1
|
Madden PJ, Marina-Zárate E, Rodrigues KA, Steichen JM, Shil M, Ni K, Michaels KK, Maiorino L, Upadhyay AA, Saha S, Pradhan A, Kalyuzhiny O, Liguori A, Lopez PG, Phung I, Phelps N, Georgeson E, Alavi N, Kubitz M, Lu D, Eskandarzadeh S, Metz A, Rodriguez OL, Shields K, Schultze S, Smith ML, Healy BS, Lim D, Lewis VR, Ben-Akiva E, Pinney W, Gregory J, Xiao S, Carnathan DG, Kasturi SP, Watson CT, Bosinger SE, Silvestri G, Schief WR, Irvine DJ, Crotty S. Diverse priming outcomes under conditions of very rare precursor B cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624746. [PMID: 39651117 PMCID: PMC11623517 DOI: 10.1101/2024.11.21.624746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Rare B cells can have special pathogen-recognition features giving them the potential to make outsized contributions to protective immunity. However, rare naive B cells infrequently participate in immune responses. We investigated how germline-targeting vaccine antigen delivery and adjuvant selection affect priming of exceptionally rare BG18-like HIV broadly neutralizing antibody-precursor B cells (~1 in 50 million) in non-human primates. Only escalating dose (ED) priming immunization using the saponin adjuvant SMNP elicited detectable BG18-like cells in germinal centers (GCs). All groups had strong GC responses, but only ED+SMNP and bolus+SMNP induced BG18-like memory B cells in >50% of animals. One group had vaccine-specific GC responses equivalent to ED+SMNP, but BG18-like memory B cells were rarely detected. Following homologous boosting, BG18-like memory B cells were more frequent in a bolus priming group, but had lower somatic hypermutation and affinities. This outcome was inversely associated with post-prime antibody titers, suggesting antibody feedback can significantly influence rare precursor B cell responses.
Collapse
|
2
|
Sharma S, Bahl V, Srivastava G, Shamim R, Bhatnagar R, Gaur D. Recombinant full-length Bacillus Anthracis protective antigen and its 63 kDa form elicits protective response in formulation with addavax. Front Immunol 2023; 13:1075662. [PMID: 36713362 PMCID: PMC9877290 DOI: 10.3389/fimmu.2022.1075662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Bacillus anthracis is the causative agent for the lethal disease anthrax, primarily affecting animals and humans in close contact with an infected host. The pathogenicity of B. anthracis is attributed to the secreted exotoxins and their outer capsule. The host cell-binding exotoxin component "protective antigen" (PA) is reported to be a potent vaccine candidate. The aim of our study is to produce several PA constructs and analyze their vaccine potential. Methods We have designed the various subunit, PA-based recombinant proteins, i.e., full-length Protective antigen (PA-FL), C-terminal 63 kDa fragment (PA63), Protective antigen domain 1-domain 4 chimeras (PA-D1-4) and protective antigen domain 4 (PA-D4) and analyzed their vaccine potential with different human-compatible adjuvants in the mouse model. We have optimized the process and successfully expressed our recombinant antigens as soluble proteins, except full-length PA. All the recombinant antigen formulations with three different adjuvants i.e., Addavax, Alhydrogel, and Montanide ISA 720, were immunized in different mouse groups. The vaccine efficacy of the formulations was analyzed by mouse serum antigen-specific antibody titer, toxin neutralization assay, and survival analysis of mouse groups challenged with a lethal dose of B. anthracis virulent spores. Results We have demonstrated that the PA-FL addavax and PA63 addavax formulations were most effective in protecting spore-challenged mice and serum from the mice immunized with PAFL addavax, PA-FL alhydrogel, PA63 addavax, and PA63 alhydrogel formulations were equivalently efficient in neutralizing the anthrax lethal toxin. The higher levels of serum Th1, Th2, and Th17 cytokines in PA-FL addavax immunized mice correspond to the enhanced protection provided by the formulation in challenged mice. Discussion We have demonstrated that the PA-FL addavax and PA63 addavax formulations exhibit equivalent efficiency as vaccine formulation both in a mouse model of anthrax and mammalian cell lines. However, PA63 is a smaller antigen than PA-FL and more importantly, PA63 is expressed as a soluble protein in E. coli, which imparts a translational advantage to PA63-based formulation. Thus, the outcome of our study has significant implications for the development of protective antigen-based vaccine formulations for human use against the lethal disease anthrax.
Collapse
Affiliation(s)
- Shikhar Sharma
- Laboratory of Malaria & Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,Department of Oncology Science, University of Oklahoma Health Science Center, Oklahoma City, OK, United States,*Correspondence: Shikhar Sharma, ;
| | - Vanndita Bahl
- Laboratory of Malaria & Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Gaurav Srivastava
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Risha Shamim
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Gaur
- Laboratory of Malaria & Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Cook IF. Subcutaneous vaccine administration - an outmoded practice. Hum Vaccin Immunother 2021; 17:1329-1341. [PMID: 32991241 PMCID: PMC8086591 DOI: 10.1080/21645515.2020.1814094] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Subcutaneous vaccine (SC) administration is an outmoded practice which complicates vaccine administration recommendations. Local adverse events following immunization (AEFIs) are a recognized determinant of vaccine hesitancy/refusal which can lead to an increased prevalence of vaccine-preventable disease.This extensive narrative review provides high-grade evidence that intramuscular (IM) administration of all vaccine types [adjuvanted, live virus and non-adjuvanted (inactivated whole cell, split cell and subunit)] significantly reduces the likelihood of local adverse events. This, combined with moderate grade evidence that IM injection generates significantly greater immune response compared with SC injection, allows a strong recommendation to be made for the IM injection of all vaccines except BCG and Rotavirus.This will simplify vaccination practice, minimize the inadvertent misadministration of vaccines and potentially improve public trust in vaccination.
Collapse
Affiliation(s)
- Ian F. Cook
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
4
|
Pierson BC, Cardile AP, Okwesili AC, Downs IL, Reisler RB, Boudreau EF, Kortepeter MG, Koca CD, Ranadive MV, Petitt PL, Kanesa-Thasan N, Rivard RG, Liggett DL, Haller JM, Norris SL, Purcell BK, Pittman PR, Saunders DL, Keshtkar Jahromi M. Safety and immunogenicity of an inactivated eastern equine encephalitis virus vaccine. Vaccine 2021; 39:2780-2790. [PMID: 33888325 DOI: 10.1016/j.vaccine.2021.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Eastern equine encephalitis virus (EEEV) is a mosquito borne alphavirus spread primarily in Atlantic and Gulf Coast regions of the United States. EEEV is the causative agent of a devastating meningoencephalitis syndrome, with approximately 30% mortality and significant morbidity. There is no licensed human vaccine against EEEV. An inactivated EEEV vaccine has been offered under investigational new drug (IND) protocols at the United States Army Medical Research Institute of Infectious Diseases (USAMRIID) since 1976. METHODS Healthy at-risk laboratory personnel received inactivated PE-6 strain EEEV (TSI-GSD 104) vaccine under two separate IND protocols. Protocol FY 99-11 (2002-2008) had a primary series consisting of doses on day 0, 7, and 28. Protocol FY 06-31 (2008-2016) utilized a primary series with doses on day 0 and 28, and month 6. Participants with an inadequate immune response, plaque reduction neutralization test with 80% cut-off (PRNT80) titer < 40, received booster vaccination. Volunteers with prior EEEV vaccination were eligible to enroll for booster doses based on annual titer evaluation. RESULTS The FY06-31 dosing schema resulted in significantly greater post-primary series immune response (PRNT80 ≥ 40) rates (84% vs 54%) and geometric mean titers (184.1 vs 39.4). The FY 06-31 dosing schema also resulted in significantly greater cumulative annual immune response rates from 1 to up to 7 years post vaccination (75% vs 59%) and geometric mean of titers (60.1 vs 43.0). The majority of probably or definitely related adverse events were mild and local; there were no probably or definitely related serious adverse events. CONCLUSIONS Inactivated PE-6 EEEV vaccine is safe and immunogenic in at-risk laboratory personnel. A prolonged primary series, with month 6 dose, significantly improved vaccine immunogenicity both post-primary series and longitudinally on annual titers. Despite decades of safe use under IND, full licensure is not planned due to manufacturing constraints, and ongoing development of alternatives.
Collapse
Affiliation(s)
- Benjamin C Pierson
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States.
| | - Anthony P Cardile
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Arthur C Okwesili
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Isaac L Downs
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Ronald B Reisler
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Ellen F Boudreau
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Mark G Kortepeter
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Craig D Koca
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Manmohan V Ranadive
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Patricia L Petitt
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Niranjan Kanesa-Thasan
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Robert G Rivard
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Dani L Liggett
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Jeannine M Haller
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Sarah L Norris
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Bret K Purcell
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Phillip R Pittman
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - David L Saunders
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Maryam Keshtkar Jahromi
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, United States
| |
Collapse
|
5
|
Wolfe DN, Espeland EM, Gao Y, Lu D, Blatner G, Amass K, Horwith G, Tong XM, Hopkins R, David GL, Jepson BM, King JC. Evaluation of BioThrax® and AV7909 anthrax vaccines in adults 66 years of age or older. Vaccine 2020; 38:7970-7976. [PMID: 33129609 DOI: 10.1016/j.vaccine.2020.10.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Multiple Anthrax vaccines are licensed or in development for post-exposure prophylaxis in individuals 18 to 65 years of age. No information exists on anthrax vaccines in populations over the age of 65. It is critical that we assess the capacity of anthrax vaccines to generate a protective immune response in older individuals. In this study, we compared BioThrax® to a formulation containing a CpG adjuvant (AV7909). METHODS We conducted a Phase 2 clinical study to evaluate safety and immunogenicity of three vaccination schedules of the AV7909 vaccine candidate and one vaccination schedule of BioThrax® vaccine in adults over 65 years of age. A total of 305 subjects were enrolled to assess safety and immunogenicity by seroprotection rates, toxin neutralizing antibody titers, and anti-Protective Antigen ELISA titers. RESULTS Compared to BioThrax, AV7909 elicited a more robust immune response in older subjects, especially with three doses of AV7909 at Days 1, 15, and 29, or two doses at Days 1 and 29. These trends were true with both seroprotection rates as defined by the percentage of subjects with 50 percent neutralization factors greater than 0.56, and geometric mean antibody titers. The responses to both AV7909 and BioThax were lower in older subjects compared to those aged 18-50. CONCLUSION The immunogenicity data suggest that the CpG adjuvant in the AV7909 vaccine helps to elicit a more robust immune response in subjects over the age of 65. Alternative dosing strategies may be considered in this population given the high seroprotection rates with Day 1 and 29, or Day 1, 15, and 29 regimens. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT03518125.
Collapse
Affiliation(s)
- Daniel N Wolfe
- Division of CBRN Countermeasures, Biomedical Advanced Research and Development Authority, Washington, DC, United States.
| | - Eric M Espeland
- Division of CBRN Countermeasures, Biomedical Advanced Research and Development Authority, Washington, DC, United States
| | - Yonghong Gao
- Division of Clinical Development, Biomedical Advanced Research and Development Authority, Washington, DC, United States
| | - Di Lu
- Division of Clinical Development, Biomedical Advanced Research and Development Authority, Washington, DC, United States
| | - Gretta Blatner
- Biomedical Advanced Research and Development Authority, Washington, DC, United States
| | - Kathryn Amass
- Division of Clinical Development, Biomedical Advanced Research and Development Authority, Washington, DC, United States
| | - Gary Horwith
- Division of Clinical Development, Biomedical Advanced Research and Development Authority, Washington, DC, United States
| | - Xiaomi M Tong
- Regulatory and Quality Affairs Division, Biomedical Advanced Research and Development Authority, Washington, DC, United States
| | - Robert Hopkins
- Division of Clinical Development, Biomedical Advanced Research and Development Authority, Washington, DC, United States
| | | | | | - James C King
- Division of Clinical Development, Biomedical Advanced Research and Development Authority, Washington, DC, United States
| |
Collapse
|
6
|
Savransky V, Ionin B, Reece J. Current Status and Trends in Prophylaxis and Management of Anthrax Disease. Pathogens 2020; 9:E370. [PMID: 32408493 PMCID: PMC7281134 DOI: 10.3390/pathogens9050370] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022] Open
Abstract
Bacillus anthracis has been identified as a potential military and bioterror agent as it is relatively simple to produce, with spores that are highly resilient to degradation in the environment and easily dispersed. These characteristics are important in describing how anthrax could be used as a weapon, but they are also important in understanding and determining appropriate prevention and treatment of anthrax disease. Today, anthrax disease is primarily enzootic and found mostly in the developing world, where it is still associated with considerable mortality and morbidity in humans and livestock. This review article describes the spectrum of disease caused by anthrax and the various prevention and treatment options. Specifically we discuss the following; (1) clinical manifestations of anthrax disease (cutaneous, gastrointestinal, inhalational and intravenous-associated); (2) immunology of the disease; (3) an overview of animal models used in research; (4) the current World Health Organization and U.S. Government guidelines for investigation, management, and prophylaxis; (5) unique regulatory approaches to licensure and approval of anthrax medical countermeasures; (6) the history of vaccination and pre-exposure prophylaxis; (7) post-exposure prophylaxis and disease management; (8) treatment of symptomatic disease through the use of antibiotics and hyperimmune or monoclonal antibody-based antitoxin therapies; and (9) the current landscape of next-generation product candidates under development.
Collapse
Affiliation(s)
- Vladimir Savransky
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA; (B.I.); (J.R.)
| | | | | |
Collapse
|
7
|
Skoura N, Wang-Jairaj J, Della Pasqua O, Chandrasekaran V, Billiard J, Yeakey A, Smith W, Steel H, Tan LK. Effect of raxibacumab on immunogenicity of Anthrax Vaccine Adsorbed: a phase 4, open-label, parallel-group, randomised non-inferiority study. THE LANCET. INFECTIOUS DISEASES 2020; 20:983-991. [PMID: 32333847 DOI: 10.1016/s1473-3099(20)30069-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Raxibacumab is a monoclonal antibody against protective antigen, which is the cell-binding part of Bacillus anthracis toxin, and is approved for treatment and postexposure prophylaxis of inhalational anthrax. Anthrax Vaccine Adsorbed (AVA), for anthrax prophylaxis, consists primarily of adsorbed protective antigen. We did a postapproval study to assess the effect of raxibacumab on immunogenicity of AVA. METHODS We did an open-label, parallel-group, randomised non-inferiority study at three centres in the USA. We enrolled healthy volunteers (aged 18-65 years) with no evidence of exposure to protective antigen. Participants were randomly allocated (1:1) according to a pregenerated balanced independent randomisation schedule to either subcutaneous 0·5 mL AVA on days 1, 15, and 29 or raxibacumab intravenous infusion (40 mg/kg) immediately before AVA on day 1, followed by AVA only on days 15 and 29. It was an open-label study to investigators and participants; however, the sponsor remained blinded during the study. The primary outcome was the ratio of geometric mean concentrations (GMCs) of anti-protective antigen antibodies (attributable to the immune response to AVA) between AVA and AVA plus raxibacumab 4 weeks after the first AVA dose in the per-protocol population. The per-protocol population comprised all individuals who received the allocated treatment within the protocol-specified visit window and completed the primary study outcome assessment, without a protocol deviation requiring exclusion. The non-inferiority margin for the ratio of GMCs was predefined (upper limit of 90% CI <1·5). This trial is registered with ClinicalTrials.gov, NCT02339155. FINDINGS Between Feb 24, 2015, and June 6, 2017, 873 participants were screened for eligibility, of whom 300 were excluded. 573 were randomly allocated either AVA (n=287) or AVA plus raxibacumab (n=286). The per-protocol population comprised 276 individuals assigned AVA and 269 allocated AVA plus raxibacumab. At week 4, the GMC of anti-protective antigen antibodies in participants allocated AVA was 26·5 μg/mL (95% CI 23·6-29·8) compared with 22·5 μg/mL (20·1-25·1) among individuals allocated AVA plus raxibacumab. The ratio between groups was 1·18 (90% CI 1·03-1·35; p=0·0019), which met the predefined non-inferiority margin. Adverse events in the safety population were similar across groups (87 [30%] of 286 in the AVA group vs 80 [29%] of 280 in the AVA plus raxibacumab group) and no treatment-related serious adverse events were reported. INTERPRETATION Co-administration of raxibacumab with AVA does not negatively affect AVA immunogenicity. This finding suggests that combining raxibacumab with AVA might provide added benefit in postexposure prophylaxis against inhalational anthrax. FUNDING US Biomedical Advanced Research and Development Authority, and GlaxoSmithKline.
Collapse
Affiliation(s)
| | | | | | | | | | | | - William Smith
- Alliance for Multispecialty Research at University of Tennessee Medical Center, Knoxville, TN, USA; New Orleans Center for Clinical Research, New Orleans, LA, USA
| | | | | |
Collapse
|
8
|
Bower WA, Schiffer J, Atmar RL, Keitel WA, Friedlander AM, Liu L, Yu Y, Stephens DS, Quinn CP, Hendricks K. Use of Anthrax Vaccine in the United States: Recommendations of the Advisory Committee on Immunization Practices, 2019. MMWR Recomm Rep 2019; 68:1-14. [PMID: 31834290 PMCID: PMC6918956 DOI: 10.15585/mmwr.rr6804a1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This report updates the 2009 recommendations from the CDC Advisory Committee on Immunization Practices (ACIP) regarding use of anthrax vaccine in the United States (Wright JG, Quinn CP, Shadomy S, Messonnier N. Use of anthrax vaccine in the United States: recommendations of the Advisory Committee on Immunization Practices [ACIP)], 2009. MMWR Recomm Rep 2010;59[No. RR-6]). The report 1) summarizes data on estimated efficacy in humans using a correlates of protection model and safety data published since the last ACIP review, 2) provides updated guidance for use of anthrax vaccine adsorbed (AVA) for preexposure prophylaxis (PrEP) and in conjunction with antimicrobials for postexposure prophylaxis (PEP), 3) provides updated guidance regarding PrEP vaccination of emergency and other responders, 4) summarizes the available data on an investigational anthrax vaccine (AV7909), and 5) discusses the use of anthrax antitoxins for PEP. Changes from previous guidance in this report include the following: 1) a booster dose of AVA for PrEP can be given every 3 years instead of annually to persons not at high risk for exposure to Bacillus anthracis who have previously received the initial AVA 3-dose priming and 2-dose booster series and want to maintain protection; 2) during a large-scale emergency response, AVA for PEP can be administered using an intramuscular route if the subcutaneous route of administration poses significant materiel, personnel, or clinical challenges that might delay or preclude vaccination; 3) recommendations on dose-sparing AVA PEP regimens if the anthrax vaccine supply is insufficient to vaccinate all potentially exposed persons; and 4) clarification on the duration of antimicrobial therapy when used in conjunction with vaccine for PEP. These updated recommendations can be used by health care providers and guide emergency preparedness officials and planners who are developing plans to provide anthrax vaccine, including preparations for a wide-area aerosol release of B. anthracis spores. The recommendations also provide guidance on dose-sparing options, if needed, to extend the supply of vaccine to increase the number of persons receiving PEP in a mass casualty event.
Collapse
|
9
|
Chitlaru T, Israeli M, Rotem S, Elia U, Bar-Haim E, Ehrlich S, Cohen O, Shafferman A. A novel live attenuated anthrax spore vaccine based on an acapsular Bacillus anthracis Sterne strain with mutations in the htrA, lef and cya genes. Vaccine 2017; 35:6030-6040. [DOI: 10.1016/j.vaccine.2017.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/24/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023]
|
10
|
Bardenheier BH, Duffy J, Duderstadt SK, Higgs JB, Keith MP, Papadopoulos PJ, Gilliland WR, McNeil MM. Anthrax Vaccine and the Risk of Rheumatoid Arthritis and Systemic Lupus Erythematosus in the U.S. Military: A Case-Control Study. Mil Med 2017; 181:1348-1356. [PMID: 27753574 DOI: 10.7205/milmed-d-15-00485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
U.S. military personnel assigned to areas deemed to be at high risk for anthrax attack receive Anthrax Vaccine Adsorbed (AVA). Few cases of rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) have been reported in persons who received AVA. Using a matched case-control study design, we assessed the relationship of RA and SLE with AVA vaccination using the Defense Medical Surveillance System. We identified potential cases using International Classification of Diseases, 9th Revision, Clinical Modification codes and confirmed cases with medical record review and rheumatologist adjudication. Using conditional logistic regression, we estimated odds ratios (OR) for AVA exposure during time intervals ranging from 90 to 1,095 days before disease onset. Among 77 RA cases, 13 (17%) had ever received AVA. RA cases were no more likely than controls to have received AVA when looking back 1,095 days (OR: 1.03; 95% confidence interval [CI]: 0.48-2.19) but had greater odds of exposure in the prior 90 days (OR: 3.93; 95% CI: 1.08-14.27). Among the 39 SLE cases, 5 (13%) had ever received AVA; no significant difference in receipt of AVA was found when compared with controls (OR: 0.91; 95% CI: 0.26-3.25). AVA was associated with recent onset RA, but did not increase the risk of developing RA in the long term.
Collapse
Affiliation(s)
- Barbara H Bardenheier
- Immunization Safety Office, MS D-26, 1600 Clifton Road NE, Centers for Disease Control and Prevention, Atlanta, GA 30333
| | - Jonathan Duffy
- Immunization Safety Office, MS D-26, 1600 Clifton Road NE, Centers for Disease Control and Prevention, Atlanta, GA 30333
| | - Susan K Duderstadt
- Immunization Safety Office, MS D-26, 1600 Clifton Road NE, Centers for Disease Control and Prevention, Atlanta, GA 30333
| | - Jay B Higgs
- Rheumatology Service, Brooke Army Medical Center, 3851 Roger Brooke Drive, San Antonio, TX 78234
| | - Michael P Keith
- Rheumatology Service, Walter Reed National Military Medical Center, 4954 N. Palmer Road, Bethesda, MD 20889-5600
| | | | - William R Gilliland
- Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Room A 1005, Bethesda, MD 20814
| | - Michael M McNeil
- Immunization Safety Office, MS D-26, 1600 Clifton Road NE, Centers for Disease Control and Prevention, Atlanta, GA 30333
| |
Collapse
|
11
|
Dumas EK, Garman L, Cuthbertson H, Charlton S, Hallis B, Engler RJM, Choudhari S, Picking WD, James JA, Farris AD. Lethal factor antibodies contribute to lethal toxin neutralization in recipients of anthrax vaccine precipitated. Vaccine 2017; 35:3416-3422. [PMID: 28504191 DOI: 10.1016/j.vaccine.2017.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/03/2017] [Indexed: 01/08/2023]
Abstract
A major difference between two currently licensed anthrax vaccines is presence (United Kingdom Anthrax Vaccine Precipitated, AVP) or absence (United States Anthrax Vaccine Adsorbed, AVA) of quantifiable amounts of the Lethal Toxin (LT) component Lethal Factor (LF). The primary immunogen in both vaccine formulations is Protective Antigen (PA), and LT-neutralizing antibodies directed to PA are an accepted correlate of vaccine efficacy; however, vaccination studies in animal models have demonstrated that LF antibodies can be protective. In this report we compared humoral immune responses in cohorts of AVP (n=39) and AVA recipients (n=78) matched 1:2 for number of vaccinations and time post-vaccination, and evaluated whether the LF response contributes to LT neutralization in human recipients of AVP. PA response rates (≥95%) and PA IgG concentrations were similar in both groups; however, AVP recipients exhibited higher LT neutralization ED50 values (AVP: 1464.0±214.7, AVA: 544.9±83.2, p<0.0001) and had higher rates of LF IgG positivity (95%) compared to matched AVA vaccinees (1%). Multiple regression analysis revealed that LF IgG makes an independent and additive contribution to the LT neutralization response in the AVP group. Affinity purified LF antibodies from two independent AVP recipients neutralized LT and bound to LF Domain 1, confirming contribution of LF antibodies to LT neutralization. This study documents the benefit of including an LF component to PA-based anthrax vaccines.
Collapse
Affiliation(s)
- Eric K Dumas
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Lori Garman
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Hannah Cuthbertson
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
| | - Sue Charlton
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
| | - Bassam Hallis
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
| | - Renata J M Engler
- Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD 20814, USA
| | - Shyamal Choudhari
- Department of Pharmaceutical Chemistry, University of Kansas, 320B Multidisciplinary Research Building, 2030 Becker Dr., Lawrence, KS 66047, USA
| | - William D Picking
- Department of Pharmaceutical Chemistry, University of Kansas, 320B Multidisciplinary Research Building, 2030 Becker Dr., Lawrence, KS 66047, USA
| | - Judith A James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA; Departments of Medicine and Pathology, OUHSC, 1000 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - A Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA.
| |
Collapse
|
12
|
Longstreth J, Skiadopoulos MH, Hopkins RJ. Licensure strategy for pre- and post-exposure prophylaxis of biothrax vaccine: the first vaccine licensed using the FDA animal rule. Expert Rev Vaccines 2016; 15:1467-1479. [DOI: 10.1080/14760584.2016.1254556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Janice Longstreth
- Biodefense Division, Emergent BioSolutions Inc., Gaithersburg, MD, US
| | | | - Robert J. Hopkins
- Biodefense Division, Emergent BioSolutions Inc., Gaithersburg, MD, US
| |
Collapse
|
13
|
Progress toward the Development of a NEAT Protein Vaccine for Anthrax Disease. Infect Immun 2016; 84:3408-3422. [PMID: 27647868 DOI: 10.1128/iai.00755-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/10/2016] [Indexed: 01/05/2023] Open
Abstract
Bacillus anthracis is a sporulating Gram-positive bacterium that is the causative agent of anthrax and a potential weapon of bioterrorism. The U.S.-licensed anthrax vaccine is made from an incompletely characterized culture supernatant of a nonencapsulated, toxigenic strain (anthrax vaccine absorbed [AVA]) whose primary protective component is thought to be protective antigen (PA). AVA is effective in protecting animals and elicits toxin-neutralizing antibodies in humans, but enthusiasm is dampened by its undefined composition, multishot regimen, recommended boosters, and potential for adverse reactions. Improving next-generation anthrax vaccines is important to safeguard citizens and the military. Here, we report that vaccination with recombinant forms of a conserved domain (near-iron transporter [NEAT]), common in Gram-positive pathogens, elicits protection in a murine model of B. anthracis infection. Protection was observed with both Freund's and alum adjuvants, given subcutaneously and intramuscularly, respectively, with a mixed composite of NEATs. Protection correlated with an antibody response against the NEAT domains and a decrease in the numbers of bacteria in major organs. Anti-NEAT antibodies promote opsonophagocytosis of bacilli by alveolar macrophages. To guide the development of inactive and safe NEAT antigens, we also report the crystal structure of one of the NEAT domains (Hal) and identify critical residues mediating its heme-binding and acquisition activity. These results indicate that we should consider NEAT proteins in the development of an improved antianthrax vaccine.
Collapse
|
14
|
Semenova VA, Steward-Clark E, Maniatis P, Epperson M, Sabnis A, Schiffer J. Validation of high throughput screening of human sera for detection of anti-PA IgG by Enzyme-Linked Immunosorbent Assay (ELISA) as an emergency response to an anthrax incident. Biologicals 2016; 45:61-68. [PMID: 27814939 DOI: 10.1016/j.biologicals.2016.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 11/28/2022] Open
Abstract
To improve surge testing capability for a response to a release of Bacillus anthracis, the CDC anti-Protective Antigen (PA) IgG Enzyme-Linked Immunosorbent Assay (ELISA) was re-designed into a high throughput screening format. The following assay performance parameters were evaluated: goodness of fit (measured as the mean reference standard r2), accuracy (measured as percent error), precision (measured as coefficient of variance (CV)), lower limit of detection (LLOD), lower limit of quantification (LLOQ), dilutional linearity, diagnostic sensitivity (DSN) and diagnostic specificity (DSP). The paired sets of data for each sample were evaluated by Concordance Correlation Coefficient (CCC) analysis. The goodness of fit was 0.999; percent error between the expected and observed concentration for each sample ranged from -4.6% to 14.4%. The coefficient of variance ranged from 9.0% to 21.2%. The assay LLOQ was 2.6 μg/mL. The regression analysis results for dilutional linearity data were r2 = 0.952, slope = 1.02 and intercept = -0.03. CCC between assays was 0.974 for the median concentration of serum samples. The accuracy and precision components of CCC were 0.997 and 0.977, respectively. This high throughput screening assay is precise, accurate, sensitive and specific. Anti-PA IgG concentrations determined using two different assays proved high levels of agreement. The method will improve surge testing capability 18-fold from 4 to 72 sera per assay plate.
Collapse
Affiliation(s)
- Vera A Semenova
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd., Atlanta, GA 30329, USA.
| | - Evelene Steward-Clark
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd., Atlanta, GA 30329, USA
| | - Panagiotis Maniatis
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd., Atlanta, GA 30329, USA
| | - Monica Epperson
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd., Atlanta, GA 30329, USA
| | - Amit Sabnis
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd., Atlanta, GA 30329, USA
| | - Jarad Schiffer
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd., Atlanta, GA 30329, USA
| |
Collapse
|
15
|
Schiffer JM, McNeil MM, Quinn CP. Recent developments in the understanding and use of anthrax vaccine adsorbed: achieving more with less. Expert Rev Vaccines 2016; 15:1151-62. [PMID: 26942655 PMCID: PMC9041331 DOI: 10.1586/14760584.2016.1162104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anthrax Vaccine Adsorbed (AVA, BioThrax™) is the only Food and Drug Administration (FDA) approved vaccine for the prevention of anthrax in humans. Recent improvements in pre-exposure prophylaxis (PrEP) use of AVA include intramuscular (IM) administration and simplification of the priming series to three doses over 6 months. Administration IM markedly reduced the frequency, severity and duration of injection site reactions. Refinement of animal models for inhalation anthrax, identification of immune correlates of protection and cross-species modeling have created opportunities for reductions in the PrEP booster schedule and were pivotal in FDA approval of a post-exposure prophylaxis (PEP) indication. Clinical and nonclinical studies of accelerated PEP schedules and divided doses may provide prospects for shortening the PEP antimicrobial treatment period. These data may assist in determining feasibility of expanded coverage in a large-scale emergency when vaccine demand may exceed availability. Enhancements to the AVA formulation may broaden the vaccine's PEP application.
Collapse
Affiliation(s)
- Jarad M Schiffer
- a MPIR Laboratory, Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention (CDC) , Atlanta , GA , USA
| | - Michael M McNeil
- b Immunization Safety Office, Division of Healthcare Quality Promotion , National Center for Emerging and Zoonotic Infectious Diseases , Atlanta , GA , USA
| | - Conrad P Quinn
- c Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases , National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC) , Atlanta , GA , USA
| |
Collapse
|
16
|
Cross-species prediction of human survival probabilities for accelerated anthrax vaccine absorbed (AVA) regimens and the potential for vaccine and antibiotic dose sparing. Vaccine 2016; 34:6512-6517. [PMID: 27558619 DOI: 10.1016/j.vaccine.2016.06.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/09/2016] [Accepted: 06/06/2016] [Indexed: 11/23/2022]
Abstract
Anthrax vaccine adsorbed (AVA, BioThrax) was recently approved by the Food and Drug Administration (FDA) for a post-exposure prophylaxis (PEP) indication in adults 18-65years of age. The schedule is three doses administered subcutaneous (SC) at 2-week intervals (0, 2, and 4weeks), in conjunction with a 60-day course of antimicrobials. The Public Health Emergency Medical Countermeasures Enterprise (PHEMCE) developed an animal model to support assessment of a shortened antimicrobial PEP duration following Bacillus anthracis exposure. A nonhuman primate (NHP) study was completed to evaluate the efficacy of a two dose anthrax vaccine absorbed (AVA) schedule (0, 2weeks) aerosol challenged with high levels of B. anthracis spores at week4- the time point at which humans would receive the third vaccination of the approved PEP schedule. Here we use logistic regression models to combine the survival data from the NHP study along with serum anthrax lethal toxin neutralizing activity (TNA) and anti-PA IgG measured by enzyme linked immunosorbent assay (ELISA) data to perform a cross-species analysis to estimate survival probabilities in vaccinated human populations at this time interval (week4 of the PEP schedule). The bridging analysis demonstrated that high levels of NHP protection also yield high predicted probability of human survival just 2weeks after the second dose of vaccine with the full or half antigen dose regimen. The absolute difference in probability of human survival between the full and half antigen dose was estimated to be at most approximately 20%, indicating that more investigation of the half-antigen dose for vaccine dose sparing strategies may be warranted.
Collapse
|
17
|
Unique Inflammatory Mediators and Specific IgE Levels Distinguish Local from Systemic Reactions after Anthrax Vaccine Adsorbed Vaccination. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:664-71. [PMID: 27280620 DOI: 10.1128/cvi.00092-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/24/2016] [Indexed: 11/20/2022]
Abstract
Although the U.S. National Academy of Sciences concluded that anthrax vaccine adsorbed (AVA) has an adverse event (AE) profile similar to those of other adult vaccines, 30 to 70% of queried AVA vaccinees report AEs. AEs appear to be correlated with certain demographic factors, but the underlying immunologic pathways are poorly understood. We evaluated a cohort of 2,421 AVA vaccinees and found 153 (6.3%) reported an AE. Females were more likely to experience AEs (odds ratio [OR] = 6.0 [95% confidence interval {CI} = 4.2 to 8.7]; P < 0.0001). Individuals 18 to 29 years of age were less likely to report an AE than individuals aged 30 years or older (OR = 0.31 [95% CI = 0.22 to 0.43]; P < 0.0001). No significant effects were observed for African, European, Hispanic, American Indian, or Asian ancestry after correcting for age and sex. Additionally, 103 AEs were large local reactions (LLRs), whereas 53 AEs were systemic reactions (SRs). In a subset of our cohort vaccinated 2 to 12 months prior to plasma sample collection (n = 75), individuals with LLRs (n = 33) had higher protective-antigen (PA)-specific IgE levels than matched, unaffected vaccinated individuals (n = 50; P < 0.01). Anti-PA IgE was not associated with total plasma IgE, hepatitis B-specific IgE, or anti-PA IgG in individuals who reported an AE or in matched, unaffected AVA-vaccinated individuals. IP-10 was also elevated in sera of individuals who developed LLRs (P < 0.05). Individuals reporting SRs had higher levels of systemic inflammation as measured from C-reactive protein (P < 0.01). Thus, LLRs and SRs are mediated by distinct pathways. LLRs are associated with a vaccine-specific IgE response and IP-10, whereas SRs demonstrate increased systemic inflammation without a skewed cytokine profile.
Collapse
|
18
|
Evaluation of early immune response-survival relationship in cynomolgus macaques after Anthrax Vaccine Adsorbed vaccination and Bacillus anthracis spore challenge. Vaccine 2016; 34:6518-6528. [PMID: 27155494 DOI: 10.1016/j.vaccine.2016.04.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 01/02/2023]
Abstract
Anthrax Vaccine Adsorbed (AVA, BioThrax) is approved by the US Food and Drug Administration for post-exposure prophylaxis (PEP) of anthrax in adults. The PEP schedule is 3 subcutaneous (SC) doses (0, 14 and 28 days), in conjunction with a 60 day course of antimicrobials. The objectives of this study were to understand the onset of protection from AVA PEP vaccination and to assess the potential for shortening the duration of antimicrobial treatment (http://www.phe.gov/Preparedness/mcm/phemce/Documents/2014-phemce-sip.pdf). We determined the efficacy against inhalation anthrax in nonhuman primates (NHP) of the first two doses of the PEP schedule by infectious challenge at the time scheduled for receipt of the third PEP dose (Day 28). Forty-eight cynomolgus macaques were randomized to five groups and vaccinated with serial dilutions of AVA on Days 0 and 14. NHP were exposed to Bacillus anthracis Ames spores on Day 28 (target dose 200 LD50 equivalents). Anti-protective antigen (PA) IgG and toxin neutralizing antibody (TNA) responses to vaccination and in post-challenge survivors were determined. Post-challenge blood and selected tissue samples were assessed for B. anthracis at necropsy or end of study (Day 56). Pre-challenge humoral immune responses correlated with survival, which ranged from 24 to 100% survival depending on vaccination group. Surviving, vaccinated animals had elevated anti-PA IgG and TNA levels for the duration of the study, were abacteremic, exhibited no apparent signs of infection, and had no gross or microscopic lesions. However, survivors had residual spores in lung tissues. We conclude that the first two doses of the PEP schedule provide high levels of protection by the scheduled timing of the third dose. These data may also support consideration of a shorter duration PEP antimicrobial regimen.
Collapse
|
19
|
Humoral and Cell-Mediated Immune Responses to Alternate Booster Schedules of Anthrax Vaccine Adsorbed in Humans. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:326-38. [PMID: 26865594 DOI: 10.1128/cvi.00696-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/02/2016] [Indexed: 12/28/2022]
Abstract
Protective antigen (PA)-specific antibody and cell-mediated immune (CMI) responses to annual and alternate booster schedules of anthrax vaccine adsorbed (AVA; BioThrax) were characterized in humans over 43 months. Study participants received 1 of 6 vaccination schedules: a 3-dose intramuscular (IM) priming series (0, 1, and 6 months) with a single booster at 42 months (4-IM); 3-dose IM priming with boosters at 18 and 42 months (5-IM); 3-dose IM priming with boosters at 12, 18, 30, and 42 months (7-IM); the 1970 licensed priming series of 6 doses (0, 0.5, 1, 6, 12, and 18 months) and two annual boosters (30 and 42 months) administered either subcutaneously (SQ) (8-SQ) or IM (8-IM); or saline placebo control at all eight time points. Antibody response profiles included serum anti-PA IgG levels, subclass distributions, avidity, and lethal toxin neutralization activity (TNA). CMI profiles included frequencies of gamma interferon (IFN-γ)- and interleukin 4 (IL-4)-secreting cells and memory B cells (MBCs), lymphocyte stimulation indices (SI), and induction of IFN-γ, IL-2, IL-4, IL-6, IL-1β, and tumor necrosis factor alpha (TNF-α) mRNA. All active schedules elicited high-avidity PA-specific IgG, TNA, MBCs, and T cell responses with a mixed Th1-Th2 profile and Th2 dominance. Anti-PA IgG and TNA were highly correlated (e.g., month 7,r(2)= 0.86,P< 0.0001, log10 transformed) and declined in the absence of boosters. Boosters administered IM generated the highest antibody responses. Increasing time intervals between boosters generated antibody responses that were faster than and superior to those obtained with the final month 42 vaccination. CMI responses to the 3-dose IM priming remained elevated up to 43 months. (This study has been registered at ClinicalTrials.gov under registration no. NCT00119067.).
Collapse
|
20
|
Hopkins RJ, Kalsi G, Montalvo-Lugo VM, Sharma M, Wu Y, Muse DD, Sheldon EA, Hampel FC, Lemiale L. Randomized, double-blind, active-controlled study evaluating the safety and immunogenicity of three vaccination schedules and two dose levels of AV7909 vaccine for anthrax post-exposure prophylaxis in healthy adults. Vaccine 2016; 34:2096-105. [PMID: 26979136 DOI: 10.1016/j.vaccine.2016.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/15/2016] [Accepted: 03/03/2016] [Indexed: 11/18/2022]
Abstract
AV7909 vaccine being developed for post-exposure prophylaxis of anthrax disease may require fewer vaccinations and reduced amount of antigen to achieve an accelerated immune response over BioThrax(®) (Anthrax Vaccine Adsorbed). A phase 2, randomized, double-blind, BioThrax vacccine-controlled study was conducted to evaluate the safety and immunogenicity of three intramuscular vaccination schedules and two dose levels of AV7909 in 168 healthy adults. Subjects were randomized at a 4:3:2:4:2 ratio to 5 groups: (1) AV7909 on Days 0/14; (2) AV7909 on Days 0/28; (3) AV7909 on Days 0/14/28; (4) half dose AV7909 on Days 0/14/28; and (5) BioThrax vaccine on Days 0/14/28. Vaccinations in all groups were well tolerated. The incidences of adverse events (AEs) were 79% for AV7909 subjects and 65% for BioThrax subjects; 92% of AV7909 subjects and 87% of BioThrax subjects having AEs reported Grade 1-2 AEs. No serious AEs were assessed as potentially vaccine-related, and no AEs of potential autoimmune etiology were reported. There was no discernible pattern indicative of a safety concern across groups in the incidence or severity of reactogenicity events. Groups 2-4 achieved success for the primary endpoint, demonstrated by a lower 95% confidence limit of the percentage of subjects with protective toxin neutralizing antibody NF50 values (≥0.56) to be ≥40% at Day 63. Group 1 marginally missed the criterion (lower bound 95% confidence limit of 39.5%). Immune responses were above this threshold for Groups 1, 3 and 4 at Day 28 and all groups at Day 42. Further study of an AV7909 two-dose schedule given 2 weeks apart is warranted in light of the favorable tolerability profile and immunogenicity response relative to three doses of BioThrax vaccine, as well as preliminary data from nonclinical studies indicating similar immune responses correlate with higher survival for AV7909 than BioThrax vaccine.
Collapse
Affiliation(s)
- Robert J Hopkins
- Emergent BioSolutions Inc., 400 Professional Drive, Gaithersburg, MD 20879, USA.
| | - Gurdyal Kalsi
- Emergent BioSolutions Inc., 400 Professional Drive, Gaithersburg, MD 20879, USA
| | | | - Mona Sharma
- Emergent BioSolutions Inc., 400 Professional Drive, Gaithersburg, MD 20879, USA
| | - Yukun Wu
- Emergent BioSolutions Inc., 400 Professional Drive, Gaithersburg, MD 20879, USA
| | - Derek D Muse
- Jean Brown Research, 1045 East 3900 South, Suite 100, Salt Lake City, UT 84124, USA
| | - Eric A Sheldon
- Miami Research Associates, 6141 Sunset Drive, Suite 301, South, Miami, FL 33143, USA
| | - Frank C Hampel
- Central Texas Health Research, 705-A Landa, New Braunfels, TX 78130, USA
| | - Laurence Lemiale
- Emergent BioSolutions Inc., 400 Professional Drive, Gaithersburg, MD 20879, USA
| |
Collapse
|
21
|
Williamson ED, Dyson EH. Anthrax prophylaxis: recent advances and future directions. Front Microbiol 2015; 6:1009. [PMID: 26441934 PMCID: PMC4585224 DOI: 10.3389/fmicb.2015.01009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Anthrax is a serious, potentially fatal disease that can present in four distinct clinical patterns depending on the route of infection (cutaneous, gastrointestinal, pneumonic, or injectional); effective strategies for prophylaxis and therapy are therefore required. This review addresses the complex mechanisms of pathogenesis employed by the bacterium and describes how, as understanding of these has developed over many years, so too have current strategies for vaccination and therapy. It covers the clinical and veterinary use of live attenuated strains of anthrax and the subsequent identification of protein sub-units for incorporation into vaccines, as well as combinations of protein sub-units with spore or other components. It also addresses the application of these vaccines for conventional prophylactic use, as well as post-exposure use in conjunction with antibiotics. It describes the licensed acellular vaccines AVA and AVP and discusses the prospects for a next generation of recombinant sub-unit vaccines for anthrax, balancing the regulatory requirement and current drive for highly defined vaccines, against the risk of losing the “danger” signals required to induce protective immunity in the vaccinee. It considers novel approaches to reduce time to immunity by means of combining, for example, dendritic cell vaccination with conventional approaches and considers current opportunities for the immunotherapy of anthrax.
Collapse
Affiliation(s)
| | - Edward Hugh Dyson
- Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| |
Collapse
|
22
|
Abstract
Anthrax is caused by the spore-forming, gram-positive bacterium Bacillus anthracis. The bacterium's major virulence factors are (a) the anthrax toxins and (b) an antiphagocytic polyglutamic capsule. These are encoded by two large plasmids, the former by pXO1 and the latter by pXO2. The expression of both is controlled by the bicarbonate-responsive transcriptional regulator, AtxA. The anthrax toxins are three polypeptides-protective antigen (PA), lethal factor (LF), and edema factor (EF)-that come together in binary combinations to form lethal toxin and edema toxin. PA binds to cellular receptors to translocate LF (a protease) and EF (an adenylate cyclase) into cells. The toxins alter cell signaling pathways in the host to interfere with innate immune responses in early stages of infection and to induce vascular collapse at late stages. This review focuses on the role of anthrax toxins in pathogenesis. Other virulence determinants, as well as vaccines and therapeutics, are briefly discussed.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Catherine Vrentas
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Andrei P Pomerantsev
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| |
Collapse
|
23
|
Bridging non-human primate correlates of protection to reassess the Anthrax Vaccine Adsorbed booster schedule in humans. Vaccine 2015; 33:3709-16. [PMID: 26072016 PMCID: PMC6360524 DOI: 10.1016/j.vaccine.2015.05.091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/14/2015] [Accepted: 05/29/2015] [Indexed: 11/20/2022]
Abstract
Anthrax Vaccine Adsorbed (AVA, BioThrax) is approved for use in humans as a priming series of 3 intramuscular (i.m.) injections (0, 1, 6 months; 3-IM) with boosters at 12 and 18 months, and annually thereafter for those at continued risk of infection. A reduction in AVA booster frequency would lessen the burden of vaccination, reduce the cumulative frequency of vaccine associated adverse events and potentially expand vaccine coverage by requiring fewer doses per schedule. Because human inhalation anthrax studies are neither feasible nor ethical, AVA efficacy estimates are determined using cross-species bridging of immune correlates of protection (COP) identified in animal models. We have previously reported that the AVA 3-IM priming series provided high levels of protection in non-human primates (NHP) against inhalation anthrax for up to 4 years after the first vaccination. Penalized logistic regressions of those NHP immunological data identified that anti-protective antigen (anti-PA) IgG concentration measured just prior to infectious challenge was the most accurate single COP. In the present analysis, cross-species logistic regression models of this COP were used to predict probability of survival during a 43 month study in humans receiving the current 3-dose priming and 4 boosters (12, 18, 30 and 42 months; 7-IM) and reduced schedules with boosters at months 18 and 42 only (5-IM), or at month 42 only (4-IM). All models predicted high survival probabilities for the reduced schedules from 7 to 43 months. The predicted survival probabilities for the reduced schedules were 86.8% (4-IM) and 95.8% (5-IM) at month 42 when antibody levels were lowest. The data indicated that 4-IM and 5-IM are both viable alternatives to the current AVA pre-exposure prophylaxis schedule.
Collapse
|
24
|
Evaluation of anthrax vaccine safety in 18 to 20 year olds: A first step towards age de-escalation studies in adolescents. Vaccine 2015; 33:2470-6. [DOI: 10.1016/j.vaccine.2015.03.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/02/2015] [Accepted: 03/24/2015] [Indexed: 11/18/2022]
|
25
|
Abstract
The agents most likely to be used in bioterrorism attacks are reviewed, along with the clinical syndromes they produce and their treatment.
Collapse
|
26
|
Efficacy and immunogenicity of single-dose AdVAV intranasal anthrax vaccine compared to anthrax vaccine absorbed in an aerosolized spore rabbit challenge model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:430-9. [PMID: 25673303 DOI: 10.1128/cvi.00690-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AdVAV is a replication-deficient adenovirus type 5-vectored vaccine expressing the 83-kDa protective antigen (PA83) from Bacillus anthracis that is being developed for the prevention of disease caused by inhalation of aerosolized B. anthracis spores. A noninferiority study comparing the efficacy of AdVAV to the currently licensed Anthrax Vaccine Absorbed (AVA; BioThrax) was performed in New Zealand White rabbits using postchallenge survival as the study endpoint (20% noninferiority margin for survival). Three groups of 32 rabbits were vaccinated with a single intranasal dose of AdVAV (7.5 × 10(7), 1.5 × 10(9), or 3.5 × 10(10) viral particles). Three additional groups of 32 animals received two doses of either intranasal AdVAV (3.5 × 10(10) viral particles) or intramuscular AVA (diluted 1:16 or 1:64) 28 days apart. The placebo group of 16 rabbits received a single intranasal dose of AdVAV formulation buffer. All animals were challenged via the inhalation route with a targeted dose of 200 times the 50% lethal dose (LD50) of aerosolized B. anthracis Ames spores 70 days after the initial vaccination and were followed for 3 weeks. PA83 immunogenicity was evaluated by validated toxin neutralizing antibody and serum anti-PA83 IgG enzyme-linked immunosorbent assays (ELISAs). All animals in the placebo cohort died from the challenge. Three of the four AdVAV dose cohorts tested, including two single-dose cohorts, achieved statistical noninferiority relative to the AVA comparator group, with survival rates between 97% and 100%. Vaccination with AdVAV also produced antibody titers with earlier onset and greater persistence than vaccination with AVA.
Collapse
|
27
|
Cook IF. Best vaccination practice and medically attended injection site events following deltoid intramuscular injection. Hum Vaccin Immunother 2015; 11:1184-91. [PMID: 25868476 PMCID: PMC4514326 DOI: 10.1080/21645515.2015.1017694] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/25/2015] [Accepted: 02/06/2015] [Indexed: 11/10/2022] Open
Abstract
Analysis of medically attended injection site events data provides a vehicle to appreciate the inadequacies of vaccination practice for deltoid intramuscular injection and to develop best practice procedures. These data can be divided into 3 groups; nerve palsies, musculoskeletal injuries and cutaneous reactions and reflect inappropriate site of injection, needle over or under penetration, local sepsis and vascular complications. The aim of this review is to formulate best vaccination practice procedures for deltoid intramuscular injection of vaccines through the collation and analysis of medically attended injection site events.
Collapse
Affiliation(s)
- Ian F Cook
- University of Newcastle; Newcastle, New South Wales, Australia
| |
Collapse
|
28
|
Bernstein DI, Jackson L, Patel SM, El Sahly HM, Spearman P, Rouphael N, Rudge TL, Hill H, Goll JB. Immunogenicity and safety of four different dosing regimens of anthrax vaccine adsorbed for post-exposure prophylaxis for anthrax in adults. Vaccine 2014; 32:6284-93. [PMID: 25239484 DOI: 10.1016/j.vaccine.2014.08.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/13/2014] [Accepted: 08/27/2014] [Indexed: 12/01/2022]
Abstract
BACKGROUND Strategies to implement post exposure prophylaxis (PEP) in case of an anthrax bioterror event are needed. To increase the number of doses of vaccine available we evaluated reducing the amount of vaccine administered at each of the vaccinations, and reducing the number of doses administered. METHODS Healthy male and non-pregnant female subjects between the ages of 18 and 65 were enrolled and randomized 1:1:1:1 to one of four study arms to receive 0.5 mL (standard dose) of vaccine subcutaneously (SQ) at: (A) days 0, 14; (B) days 0 and 28; (C) days 0, 14, and 28; or (D) 0.25 mL at days 0, 14, and 28. A booster was provided on day 180. Safety was assessed after each dose. Blood was obtained on days 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 84, 100, 180, and 201 and both Toxin Neutralizing antibody and anti-PA IgG antibody measured. RESULTS Almost all subjects developed some local reactions with 46-64% reported to be of moderate severity and 3.3% severe during the primary series. Vaccine groups that included a day 14 dose induced a ≥ 4 fold antibody rise in more subjects on days 21, 28, and 35 than the arm without a day 14 dose. However, schedules with a full day 28 dose induced higher peak levels of antibody that persisted longer. The half dose regimen did not induce antibody as well as the full dose study arms. CONCLUSION Depending on the extent of the outbreak, effectiveness of antibiotics and availability of vaccine, the full dose 0, 28 or 0, 14, 28 schedules may have advantages.
Collapse
Affiliation(s)
- David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Ave., Cincinnati, OH 45229, USA.
| | - Lisa Jackson
- Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
| | | | | | - Paul Spearman
- Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
29
|
Comprehensive analysis and selection of anthrax vaccine adsorbed immune correlates of protection in rhesus macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1512-20. [PMID: 25185577 DOI: 10.1128/cvi.00469-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Humoral and cell-mediated immune correlates of protection (COP) for inhalation anthrax in a rhesus macaque (Macaca mulatta) model were determined. The immunological and survival data were from 114 vaccinated and 23 control animals exposed to Bacillus anthracis spores at 12, 30, or 52 months after the first vaccination. The vaccinated animals received a 3-dose intramuscular priming series (3-i.m.) of anthrax vaccine adsorbed (AVA) (BioThrax) at 0, 1, and 6 months. The immune responses were modulated by administering a range of vaccine dilutions. Together with the vaccine dilution dose and interval between the first vaccination and challenge, each of 80 immune response variables to anthrax toxin protective antigen (PA) at every available study time point was analyzed as a potential COP by logistic regression penalized by least absolute shrinkage and selection operator (LASSO) or elastic net. The anti-PA IgG level at the last available time point before challenge (last) and lymphocyte stimulation index (SI) at months 2 and 6 were identified consistently as a COP. Anti-PA IgG levels and lethal toxin neutralization activity (TNA) at months 6 and 7 (peak) and the frequency of gamma interferon (IFN-γ)-secreting cells at month 6 also had statistically significant positive correlations with survival. The ratio of interleukin 4 (IL-4) mRNA to IFN-γ mRNA at month 6 also had a statistically significant negative correlation with survival. TNA had lower accuracy as a COP than did anti-PA IgG response. Following the 3-i.m. priming with AVA, the anti-PA IgG responses at the time of exposure or at month 7 were practicable and accurate metrics for correlating vaccine-induced immunity with protection against inhalation anthrax.
Collapse
|
30
|
Pondo T, Rose CE, Martin SW, Keitel WA, Keyserling HL, Babcock J, Parker S, Jacobson RM, Poland GA, McNeil MM. Evaluation of sex, race, body mass index and pre-vaccination serum progesterone levels and post-vaccination serum anti-anthrax protective immunoglobulin G on injection site adverse events following anthrax vaccine adsorbed (AVA) in the CDC AVA human clinical trial. Vaccine 2014; 32:3548-54. [PMID: 24768633 DOI: 10.1016/j.vaccine.2014.04.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Anthrax vaccine adsorbed (AVA) administered intramuscularly (IM) results in fewer adverse events (AEs) than subcutaneous (SQ) administration. Women experience more AEs than men. Antibody response, female hormones, race, and body mass index (BMI) may contribute to increased frequency of reported injection site AEs. METHODS We analyzed data from the CDC AVA human clinical trial. This double blind, randomized, placebo controlled trial enrolled 1563 participants and followed them through 8 injections (AVA or placebo) over a period of 42 months. For the trial's vaccinated cohort (n=1267), we used multivariable logistic regression to model the effects of study group (SQ or IM), sex, race, study site, BMI, age, and post-vaccination serum anti-PA IgG on occurrence of AEs of any severity grade. Also, in a women-only subset (n=227), we assessed effect of pre-vaccination serum progesterone level and menstrual phase on AEs. RESULTS Participants who received SQ injections had significantly higher proportions of itching, redness, swelling, tenderness and warmth compared to the IM study group after adjusting for other risk factors. The proportions of redness, swelling, tenderness and warmth were all significantly lower in blacks vs. non-black participants. We found arm motion limitation, itching, pain, swelling and tenderness were more likely to occur in participants with the highest anti-PA IgG concentrations. In the SQ study group, redness and swelling were more common for obese participants compared to participants who were not overweight. Females had significantly higher proportions of all AEs compared to males. Menstrual phase was not associated with any AEs. CONCLUSIONS Female and non-black participants had a higher proportion of AVA associated AEs and higher anti-PA IgG concentrations. Antibody responses to other vaccines may also vary by sex and race. Further studies may provide better understanding for higher proportions of AEs in women and non-black participants.
Collapse
Affiliation(s)
- Tracy Pondo
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | - Charles E Rose
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Stacey W Martin
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | | | | | - Janiine Babcock
- Walter Reed Army Institute of Research, Washington, DC, United States
| | - Scott Parker
- University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | - Michael M McNeil
- Immunization Safety Office, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|