1
|
Xiong X, Wen X, Zhang Y, Li X, Zhang Y, Long N. Microbial community and immune modulation enable effective treatment of methicillin-resistant Staphylococcus aureus skin infections with linalool. Microb Pathog 2025; 202:107406. [PMID: 39999898 DOI: 10.1016/j.micpath.2025.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), as one of the main pathogens causing skin and soft tissue infections, poses challenges in treatment due to its high resistance to antibiotics. As one of the efficacious essential oil components in numerous traditional Chinese medicines, linalool was believed to possess antimicrobial activity against pathogenic microorganisms. Here, we investigated the therapeutic effects of linalool on MRSA-infected mice by examining their post-treatment outcomes. This was done through observations of physiological conditions, pathological sections, inflammatory factors, and changes in the skin microenvironment. We have confirmed the effectiveness of linalool in treating MRSA infections. Mice treated with linalool exhibited more pronounced signs of recovery, such as reduced skin necrosis, increased fibroplasia, greater neovascularization, and resolution of inflammatory infiltration. In addition, there was an improvement in the inflammatory environment, with a decrease in inflammatory factors. The microbial composition on the skin surface also confirmed this improvement. After linalool treatment, mice exhibited better species diversity on the skin, making it easier to maintain the skin's homeostasis. The excellent performance of linalool in combating MRSA infections provides a new direction for the search for new antibiotics against multidrug-resistant bacteria, highlighting the potential of linalool as a promising anti-MRSA drug.
Collapse
Affiliation(s)
- Xingyun Xiong
- Dazhu County People's Hospital, Dazhou, 635100, PR China
| | - Xin Wen
- Dazhu County People's Hospital, Dazhou, 635100, PR China
| | - Yangjing Zhang
- Dazhu County People's Hospital, Dazhou, 635100, PR China
| | - Xiaofang Li
- Dazhu County People's Hospital, Dazhou, 635100, PR China
| | - Yuping Zhang
- Dazhu County People's Hospital, Dazhou, 635100, PR China
| | - Nana Long
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, PR China; Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610083, PR China.
| |
Collapse
|
2
|
Bagherzadeh M, Haghighat S, Mahdavi M. Killed whole-cell Staphylococcus aureus formulation in Montanide ISA266 and Alum adjuvants: different vaccine formulations varied in the vaccine's potency and efficacy. Immunol Res 2025; 73:47. [PMID: 39918699 DOI: 10.1007/s12026-025-09602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
Immunotherapy can be a sensible alternative because invasive Staphylococcus aureus infection mortality, morbidity, and cost are still alarmingly high despite the development of multiple new medications to treat methicillin-resistant S. aureus infections. Herein, killed whole-cell Staphylococcus aureus was formulated in Montanide ISA266 and Alum adjuvants, and the potency and efficacy of the vaccine were studied. After the preparation of two kinds of whole-cell vaccine (bacterin and lysate), 20 µg of each vaccine candidate was formulated in Montanide ISA266 and Alum adjuvants, then subcutaneously injected in distinct groups. Blood samples were taken two weeks after each booster injection, and two booster shots were given at 2-week intervals. Sera were examined by ELISA for total IgG, isotypes (IgG1 and IgG2a), and cytokine production (IFN-γ and IL-4), respectively, to ascertain the kind of induced immune response. Experimental mice were challenged intraperitoneally with 5 × 108 CFU of bacteria 2 weeks after their last immunization, and the mortality rate and bacterial load were measured. Both immunogens elicited strong humoral immune responses, producing antibodies that improved opsonic capability, IFN-γ, and IL-4 production and protectivity in response to the experimental challenge. Compared to other immunized groups, the lysate formulation with Montanide ISA266 produced a greater antibody titer and IgG1 isotype and showed the highest vaccine potency. Additionally, combining the whole-cell vaccine (bacterin and lysate) with the adjuvant Montanide ISA266 increased IFN-γ and IL-4 cytokines response and protection in the experimental challenge. These findings show that avoiding S. aureus infection using active vaccination with inactivated whole-cell vaccines (bacterin and lysate) may be a successful strategy. The type of adjuvant in the vaccine formulation is important and influences vaccine potency and efficacy.
Collapse
Affiliation(s)
- Mandana Bagherzadeh
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Academic Center for Education, Culture and Research (ACECR), Motamed Cancer Institute, Tehran, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Kates SL, Owen JR, Xie C, Ren Y, Muthukrishnan G, Schwarz EM. Vaccines: Do they have a role in orthopedic trauma? Injury 2024; 55 Suppl 6:111631. [PMID: 39482036 DOI: 10.1016/j.injury.2024.111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 11/03/2024]
Abstract
Although vaccines have been hailed as one of the greatest advances in medicine based on their unparalleled cost-effectiveness in eradicating life-threatening infectious diseases, their role in orthopedic trauma-related infections is unclear. This is largely because vaccines are primarily made against pathogens that cause communicable diseases rather than opportunistic infections secondary to trauma, and most successful vaccines are against viruses rather than biofilm forming bacteria. Nonetheless, the tremendous costs to patients and healthcare systems warrant orthopedic trauma vaccine research, which has been a focal topic in recent international consensus meetings on musculoskeletal infection. This subject was also covered at the 2023 Osteosynthesis and Trauma Care Foundation (OTCF) meeting in Rome, Italy, and the purpose of this supplement article is to (1) highlight the osteoimmunology, animal models, translational research and clinical pilots that were discussed, (2) the proposed future directions that could lead to diagnostics and prognostics that are critically needed for evidence-based decision making, and (3) vaccines and passive-immunization strategies that could potentially be utilized to treat patients with orthopedic infections.
Collapse
Affiliation(s)
- Stephen L Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - John R Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Youliang Ren
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
4
|
Chan JYH, Clow F, Pearson V, Langley RJ, Fraser JD, Radcliff FJ. Feasibility of using a combination of staphylococcal superantigen-like proteins 3, 7 and 11 in a fusion vaccine for Staphylococcus aureus. Immunol Cell Biol 2024; 102:365-380. [PMID: 38572664 DOI: 10.1111/imcb.12745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Staphylococcus aureus is a significant bacterial pathogen in both community and hospital settings, and the escalation of antimicrobial-resistant strains is of immense global concern. Vaccination is an inviting long-term strategy to curb staphylococcal disease, but identification of an effective vaccine has proved to be challenging. Three well-characterized, ubiquitous, secreted immune evasion factors from the staphylococcal superantigen-like (SSL) protein family were selected for the development of a vaccine. Wild-type SSL3, 7 and 11, which inhibit signaling through Toll-like receptor 2, cleavage of complement component 5 and neutrophil function, respectively, were successfully combined into a stable, active fusion protein (PolySSL7311). Vaccination of mice with an attenuated form of the PolySSL7311 protein stimulated significantly elevated specific immunoglobulin G and splenocyte proliferation responses to each component relative to adjuvant-only controls. Vaccination with PolySSL7311, but not a mixture of the individual proteins, led to a > 102 reduction in S. aureus tissue burden compared with controls after peritoneal challenge. Comparable antibody responses were elicited after coadministration of the vaccine in either AddaVax (an analog of MF59) or an Alum-based adjuvant; but only AddaVax conferred a significant reduction in bacterial load, aligning with other studies that suggest both cellular and humoral immune responses are necessary for protective immunity to S. aureus. Anti-sera from mice immunized with PolySSL7311, but not individual proteins, partially neutralized the functional activities of SSL7. This study confirms the importance of these SSLs for the survival of S. aureus in vivo and suggests that PolySSL7311 is a promising vaccine candidate.
Collapse
Affiliation(s)
- Janlin Ying Hui Chan
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Fiona Clow
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Victoria Pearson
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ries J Langley
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - John D Fraser
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Fiona J Radcliff
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Croucher NJ. Immune interface interference vaccines: An evolution-informed approach to anti-bacterial vaccine design. Microb Biotechnol 2024; 17:e14446. [PMID: 38536702 PMCID: PMC10970203 DOI: 10.1111/1751-7915.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 10/17/2024] Open
Abstract
Developing protein-based vaccines against bacteria has proved much more challenging than producing similar immunisations against viruses. Currently, anti-bacterial vaccines are designed using methods based on reverse vaccinology. These identify broadly conserved, immunogenic proteins using a combination of genomic and high-throughput laboratory data. While this approach has successfully generated multiple rationally designed formulations that show promising immunogenicity in animal models, few have been licensed. The difficulty of inducing protective immunity in humans with such vaccines mirrors the ability of many bacteria to recolonise individuals despite recognition by natural polyvalent antibody repertoires. As bacteria express too many antigens to evade all adaptive immune responses through mutation, they must instead inhibit the efficacy of such host defences through expressing surface structures that interface with the immune system. Therefore, 'immune interface interference' (I3) vaccines that target these features should synergistically directly target bacteria and prevent them from inhibiting responses to other surface antigens. This approach may help us understand the efficacy of the two recently introduced immunisations against serotype B meningococci, which both target the Factor H-binding protein (fHbp) that inhibits complement deposition on the bacterial surface. Therefore, I3 vaccine designs may help overcome the current challenges of developing protein-based vaccines to prevent bacterial infections.
Collapse
Affiliation(s)
- Nicholas J. Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public HealthImperial College LondonLondonUK
| |
Collapse
|
6
|
Hou WT, Shen CR, Peng J, Jiang LW, Guo SY, Qiu XR, Zhang Y, Shen H, Jiang YY, An MM. Mechanism of Action for an All-in-One Monoclonal Antibody Against Staphylococcus aureus Infection. J Infect Dis 2023; 228:1789-1799. [PMID: 37335928 DOI: 10.1093/infdis/jiad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/22/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023] Open
Abstract
Staphylococcus aureus is a major human pathogen associated with high mortality rates. The extensive use of antibiotics is associated with the rise of drug resistance, and exotoxins are not targeted by antibiotics. Therefore, monoclonal antibody (mAb) therapy has emerged as a promising solution to solve the clinical problems caused by refractory S aureus. Recent research suggests that the synergistic effects of several cytotoxins, including bicomponent toxins, are critical to the pathogenesis of S aureus. By comparing the amino acid sequences, researchers found that α-toxin and bicomponent toxins have high homology. Therefore, we aimed to screen an antibody, designated an all-in-one mAb, that could neutralize α-toxin and bicomponent toxins through hybridoma fusion. We found that this mAb has a significant pharmacodynamic effect within in vivo mouse models and in vitro experiments.
Collapse
Affiliation(s)
- Wei-Tong Hou
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen-Rui Shen
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ji Peng
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li-Wen Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shi-Yu Guo
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi-Ran Qiu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Shen
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan-Ying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mao-Mao An
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Howden BP, Giulieri SG, Wong Fok Lung T, Baines SL, Sharkey LK, Lee JYH, Hachani A, Monk IR, Stinear TP. Staphylococcus aureus host interactions and adaptation. Nat Rev Microbiol 2023; 21:380-395. [PMID: 36707725 PMCID: PMC9882747 DOI: 10.1038/s41579-023-00852-y] [Citation(s) in RCA: 275] [Impact Index Per Article: 137.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 01/28/2023]
Abstract
Invasive Staphylococcus aureus infections are common, causing high mortality, compounded by the propensity of the bacterium to develop drug resistance. S. aureus is an excellent case study of the potential for a bacterium to be commensal, colonizing, latent or disease-causing; these states defined by the interplay between S. aureus and host. This interplay is multidimensional and evolving, exemplified by the spread of S. aureus between humans and other animal reservoirs and the lack of success in vaccine development. In this Review, we examine recent advances in understanding the S. aureus-host interactions that lead to infections. We revisit the primary role of neutrophils in controlling infection, summarizing the discovery of new immune evasion molecules and the discovery of new functions ascribed to well-known virulence factors. We explore the intriguing intersection of bacterial and host metabolism, where crosstalk in both directions can influence immune responses and infection outcomes. This Review also assesses the surprising genomic plasticity of S. aureus, its dualism as a multi-mammalian species commensal and opportunistic pathogen and our developing understanding of the roles of other bacteria in shaping S. aureus colonization.
Collapse
Affiliation(s)
- Benjamin P. Howden
- grid.1008.90000 0001 2179 088XCentre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.410678.c0000 0000 9374 3516Department of Infectious Diseases, Austin Health, Heidelberg, Victoria Australia ,grid.416153.40000 0004 0624 1200Microbiology Department, Royal Melbourne Hospital, Melbourne, Victoria Australia
| | - Stefano G. Giulieri
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.416153.40000 0004 0624 1200Victorian Infectious Diseases Service, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Tania Wong Fok Lung
- grid.21729.3f0000000419368729Department of Paediatrics, Columbia University, New York, NY USA
| | - Sarah L. Baines
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Liam K. Sharkey
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Jean Y. H. Lee
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.419789.a0000 0000 9295 3933Department of Infectious Diseases, Monash Health, Clayton, Victoria Australia
| | - Abderrahman Hachani
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Ian R. Monk
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Timothy P. Stinear
- grid.1008.90000 0001 2179 088XCentre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| |
Collapse
|
8
|
Jahantigh HR, Faezi S, Habibi M, Mahdavi M, Stufano A, Lovreglio P, Ahmadi K. The Candidate Antigens to Achieving an Effective Vaccine against Staphylococcus aureus. Vaccines (Basel) 2022; 10:vaccines10020199. [PMID: 35214658 PMCID: PMC8876328 DOI: 10.3390/vaccines10020199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic pathogen that causes various inflammatory local infections, from those of the skin to postinfectious glomerulonephritis. These infections could result in serious threats, putting the life of the patient in danger. Antibiotic-resistant S. aureus could lead to dramatic increases in human mortality. Antibiotic resistance would explicate the failure of current antibiotic therapies. So, it is obvious that an effective vaccine against S. aureus infections would significantly reduce costs related to care in hospitals. Bacterial vaccines have important impacts on morbidity and mortality caused by several common pathogens, however, a prophylactic vaccine against staphylococci has not yet been produced. During the last decades, the efforts to develop an S. aureus vaccine have faced two major failures in clinical trials. New strategies for vaccine development against S. aureus has supported the use of multiple antigens, the inclusion of adjuvants, and the focus on various virulence mechanisms. We aimed to present a compressive review of different antigens of S. aureus and also to introduce vaccine candidates undergoing clinical trials, from which can help us to choose a suitable and effective candidate for vaccine development against S. aureus.
Collapse
Affiliation(s)
- Hamid Reza Jahantigh
- Animal Health and Zoonosis, Department of Veterinary Medicine, University of Bari, 70010 Bari, Italy;
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari, 70010 Bari, Italy;
- Correspondence: (H.R.J.); (K.A.); Tel.: +39-3773827669 (H.R.J.)
| | - Sobhan Faezi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht 41937, Iran;
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran;
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran 1517964311, Iran
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13164, Iran;
| | - Angela Stufano
- Animal Health and Zoonosis, Department of Veterinary Medicine, University of Bari, 70010 Bari, Italy;
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari, 70010 Bari, Italy;
| | - Piero Lovreglio
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari, 70010 Bari, Italy;
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 79391, Iran
- Correspondence: (H.R.J.); (K.A.); Tel.: +39-3773827669 (H.R.J.)
| |
Collapse
|
9
|
Fan Z, Jan S, Hickey JC, Davies DH, Felgner J, Felgner PL, Guan Z. Multifunctional Dendronized Polypeptides for Controlled Adjuvanticity. Biomacromolecules 2021; 22:5074-5086. [PMID: 34788023 DOI: 10.1021/acs.biomac.1c01052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vaccination has been playing an important role in treating both infectious and cancerous diseases. Nevertheless, many diseases still lack proper vaccines due to the difficulty to generate sufficient amounts of antigen-specific antibodies or T cells. Adjuvants provide an important route to improve and direct immune responses. However, there are few adjuvants approved clinically and many of them lack the clear structure/adjuvanticity relationship. Here, we synthesized and evaluated a series of dendronized polypeptides (denpols) functionalized with varying tryptophan/histidine (W/H) molar ratios of 0/100, 25/75, 50/50, 75/25, and 100/0 as tunable synthetic adjuvants. The denpols showed structure-dependent inflammasome activation in THP1 monocytic cells and structure-related activation and antigen cross-presentation in vitro in bone marrow-derived dendritic cells. We used the denpols with bacterial pathogen Coxiella burnetii antigens in vivo, which showed both high and tunable adjuvating activities, as demonstrated by the antigen-specific antibody and T cell responses. The denpols are easy to make and scalable, biodegradable, and have highly adjustable chemical structures. Taken together, denpols show great potential as a new and versatile adjuvant platform that allows us to adjust adjuvanticity based on structure-activity correlation with the aim to fine-tune the immune response, thus advancing vaccine development.
Collapse
Affiliation(s)
- Zhiyuan Fan
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Sharon Jan
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697, United States
| | - James C Hickey
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - D Huw Davies
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697, United States
| | - Jiin Felgner
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697, United States
| | - Philip L Felgner
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697, United States
| | - Zhibin Guan
- Department of Chemistry, University of California, Irvine, California 92697, United States.,Department of Biomedical Engineering, University of California, Irvine, California 92697, United States.,Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States.,Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
10
|
Schroven K, Aertsen A, Lavigne R. Bacteriophages as drivers of bacterial virulence and their potential for biotechnological exploitation. FEMS Microbiol Rev 2021; 45:5902850. [PMID: 32897318 DOI: 10.1093/femsre/fuaa041] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Bacteria-infecting viruses (phages) and their hosts maintain an ancient and complex relationship. Bacterial predation by lytic phages drives an ongoing phage-host arms race, whereas temperate phages initiate mutualistic relationships with their hosts upon lysogenization as prophages. In human pathogens, these prophages impact bacterial virulence in distinct ways: by secretion of phage-encoded toxins, modulation of the bacterial envelope, mediation of bacterial infectivity and the control of bacterial cell regulation. This review builds the argument that virulence-influencing prophages hold extensive, unexplored potential for biotechnology. More specifically, it highlights the development potential of novel therapies against infectious diseases, to address the current antibiotic resistance crisis. First, designer bacteriophages may serve to deliver genes encoding cargo proteins which repress bacterial virulence. Secondly, one may develop small molecules mimicking phage-derived proteins targeting central regulators of bacterial virulence. Thirdly, bacteria equipped with phage-derived synthetic circuits which modulate key virulence factors could serve as vaccine candidates to prevent bacterial infections. The development and exploitation of such antibacterial strategies will depend on the discovery of other prophage-derived, virulence control mechanisms and, more generally, on the dissection of the mutualistic relationship between temperate phages and bacteria, as well as on continuing developments in the synthetic biology field.
Collapse
Affiliation(s)
- Kaat Schroven
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| |
Collapse
|
11
|
Wang M, van den Berg S, Mora Hernández Y, Visser AH, Vera Murguia E, Koedijk DGAM, Bellink C, Bruggen H, Bakker-Woudenberg IAJM, van Dijl JM, Buist G. Differential binding of human and murine IgGs to catalytic and cell wall binding domains of Staphylococcus aureus peptidoglycan hydrolases. Sci Rep 2021; 11:13865. [PMID: 34226629 PMCID: PMC8257689 DOI: 10.1038/s41598-021-93359-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen causing high morbidity and mortality. Since multi-drug resistant S. aureus lineages are nowadays omnipresent, alternative tools for preventive or therapeutic interventions, like immunotherapy, are urgently needed. However, there are currently no vaccines against S. aureus. Surface-exposed and secreted proteins are regarded as potential targets for immunization against S. aureus infections. Yet, many potential staphylococcal antigens of this category do not elicit protective immune responses. To obtain a better understanding of this problem, we compared the binding of serum IgGs from healthy human volunteers, highly S. aureus-colonized patients with the genetic blistering disease epidermolysis bullosa (EB), or immunized mice to the purified S. aureus peptidoglycan hydrolases Sle1, Aly and LytM and their different domains. The results show that the most abundant serum IgGs from humans and immunized mice target the cell wall-binding domain of Sle1, and the catalytic domains of Aly and LytM. Interestingly, in a murine infection model, these particular IgGs were not protective against S. aureus bacteremia. In contrast, relatively less abundant IgGs against the catalytic domain of Sle1 and the N-terminal domains of Aly and LytM were almost exclusively detected in sera from EB patients and healthy volunteers. These latter IgGs may contribute to the protection against staphylococcal infections, as previous studies suggest that serum IgGs protect EB patients against severe S. aureus infection. Together, these observations focus attention on the use of particular protein domains for vaccination to direct potentially protective immune responses towards the most promising epitopes within staphylococcal antigens.
Collapse
Affiliation(s)
- Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Sanne van den Berg
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yaremit Mora Hernández
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Aafke Hinke Visser
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Elias Vera Murguia
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Dennis G A M Koedijk
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Channah Bellink
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Hilde Bruggen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Irma A J M Bakker-Woudenberg
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands.
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| |
Collapse
|
12
|
Tsai CM, Soper N, Bennett M, Fallon JK, Michell AR, Alter G, Liu GY, Thomsen I. Adoptive Transfer of Serum Samples From Children With Invasive Staphylococcal Infection and Protection Against Staphylococcus aureus Sepsis. J Infect Dis 2021; 223:1222-1231. [PMID: 32990305 PMCID: PMC8030728 DOI: 10.1093/infdis/jiaa482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/31/2020] [Indexed: 11/14/2022] Open
Abstract
A successful Staphylococcus aureus vaccine remains elusive, and one controversy in the field is whether humans generate a protective adaptive immune response to infection. We developed a bacterial challenge murine assay that directly assesses the protective capacity of adoptively transferred human serum samples. We first validated the model by showing that postpneumococcal vaccine serum samples from humans induced effective clearance of Streptococcus pneumoniae in mice. We then found that human serum samples adoptively transferred from children with invasive S. aureus infections exhibited protection from disease in a murine model, with some samples conferring near complete protection. These findings demonstrate that human serum samples are capable of conferring a protective adaptive response generated by humans during invasive staphylococcal disease, allowing for the study of protective factors in a murine model. Identification of the protective factors present in the most efficacious serum samples would be of high interest as potential staphylococcal vaccine candidates or passive therapeutics.
Collapse
Affiliation(s)
- Chih-Ming Tsai
- Department of Pediatrics, Division of Infectious Diseases, University of California, San Diego, California, USA
| | - Nicole Soper
- Department of Pediatrics, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Monique Bennett
- Department of Pediatrics, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan K Fallon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Ashlin R Michell
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - George Y Liu
- Department of Pediatrics, Division of Infectious Diseases, University of California, San Diego, California, USA
| | - Isaac Thomsen
- Department of Pediatrics, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Intramammary infection caused by Staphylococcus aureus increases IgA antibodies to iron-regulated surface determinant-A, -B, and -H in bovine milk. Vet Immunol Immunopathol 2021; 235:110235. [PMID: 33838543 DOI: 10.1016/j.vetimm.2021.110235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/15/2022]
Abstract
The aim of this study was to identify virulence factors that have high immunogenicity. An in vivo-expressed Staphylococcus aureus antigen was identified by probing bacteriophage expression libraries of S. aureus with antibodies in bovine mastitis milk. Eighteen clones were isolated, and their proteins were identified as 5 characterised proteins (IsdA, Protein A, IsdB, autolysin, and imidazole glycerol phosphate dehydratase) and 13 hypothetical proteins. We focused on IsdA, IsdB, and IsdH as virulence factors that have a high immunogenicity and are capable of inducing a specific humoral immune response in S. aureus-infected quarters. The optical density (OD) values of IsdA and IsdB IgA and IgG antibodies in milk affected by naturally occurring mastitis caused by S. aureus increased significantly compared to those in healthy milk. In the experimental infection study, the OD values of IsdA- and B-specific IgA and IgG antibodies were significantly increased from 2 to 4 weeks after S. aureus infection compared to day 0 (P < 0.05). On the other hand, we demonstrated that milk from natural and experimental intramammary infections caused by S. aureus are associated with significantly higher IgA levels against IsdH (P < 0.05), but no significant change in IgG levels. Our findings facilitated our understanding of the pathogenicity of S. aureus in bovine mastitis, as well as the mechanisms by which specific humoral immune responses to S. aureus infection are induced. In addition, the results obtained could provide insight into how bovine mastitis can be controlled, for example, through vaccination.
Collapse
|
14
|
Kaizerman-Kane D, Hadar M, Joseph R, Logviniuk D, Zafrani Y, Fridman M, Cohen Y. Design Guidelines for Cationic Pillar[n]arenes that Prevent Biofilm Formation by Gram-Positive Pathogens. ACS Infect Dis 2021; 7:579-585. [PMID: 33657813 PMCID: PMC8041275 DOI: 10.1021/acsinfecdis.0c00662] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Bacterial biofilms are a major threat
to human health, causing
persistent infections that lead to millions of fatalities worldwide
every year. Biofilms also cause billions of dollars of damage annually
by interfering with industrial processes. Recently, cationic pillararenes
were found to be potent inhibitors of biofilm formation in Gram-positive
bacteria. To identify the structural features of pillararenes that
result in antibiofilm activity, we evaluated the activity of 16 cationic
pillar[5]arene derivatives including that of the first cationic water-soluble
pillar[5]arene-based rotaxane. Twelve of the derivatives were potent
inhibitors of biofilm formation by Gram-positive pathogens. Structure
activity analyses of our pillararene derivatives indicated that positively
charged head groups are critical for the observed antibiofilm activity.
Although certain changes in the lipophilicity of the substituents
on the positively charged head groups are tolerated, dramatic elevation
in the hydrophobicity of the substituents or an increase in steric
bulk on these positive charges abolishes the antibiofilm activity.
An increase in the overall positive charge from 10 to 20 did not affect
the activity significantly, but pillararenes with 5 positive charges
and 5 long alkyl chains had reduced activity. Surprisingly, the cavity
of the pillar[n]arene is not essential for the observed activity,
although the macrocyclic structure of the pillar[n]arene core, which
facilitates the clustering of the positive charges, appears important.
Interestingly, the compounds found to be efficient inhibitors of biofilm
formation were nonhemolytic at concentrations that are ∼100-fold
of their MBIC50 (the minimal concentration of a compound
at which at least 50% inhibition of biofilm formation was observed
compared to untreated cells). The structure–activity relationship
guidelines established here pave the way for a rational design of
potent cationic pillar[n]arene-based antibiofilm agents.
Collapse
Affiliation(s)
- Dana Kaizerman-Kane
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Maya Hadar
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Roymon Joseph
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Dana Logviniuk
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Yossi Zafrani
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74000, Israel
| | - Micha Fridman
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
15
|
Scully IL, Timofeyeva Y, Illenberger A, Lu P, Liberator PA, Jansen KU, Anderson AS. Performance of a Four-Antigen Staphylococcus aureus Vaccine in Preclinical Models of Invasive S. aureus Disease. Microorganisms 2021; 9:microorganisms9010177. [PMID: 33467609 PMCID: PMC7830931 DOI: 10.3390/microorganisms9010177] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 01/16/2023] Open
Abstract
A Staphylococcus aureus four-antigen vaccine (SA4Ag) was designed for the prevention of invasive disease in surgical patients. The vaccine is composed of capsular polysaccharide type 5 and type 8 CRM197 conjugates, a clumping factor A mutant (Y338A-ClfA) and manganese transporter subunit C (MntC). S. aureus pathogenicity is characterized by an ability to rapidly adapt to the host environment during infection, which can progress from a local infection to sepsis and invasion of distant organs. To test the protective capacity of the SA4Ag vaccine against progressive disease stages of an invasive S. aureus infection, a deep tissue infection mouse model, a bacteremia mouse model, a pyelonephritis model, and a rat model of infectious endocarditis were utilized. SA4Ag vaccination significantly reduced the bacterial burden in deep tissue infection, in bacteremia, and in the pyelonephritis model. Complete prevention of infection was demonstrated in a clinically relevant endocarditis model. Unfortunately, these positive preclinical findings with SA4Ag did not prove the clinical utility of SA4Ag in the prevention of surgery-associated invasive S. aureus infection.
Collapse
|
16
|
Visansirikul S, Kolodziej SA, Demchenko AV. Synthesis of oligosaccharide fragments of capsular polysaccharide Staphylococcus aureus type 8. J Carbohydr Chem 2020. [DOI: 10.1080/07328303.2020.1821042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Satsawat Visansirikul
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, St. Louis, MO, USA
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Stephen A. Kolodziej
- Bioprocess R&D, Biotherapeutics Pharmaceutical Sciences, Pfizer, Inc, Chesterfield, MO, USA
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, St. Louis, MO, USA
| |
Collapse
|
17
|
Paterson MJ, Caldera JR, Nguyen C, Sharma P, Castro AM, Kolar SL, Tsai CM, Limon JJ, Becker CA, Martins GA, Liu GY, Underhill DM. Harnessing antifungal immunity in pursuit of a Staphylococcus aureus vaccine strategy. PLoS Pathog 2020; 16:e1008733. [PMID: 32817694 PMCID: PMC7446838 DOI: 10.1371/journal.ppat.1008733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/22/2020] [Indexed: 02/03/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the most common bacterial infections worldwide, and antibiotic resistant strains such as Methicillin-Resistant S. aureus (MRSA) are a major threat and burden to public health. MRSA not only infects immunocompromised patients but also healthy individuals and has rapidly spread from the healthcare setting to the outside community. However, all vaccines tested in clinical trials to date have failed. Immunocompromised individuals such as patients with HIV or decreased levels of CD4+ T cells are highly susceptible to S. aureus infections, and they are also at increased risk of developing fungal infections. We therefore wondered whether stimulation of antifungal immunity might promote the type of immune responses needed for effective host defense against S. aureus. Here we show that vaccination of mice with a fungal β-glucan particle (GP) loaded with S. aureus antigens provides protective immunity to S. aureus. We generated glucan particles loaded with the four S. aureus proteins ClfA, IsdA, MntC, and SdrE, creating the 4X-SA-GP vaccine. Vaccination of mice with three doses of 4X-SA-GP promoted protection in a systemic model of S. aureus infection with a significant reduction in the bacterial burden in the spleen and kidneys. 4X-SA-GP vaccination induced antigen-specific Th1 and Th17 CD4+ T cell and antibody responses and provided long-term protection. This work suggests that the GP vaccine system has potential as a novel approach to developing vaccines for S. aureus.
Collapse
Affiliation(s)
- Marissa J. Paterson
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - JR Caldera
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Division of Infectious Diseases, Department of Pediatics, UCSD, San Diego, California, United States of America
| | - Christopher Nguyen
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Purnima Sharma
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Anthony M. Castro
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Stacey L. Kolar
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Chih-Ming Tsai
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Division of Infectious Diseases, Department of Pediatics, UCSD, San Diego, California, United States of America
| | - Jose J. Limon
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Courtney A. Becker
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Gislâine A. Martins
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - George Y. Liu
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Division of Infectious Diseases, Department of Pediatics, UCSD, San Diego, California, United States of America
| | - David M. Underhill
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| |
Collapse
|
18
|
Troeman DPR, Van Hout D, Kluytmans JAJW. Antimicrobial approaches in the prevention of Staphylococcus aureus infections: a review. J Antimicrob Chemother 2020; 74:281-294. [PMID: 30376041 PMCID: PMC6337897 DOI: 10.1093/jac/dky421] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background The prophylactic application of antimicrobials that are active against Staphylococcus aureus can prevent infections. However, implementation in clinical practice is limited. We have reviewed antimicrobial approaches for the prevention of S. aureus infections. Methods We searched the Cochrane Central Register of Controlled Trials, PubMed/MEDLINE and EMBASE databases and trial registries using synonyms for S. aureus, infections and prevention as search terms. We included randomized controlled trials and systematic reviews only. Results Most studies were conducted with mupirocin. Mupirocin is effective in preventing S. aureus infections in patients receiving dialysis treatment and in surgical patients, particularly if the patients are carriers of S. aureus. The combination of mupirocin and chlorhexidine, but not chlorhexidine alone, is also effective against S. aureus infections. So far, vaccines have not proven successful in protecting against S. aureus infections. Regarding prophylactic povidone-iodine and systemic antibiotics, there is limited evidence supporting their effectiveness against S. aureus infections. Antimicrobial honey has not been proven to be more effective or non-inferior to mupirocin in protecting against S. aureus infections. Conclusions The current evidence supports the use of mupirocin as prophylaxis for preventing infections with S. aureus, particularly in carriers and in the surgical setting or in patients receiving dialysis treatment. Other antimicrobial agents have not been sufficiently proven to be effective so far, or have been proven ineffective. New trials with vaccines and anti-staphylococcal peptides are currently underway and may lead to new preventive strategies in the future.
Collapse
Affiliation(s)
- D P R Troeman
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht (UMCU), Utrecht University, Heidelberglaan 100, 3584 CG Utrecht, The Netherlands
| | - D Van Hout
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht (UMCU), Utrecht University, Heidelberglaan 100, 3584 CG Utrecht, The Netherlands
| | - J A J W Kluytmans
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht (UMCU), Utrecht University, Heidelberglaan 100, 3584 CG Utrecht, The Netherlands.,Department of Infection Control, Amphia Hospital, Molengracht 21, 4818 CK Breda, The Netherlands
| |
Collapse
|
19
|
Ohsawa H, Baba T, Enami J, Hiramatsu K. Protective activity of anti-lipoteichoic acid monoclonal antibody in single or combination therapies in methicillin-resistant Staphylococcus aureus-induced murine sepsis models. J Infect Chemother 2020; 26:520-522. [DOI: 10.1016/j.jiac.2019.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
|
20
|
Visvabharathy L, Genardi S, Cao L, He Y, Alonzo F, Berdyshev E, Wang CR. Group 1 CD1-restricted T cells contribute to control of systemic Staphylococcus aureus infection. PLoS Pathog 2020; 16:e1008443. [PMID: 32343740 PMCID: PMC7188215 DOI: 10.1371/journal.ppat.1008443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/28/2020] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus (SA) is the causative agent of both skin/soft tissue infections as well as invasive bloodstream infections. Though vaccines have been developed to target both humoral and T cell-mediated immune responses against SA, they have largely failed due to lack of protective efficacy. Group 1 CD1-restricted T cells recognize lipid rather than peptide antigens. Previously found to recognize lipids derived from cell wall of Mycobacterium tuberculosis (Mtb), these cells were associated with protection against Mtb infection in humans. Using a transgenic mouse model expressing human group 1 CD1 molecules (hCD1Tg), we demonstrate that group 1 CD1-restricted T cells can recognize SA-derived lipids in both immunization and infection settings. Systemic infection of hCD1Tg mice showed that SA-specific group 1 CD1-restricted T cell response peaked at 10 days post-infection, and hCD1Tg mice displayed significantly decreased kidney pathology at this time point compared with WT control mice. Immunodominant SA lipid antigens recognized by group 1 CD1-restricted T cells were comprised mainly of cardiolipin and phosphatidyl glycerol, with little contribution from lysyl-phosphatidyl glycerol which is a unique bacterial lipid not present in mammals. Group 1 CD1-restricted T cell lines specific for SA lipids also conferred protection against SA infection in the kidney after adoptive transfer. They were further able to effectively control SA replication in vitro through direct antigen presentation by group 1 CD1-expressing BMDCs. Together, our data demonstrate a previously unknown role for group 1 CD1-restricted SA lipid-specific T cells in the control of systemic MRSA infection.
Collapse
Affiliation(s)
- Lavanya Visvabharathy
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Samantha Genardi
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Liang Cao
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Ying He
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Francis Alonzo
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, United States of America
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, United States of America
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| |
Collapse
|
21
|
Lee CC, Southgate R, Jiao C, Gersz E, Owen JR, Kates SL, Beck CA, Xie C, Daiss JL, Post V, Moriarty TF, Zeiter S, Schwarz EM, Muthukrishnan G. Deriving a dose and regimen for anti-glucosaminidase antibody passive-immunisation for patients with Staphylococcus aureus osteomyelitis. Eur Cell Mater 2020; 39:96-107. [PMID: 32003439 PMCID: PMC7236896 DOI: 10.22203/ecm.v039a06] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Staphylococcus aureus (S. aureus) osteomyelitis remains a major clinical problem. Anti-glucosaminidase (Gmd) antibodies (1C11) are efficacious in prophylactic and therapeutic murine models. Feasibility, safety and pharmacokinetics of 1C11 passive immunisation in sheep and endogenous anti-Gmd levels were quantified in osteomyelitis patients. 3 sheep received a 500 mg intravenous (i.v.) bolus of 1C11 and its levels in sera were determined by enzyme-linked immunosorbent assay (ELISA) over 52 d. A humanised anti-Gmd monoclonal antibody, made by grafting the antigen-binding fragment (Fab) portion of 1C11 onto the fragment crystallisable region (Fc) of human IgG1, was used to make a standard curve of mean fluorescent intensity versus concentration of anti-Gmd. Anti-Gmd serum levels were determined in 297 patients with culture-confirmed S. aureus osteomyelitis and 40 healthy controls. No complications or adverse events were associated with the sheep 1C11 i.v. infusion and the estimated circulating half-life of 1C11 was 23.7 d. Endogenous anti-Gmd antibody levels in sera of osteomyelitis patients ranged from < 1 ng/mL to 300 µg/mL, with a mean concentration of 21.7 µg/mL. The estimated circulating half-life of endogenous anti-Gmd antibodies in sera of 12 patients with cured osteomyelitis was 120.4 d. A clinically relevant administration of anti-Gmd (500 mg i.v. = 7 mg/kg/70 kg human) was safe in sheep. This dose was 8 times more than the endogenous anti-Gmd levels observed in osteomyelitis patients and was predicted to have a half-life of > 3 weeks. Anti-Gmd passive immunisation has potential to prevent and treat S. aureus osteomyelitis. Further clinical development is warranted.
Collapse
Affiliation(s)
- Charles C. Lee
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard Southgate
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Cindy Jiao
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Elaine Gersz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Christopher A. Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA,Corresponding Author: Edward M. Schwarz, Ph.D., Burton Professor of Orthopaedics, Director of Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, Phone: (585) 275-3063, FAX: (585) 276-2177,
| | | |
Collapse
|
22
|
Mortazavi SS, Haghighat S, Mahdavi M. Recombinant PBP2a of methicillin-resistant S. aureus formulation in Alum and Montanide ISA266 adjuvants induced cellular and humoral immune responses with protection in Balb/C mice. Microb Pathog 2019; 140:103945. [PMID: 31874228 DOI: 10.1016/j.micpath.2019.103945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/11/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022]
Abstract
Staphylococcus aureus is an important cause of both hospital and community acquired infections worldwide. S.aureus can develop multidrug resistance; thus, immunotherapy can be a rational alternative. High level β-lactam resistance of S. aureus has been attributed to the penicillin binding protein 2a (PBP2a). In this study, we assessed the immunogenicity and protectivity of PBP2a formulated in Montanide ISA266 and Alum adjuvants. Recombinant PBP2a with a molecular weight of approximately 13 kDa was expressed and purified by nickel-nitrilotriacetic acid (NI-NTA) affinity chromatography and characterized by SDS-PAGE and Western blot. To investigate the immunogenicity and protective effects of recombinant protein, 20 μg of r-PBP2a in various formulations were subcutaneously injected in different groups. Two booster vaccinations were carried out in two-week intervals and blood samples were collected two weeks after each injection. To determine the type of induced immune response, sera and splenocytes were analyzed by ELISA for total IgG and isotypes (IgG1 and IgG2a) and cytokine secretion (IFN-γ, IL-4, IL-17 and TNF-α), respectively. Three weeks following the last immunization, experimental mice were challenged with 5 × 108 CFU of bacteria intraperitoneally and mortality rate and bacterial load were assessed. Interestingly, analysis of humoral immune responses revealed that administration of r-PBP2a with Montanide ISA266 significantly increased specific IgG responses and also IgG1 isotype compared to alum-adjuvanted vaccine group. Also, r-PBP2a formulation with alum and MontanideISA266 adjuvants raised IFN-γ, IL-4, IL-17 cytokines secretion, and protectivity following experimental challenge. The results of the present study provide evidences for immunogenicity and protectivity of PBP2a protein as a vaccine candidate.
Collapse
Affiliation(s)
- Seyedeh Shadi Mortazavi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehdi Mahdavi
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Harro JM, Achermann Y, Freiberg JA, Allison DL, Brao KJ, Marinos DP, Sanjari S, Leid JG, Shirtliff ME. Clearance of Staphylococcus aureus from In Vivo Models of Chronic Infection by Immunization Requires Both Planktonic and Biofilm Antigens. Infect Immun 2019; 88:e00586-19. [PMID: 31712267 PMCID: PMC6921670 DOI: 10.1128/iai.00586-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/22/2019] [Indexed: 01/14/2023] Open
Abstract
Staphylococcus aureus is a causative agent of chronic biofilm-associated infections that are recalcitrant to resolution by the immune system or antibiotics. To combat these infections, an antistaphylococcal, biofilm-specific quadrivalent vaccine against an osteomyelitis model in rabbits has previously been developed and shown to be effective at eliminating biofilm-embedded bacterial populations. However, the addition of antibiotics was required to eradicate remaining planktonic populations. In this study, a planktonic upregulated antigen was combined with the quadrivalent vaccine to remove the need for antibiotic therapy. Immunization with this pentavalent vaccine followed by intraperitoneal challenge of BALB/c mice with S. aureus resulted in 16.7% and 91.7% mortality in pentavalent vaccine and control groups, respectively (P < 0.001). Complete bacterial elimination was found in 66.7% of the pentavalent cohort, while only 8.3% of the control animals cleared the infection (P < 0.05). Further protective efficacy was observed in immunized rabbits following intramedullary challenge with S. aureus, where 62.5% of the pentavalent cohort completely cleared the infection, versus none of the control animals (P < 0.05). Passive immunization of BALB/c mice with serum IgG against the vaccine antigens prior to intraperitoneal challenge with S. aureus prevented mortality in 100% of mice and eliminated bacteria in 33.3% of the challenged mice. These results demonstrate that targeting both the planktonic and biofilm stages with the pentavalent vaccine or the IgG elicited by immunization can effectively protect against S. aureus infection.
Collapse
Affiliation(s)
- Janette M Harro
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, Maryland, USA
| | - Yvonne Achermann
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, Maryland, USA
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jeffrey A Freiberg
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, Maryland, USA
- Graduate Program in Life Sciences, Molecular Microbiology and Immunology Program, University of Maryland-Baltimore, Baltimore, Maryland, USA
| | - Devon L Allison
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, Maryland, USA
- Graduate Program in Life Sciences, Molecular Microbiology and Immunology Program, University of Maryland-Baltimore, Baltimore, Maryland, USA
| | - Kristen J Brao
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, Maryland, USA
- Graduate Program in Life Sciences, Molecular Microbiology and Immunology Program, University of Maryland-Baltimore, Baltimore, Maryland, USA
| | - Dimitrius P Marinos
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, Maryland, USA
| | - Salar Sanjari
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, Maryland, USA
| | - Jeff G Leid
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Mark E Shirtliff
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland-Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Ahmadi K, Aslani MM, Pouladfar G, Faezi S, Kalani M, Pourmand MR, Ghaedi T, Havaei SA, Mahdavi M. Preparation and preclinical evaluation of two novel Staphylococcus aureus capsular polysaccharide 5 and 8-fusion protein (Hla-MntC-SACOL0723) immunoconjugates. IUBMB Life 2019; 72:226-236. [PMID: 31573748 DOI: 10.1002/iub.2159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022]
Abstract
Staphylococcus aureus is one of the most common pathogens in the hospital and the community. The emergence of broad-spectrum antibiotic resistance in S. aureus has made the treatment process more difficult. Therefore, it is obvious that an effective prevention strategy against the pathogen could significantly reduce costs related to care in hospitals. In this report, we describe a simple approach to conjugate S. aureus capsular polysaccharide 5 (CP5) from S. aureus Reynolds strain and 8 (CP8) from S. aureus Becker strain to a fusion protein (Hla-MntC-SACOL0723) and investigation of its bioactivity. The conjugation was done by using ADH (as a bridge) and EDAC (as a coupling agent). The immunoconjugates were characterized by routine polysaccharide/protein contents assays followed by reverse phase chromatography and FTIR spectroscopy. The groups of mice were immunized with conjugate vaccines, capsular polysaccharides, and phosphate-buffered saline (PBS) as a control group. The functional activity of the vaccine candidates was evaluated by ELISA, opsonophagocytosis tests, and determination of bacterial load in challenge study. The results showed that the specific antibody (total IgG) titers raised against conjugate molecules were higher than those of the nonconjugated capsular polysaccharides. The opsonic activity of the conjugate vaccines antisera was significantly higher than polysaccharides alone (58% reduction in the number of bacteria versus 16.3% at 1:2 dilution, p < .05), Further, the conjugate vaccine group had a significant reduction in bacterial load after challenge with S. aureus COL strain cells as compared to the PBS and nonconjugated controls. In conclusion, the immunoconjugates could be developed as a potential vaccine candidate against S. aureus.
Collapse
Affiliation(s)
- Khadijeh Ahmadi
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran.,Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Gholamreza Pouladfar
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sobhan Faezi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehdi Kalani
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad R Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebe Ghaedi
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Seyed A Havaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Mahdavi
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
25
|
Marshall HS, Baber J, Richmond P, Nissen M, Shakib S, Kreiswirth BN, Zito ET, Severs J, Eiden J, Gruber W, Jansen KU, Jones CH, Anderson AS. S. aureus colonization in healthy Australian adults receiving an investigational S. aureus 3-antigen vaccine. J Infect 2019; 79:582-592. [PMID: 31585191 DOI: 10.1016/j.jinf.2019.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/09/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Assess Staphylococcus aureus (S. aureus) colonization in healthy Australian adults receiving an investigational S. aureus 3-antigen vaccine (SA3Ag). METHODS In this phase 1, double-blind, sponsor-unblinded study, participants were randomized to receive a single dose (1 of 3 dose levels) of SA3Ag or placebo and a booster dose or placebo at 6 months. S. aureus isolates from nasal, perineal, and oropharyngeal swabs before and through 12 months post-vaccination were identified. RESULTS Baseline S. aureus colonization prevalence was 30.6% (any site), with nasal carriage (27.0%) more common than oropharyngeal/perineal (3.2% each). Following initial vaccination (low-dose: 102; mid-dose: 101; high-dose: 101; placebo: 102) and booster (low-dose: 45; mid-dose: 44; high-dose: 27; placebo: 181), placebo and SA3Ag groups showed similar S. aureus carriage through 12 months. Most colonized participants (74.0%) were colonized by single spa types. Placebo and SA3Ag groups had similar persistence of colonization, with 19.6-30.7% due to single spa types. Acquisition was observed in mid- and high-dose recipients (∼20%) and low-dose and placebo recipients (∼12%). Vaccination resulted in substantial increases in antibodies to all 3 antigens, irrespective of carriage status. CONCLUSIONS Based on descriptive analyses of this small study, SA3Ag vaccination did not impact S. aureus acquisition or carriage. Carriage status did not impact antibody responses to SA3Ag.
Collapse
Affiliation(s)
- Helen S Marshall
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Hospital and Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
| | - James Baber
- Pfizer Australia Pty Ltd, Sydney, NSW, Australia
| | - Peter Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia Division of Paediatrics & Vaccine Trials Group, Perth, WA, Australia
| | - Michael Nissen
- Queensland Paediatric Infectious Diseases Laboratory, Children's Health Research Centre, University of Queensland, Queensland Children's Hospital, South Brisbane, Qld, Australia
| | - Sepehr Shakib
- Department of Clinical Pharmacology, University of Adelaide, Adelaide, SA, Australia
| | | | - Edward T Zito
- Pfizer Vaccine Research and Development, Collegeville, PA, USA
| | - Joseph Severs
- Pfizer Vaccine Research and Development, Pearl River, NY, USA
| | - Joseph Eiden
- Pfizer Vaccine Research and Development, Pearl River, NY, USA
| | - William Gruber
- Pfizer Vaccine Research and Development, Pearl River, NY, USA
| | | | - C Hal Jones
- Pfizer Vaccine Research and Development, Pearl River, NY, USA
| | | |
Collapse
|
26
|
Barie PS, Narayan M, Sawyer RG. Immunization Against Staphylococcus aureus Infections. Surg Infect (Larchmt) 2019; 19:750-756. [PMID: 31033407 DOI: 10.1089/sur.2018.263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Infections caused by Staphylococcus aureus continue to plague surgical patients, whether as surgical site infections or other nosocomial infections that complicate surgical care. The only meaningful methods available to decrease the risk of developing such infections are topical skin antisepsis (pre-operative skin preparation) and peri-operative antibiotic prophylaxis, neither of which offer a panacea. Alternatives to the latter are sought so as to minimize antibiotic selection pressure as a factor in the increasing problem of antimicrobial drug resistance. This review considers the possibility that immunization against S. aureus may offer a viable alternative for prophylaxis. Methods: Review and synthesis of pertinent English-language medical literature. Results: Vaccination against viral pathogens has been in successful clinical use for more than two centuries and was instrumental in the eradication of smallpox and the near-elimination of diseases such as poliomyelitis. Vaccinations against a limited number of bacterial pathogens (e.g., Bordetella pertussis, Clostridium tetanii, Corynebacterium diphtheriae, Haemophilus influenzae type b, Neisseria meningiditis, Streptococcus pneumoniae) have also been introduced with success, whereas others against bacteria are in development (C. difficile, Pseudomonas aeruginosa, S. aureus). Vaccination against S. aureus infection is in current veterinary use (e.g., to prevent mastitis among dairy cattle) but has not been successful to date in human beings despite multiple attempts, although development continues. Conclusions: Because of its complex microbiology, including multiple virulence factors and the ability to evade host immune surveillance, S. aureus presents numerous antigenic targets for vaccine development. Failure of two prior single-antigen vaccines in clinical trials has led to the consensus that future vaccine candidates must be directed against multiple antigens. Two distinct four-antigen vaccines are in clinical trials, but efficacy is yet to be determined.
Collapse
Affiliation(s)
- Philip S Barie
- 1 Department of Surgery, Weill Cornell Medicine , New York, New York
- 2 Department of Medicine, Weill Cornell Medicine , New York, New York
| | - Mayur Narayan
- 1 Department of Surgery, Weill Cornell Medicine , New York, New York
| | - Robert G Sawyer
- 3 Department of Surgery, Western Michigan University , Kalamazoo, Michigan
| |
Collapse
|
27
|
Nagasawa Y, Kiku Y, Sugawara K, Hirose A, Kai C, Kitano N, Takahashi T, Nochi T, Aso H, Sawada SI, Akiyoshi K, Hayashi T. Staphylococcus aureus-specific IgA antibody in milk suppresses the multiplication of S. aureus in infected bovine udder. BMC Vet Res 2019; 15:286. [PMID: 31399125 PMCID: PMC6688226 DOI: 10.1186/s12917-019-2025-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background Bovine mastitis caused by Staphylococcus aureus (S. aureus) is extremely difficult to control and new methods for its prevention and management are required. Nasal vaccines may prevent initial bovine mastitis infection caused by S. aureus. However, limited information is available regarding induction of mucosal immune response through nasal immunization with antigen and its suppression of S. aureus multiplication during bovine mastitis. This study sought to investigate whether induction of immunoglobulin A (IgA) in milk by nasal immunization could suppress multiplication of S. aureus in the bovine udder. Results Nasal immunization with formalin-killed S. aureus conjugated with a cationic cholesteryl-group-bearing pullulan-nanogel was performed. Anti-S. aureus-specific IgA antibodies were significantly more abundant in the milk of immunized cows than in non-immunized animals (P < 0.05). S. aureus counts in the quarter were negative in both non-immunized and nasal-immunized cows 1 week after mock infusion. In S. aureus-infused quarters, S. aureus multiplication was significantly suppressed in immunized compared with non-immunized cows (P < 0.05). Furthermore, a significant negative correlation was found between S. aureus-specific IgA antibodies and S. aureus counts in infused quarters of both non-immunized and nasal-immunized cows (r = − 0.811, P < 0.01). Conclusion In conclusion, the present study demonstrates that S. aureus-specific IgA antibodies in milk successfully suppressed the multiplication of S. aureus in infected bovine udders. Although the exact mechanism explaining such suppressive effect remains to be elucidated, nasal vaccines that can induce humoral immunity may help prevent initial infection with S. aureus and the onset of bovine mastitis. Electronic supplementary material The online version of this article (10.1186/s12917-019-2025-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuya Nagasawa
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Yoshio Kiku
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Kazue Sugawara
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Aya Hirose
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Chiaki Kai
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Nana Kitano
- Graduate school of Dairy Science, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Toshihiko Takahashi
- Graduate school of Dairy Science, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Tomonori Nochi
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Hisashi Aso
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomohito Hayashi
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan.
| |
Collapse
|
28
|
Computational design of a chimeric epitope-based vaccine to protect against Staphylococcus aureus infections. Mol Cell Probes 2019; 46:101414. [DOI: 10.1016/j.mcp.2019.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/31/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022]
|
29
|
Foster TJ. Surface Proteins of Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0046-2018. [PMID: 31267926 PMCID: PMC10957221 DOI: 10.1128/microbiolspec.gpp3-0046-2018] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
The surface of Staphylococcus aureus is decorated with over 20 proteins that are covalently anchored to peptidoglycan by the action of sortase A. These cell wall-anchored (CWA) proteins can be classified into several structural and functional groups. The largest is the MSCRAMM family, which is characterized by tandemly repeated IgG-like folded domains that bind peptide ligands by the dock lock latch mechanism or the collagen triple helix by the collagen hug. Several CWA proteins comprise modules that have different functions, and some individual domains can bind different ligands, sometimes by different mechanisms. For example, the N-terminus of the fibronectin binding proteins comprises an MSCRAMM domain which binds several ligands, while the C-terminus is composed of tandem fibronectin binding repeats. Surface proteins promote adhesion to host cells and tissue, including components of the extracellular matrix, contribute to biofilm formation by stimulating attachment to the host or indwelling medical devices followed by cell-cell accumulation via homophilic interactions between proteins on neighboring cells, help bacteria evade host innate immune responses, participate in iron acquisition from host hemoglobin, and trigger invasion of bacteria into cells that are not normally phagocytic. The study of genetically manipulated strains using animal infection models has shown that many CWA proteins contribute to pathogenesis. Fragments of CWA proteins have the potential to be used in multicomponent vaccines to prevent S. aureus infections.
Collapse
|
30
|
Jiranek W, Kigera JWM, Klatt BA, Küçükdurmaz F, Lieberman J, Moser C, Mulhall K, Nahouli H, Schwarz E, Shohat N, Tarabichi M. General Assembly, Prevention, Host Risk Mitigation - General Factors: Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty 2019; 34:S43-S48. [PMID: 30348564 DOI: 10.1016/j.arth.2018.09.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
31
|
Mohamed N, Timofeyeva Y, Jamrozy D, Rojas E, Hao L, Silmon de Monerri NC, Hawkins J, Singh G, Cai B, Liberator P, Sebastian S, Donald RGK, Scully IL, Jones CH, Creech CB, Thomsen I, Parkhill J, Peacock SJ, Jansen KU, Holden MTG, Anderson AS. Molecular epidemiology and expression of capsular polysaccharides in Staphylococcus aureus clinical isolates in the United States. PLoS One 2019; 14:e0208356. [PMID: 30641545 PMCID: PMC6331205 DOI: 10.1371/journal.pone.0208356] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus capsular polysaccharides (CP) are important virulence factors under evaluation as vaccine antigens. Clinical S. aureus isolates have the biosynthetic capability to express either CP5 or CP8 and an understanding of the relationship between CP genotype/phenotype and S. aureus epidemiology is valuable. Using whole genome sequencing, the clonal relatedness and CP genotype were evaluated for disease-associated S. aureus isolates selected from the Tigecycline Evaluation and Surveillance Trial (T.E.S.T) to represent different geographic regions in the United States (US) during 2004 and 2009–10. Thirteen prominent clonal complexes (CC) were identified, with CC5, 8, 30 and 45 representing >80% of disease isolates. CC5 and CC8 isolates were CP type 5 and, CC30 and CC45 isolates were CP type 8. Representative isolates from prevalent CC were susceptible to in vitro opsonophagocytic killing elicited by anti-CP antibodies, demonstrating that susceptibility to opsonic killing is not linked to the genetic lineage. However, as not all S. aureus isolates may express CP, isolates representing the diversity of disease isolates were assessed for CP production. While approximately 35% of isolates (primarily CC8) did not express CP in vitro, CP expression could be clearly demonstrated in vivo for 77% of a subset of these isolates (n = 20) despite the presence of mutations within the capsule operon. CP expression in vivo was also confirmed indirectly by measuring an increase in CP specific antibodies in mice infected with CP5 or CP8 isolates. Detection of antigen expression in vivo in relevant disease states is important to support the inclusion of these antigens in vaccines. Our findings confirm the validity of CP as vaccine targets and the potential of CP-based vaccines to contribute to S. aureus disease prevention.
Collapse
Affiliation(s)
- Naglaa Mohamed
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Yekaterina Timofeyeva
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Dorota Jamrozy
- The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Eduardo Rojas
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Li Hao
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | | | - Julio Hawkins
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Guy Singh
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Bing Cai
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Paul Liberator
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Shite Sebastian
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Robert G. K. Donald
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Ingrid L. Scully
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - C. Hal Jones
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - C. Buddy Creech
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Isaac Thomsen
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Sharon J. Peacock
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kathrin U. Jansen
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | | | - Annaliesa S. Anderson
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
- * E-mail:
| |
Collapse
|
32
|
Abstract
Antigen-presenting cells such as dendritic cells (DCs) fulfill an indispensable role in the development of adaptive immunity by producing proinflammatory cytokines and presenting microbial antigens to lymphocytes to trigger a faster, specific, and long-lasting immune response. Here, we studied the effect of Staphylococcus aureus toxins on human DCs. We discovered that the leukocidin LukAB hinders the development of adaptive immunity by targeting human DCs. The ability of S. aureus to blunt the function of DCs could help explain the high frequency of recurrent S. aureus infections. Taken together, the results from this study suggest that therapeutically targeting the S. aureus leukocidins may boost effective innate and adaptive immune responses by protecting innate leukocytes, enabling proper antigen presentation and T cell activation. Staphylococcus aureus is a human pathogen responsible for high morbidity and mortality worldwide. Recurrent infections with this bacterium are common, suggesting that S. aureus thwarts the development of sterilizing immunity. S. aureus strains that cause disease in humans produce up to five different bicomponent toxins (leukocidins) that target and lyse neutrophils, innate immune cells that represent the first line of defense against S. aureus infections. However, little is known about the role of leukocidins in blunting adaptive immunity. Here, we explored the effects of leukocidins on human dendritic cells (DCs), antigen-presenting cells required for the development of adaptive immunity. Using an ex vivo infection model of primary human monocyte-derived dendritic cells, we found that S. aureus, including strains from different clonal complexes and drug resistance profiles, effectively kills DCs despite efficient phagocytosis. Although all purified leukocidins could kill DCs, infections with live bacteria revealed that S. aureus targets and kills DCs primarily via the activity of leukocidin LukAB. Moreover, using coculture experiments performed with DCs and autologous CD4+ T lymphocytes, we found that LukAB inhibits DC-mediated activation and proliferation of primary human T cells. Taken together, the data determined in the study reveal a novel immunosuppressive strategy of S. aureus whereby the bacterium blunts the development of adaptive immunity via LukAB-mediated injury of DCs.
Collapse
|
33
|
Immunogenicity and protective efficacy of recombinant alkaline shock protein 23 from Staphylococcus aureus in a murine model. Cent Eur J Immunol 2018; 43:371-377. [PMID: 30799984 PMCID: PMC6384426 DOI: 10.5114/ceji.2018.81348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/08/2016] [Indexed: 11/29/2022] Open
Abstract
The diversity and severity of infections caused and the rapid emergence of antibiotic resistance necessitates the development of a vaccine against Staphylococcus aureus. None of the antigens tried as vaccine candidates so far has been translated into a clinically viable vaccine. Recent research data suggest that antigens with the potential to activate cell mediated immunity along with humoral immunity would be the key to the development of a vaccine. Alkaline shock protein 23, a membrane-anchored protein involved in the stress response, has been identified as a CD4+ T cell antigen from S. aureus. In the present study, we report the evaluation of immunogenicity and protective efficacy of a recombinant alkaline shock protein 23 from S. aureus in mouse models. The gene coding for the protein was cloned and expressed in Escherichia coli, purified using immobilized metal iron affinity chromatography, sequence-confirmed using mass spectrometry and intraperitoneally administered to BALB/c mice. Serum titers of IgG, IgG1, and IgG2a in response to the protein were measured on post-immunization days 21, 35 and 42 using indirect ELISA and compared to control mice injected with PBS. Our results showed that the protein induced significantly higher (p < 0.01) antibody responses in immunized mice compared to the control mice. The mean serum antibody titers of IgG, IgG1 and IgG2a three weeks after the last immunization were found to be 25600, 25600 and 12800 respectively. Moreover, we found that immunization with Asp23 protected mice from a lethal dose of S. aureus strain USA300.
Collapse
|
34
|
Visansirikul S, Kolodziej SA, Demchenko AV. Synthesis of D-FucNAc-D-ManNAcA Disaccharides Based On the Capsular Polysaccharides Staphylococcus aureus Type 5 and 8. J Org Chem 2018; 84:216-227. [DOI: 10.1021/acs.joc.8b02612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Satsawat Visansirikul
- Department of Chemistry and Biochemistry, University of Missouri−St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuddhaya Road, Rajathevee, Bangkok 10400, Thailand
| | - Stephen A. Kolodziej
- Bioprocess R&D, Biotherapeutics Pharmaceutical Sciences, Pfizer, Inc., 875 Chesterfield Parkway W, Chesterfield, Missouri 63017, United States
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri−St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
35
|
Gurtman A, Begier E, Mohamed N, Baber J, Sabharwal C, Haupt RM, Edwards H, Cooper D, Jansen KU, Anderson AS. The development of a staphylococcus aureus four antigen vaccine for use prior to elective orthopedic surgery. Hum Vaccin Immunother 2018; 15:358-370. [PMID: 30215582 DOI: 10.1080/21645515.2018.1523093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a challenging bacterial pathogen which can cause a range of diseases, from mild skin infections, to more serious and invasive disease including deep or organ space surgical site infections, life-threatening bacteremia, and sepsis. S. aureus rapidly develops resistance to antibiotic treatments. Despite current infection control measures, the burden of disease remains high. The most advanced vaccine in clinical development is a 4 antigen S. aureus vaccine (SA4Ag) candidate that is being evaluated in a phase 2b/3 efficacy study in patients undergoing elective spinal fusion surgery (STaphylococcus aureus suRgical Inpatient Vaccine Efficacy [STRIVE]). SA4Ag has been shown in early phase clinical trials to be generally safe and well tolerated, and to induce high levels of bactericidal antibodies in healthy adults. In this review we discuss the design of SA4Ag, as well as the proposed clinical development plan supporting licensure of SA4Ag for the prevention of invasive disease caused by S. aureus in elective orthopedic surgical populations. We also explore the rationale for the generalizability of the results of the STRIVE efficacy study (patients undergoing elective open posterior multilevel instrumented spinal fusion surgery) to a broad elective orthopedic surgery population due to the common pathophysiology of invasive S. aureus disease and commonalties of patient and procedural risk factors for developing postoperative S. aureus surgical site infections.
Collapse
Affiliation(s)
- A Gurtman
- a Pfizer Vaccine Research and Development , Pfizer, Inc ., Pearl River , NY , USA
| | - E Begier
- a Pfizer Vaccine Research and Development , Pfizer, Inc ., Pearl River , NY , USA
| | - N Mohamed
- a Pfizer Vaccine Research and Development , Pfizer, Inc ., Pearl River , NY , USA
| | - J Baber
- b Pfizer Vaccine Research and Development , Sydney , NSW , Australia
| | - C Sabharwal
- a Pfizer Vaccine Research and Development , Pfizer, Inc ., Pearl River , NY , USA
| | - R M Haupt
- c Medical Development, Scientific and Clinical Affairs , Pfizer, Inc ., Collegeville , PA , USA
| | - H Edwards
- d World Wide Regulatory Affairs , Pfizer Inc ., Walton Oaks , UK
| | - D Cooper
- a Pfizer Vaccine Research and Development , Pfizer, Inc ., Pearl River , NY , USA
| | - K U Jansen
- a Pfizer Vaccine Research and Development , Pfizer, Inc ., Pearl River , NY , USA
| | - A S Anderson
- a Pfizer Vaccine Research and Development , Pfizer, Inc ., Pearl River , NY , USA
| |
Collapse
|
36
|
Lysostaphin Lysibody Leads to Effective Opsonization and Killing of Methicillin-Resistant Staphylococcus aureus in a Murine Model. Antimicrob Agents Chemother 2018; 62:AAC.01056-18. [PMID: 30038041 DOI: 10.1128/aac.01056-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
The cell wall of Gram-positive bacteria contains abundant surface-exposed carbohydrate structures that are highly conserved. While these properties make surface carbohydrates ideal targets for immunotherapy, carbohydrates elicit a poor immune response that results primarily in low-affinity IgM antibodies. In a previous publication, we introduced the lysibody approach to address this shortcoming. Lysibodies are engineered molecules that combine a high-affinity carbohydrate-binding domain of bacterial or bacteriophage origin and an Fc effector portion of a human IgG antibody, thus directing effective immunity to conserved bacterial surface carbohydrates. Here, we describe the first example of a lysibody containing the binding domain from a bacteriocin, lysostaphin. We also describe the creation of five lysibodies with binding domains derived from phage lysins, directed against Staphylococcus aureus The lysostaphin and LysK lysibodies showed the most promise and were further characterized. Both lysibodies bound a range of clinically important staphylococcal strains, fixed complement on the staphylococcal surface, and induced phagocytosis of S. aureus by macrophages and human neutrophils. The lysostaphin lysibody had superior in vitro activity compared to that of the LysK lysibody, as well as that of the previously characterized ClyS lysibody, and it effectively protected mice in a kidney abscess/bacteremia model. These results further demonstrate that the lysibody approach is a reproducible means of creating antibacterial antibodies that cannot be produced by conventional means. Lysibodies therefore are a promising solution for opsonic antibodies that may be used passively to both treat and prevent infection by drug-resistant pathogens.
Collapse
|
37
|
Abstract
Staphylococcus aureus causes severe disease in humans for which no licensed vaccine exists. A novel vaccine is in development that targets multiple elements of the bacteria since single-component vaccines have not shown efficacy to date. How these multiple components alter the immune response raised by the vaccine is not well studied. We found that the addition of two protein components did not alter substantially the antibody responses raised with respect to function or mobilization of B cells. There was also not a substantial change in the activity of T cells, another part of the adaptive response. This study showed that protection by this vaccine may be mediated primarily by antibody protection. Staphylococcus aureus causes severe disease in humans for which no licensed vaccine exists. A novel S. aureus vaccine (SA4Ag) is in development, targeting the capsular polysaccharides (CPs) and two virulence-associated surface proteins. Vaccine-elicited antibody responses to CPs are efficacious against serious infection by other encapsulated bacteria. Studies of natural S. aureus infection have also shown a role for TH17 and/or TH1 responses in protection. Single-antigen vaccines, including CPs, have not been effective against S. aureus; a multiantigen vaccine approach is likely required. However, the impact of addition of protein antigens on the immune response to CPs has not been studied. Here, the immune response induced by a bivalent CP conjugate vaccine (to model the established mechanism of action of vaccine-induced protection against Gram-positive pathogens) was compared to the response induced by SA4Ag, which contains both CP conjugates and protein antigens, in cynomolgus macaques. Microengraving, flow cytometry, opsonophagocytic assays, and Luminex technology were used to analyze the B-cell, T-cell, functional antibody, and innate immune responses. Both the bivalent CP vaccine and SA4Ag induced cytokine production from naive cells and antigen-specific memory B-cell and functional antibody responses. Increases in levels of circulating, activated T cells were not apparent following vaccination, nor was a TH17 or TH1 response evident. However, our data are consistent with a vaccine-induced recruitment of T follicular helper (TFH) cells to lymph nodes. Collectively, these data suggest that the response to SA4Ag is primarily mediated by B cells and antibodies that abrogate important S. aureus virulence mechanisms. IMPORTANCEStaphylococcus aureus causes severe disease in humans for which no licensed vaccine exists. A novel vaccine is in development that targets multiple elements of the bacteria since single-component vaccines have not shown efficacy to date. How these multiple components alter the immune response raised by the vaccine is not well studied. We found that the addition of two protein components did not alter substantially the antibody responses raised with respect to function or mobilization of B cells. There was also not a substantial change in the activity of T cells, another part of the adaptive response. This study showed that protection by this vaccine may be mediated primarily by antibody protection.
Collapse
|
38
|
Yang H, Xu J, Li W, Wang S, Li J, Yu J, Li Y, Wei H. Staphylococcus aureus virulence attenuation and immune clearance mediated by a phage lysin-derived protein. EMBO J 2018; 37:embj.201798045. [PMID: 30037823 DOI: 10.15252/embj.201798045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 01/04/2023] Open
Abstract
New anti-infective approaches are much needed to control multi-drug-resistant (MDR) pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA). Here, we found for the first time that a recombinant protein derived from the cell wall binding domain (CBD) of the bacteriophage lysin PlyV12, designated as V12CBD, could attenuate S. aureus virulence and enhance host immune defenses via multiple manners. After binding with V12CBD, S. aureus became less invasive to epithelial cells and more susceptible to macrophage killing. The expressions of multiple important virulence genes of S. aureus were reduced 2.4- to 23.4-fold as response to V12CBD More significantly, V12CBD could activate macrophages through NF-κB pathway and enhance phagocytosis against S. aureus As a result, good protections of the mice from MRSA infections were achieved in therapeutic and prophylactic models. These unique functions of V12CBD would render it a novel alternative molecule to control MDRS. aureus infections.
Collapse
Affiliation(s)
- Hang Yang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jingjing Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wuyou Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shujuan Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Junhua Li
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Junping Yu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuhong Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
39
|
Bongiovanni Abel S, Gallarato LA, Dardanelli MS, Barbero CA, Rivarola CR, Yslas EI. Photothermal lysis of
Pseudomonas aeruginosa
by polyaniline nanoparticles under near infrared irradiation. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aacf33] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Poolman JT, Anderson AS. Escherichia coliandStaphylococcus aureus: leading bacterial pathogens of healthcare associated infections and bacteremia in older-age populations. Expert Rev Vaccines 2018; 17:607-618. [DOI: 10.1080/14760584.2018.1488590] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Jan T. Poolman
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines and Prevention, Leiden, The Netherlands
| | | |
Collapse
|
41
|
Abstract
The problem of antimicrobial resistance (AMR) and the associated morbidity and mortality due to antibiotic resistant bacterial pathogens is not new. However, AMR has been increasing at an alarming rate with appearances of diseases caused by bacteria exhibiting resistance to not just one but multiple classes of antibiotics. The World Health Organization (WHO) supported by governments, health ministries and health agencies has formulated global action plans to combat the rise in AMR, supporting a number of proven initiatives such as antimicrobial stewardship, investments in development of new classes of antibiotics, and educational programs designed to eliminate inappropriate antibiotic use. Vaccines as tools to reduce AMR have historically been under-recognized, yet the positive effect in reducing AMR has been well established. For example Haemophilus influenzae type B (Hib) as well as Streptococcus pneumoniae (pneumococcal) conjugate vaccines have impressive track records in not only preventing life threatening diseases caused by these bacteria, but also reducing antibiotic use and AMR. This paper will describe the drivers of antibiotic use and subsequent development of AMR; it will make the case how existing vaccines are already participating in combatting AMR, describe future prospects for the role of new vaccines in development to reduce AMR, and highlight challenges associated with future vaccine development to combat AMR.
Collapse
Affiliation(s)
- Kathrin U Jansen
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | | |
Collapse
|
42
|
Yokogawa N, Ishikawa M, Nishitani K, Beck CA, Tsuchiya H, Mesfin A, Kates SL, Daiss JL, Xie C, Schwarz EM. Immunotherapy synergizes with debridement and antibiotic therapy in a murine 1-stage exchange model of MRSA implant-associated osteomyelitis. J Orthop Res 2018; 36:1590-1598. [PMID: 29405452 PMCID: PMC6541030 DOI: 10.1002/jor.23801] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/31/2017] [Indexed: 02/04/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) reinfection following revision surgery remains a major orthopaedic problem. Toward the development of immunotherapy with anti-glucosaminidase monoclonal antibodies (anti-Gmd), we aimed to: (i) develop a murine 1-stage exchange model of bioluminescent MRSA (USA300LAC::lux) contaminated femoral implants; and (ii) utilize this model to demonstrate the synergistic effects of combination vancomycin and anti-Gmd therapy on reinfection and bone healing. Following an infection surgery, the original plate and two screws were removed on day 7, and exchanged with sterile implants. Mice were randomized to five groups: (i) no infection control; (ii) infected placebo; (iii) anti-Gmd; (iv) vancomycin; and (v) combination therapy. Bioluminescent imaging (BLI) was performed on days 0, 1, 3, 5, 7, 8, 10, 12, and 14. Mice were euthanized on day 14 (day 7 post-revision), and efficacy was assessed via colony forming units (CFU) on explanted hardware, micro-CT, and histology. As monotherapies, anti-Gmd inhibited Staphylococcus abscess communities, and vancomycin reduced CFU on the implants. However, only combination therapy prevented increased BLI post-revision surgery, with a significant 6.5-fold reduction on day 10 (p < 0.05 vs. placebo), and achieved sterile implant levels by day 12. Synergistic effects were also apparent from reduced osteolysis and increased new bone formation around the screws only observed following combination therapy. Taken together, we find that: (i) this murine femoral plate 1-stage revision model can efficiently evaluate therapies to prevent reinfection; and (ii) immunotherapy plays a distinct role from antibiotics to reduce reinfection following revision surgery, such that synergy to achieve osseointegration is possible. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1590-1598, 2018.
Collapse
Affiliation(s)
- Noriaki Yokogawa
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY,Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Masahiro Ishikawa
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY,Department of Orthopaedics Surgery, Kyoto University, Kyoto, Japan
| | - Kohei Nishitani
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY,Department of Orthopaedics Surgery, Kyoto University, Kyoto, Japan
| | - Christopher A. Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY,Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY,Department of Orthopedics, University of Rochester Medical Center, Rochester, NY
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Addisu Mesfin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY,Department of Orthopedics, University of Rochester Medical Center, Rochester, NY
| | - Stephen L. Kates
- Department of Orthopedic Surgery, Virginia Commonwealth University, Richmond, VA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY,Department of Orthopedics, University of Rochester Medical Center, Rochester, NY
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY,Department of Orthopedics, University of Rochester Medical Center, Rochester, NY
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY,Department of Orthopedics, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
43
|
Yang LY, Zhou H, Yang Y, Tong YN, Peng LS, Zhu BH, Diao WB, Zeng H, Sun HW, Zou QM. Protective effects of a nanoemulsion adjuvant vaccine (2C-Staph/NE) administered intranasally against invasive Staphylococcus aureus pneumonia. RSC Adv 2018; 8:9996-10008. [PMID: 35540845 PMCID: PMC9078739 DOI: 10.1039/c7ra13630g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 02/13/2018] [Indexed: 12/03/2022] Open
Abstract
No licensed Staphylococcus aureus (S. aureus) vaccine is currently available. To develop an effective S. aureus vaccine, we selected the recombinant proteins staphylococcal enterotoxin B (rSEB) and manganese transport protein C (rMntC) as vaccine candidates and formulated a 2C-Staph vaccine. Based on the optimised formation of nanoemulsion (NE) technology, we constructed a novel NE adjuvant vaccine, 2C-Staph/NE. The 2C-Staph/NE particles showed a suitable diameter (24.9 ± 0.14 nm), a good protein structure of integrity and specificity, and high thermodynamic stability. 2C-Staph formulated with an NE adjuvant induced higher survival rates than a 2C-Staph/MF59 vaccine in sepsis and pneumonia models. Moreover, intramuscular vaccination with 2C-Staph/NE yielded protection efficacy in a sepsis model, and the intranasal vaccination route induced a potent protective effect in a pneumonia model. Intranasal vaccination with 2C-Staph/NE induced a strong mucosal response with high levels of IgA and IL-17A in bronchoalveolar lavage fluid (BALF), and the IgG levels in the BALF were comparable to those induced by the intramuscular vaccination route. Furthermore, the serum and BALF induced by intranasal administration showed potent opsonophagocytic activity against S. aureus. And, the IL-17A played a protective role in the pneumonia model demonstrated by a cytokine neutralization test. Taken together, our results showed that intranasal administration of 2C-Staph formulated with an NE adjuvant yielded ideal protection in a murine S. aureus pneumonia model.
Collapse
Affiliation(s)
- Liu-Yang Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Heng Zhou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Yun Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Ya-Nan Tong
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Liu-Sheng Peng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Bao-Hang Zhu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Wei-Bo Diao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Hong-Wu Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| |
Collapse
|
44
|
Yang L, Zhou H, Cheng P, Yang Y, Tong Y, Zuo Q, Feng Q, Zou Q, Zeng H. A novel bivalent fusion vaccine induces broad immunoprotection against Staphylococcus aureus infection in different murine models. Clin Immunol 2018; 188:85-93. [DOI: 10.1016/j.clim.2017.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/16/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022]
|
45
|
Yu W, Yao D, Yu S, Wang X, Li X, Wang M, Liu S, Feng Z, Chen X, Li W, Wang L, Liu W, Ma J, Yu L, Tong C, Song B, Cui Y. Protective humoral and CD4 + T cellular immune responses of Staphylococcus aureus vaccine MntC in a murine peritonitis model. Sci Rep 2018; 8:3580. [PMID: 29483570 PMCID: PMC5832154 DOI: 10.1038/s41598-018-22044-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/15/2018] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus can cause different types of diseases from mild skin infections to life-threatening sepsis worldwide. Owing to the emergence and transmission of multidrug-resistant strains, developing an impactful immunotherapy especially vaccine control approach against S. aureus infections is increasingly encouraged and supported. S. aureus manganese transport protein C (MntC), which is a highly-conserved cell surface protein, can elicit protective immunity against S. aureus and Staphylococcus epidermidis. In this study, we evaluated the humoral immune response and CD4+ T cell-mediated immune responses in a mouse peritonitis model. The results showed that MntC-specific antibodies conferred an essential protection for mice to reduce invasion of S. aureus, which was corroborated via the opsonophagocytic killing assay and passive immunization experiment in mice, and moreover MntC-induced Th17 played a remarkable part in preventing S. aureus infection since the MntC-induced protective immunity decreased after neutralization of IL-17 by antibody in vivo and the Th17 adoptive transferred-mice could partly resist S. aureus challenge. In conclusion, we considered that the MntC-specific antibodies and MntC-specific Th17 cells play cooperative roles in the prevention of S. aureus infection.
Collapse
Affiliation(s)
- Wei Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Di Yao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Simiao Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Xintong Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Xiaoting Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Mengyao Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Shuo Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Zhenyue Feng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Xiaoting Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Wanyu Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Lizi Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Wei Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Jinzhu Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Liquan Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Chunyu Tong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Baifen Song
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Yudong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China.
| |
Collapse
|
46
|
Abstract
Functioning as the exterior interface of the human body with the environment, skin acts as a physical barrier to prevent the invasion of foreign pathogens while providing a home to the commensal microbiota. The harsh physical landscape of skin, particularly the desiccated, nutrient-poor, acidic environment, also contributes to the adversity that pathogens face when colonizing human skin. Despite this, the skin is colonized by a diverse microbiota. In this Review, we describe amplicon and shotgun metagenomic DNA sequencing studies that have been used to assess the taxonomic diversity of microorganisms that are associated with skin from the kingdom to the strain level. We discuss recent insights into skin microbial communities, including their composition in health and disease, the dynamics between species and interactions with the immune system, with a focus on Propionibacterium acnes, Staphylococcus epidermidis and Staphylococcus aureus.
Collapse
Affiliation(s)
- Allyson L Byrd
- Microbial Genomics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.,Department of Bioinformatics, Boston University, Boston, Massachusetts 02215, USA.,Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.,Department of Cancer Immunology, Genentech, South San Francisco, California 94080, USA
| | - Yasmine Belkaid
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.,National Institute of Allergy and Infectious Diseases Microbiome Program, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Julia A Segre
- Microbial Genomics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
47
|
Ma Y, Zhao Y, Tang J, Tang C, Chen J, Liu J. Antimicrobial susceptibility and presence of resistance & enterotoxins/enterotoxin-likes genes in Staphylococcus aureusfrom food. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2017.1340341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yisalan Ma
- College of life science and technology, Southwest University for Nationalities, Chengdu, China
| | - Yanying Zhao
- College of life science and technology, Southwest University for Nationalities, Chengdu, China
| | - Junni Tang
- College of life science and technology, Southwest University for Nationalities, Chengdu, China
| | - Cheng Tang
- College of life science and technology, Southwest University for Nationalities, Chengdu, China
| | - Juan Chen
- College of life science and technology, Southwest University for Nationalities, Chengdu, China
| | - Ji Liu
- College of life science and technology, Southwest University for Nationalities, Chengdu, China
| |
Collapse
|
48
|
Xu X, Zhu H, Lv H. Safety of Staphylococcus aureus four-antigen and three-antigen vaccines in healthy adults: A meta-analysis of randomized controlled trials. Hum Vaccin Immunother 2017; 14:314-321. [PMID: 29064736 DOI: 10.1080/21645515.2017.1395540] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
PURPOSE Two new Staphylococcus aureus vaccines, S. aureus four-antigen (SA4Ag) and three-antigen (SA3Ag) vaccines, have good immunogenicity and tolerance. However, the safety of these vaccines is worth exploring. Here, we performed a meta-analysis to investigate the safety of SA3Ag and SA4Ag by evaluating systemic and local adverse events. METHODS The Medline, EMBASE, and Cochrane databases were searched for randomized clinical trials confirming the safety of SA4Ag and SA3Ag. Two investigators independently selected suitable trials, assessed trial quality, and extracted data. RESULTS Three studies comprising a total of 1,148 participants were included in this review. The two S. aureus vaccines did not increase systemic adverse events (relative ratio 1.1 [95% confidence interval 0.98, 1.24]), but increased the incidence of local adverse events (2.89 [2.15, 3.90]). However, the incidence of severe local adverse events (4.06 [0.78, 21.24]) did not rise significantly. CONCLUSIONS SA4Ag and SA3Ag have acceptable safety in adults.
Collapse
Affiliation(s)
- Xiaoqun Xu
- a Department of Clinical Laboratory, Centre of Laboratory Medicine , Zhejiang Provincial People's Hospital, The Affiliated People's Hospital of Hangzhou Medical College , Hangzhou , Zhejiang , China.,b Zhejiang Chinese Medical University , Hangzhou , Zhejiang , China
| | - Houyong Zhu
- c Department of Cardiology , Hangzhou Hospital of Traditional Chinese Medicine; Hangzhou Dingqiao Hospital , Hangzhou , Zhejiang , China
| | - Huoyang Lv
- a Department of Clinical Laboratory, Centre of Laboratory Medicine , Zhejiang Provincial People's Hospital, The Affiliated People's Hospital of Hangzhou Medical College , Hangzhou , Zhejiang , China
| |
Collapse
|
49
|
Zhou Z, Ding W, Li C, Wu Z. Synthesis and immunological study of a wall teichoic acid-based vaccine against E. faecium U0317. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1390576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wenzhang Ding
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chen Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
50
|
Rom JS, Atwood DN, Beenken KE, Meeker DG, Loughran AJ, Spencer HJ, Lantz TL, Smeltzer MS. Impact of Staphylococcus aureus regulatory mutations that modulate biofilm formation in the USA300 strain LAC on virulence in a murine bacteremia model. Virulence 2017; 8:1776-1790. [PMID: 28910576 PMCID: PMC5810510 DOI: 10.1080/21505594.2017.1373926] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus causes acute and chronic forms of infection, the latter often associated with formation of a biofilm. It has previously been demonstrated that mutation of atl, codY, rot, sarA, and sigB limits biofilm formation in the USA300 strain LAC while mutation of agr, fur, and mgrA has the opposite effect. Here we used a murine sepsis model to assess the impact of these same loci in acute infection. Mutation of agr, atl, and fur had no impact on virulence, while mutation of mgrA and rot increased virulence. In contrast, mutation of codY, sarA, and sigB significantly attenuated virulence. Mutation of sigB resulted in reduced accumulation of AgrA and SarA, while mutation of sarA resulted in reduced accumulation of AgrA, but this cannot account for the reduced virulence of sarA or sigB mutants because the isogenic agr mutant was not attenuated. Indeed, as assessed by accumulation of alpha toxin and protein A, all of the mutants we examined exhibited unique phenotypes by comparison to an agr mutant and to each other. Attenuation of the sarA, sigB and codY mutants was correlated with increased production of extracellular proteases and global changes in extracellular protein profiles. These results suggest that the inability to repress the production of extracellular proteases plays a key role in attenuating the virulence of S. aureus in acute as well as chronic, biofilm-associated infections, thus opening up the possibility that strategies aimed at the de-repression of protease production could be used to broad therapeutic advantage. They also suggest that the impact of codY, sarA, and sigB on protease production occurs via an agr-independent mechanism.
Collapse
Affiliation(s)
- Joseph S Rom
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Danielle N Atwood
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Karen E Beenken
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Daniel G Meeker
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Allister J Loughran
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Horace J Spencer
- b Department of Biostatistics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Tamara L Lantz
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Mark S Smeltzer
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA.,c Department of Orthopaedic Surgery , University of Arkansas for Medical Sciences , Little Rock , AR , USA.,d Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|