum. Our observations demonstrate a common mechanism of protection against different clinical forms of leishmaniasis. The efficacy of leishmanization against VL may warrant the introduction of the practice in VL endemic areas or during outbreaks of disease.
Collapse
Affiliation(s)
- Audrey Romano
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Nicole A Doria
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Jonatan Mendez
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Nathan C Peters
- Snyder Institute for Chronic Diseases, Department of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
21
|
Shahbazi M, Zahedifard F, Taheri T, Taslimi Y, Jamshidi S, Shirian S, Mahdavi N, Hassankhani M, Daneshbod Y, Zarkesh-Esfahani SH, Papadopoulou B, Rafati S. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis. PLoS One 2015. [PMID: 26197085 PMCID: PMC4509652 DOI: 10.1371/journal.pone.0132794] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Canine Visceral Leishmaniasis (CVL) is a major veterinary and public health problem caused by Leishmania infantum (L. infantum) in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE) and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL.
Collapse
MESH Headings
- Animals
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Cells, Cultured
- Cysteine Proteases/genetics
- Cysteine Proteases/immunology
- Dog Diseases/immunology
- Dog Diseases/parasitology
- Dog Diseases/prevention & control
- Dogs
- Female
- Gene Expression
- Immunity, Humoral
- Leishmania/enzymology
- Leishmania/genetics
- Leishmania/immunology
- Leishmaniasis Vaccines/immunology
- Leishmaniasis Vaccines/isolation & purification
- Leishmaniasis Vaccines/therapeutic use
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/prevention & control
- Leishmaniasis, Visceral/veterinary
- Male
- Vaccination/methods
- Vaccination/veterinary
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Attenuated/therapeutic use
Collapse
Affiliation(s)
- Mehdi Shahbazi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, 13164, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnaz Zahedifard
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, 13164, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, 13164, Iran
| | - Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, 13164, Iran
| | - Shahram Jamshidi
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sadegh Shirian
- Department of Molecular and Cytopathology, Daneshbod Pathology Laboratory, Shiraz, Iran
| | - Niousha Mahdavi
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Hassankhani
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Yahya Daneshbod
- Department of Molecular and Cytopathology, Daneshbod Pathology Laboratory, Shiraz, Iran
| | | | - Barbara Papadopoulou
- Research Center in Infectious Diseases, CHU de Québec Research Center and Department of Microbiology, Infectious Disease and Immunology, Laval University, Quebec, QC, Canada
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, 13164, Iran
- * E-mail:
| |
Collapse
|
22
|
Khadem F, Uzonna JE. Immunity to visceral leishmaniasis: implications for immunotherapy. Future Microbiol 2015; 9:901-15. [PMID: 25156379 DOI: 10.2217/fmb.14.43] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Visceral leishmaniasis, caused by Leishmania donovani, L. infantum (syn. Leishmania chagasi), is a globally widespread disease with a burden of about 400,000 new infections reported annually. It is the most dangerous form of human leishmaniasis in terms of mortality and morbidity and is spreading to several nonendemic areas because of migration, global traveling and military conflicts. The emergence of Leishmania-HIV co-infection and increased prevalence of drug-resistant strains have worsened the impact of the disease. The traditional low-cost drugs are often toxic with several adverse effects, highlighting the need for development of new therapeutic and prophylactic strategies. Therefore, a detailed understanding of mechanisms of protective immunity is extremely important in order to develop new therapeutics in the form of vaccines or immunotherapies. This review gives an overview of visceral leishmaniasis, with particular emphasis on the innate and adaptive immune responses, vaccine and vaccination strategies and their potentials for immunotherapy against the disease.
Collapse
Affiliation(s)
- Forough Khadem
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
23
|
Eiras DP, Kirkman LA, Murray HW. Cutaneous Leishmaniasis: Current Treatment Practices in the USA for Returning Travelers. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2015; 7:52-62. [PMID: 25788870 DOI: 10.1007/s40506-015-0038-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Leishmaniasis, a protozoal infection transmitted by sandfly bite, produces a clinical spectrum of disease ranging from asymptomatic infection to ulcerative skin and mucosal lesions to visceral involvement. Leishmaniasis is endemic in regions of Africa, the Middle East, south Asia, southern Europe, northern South America, and Central America. There has been an increase in imported leishmaniasis into developed, non-endemic countries due to increasing global travel. While pentavalent antimonials have been the mainstay of antileishmanial treatment for decades, newer therapeutic options have become available for all forms of infection, including liposomal amphotericin B, miltefosine, fluconazole, and ketoconazole. For the returning traveler with cutaneous leishmaniasis in the USA, treatment approaches are determined based on infecting species, initial presentation, extent and progression of disease, the advantages and drawbacks of available parenteral and oral drugs, and clinician-consultant experience.
Collapse
|
24
|
McCall LI, Zhang WW, Dejgaard K, Atayde VD, Mazur A, Ranasinghe S, Liu J, Olivier M, Nilsson T, Matlashewski G. Adaptation of Leishmania donovani to cutaneous and visceral environments: in vivo selection and proteomic analysis. J Proteome Res 2015; 14:1033-59. [PMID: 25536015 DOI: 10.1021/pr5010604] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Leishmaniasis is a neglected tropical disease caused by Leishmania protozoa. Two main forms are found in the Old World, self-limited cutaneous leishmaniasis and potentially fatal visceral leishmaniasis, with parasite dissemination to liver, bone marrow, and spleen. The Leishmania donovani species complex is the causative agent of visceral leishmaniasis worldwide, but atypical L. donovani strains can cause cutaneous leishmaniasis. We hypothesized that L. donovani can adapt to survive in response to restrictions imposed by the host environment. To assess this, we performed in vivo selection in BALB/c mice with a cutaneous L. donovani clinical isolate to select for parasites with increased capacity to survive in visceral organs. We then performed whole cell proteomic analysis and compared this visceral-selected strain to the original cutaneous clinical isolate and to a visceral leishmaniasis clinical isolate. Overall, there were no major shifts in proteomic profiles; however, translation, biosynthetic processes, antioxidant protection, and signaling were elevated in visceral strains. Conversely, transport and trafficking were elevated in the cutaneous strain. Overall, these results provide new insight into the adaptability of Leishmania parasites to the host environment and on the factors that mediate their ability to survive in different organs.
Collapse
Affiliation(s)
- Laura-Isobel McCall
- Department of Microbiology and Immunology, McGill University , 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Visceral leishmaniasis is a chronic parasitic disease associated with severe immune dysfunction. Treatment options are limited to relatively toxic drugs, and there is no vaccine for humans available. Hence, there is an urgent need to better understand immune responses following infection with Leishmania species by studying animal models of disease and clinical samples from patients. Here, we review recent discoveries in these areas and highlight shortcomings in our knowledge that need to be addressed if better treatment options are to be developed and effective vaccines designed.
Collapse
|
26
|
da Costa RC, Santana DB, Araújo RM, de Paula JE, do Nascimento PC, Lopes NP, Braz-Filho R, Espindola LS. Discovery of the rapanone and suberonone mixture as a motif for leishmanicidal and antifungal applications. Bioorg Med Chem 2014; 22:135-40. [DOI: 10.1016/j.bmc.2013.11.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/16/2013] [Accepted: 11/23/2013] [Indexed: 11/26/2022]
|