1
|
Tomatis C, Ferrer MF, Aquila S, Thomas PD, Arrías PN, Ferrelli L, Pidre M, Romanowski V, Carrera Silva EA, Gómez RM. Baculovirus surface display of a chimeric E-NS1 protein of YFV protects against YFV infection. Vaccine 2024; 42:126045. [PMID: 38852036 DOI: 10.1016/j.vaccine.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Yellow fever (YF) is a disease caused by the homonymous flavivirus that can be prevented by a vaccine containing attenuated viruses. Since some individuals cannot receive this vaccine, the development of alternatives is desirable. Here, we developed a recombinant baculovirus (rBV) surface display platform utilizing a chimeric E-NS1 protein as a vaccine candidate. A pBacPAK9 vector containing the baculoviral GP64 signal peptide, the YFV prM, E, NS1 and the ectodomain of VSV-G sequences was synthesized. This transfer plasmid and the bAcGOZA bacmid were cotransfected into Sf9 cells, and an rBV-E-NS1 was obtained, which was characterized by PCR, WB, IFI and FACS analysis. Mice immunized with rBV-E-NS1 elicited a specific humoral and cellular immune response and were protected after YFV infection. In summary, we have developed an rBV that expresses YFV major antigen proteins on its surface, which opens new alternatives that can be tested in a mouse model.
Collapse
Affiliation(s)
- Carla Tomatis
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular (IBBM), CONICET-UNLP, La Plata, Buenos Aires, Argentina; Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental (IMEX), Academia Nacional de Medicina, Ciudad de Buenos Aires, Argentina
| | - María Florencia Ferrer
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular (IBBM), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Silvia Aquila
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular (IBBM), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Pablo Daniel Thomas
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular (IBBM), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Paula Nazarena Arrías
- Laboratorio de Virología Molecular, Instituto de Biotecnología y Biología Molecular (IBBM), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Leticia Ferrelli
- Laboratorio de Virología Molecular, Instituto de Biotecnología y Biología Molecular (IBBM), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Matías Pidre
- Laboratorio de Virología Molecular, Instituto de Biotecnología y Biología Molecular (IBBM), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Victor Romanowski
- Laboratorio de Virología Molecular, Instituto de Biotecnología y Biología Molecular (IBBM), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Eugenio Antonio Carrera Silva
- Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental (IMEX), Academia Nacional de Medicina, Ciudad de Buenos Aires, Argentina.
| | - Ricardo Martín Gómez
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular (IBBM), CONICET-UNLP, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Bouazzaoui A, Abdellatif AA. Vaccine delivery systems and administration routes: Advanced biotechnological techniques to improve the immunization efficacy. Vaccine X 2024; 19:100500. [PMID: 38873639 PMCID: PMC11170481 DOI: 10.1016/j.jvacx.2024.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Since the first use of vaccine tell the last COVID-19 pandemic caused by spread of SARS-CoV-2 worldwide, the use of advanced biotechnological techniques has accelerated the development of different types and methods for immunization. The last pandemic showed that the nucleic acid-based vaccine, especially mRNA, has an advantage in terms of development time; however, it showed a very critical drawback namely, the higher costs when compared to other strategies, and its inability to protect against new variants. This showed the need of more improvement to reach a better delivery and efficacy. In this review we will describe different vaccine delivery systems including, the most used viral vector, and also variable strategies for delivering of nucleic acid-based vaccines especially lipid-based nanoparticles formulation, polymersomes, electroporation and also the new powerful tools for the delivery of mRNA, which is based on the use of cell-penetrating peptides (CPPs). Additionally, we will also discuss the main challenges associated with each system. Finlay, the efficacy and safety of the vaccines depends not only on the formulations and delivery systems, but also the dosage and route of administration are also important players, therefore we will see the different routes for the vaccine administration including traditionally routes (intramuscular, Transdermal, subcutaneous), oral inhalation or via nasal mucosa, and will describe the advantages and disadvantage of each administration route.
Collapse
Affiliation(s)
- Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
- Science and Technology Unit, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Ahmed A.H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, 51452 Qassim, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, 71524 Assiut, Egypt
| |
Collapse
|
3
|
Sanchez-Felipe L, Alpizar YA, Ma J, Coelmont L, Dallmeier K. YF17D-based vaccines - standing on the shoulders of a giant. Eur J Immunol 2024; 54:e2250133. [PMID: 38571392 DOI: 10.1002/eji.202250133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
Live-attenuated yellow fever vaccine (YF17D) was developed in the 1930s as the first ever empirically derived human vaccine. Ninety years later, it is still a benchmark for vaccines made today. YF17D triggers a particularly broad and polyfunctional response engaging multiple arms of innate, humoral and cellular immunity. This unique immunogenicity translates into an extraordinary vaccine efficacy and outstanding longevity of protection, possibly by single-dose immunization. More recently, progress in molecular virology and synthetic biology allowed engineering of YF17D as a powerful vector and promising platform for the development of novel recombinant live vaccines, including two licensed vaccines against Japanese encephalitis and dengue, even in paediatric use. Likewise, numerous chimeric and transgenic preclinical candidates have been described. These include prophylactic vaccines against emerging viral infections (e.g. Lassa, Zika and SARS-CoV-2) and parasitic diseases (e.g. malaria), as well as therapeutic applications targeting persistent infections (e.g. HIV and chronic hepatitis), and cancer. Efforts to overcome historical safety concerns and manufacturing challenges are ongoing and pave the way for wider use of YF17D-based vaccines. In this review, we summarize recent insights regarding YF17D as vaccine platform, and how YF17D-based vaccines may complement as well as differentiate from other emerging modalities in response to unmet medical needs and for pandemic preparedness.
Collapse
Affiliation(s)
- Lorena Sanchez-Felipe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Yeranddy A Alpizar
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Ji Ma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| |
Collapse
|
4
|
Kalimuddin S, Chan YFZ, Sessions OM, Chan KR, Ong EZ, Low JG, Bertoletti A, Ooi EE. An experimental medicine decipher of a minimum correlate of cellular immunity: Study protocol for a double-blind randomized controlled trial. Front Immunol 2023; 14:1135979. [PMID: 36969244 PMCID: PMC10038230 DOI: 10.3389/fimmu.2023.1135979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Vaccination induces an adaptive immune response that protects against infectious diseases. A defined magnitude of adaptive immune response that correlates with protection from the disease of interest, or correlates of protection (CoP), is useful for guiding vaccine development. Despite mounting evidence for the protective role of cellular immunity against viral diseases, studies on CoP have almost exclusively focused on humoral immune responses. Moreover, although studies have measured cellular immunity following vaccination, no study has defined if a “threshold” of T cells, both in frequency and functionality, is needed to reduce infection burden. We will thus conduct a double-blind, randomized clinical trial in 56 healthy adult volunteers, using the licensed live-attenuated yellow fever (YF17D) and chimeric Japanese encephalitis-YF17D (JE-YF17D) vaccines. These vaccines share the entire non-structural and capsid proteome where the majority of the T cell epitopes reside. The neutralizing antibody epitopes, in contrast, are found on the structural proteins which are not shared between the two vaccines and are thus distinct from one another. Study participants will receive JE-YF17D vaccination followed by YF17D challenge, or YF17D vaccination followed by JE-YF17D challenge. A separate cohort of 14 healthy adults will receive the inactivated Japanese Encephalitis virus (JEV) vaccine followed by YF17D challenge that controls for the effect of cross-reactive flaviviral antibodies. We hypothesize that a strong T cell response induced by YF17D vaccination will reduce JE-YF17D RNAemia upon challenge, as compared to JE-YF17D vaccination followed by YF17D challenge. The expected gradient of YF17D-specific T cell abundance and functionality would also allow us to gain insight into a T cell threshold for controlling acute viral infections. The knowledge gleaned from this study could guide the assessment of cellular immunity and vaccine development.Clinical trial registrationClinicaltrials.gov, NCT05568953.
Collapse
Affiliation(s)
- Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- *Correspondence: Shirin Kalimuddin, ; Eng Eong Ooi,
| | - Yvonne F. Z. Chan
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - October M. Sessions
- Duke-NUS Medical School, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | | | - Eugenia Z. Ong
- Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Jenny G. Low
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Antonio Bertoletti
- Duke-NUS Medical School, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) Singapore, Singapore, Singapore
| | - Eng Eong Ooi
- Duke-NUS Medical School, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- *Correspondence: Shirin Kalimuddin, ; Eng Eong Ooi,
| |
Collapse
|
5
|
Tajima S, Maeki T, Nakayama E, Faizah AN, Kobayashi D, Isawa H, Maekawa Y, Bendryman SS, Mulyatno KC, Rohmah EA, Mori Y, Sawabe K, Ebihara H, Lim CK. Growth, Pathogenesis, and Serological Characteristics of the Japanese Encephalitis Virus Genotype IV Recent Strain 19CxBa-83-Cv. Viruses 2023; 15:239. [PMID: 36680278 PMCID: PMC9866982 DOI: 10.3390/v15010239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Genotype IV Japanese encephalitis (JE) virus (GIV JEV) is the least common and most neglected genotype in JEV. We evaluated the growth and pathogenic potential of the GIV strain 19CxBa-83-Cv, which was isolated from a mosquito pool in Bali, Indonesia, in 2019, and serological analyses were also conducted. The growth ability of 19CxBa-83-Cv in Vero cells was intermediate between that of the genotype I (GI) strain Mie/41/2002 and the genotype V (GV) strain Muar, whereas 19CxBa-83-Cv and Mie/41/2002 grew faster than Muar in mouse neuroblastoma cells. The neuroinvasiveness of 19CxBa-83-Cv in mice was higher than that of Mie/41/2002 but lower than that of Muar; however, there were no significant differences in neurovirulence in mice among the three strains. The neutralizing titers of sera from 19CxBa-83-Cv- and Mie/41/2002-inoculated mice against 19CxBa-83-Cv and Mie/41/2002 were similar, whereas the titers against Muar were lower than those of the other two viruses. The neutralizing titers of JE vaccine-inoculated mouse pool serum against 19CxBa-83-Cv and Muar were significantly lower than those against Mie/41/2002. The neutralizing titers against the three viruses were similar in three out of the five serum samples from GI-infected JE patients, although the titers against Mie/41/2002 were higher than those against 19CxBa-83-Cv and Muar in the remaining two sera samples. In summary, we identified the basic characteristics of 19CxBa-83-Cv, but further studies are needed to better understand GIV JEV.
Collapse
Affiliation(s)
- Shigeru Tajima
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Takahiro Maeki
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Eri Nakayama
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Yoshihide Maekawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Sri Subekti Bendryman
- Laboratory of Entomology, Institute of Tropical Diseases, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Kris Cahyo Mulyatno
- Laboratory of Entomology, Institute of Tropical Diseases, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Etik Ainun Rohmah
- Laboratory of Entomology, Institute of Tropical Diseases, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Hideki Ebihara
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Chang-Kweng Lim
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| |
Collapse
|
6
|
Kuznetsova N, Siniavin A, Butenko A, Larichev V, Kozlova A, Usachev E, Nikiforova M, Usacheva O, Shchetinin A, Pochtovyi A, Shidlovskaya E, Odintsova A, Belyaeva E, Voskoboinikov A, Bessonova A, Vasilchenko L, Karganova G, Zlobin V, Logunov D, Gushchin V, Gintsburg A. Development and characterization of chimera of yellow fever virus vaccine strain and Tick-Borne encephalitis virus. PLoS One 2023; 18:e0284823. [PMID: 37163522 PMCID: PMC10171666 DOI: 10.1371/journal.pone.0284823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/07/2023] [Indexed: 05/12/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is one of the most threatening pathogens which affects the human central nervous system (CNS). TBEV circulates widely in Northern Eurasia. According to ECDC, the number of TBE cases increase annually. There is no specific treatment for the TBEV infection, thus vaccination is the main preventive measure. Despite the existence of several inactivated vaccines currently being licensed, the development of new TBEV vaccines remains a leading priority in countries endemic to this pathogen. Here we report new recombinant virus made by infectious subgenomic amplicon (ISA) approach using TBEV and yellow fever virus vaccine strain (YF17DD-UN) as a genetic backbone. The recombinant virus is capable of effective replication in mammalian cells and induce TBEV-neutralizing antibodies in mice. Unlike the original vector based on the yellow fever vaccine strain, chimeric virus became neuroinvasive in doses of 107-106 PFU and can be used as a model of flavivirus neuroinvasiveness, neurotropism and neurovirulence. These properties of hybrid structures are the main factors limiting their practical use as vaccines platforms.
Collapse
Affiliation(s)
- Nadezhda Kuznetsova
- Federal State Budgetary Institution "National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrei Siniavin
- Federal State Budgetary Institution "National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Butenko
- Federal State Budgetary Institution "National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Victor Larichev
- Federal State Budgetary Institution "National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alina Kozlova
- Federal State Budgetary Institution "National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Evgeny Usachev
- Federal State Budgetary Institution "National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maria Nikiforova
- Federal State Budgetary Institution "National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga Usacheva
- Federal State Budgetary Institution "National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey Shchetinin
- Federal State Budgetary Institution "National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrei Pochtovyi
- Federal State Budgetary Institution "National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Virology, Lomonosov Moscow State University, Moscow, Russia
| | - Elena Shidlovskaya
- Federal State Budgetary Institution "National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alina Odintsova
- Federal State Budgetary Institution "National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elizaveta Belyaeva
- Federal State Budgetary Institution "National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Aleksander Voskoboinikov
- Federal State Budgetary Institution "National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Arina Bessonova
- Federal State Budgetary Institution "National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Lyudmila Vasilchenko
- Federal State Budgetary Institution "National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Galina Karganova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov University, Moscow, Russia
| | - Vladimir Zlobin
- Federal State Budgetary Institution "National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Denis Logunov
- Federal State Budgetary Institution "National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir Gushchin
- Federal State Budgetary Institution "National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Virology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Gintsburg
- Federal State Budgetary Institution "National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Infectiology and Virology, Federal State Autonomous Educational Institution of Higher Education I M Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
7
|
Khalimova KM, Rashidova NS, Salimjonov JJ. [Neurological complications after covid-19 vaccination]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:13-19. [PMID: 38147377 DOI: 10.17116/jnevro202312312113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The aim of our work was to study the relevance and incidence of neurological post-vaccination complications during the COVID-19 pandemic. Based on the results of a systematic literature search of several databases, the current review describes the diagnosed complications, including neurological, that occurred after the administration of the COVID-19 vaccine during the pandemic period. To fully establish the pathophysiological mechanisms of the development of a causal relationship of neurological complications with vaccines against COVID-19, it becomes necessary to continue long-term studies. This will make it possible to carry out a pharmacological correction of the quality of vaccine safety.
Collapse
|
8
|
Tangy F, Tournier JN. [Viruses to rescue health: Vaccination]. Med Sci (Paris) 2022; 38:1052-1060. [PMID: 36692265 DOI: 10.1051/medsci/2022168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Viruses have been used as tools to prevent viral infections themselves for more than two centuries with impressive success. After the empirical discoveries of the first vaccines, today the development of genetic engineering, molecular virology, reverse genetics, the manipulation of viral genomes, their high-throughput sequencing and their chemical synthesis, the mastery of cell culture and purification methods have greatly benefited the development of viral vaccines. Since smallpox and rabies, the history of vaccinology has followed in the footsteps of the history of virology. New mRNA or viral vector vaccines have emerged in recent years. They were developed and distributed to the population in record time in the face of the Covid pandemic. Viruses in the service of health have a bright future ahead of them, whether to prevent other pandemics, to treat cancer, or to finally control HIV and malaria.
Collapse
Affiliation(s)
- Frédéric Tangy
- Laboratoire d'innovation vaccinale, Université de Paris, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Jean-Nicolas Tournier
- Laboratoire d'innovation vaccinale, Université de Paris, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France - Département Microbiologie et maladies infectieuses, Institut de recherche biomédicale des armées (IRBA), 1 place général Valérie André, 91220 Brétigny-sur-Orge, France - École du Val-de-Grâce, 1 place Alphonse Laveran, 75005 Paris, France
| |
Collapse
|
9
|
Li LH, Liesenborghs L, Wang L, Lox M, Yakass MB, Jansen S, Rosales Rosas AL, Zhang X, Thibaut HJ, Teuwen D, Neyts J, Delang L, Dallmeier K. Biodistribution and environmental safety of a live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Mol Ther Methods Clin Dev 2022; 25:215-224. [PMID: 35313504 PMCID: PMC8925082 DOI: 10.1016/j.omtm.2022.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/14/2022] [Indexed: 11/06/2022]
Abstract
New platforms are needed for the design of novel prophylactic vaccines and advanced immune therapies. Live-attenuated yellow fever vaccine YF17D serves as a vector for several licensed vaccines and platform for novel candidates. On the basis of YF17D, we developed an exceptionally potent COVID-19 vaccine candidate called YF-S0. However, use of such live RNA viruses raises safety concerns, such as adverse events linked to original YF17D (yellow fever vaccine-associated neurotropic disease [YEL-AND] and yellow fever vaccine-associated viscerotropic disease [YEL-AVD]). In this study, we investigated the biodistribution and shedding of YF-S0 in hamsters. Likewise, we introduced hamsters deficient in signal transducer and activator of transcription 2 (STAT2) signaling as a new preclinical model of YEL-AND/AVD. Compared with YF17D, YF-S0 showed improved safety with limited dissemination to brain and visceral tissues, absent or low viremia, and no shedding of infectious virus. Considering that yellow fever virus is transmitted by Aedes mosquitoes, any inadvertent exposure to the live recombinant vector via mosquito bites is to be excluded. The transmission risk of YF-S0 was hence compared with readily transmitting YF-Asibi strain and non-transmitting YF17D vaccine, with no evidence for productive infection of mosquitoes. The overall favorable safety profile of YF-S0 is expected to translate to other vaccines based on the same YF17D platform.
Collapse
Affiliation(s)
- Li-Hsin Li
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery Team, 3000 Leuven, Belgium
| | - Laurens Liesenborghs
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery Team, 3000 Leuven, Belgium.,Institute of Tropical Medicine, Department of Clinical Sciences, Outbreak Research Team, 2000 Antwerp, Belgium
| | - Lanjiao Wang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Mosquito Virology Team, 3000 Leuven, Belgium
| | - Marleen Lox
- KU Leuven, Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, 3000 Leuven, Belgium
| | - Michael Bright Yakass
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery Team, 3000 Leuven, Belgium.,University of Ghana, Department of Biochemistry, Cell and Molecular Biology, the West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Legon, Accra 1181, Ghana
| | - Sander Jansen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery Team, 3000 Leuven, Belgium
| | - Ana Lucia Rosales Rosas
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Mosquito Virology Team, 3000 Leuven, Belgium
| | - Xin Zhang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery Team, 3000 Leuven, Belgium
| | - Hendrik Jan Thibaut
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Translational Platform Virology and Chemotherapy (TPVC), 3000 Leuven, Belgium
| | - Dirk Teuwen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery Team, 3000 Leuven, Belgium
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery Team, 3000 Leuven, Belgium
| | - Leen Delang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Mosquito Virology Team, 3000 Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery Team, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Monath TP, Nichols R, Tussey L, Scappaticci K, Pullano TG, Whiteman MD, Vasilakis N, Rossi SL, Campos RK, Azar SR, Spratt HM, Seaton BL, Archambault WT, Costecalde YV, Moore EH, Hawks RJ, Fusco J. Recombinant vesicular stomatitis vaccine against Nipah virus has a favorable safety profile: Model for assessment of live vaccines with neurotropic potential. PLoS Pathog 2022; 18:e1010658. [PMID: 35759511 PMCID: PMC9269911 DOI: 10.1371/journal.ppat.1010658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/08/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Nipah virus (NiV) disease is a bat-borne zoonosis responsible for outbreaks with high lethality and is a priority for vaccine development. With funding from the Coalition of Epidemic Preparedness Innovations (CEPI), we are developing a chimeric vaccine (PHV02) composed of recombinant vesicular stomatitis virus (VSV) expressing the envelope glycoproteins of both Ebola virus (EBOV) and NiV. The EBOV glycoprotein (GP) mediates fusion and viral entry and the NiV attachment glycoprotein (G) is a ligand for cell receptors, and stimulates neutralizing antibody, the putative mediator of protection against NiV. PHV02 is identical in construction to the registered Ebola vaccine (Ervebo) with the addition of the NiV G gene. NiV ephrin B2 and B3 receptors are expressed on neural cells and the wild-type NiV is neurotropic and causes encephalitis in affected patients. It was therefore important to assess whether the NiV G alters tropism of the rVSV vector and serves as a virulence factor. PHV02 was fully attenuated in adult hamsters inoculated by the intramuscular (IM) route, whereas parental wild-type VSV was 100% lethal. Two rodent models (mice, hamsters) were infected by the intracerebral (IC) route with graded doses of PHV02. Comparator active controls in various experiments included rVSV-EBOV (representative of Ebola vaccine) and yellow fever (YF) 17DD commercial vaccine. These studies showed PHV02 to be more neurovirulent than both rVSV-EBOV and YF 17DD in infant animals. PHV02 was lethal for adult hamsters inoculated IC but not for adult mice. In contrast YF 17DD retained virulence for adult mice inoculated IC but was not virulent for adult hamsters. Because of the inconsistency of neurovirulence patterns in the rodent models, a monkey neurovirulence test (MNVT) was performed, using YF 17DD as the active comparator because it has a well-established profile of quantifiable microscopic changes in brain centers and a known reporting rate of neurotropic adverse events in humans. In the MNVT PHV02 was significantly less neurovirulent than the YF 17DD vaccine reference control, indicating that the vaccine will have an acceptable safety profile for humans. The findings are important because they illustrate the complexities of phenotypic assessment of novel viral vectors with tissue tropisms determined by transgenic proteins, and because it is unprecedented to use a heterologous comparator virus (YF vaccine) in a regulatory-enabling study. This approach may have value in future studies of other novel viral vectors.
Collapse
Affiliation(s)
- Thomas P. Monath
- Public Health Vaccines LLC, Cambridge, Massachusetts, United States of America
- Crozet BioPharma Inc., Lexington, Massachusetts, United States of America
| | - Richard Nichols
- Public Health Vaccines LLC, Cambridge, Massachusetts, United States of America
- Crozet BioPharma Inc., Lexington, Massachusetts, United States of America
| | - Lynda Tussey
- Public Health Vaccines LLC, Cambridge, Massachusetts, United States of America
- Crozet BioPharma Inc., Lexington, Massachusetts, United States of America
| | - Kelly Scappaticci
- Public Health Vaccines LLC, Cambridge, Massachusetts, United States of America
- Crozet BioPharma Inc., Lexington, Massachusetts, United States of America
| | - Thaddeus G. Pullano
- Public Health Vaccines LLC, Cambridge, Massachusetts, United States of America
| | - Mary D. Whiteman
- BioReliance Corporation, Rockville, Maryland, United States of America
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rafael Kroon Campos
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Heidi M. Spratt
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Brent L. Seaton
- Q2 Solutions, San Juan Capistrano, California, United States of America
| | | | - Yanina V. Costecalde
- AmplifyBio, West Jefferson, Ohio, United States of America
- Battelle Memorial Institute, West Jefferson, Ohio, United States of America
| | - Evan H. Moore
- Battelle Memorial Institute, West Jefferson, Ohio, United States of America
| | - Roger J. Hawks
- Battelle Memorial Institute, West Jefferson, Ohio, United States of America
| | - Joan Fusco
- Public Health Vaccines LLC, Cambridge, Massachusetts, United States of America
- Crozet BioPharma Inc., Lexington, Massachusetts, United States of America
| |
Collapse
|
11
|
Huang HJ, Yang M, Chen HW, Wang S, Chang CP, Ho TS, Kao YS, Tien SM, Lin HH, Chang PC, Lai YC, Hsiao YP, Liu YL, Chao CH, Anderson R, Yeh TM, Lin YS, Wan SW. A novel chimeric dengue vaccine candidate composed of consensus envelope protein domain III fused to C-terminal-modified NS1 protein. Vaccine 2022; 40:2299-2310. [DOI: 10.1016/j.vaccine.2022.02.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/26/2022] [Accepted: 02/20/2022] [Indexed: 10/18/2022]
|
12
|
Montano D. Frequency and Associations of Adverse Reactions of COVID-19 Vaccines Reported to Pharmacovigilance Systems in the European Union and the United States. Front Public Health 2022; 9:756633. [PMID: 35186864 PMCID: PMC8850379 DOI: 10.3389/fpubh.2021.756633] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
IntroductionThis study aims to provide a risk assessment of the adverse reactions related to the COVID-19 vaccines manufactured by AstraZeneca, Janssen, Moderna, and Pfizer-BioNTech which have been in use in the European Union and the United States between December 2020 and October 2021.MethodsData from the European Database of Suspected Adverse Drug Reaction (EudraVigilance) and the Vaccine Adverse Events Reporting System (VAERS) from 2020 to October 2021 are analysed. More than 7.8 million adverse reactions of about 1.6 million persons are included. The adverse reactions are classified with the Common Toxicity Criteria (CTC) categories. COVID-19 vaccine exposures and adverse reactions reported between December 2020 and October 2021 are compared to influenza vaccine exposures and adverse reactions reported between 2020 and 2021. The population-level vaccine exposures to COVID-19 and influenza vaccines comprised about 451 million and 437 million exposures, respectively. Absolute and relative risk estimates are calculated by CTC categories and COVID-19 vaccines for the EU and US populations aged 18 years and older.ResultsA higher risk of reporting serious adverse reactions was observed for the COVID-19 vaccines in comparison to the influenza vaccines. Individuals age 65 and older were associated with a higher frequency of death, hospitalisations, and life-threatening reactions than younger individuals (relative risk estimates between 1.49 99% CI [1.44–1.55] and 8.61 99% CI [8.02–9.23]). Outcome onset of serious adverse reactions occurred within the first 7 days after vaccination in about 77.6–89.1% of cases. The largest absolute risks were observed for allergic, constitutional reactions, dermatological, gastrointestinal, neurological reactions, and localised and non-localised pain. The largest relative risks between COVID-19 vs. influenza vaccines were observed for allergic reactions, arrhythmia, general cardiovascular events, coagulation, haemorrhages, gastrointestinal, ocular, sexual organs reactions, and thrombosis.ConclusionThe present study provides an overview of adverse reactions frequently reported to the pharmacovigilance systems following COVID-19 vaccination in the EU and US populations. Despite the limitations of passive reporting systems, these results may inform further clinical research investigating in more detail the pathophysiological mechanisms potentially associated with the COVID-19 vaccines.
Collapse
|
13
|
Cordeiro AS, Patil-Sen Y, Shivkumar M, Patel R, Khedr A, Elsawy MA. Nanovaccine Delivery Approaches and Advanced Delivery Systems for the Prevention of Viral Infections: From Development to Clinical Application. Pharmaceutics 2021; 13:2091. [PMID: 34959372 PMCID: PMC8707864 DOI: 10.3390/pharmaceutics13122091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Viral infections causing pandemics and chronic diseases are the main culprits implicated in devastating global clinical and socioeconomic impacts, as clearly manifested during the current COVID-19 pandemic. Immunoprophylaxis via mass immunisation with vaccines has been shown to be an efficient strategy to control such viral infections, with the successful and recently accelerated development of different types of vaccines, thanks to the advanced biotechnological techniques involved in the upstream and downstream processing of these products. However, there is still much work to be done for the improvement of efficacy and safety when it comes to the choice of delivery systems, formulations, dosage form and route of administration, which are not only crucial for immunisation effectiveness, but also for vaccine stability, dose frequency, patient convenience and logistics for mass immunisation. In this review, we discuss the main vaccine delivery systems and associated challenges, as well as the recent success in developing nanomaterials-based and advanced delivery systems to tackle these challenges. Manufacturing and regulatory requirements for the development of these systems for successful clinical and marketing authorisation were also considered. Here, we comprehensively review nanovaccines from development to clinical application, which will be relevant to vaccine developers, regulators, and clinicians.
Collapse
Affiliation(s)
- Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Yogita Patil-Sen
- Wrightington, Wigan and Leigh Teaching Hospitals NHS Foundation Trust, National Health Service, Wigan WN6 0SZ, UK;
| | - Maitreyi Shivkumar
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Ronak Patel
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Abdulwahhab Khedr
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. Elsawy
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| |
Collapse
|
14
|
Tajima S, Taniguchi S, Nakayama E, Maeki T, Inagaki T, Saijo M, Lim CK. Immunogenicity and Protective Ability of Genotype I-Based Recombinant Japanese Encephalitis Virus (JEV) with Attenuation Mutations in E Protein against Genotype V JEV. Vaccines (Basel) 2021; 9:vaccines9101077. [PMID: 34696184 PMCID: PMC8538582 DOI: 10.3390/vaccines9101077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Genotype V (GV) Japanese encephalitis virus (JEV) has emerged in Korea and China since 2009. Recent findings suggest that current Japanese encephalitis (JE) vaccines may reduce the ability to induce neutralizing antibodies against GV JEV compared to other genotypes. This study sought to produce a novel live attenuated JE vaccine with a high efficacy against GV JEV. Genotype I (GI)-GV intertypic recombinant strain rJEV-EXZ0934-M41 (EXZ0934), in which the E region of the GI Mie/41/2002 strain was replaced with that of GV strain XZ0934, was introduced with the same 10 attenuation substitutions in the E region found in the live attenuated JE vaccine strain SA 14-14-2 to produce a novel mutant virus rJEV-EXZ/SA14142m-M41 (EXZ/SA14142m). In addition, another mutant rJEV-EM41/SA14142m-M41 (EM41/SA14142m), which has the same substitutions in the Mie/41/2002, was also produced. The neuroinvasiveness and neurovirulence of the two mutant viruses were significantly reduced in mice. The mutant viruses induced neutralizing antibodies against GV JEV in mice. The growth of EXZ/SA14142m was lower than that of EM41/SA14142m. In mouse challenge tests, a single inoculation with a high dose of the mutants blocked lethal GV JEV infections; however, the protective efficacy of EXZ/SA14142m was weaker than that of EM41/SA14142m in low-dose inoculations. The lower protection potency of EXZ/SA14142m may be ascribed to the reduced growth ability caused by the attenuation mutations.
Collapse
|
15
|
Boudewijns R, Ma J, Neyts J, Dallmeier K. A novel therapeutic HBV vaccine candidate induces strong polyfunctional cytotoxic T cell responses in mice. JHEP Rep 2021; 3:100295. [PMID: 34159304 PMCID: PMC8203848 DOI: 10.1016/j.jhepr.2021.100295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND & AIMS Current standard-of-care suppresses HBV replication, but does not lead to a functional cure. Treatment aiming to cure chronic hepatitis B (CHB) is believed to require the induction of strong cellular immune responses, such as by therapeutic vaccination. METHODS We designed a therapeutic HBV vaccine candidate (YF17D/HBc-C) using yellow fever vaccine YF17D as a live-attenuated vector to express HBV core antigen (HBc). Its ability to induce potent cellular immune responses was assessed in a mouse model that supports flavivirus replication. RESULTS Following a HBc protein prime, a booster of YF17D/HBc-C was found to induce vigorous cytotoxic T cell responses. In a direct head-to-head comparison, these HBc-specific responses exceeded those elicited by adenovirus-vectored HBc. Target-specific T cells were not only more abundant, but also showed a higher degree of polyfunctionality, with HBc-specific CD8+ T cells producing interferon γ and tumour necrosis factor α in addition to granzyme B. This immune phenotype translated into a superior cytotoxic effector activity toward HBc-positive cells in YF17D/HBc-C vaccinated animals in vivo. CONCLUSIONS The results presented here show the potential of YF17D/HBc-C as a vaccine candidate to treat CHB, and warrant follow-up studies in preclinical animal models of HBV persistence in which other candidate vaccines have been unable to achieve a sustained virologic response. LAY SUMMARY Resolution of CHB requires the induction of strong cellular immune responses. We used the yellow fever vaccine as a vector for HBV antigens and show that it is capable of inducing high levels of HBV-specific T cells that produce multiple cytokines simultaneously and are cytotoxic in vivo.
Collapse
Key Words
- CAR-T, chimeric antigen receptor T cells
- CFSE, carboxy-fluorescein succinimidyl ester
- CHB, chronic hepatitis B
- CTL, cytotoxic T lymphocyte
- Chronic hepatitis B
- DCs, dendritic cells
- ELISPOT, enzyme-linked ImmunoSpot
- GzmB, granzyme B
- HBV
- HBc, HBV core antigen
- HBp, HBV polymerase antigen
- HBs, HBV surface antigen
- ICS, intracellular cytokine staining
- IFNγ, interferon γ
- MHC, major histocompatibility complex
- NanoLuc, nanoluciferase
- STAT2, signal transducer and activator of transcription 2
- TNFα, tumour necrosis factor α
- Therapeutic vaccination
- YF, yellow fever
- Yellow fever vaccine
- aa, amino acids
- cccDNA, covalently closed circular DNA
- ifnar, IFN-α/β receptor
- pfu, plaque-forming units
- rHBc, recombinant HBc
- t-SNE, t-stochastic neighbour embedding
- wt, wild-type
Collapse
Affiliation(s)
- Robbert Boudewijns
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Ji Ma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| |
Collapse
|
16
|
Chen RT, Kochhar S, Condit R. The Brighton Collaboration standardized templates for collection of key information for benefit-risk assessment of vaccines by technology (BRAVATO; formerly V3SWG). Vaccine 2020; 39:3050-3052. [PMID: 33168344 PMCID: PMC7647903 DOI: 10.1016/j.vaccine.2020.10.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Robert T Chen
- Brighton Collaboration, A Program of the Task Force for Global Health, Decatur, GA, USA
| | - Sonali Kochhar
- Global Healthcare Consulting, New Delhi, India; University of Washington, Seattle, WA 98195, USA
| | - Richard Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
17
|
Gurwith M, Condit RC, Excler JL, Robertson JS, Kim D, Fast PE, Drew S, Wood D, Klug B, Whelan M, Mallett Moore T, Khuri-Bulos N, Smith ER, Chen RT, Kochhar S. Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) standardized template for collection of key information for benefit-risk assessment of live-attenuated viral vaccines. Vaccine 2020; 38:7702-7707. [PMID: 33070999 PMCID: PMC7563577 DOI: 10.1016/j.vaccine.2020.09.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 11/04/2022]
Abstract
Several live-attenuated viral vaccine candidates are among the COVID-19 vaccines in development. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) has prepared a standardized template to describe the key considerations for the benefit-risk assessment of live-attenuated viral vaccines. This will help key stakeholders assess potential safety issues and understand the benefit-risk of such vaccines. The standardized and structured assessment provided by the template would also help to contribute to improved communication and support public acceptance of licensed live-attenuated viral vaccines.
Collapse
Affiliation(s)
- Marc Gurwith
- Brighton Collaboration, A Program of the Task Force for Global Health, Decatur, GA, USA
| | - Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | | | | | - Denny Kim
- Janssen Pharmaceuticals, Titusville, NJ, USA
| | - Patricia E Fast
- International AIDS Vaccine Initiative, New York, NY, USA; Stanford School of Medicine, Paolo Alto, CA, USA
| | | | | | - Bettina Klug
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | | | | | | | - Emily R Smith
- Brighton Collaboration, A Program of the Task Force for Global Health, Decatur, GA, USA.
| | - Robert T Chen
- Brighton Collaboration, A Program of the Task Force for Global Health, Decatur, GA, USA
| | - Sonali Kochhar
- Global Healthcare Consulting, New Delhi, India; University of Washington, Seattle, WA, USA
| | | |
Collapse
|
18
|
The Brighton Collaboration standardized template for collection of key information for benefit-risk assessment of viral vector vaccines. Vaccine 2020; 38:7708-7715. [PMID: 32907759 PMCID: PMC7474958 DOI: 10.1016/j.vaccine.2020.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 01/06/2023]
Abstract
Many of the vaccines under development for COVID-19 involve the use of viral vectors. The Brighton Collaboration Benefit-Risk Assessment of Vaccines by Technology (BRAVATO, formerly the Viral Vector Vaccine Safety Working Group, V3SWG) working group has prepared a standardized template to describe the key considerations for the benefit-risk assessment of viral vector vaccines. This will facilitate key stakeholders to anticipate potential safety issues and interpret or assess safety data. This would also help improve communication and public acceptance of licensed viral vector vaccines.
Collapse
|
19
|
Kochhar S, Excler JL, Kim D, Robertson JS, Fast PE, Condit RC, Drew S, Wood D, Gurwith M, Klug B, Whelan M, Khuri-Bulos N, Mallett Moore T, Smith ER, Chen RT. The Brighton Collaboration standardized template for collection of key information for benefit-risk assessment of inactivated viral vaccines. Vaccine 2020; 38:6184-6189. [PMID: 32747214 PMCID: PMC7834840 DOI: 10.1016/j.vaccine.2020.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 11/25/2022]
Abstract
Inactivated viral vaccines have long been used in humans for diseases of global health threat and are now among the vaccines for COVID-19 under development. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) has prepared a standardized template to describe the key considerations for the benefit-risk assessment of inactivated viral vaccines. This will help key stakeholders to assess potential safety issues and understand the benefit-risk of the vaccine platform. The standardized and structured assessment provided by the template would also help to contribute to improved communication and support public acceptance of licensed inactivated viral vaccines.
Collapse
Affiliation(s)
- Sonali Kochhar
- Global Healthcare Consulting, New Delhi, India; University of Washington, Seattle, WA, USA
| | | | - Denny Kim
- Janssen Pharmaceuticals, Titusville, NJ, USA
| | | | - Patricia E Fast
- International AIDS Vaccine Initiative, New York, NY, USA; Stanford School of Medicine, Palo Alto, CA, USA
| | - Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | | | | | - Marc Gurwith
- Brighton Collaboration, A Program of the Task Force for Global Health, Decatur, GA, USA
| | - Bettina Klug
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | | | | | | | - Emily R Smith
- Brighton Collaboration, A Program of the Task Force for Global Health, Decatur, GA, USA
| | - Robert T Chen
- Brighton Collaboration, A Program of the Task Force for Global Health, Decatur, GA, USA
| |
Collapse
|
20
|
Kochhar S, Kim D, Excler JL, Condit RC, Robertson JS, Drew S, Whelan M, Wood D, Fast PE, Gurwith M, Klug B, Khuri-Bulos N, Smith ER, Chen RT. The Brighton Collaboration standardized template for collection of key information for benefit-risk assessment of protein vaccines. Vaccine 2020; 38:5734-5739. [PMID: 32653276 PMCID: PMC7343648 DOI: 10.1016/j.vaccine.2020.06.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
Several protein vaccine candidates are among the COVID-19 vaccines in development. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) has prepared a standardized template to describe the key considerations for the benefit-risk assessment of protein vaccines. This will help key stakeholders to assess potential safety issues and understand the benefit-risk of such a vaccine platform. The structured and standardized assessment provided by the template would also help contribute to improved public acceptance and communication of licensed protein vaccines.
Collapse
Affiliation(s)
- Sonali Kochhar
- Global Healthcare Consulting, New Delhi, India; University of Washington, Seattle, WA, USA
| | - Denny Kim
- Janssen Pharmaceuticals, Titusville, NJ, USA
| | | | - Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | | | | | | | | | - Patricia E Fast
- International AIDS Vaccine Initiative, New York, NY, USA; Stanford School of Medicine, Palo Alto, CA, USA
| | - Marc Gurwith
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA
| | - Bettina Klug
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | | | - Emily R Smith
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA.
| | - Robert T Chen
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA
| | | |
Collapse
|
21
|
Kim D, Robertson JS, Excler JL, Condit RC, Fast PE, Gurwith M, Pavlakis G, Monath TP, Smith J, Wood D, Smith ER, Chen RT, Kochhar S. The Brighton Collaboration standardized template for collection of key information for benefit-risk assessment of nucleic acid (RNA and DNA) vaccines. Vaccine 2020; 38:5556-5561. [PMID: 32571717 PMCID: PMC7304391 DOI: 10.1016/j.vaccine.2020.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022]
Abstract
Nucleic acid (DNA and RNA) vaccines are among the most advanced vaccines for COVID-19 under development. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) has prepared a standardized template to describe the key considerations for the benefit-risk assessment of nucleic acid vaccines. This will facilitate the assessment by key stakeholders of potential safety issues and understanding of overall benefit-risk. The structured assessment provided by the template can also help improve communication and public acceptance of licensed nucleic acid vaccines.
Collapse
Affiliation(s)
- Denny Kim
- Janssen Pharmaceuticals, Titusville, NJ, USA
| | | | | | - Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Patricia E Fast
- International AIDS Vaccine Initiative, New York, NY 10004, USA; Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Marc Gurwith
- Brighton Collaboration, A Program of the Task Force for Global Health, Decatur, GA, USA
| | - George Pavlakis
- National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | - Emily R Smith
- Brighton Collaboration, A Program of the Task Force for Global Health, Decatur, GA, USA
| | - Robert T Chen
- Brighton Collaboration, A Program of the Task Force for Global Health, Decatur, GA, USA
| | - Sonali Kochhar
- Global Healthcare Consulting, New Delhi, India; University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
22
|
A Chimeric Japanese Encephalitis Vaccine Protects against Lethal Yellow Fever Virus Infection without Inducing Neutralizing Antibodies. mBio 2020; 11:mBio.02494-19. [PMID: 32265332 PMCID: PMC7157777 DOI: 10.1128/mbio.02494-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Efficient and safe vaccines against yellow fever (e.g., YFV-17D) that provide long-lasting protection by rapidly inducing neutralizing antibody responses exist. However, the vaccine supply cannot cope with an increasing demand posed by urban outbreaks in recent years. Here we report that JE-CVax/Imojev, a YFV-17D-based chimeric Japanese encephalitis vaccine, also efficiently protects against YFV infection in mice. In case of shortage of the YFV vaccine during yellow fever outbreaks, (off-label) use of JE-CVax/Imojev may be considered. Moreover, wider use of JE-CVax/Imojev in Asia may lower the risk of the much-feared YFV spillover to the continent. More generally, chimeric vaccines that combine surface antigens and replication machineries of two distinct flaviviruses may be considered dual vaccines for the latter pathogen without induction of surface-specific antibodies. Following this rationale, novel flavivirus vaccines that do not hold a risk for antibody-dependent enhancement (ADE) of infection (inherent to current dengue vaccines and dengue vaccine candidates) could be designed. Recent outbreaks of yellow fever virus (YFV) in West Africa and Brazil resulted in rapid depletion of global vaccine emergency stockpiles and raised concerns about being unprepared against future YFV epidemics. Here we report that a live attenuated virus similar to the Japanese encephalitis virus (JEV) vaccine JE-CVax/Imojev that consists of YFV-17D vaccine from which the structural (prM/E) genes have been replaced with those of the JEV SA14-14-2 vaccine strain confers full protection in mice against lethal YFV challenge. In contrast to the YFV-17D-mediated protection against YFV, this protection is not mediated by neutralizing antibodies but correlates with YFV-specific nonneutralizing antibodies and T cell responses against cell-associated YFV NS1 and other YFV nonstructural (NS) proteins. Our findings reveal the potential of YFV NS proteins to mediate protection and demonstrate that chimeric flavivirus vaccines, such as Imojev, could confer protection against two flaviviruses. This dual protection may have implications for the possible off-label use of JE-CVax in case of emergency and vaccine shortage during YFV outbreaks. In addition, populations in Asia that have been vaccinated with Imojev may already be protected against YFV should outbreaks ever occur on that continent, as several countries/regions in the Asia-Pacific are vulnerable to international spread of the YFV.
Collapse
|
23
|
Sakurai A, Ogawa T, Matsumoto J, Kihira T, Fukushima S, Miyata I, Shimizu H, Itamura S, Ouchi K, Hamada A, Tani K, Okabe N, Yamaguchi T. Regulatory aspects of quality and safety for live recombinant viral vaccines against infectious diseases in Japan. Vaccine 2019; 37:6573-6579. [PMID: 31506194 DOI: 10.1016/j.vaccine.2019.08.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/06/2019] [Indexed: 01/30/2023]
Abstract
Recombinant viral vaccines expressing antigens of pathogenic microbes (e.g., HIV, Ebola virus, and malaria) have been designed to overcome the insufficient immune responses induced by the conventional vaccines. Our knowledge of and clinical experience with the new recombinant viral vaccines are insufficient, and a clear regulatory pathway is needed for the further development and evaluation of recombinant viral vaccines. In 2018, the research group supported by the Ministry of Health, Labour and Welfare, Japan (MHLW) published a concept paper to address the development of recombinant viral vaccines against infectious diseases. Herein we summarize the concept paper-which explains the Japanese regulatory concerns about recombinant viral vaccines-and provide a focus of discussion about the development of recombinant viral vaccines.
Collapse
Affiliation(s)
- Akira Sakurai
- Office of Vaccines and Blood Products, Pharmaceuticals and Medical Devices Agency, Shin-Kasumigaseki Bldg., 3-3-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013, Japan.
| | - Takashi Ogawa
- Office of Vaccines and Blood Products, Pharmaceuticals and Medical Devices Agency, Shin-Kasumigaseki Bldg., 3-3-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013, Japan.
| | - Jun Matsumoto
- Office of Vaccines and Blood Products, Pharmaceuticals and Medical Devices Agency, Shin-Kasumigaseki Bldg., 3-3-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013, Japan.
| | - Tetsunari Kihira
- Office of Vaccines and Blood Products, Pharmaceuticals and Medical Devices Agency, Shin-Kasumigaseki Bldg., 3-3-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013, Japan.
| | - Shinji Fukushima
- Travellers' Medical Center, Tokyo Medical University Hospital, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan.
| | - Ippei Miyata
- Department of Pediatrics, Kawasaki Medical School, 577 Matsushima, Kurashiki-Shi, Okayama 701-0192, Japan.
| | - Hideaki Shimizu
- Kawasaki City Institute for Public Health, Life Science and Environment (LiSE) Research Center 2F, 3-25-13 Tono-Machi, Kawasaki-Ku, Kawasaki-City, Kanagawa 210-0821, Japan.
| | - Shigeyuki Itamura
- National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-Shi, Tokyo 208-0011, Japan.
| | - Kazunobu Ouchi
- Department of Pediatrics, Kawasaki Medical School, 577 Matsushima, Kurashiki-Shi, Okayama 701-0192, Japan.
| | - Atsuro Hamada
- Travellers' Medical Center, Tokyo Medical University Hospital, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan.
| | - Kenzaburo Tani
- Project Division of ALA Advanced Medical Research, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo 108-8639, Japan.
| | - Nobuhiko Okabe
- Kawasaki City Institute for Public Health, Life Science and Environment (LiSE) Research Center 2F, 3-25-13 Tono-Machi, Kawasaki-Ku, Kawasaki-City, Kanagawa 210-0821, Japan.
| | - Teruhide Yamaguchi
- Divison of Pharmacology, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan.
| |
Collapse
|
24
|
Hernandez N, Bucciol G, Moens L, Le Pen J, Shahrooei M, Goudouris E, Shirkani A, Changi-Ashtiani M, Rokni-Zadeh H, Sayar EH, Reisli I, Lefevre-Utile A, Zijlmans D, Jurado A, Pholien R, Drutman S, Belkaya S, Cobat A, Boudewijns R, Jochmans D, Neyts J, Seeleuthner Y, Lorenzo-Diaz L, Enemchukwu C, Tietjen I, Hoffmann HH, Momenilandi M, Pöyhönen L, Siqueira MM, de Lima SMB, de Souza Matos DC, Homma A, Maia MDLS, da Costa Barros TA, de Oliveira PMN, Mesquita EC, Gijsbers R, Zhang SY, Seligman SJ, Abel L, Hertzog P, Marr N, Martins RDM, Meyts I, Zhang Q, MacDonald MR, Rice CM, Casanova JL, Jouanguy E, Bossuyt X. Inherited IFNAR1 deficiency in otherwise healthy patients with adverse reaction to measles and yellow fever live vaccines. J Exp Med 2019; 216:2057-2070. [PMID: 31270247 PMCID: PMC6719432 DOI: 10.1084/jem.20182295] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/18/2019] [Accepted: 06/11/2019] [Indexed: 01/31/2023] Open
Abstract
We describe two unrelated patients with inherited IFNAR1 deficiency who suffered from life-threatening infections following measles or yellow fever virus vaccination and were otherwise healthy. Vaccination against measles, mumps, and rubella (MMR) and yellow fever (YF) with live attenuated viruses can rarely cause life-threatening disease. Severe illness by MMR vaccines can be caused by inborn errors of type I and/or III interferon (IFN) immunity (mutations in IFNAR2, STAT1, or STAT2). Adverse reactions to the YF vaccine have remained unexplained. We report two otherwise healthy patients, a 9-yr-old boy in Iran with severe measles vaccine disease at 1 yr and a 14-yr-old girl in Brazil with viscerotropic disease caused by the YF vaccine at 12 yr. The Iranian patient is homozygous and the Brazilian patient compound heterozygous for loss-of-function IFNAR1 variations. Patient-derived fibroblasts are susceptible to viruses, including the YF and measles virus vaccine strains, in the absence or presence of exogenous type I IFN. The patients’ fibroblast phenotypes are rescued with WT IFNAR1. Autosomal recessive, complete IFNAR1 deficiency can result in life-threatening complications of vaccination with live attenuated measles and YF viruses in previously healthy individuals.
Collapse
Affiliation(s)
- Nicholas Hernandez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Giorgia Bucciol
- Laboratory of Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium
| | - Leen Moens
- Laboratory of Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Mohammad Shahrooei
- Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran.,Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | | | - Afshin Shirkani
- Allergy and Clinical Immunology Department, Bushehr University of Medical Science, School of Medicine, Bushehr, Iran
| | | | - Hassan Rokni-Zadeh
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Esra Hazar Sayar
- Department of Pediatrics, Division of Pediatric Immunology and Allergy, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey
| | - Ismail Reisli
- Department of Pediatrics, Division of Pediatric Immunology and Allergy, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey
| | - Alain Lefevre-Utile
- Pediatrics Department, Jean Verdier Hospital, Assistance Publique des Hôpitaux de Paris, Paris 13 University, Bondy, France
| | - Dick Zijlmans
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Andrea Jurado
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Ruben Pholien
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Scott Drutman
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Serkan Belkaya
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Aurelie Cobat
- Pediatric Immunology-Hematology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Robbert Boudewijns
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Yoann Seeleuthner
- Paris Descartes University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Lazaro Lorenzo-Diaz
- Paris Descartes University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Chibuzo Enemchukwu
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Ian Tietjen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | | | - Mana Momenilandi
- Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran
| | - Laura Pöyhönen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Marilda M Siqueira
- National Reference Laboratory for Respiratory Viruses, Institute Oswaldo Cruz, Fiocruz, Ministry of Health, Rio de Janeiro, Brazil
| | - Sheila M Barbosa de Lima
- Laboratory of Virological Techniques, Bio-Manguinhos, Fiocruz, Ministry of Health, Rio de Janeiro, Brazil
| | - Denise C de Souza Matos
- Laboratory of Immunological Techniques, Bio-Manguinhos, Fiocruz, Ministry of Health, Rio de Janeiro, Brazil
| | - Akira Homma
- Bio-Manguinhos, Fiocruz, Ministry of Health, Rio de Janeiro, Brazil
| | | | | | | | | | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,Leuven Viral Vector Core, Leuven, Belgium
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Paris Descartes University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Stephen J Seligman
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Department of Microbiology and Immunology, New York Medical College, Valhalla, NY
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Paris Descartes University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Paul Hertzog
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Nico Marr
- Division of Translational Medicine, Sidra Medicine, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Precision Immunology Institute and Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount Sinai, New York, NY
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY .,Pediatric Immunology-Hematology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,Howard Hughes Medical Institute, New York, NY
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Paris Descartes University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Xavier Bossuyt
- Department of Microbiology, Immunology and Transplantation, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium.,Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Turvey ME, Uppu DS, Mohamed Sharif AR, Bidet K, Alonso S, Ooi EE, Hammond PT. Microneedle-based intradermal delivery of stabilized dengue virus. Bioeng Transl Med 2019; 4:e10127. [PMID: 31249877 PMCID: PMC6584444 DOI: 10.1002/btm2.10127] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 12/26/2022] Open
Abstract
Current live-attenuated dengue vaccines require strict cold chain storage. Methods to preserve dengue virus (DENV) viability, which enable vaccines to be transported and administered at ambient temperatures, will be decisive towards the implementation of affordable global vaccination schemes with broad immunization coverage in resource-limited areas. We have developed a microneedle (MN)-based vaccine platform for the stabilization and intradermal delivery of live DENV from minimally invasive skin patches. Dengue virus-stabilized microneedle arrays (VSMN) were fabricated using saccharide-based formulation of virus and could be stored dry at ambient temperature up to 3 weeks with maintained virus viability. Following intradermal vaccination, VSMN-delivered DENV was shown to elicit strong neutralizing antibody responses and protection from viral challenge, comparable to that of the conventional liquid vaccine administered subcutaneously. This work supports the potential for MN-based dengue vaccine technology and the progression towards cold chain-independence. Dengue virus can be stabilized using saccharide-based formulations and coated on microneedle array vaccine patches for storage in dry state with preserved viability at ambient temperature (VSMN; virus-stabilized microneedle arrays).
Collapse
Affiliation(s)
- Michelle E. Turvey
- Infectious Diseases IRGSingapore‐MIT Alliance for Research and TechnologySingapore
| | - Divakara S.S.M. Uppu
- Infectious Diseases IRGSingapore‐MIT Alliance for Research and TechnologySingapore
| | | | - Katell Bidet
- Infectious Diseases IRGSingapore‐MIT Alliance for Research and TechnologySingapore
| | - Sylvie Alonso
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, Immunology ProgrammeLife Sciences Institute, National University of SingaporeSingapore
| | - Eng Eong Ooi
- Infectious Diseases IRGSingapore‐MIT Alliance for Research and TechnologySingapore
- Emerging Infectious DiseasesDuke‐NUS Graduate Medical SchoolSingapore
| | - Paula T. Hammond
- Infectious Diseases IRGSingapore‐MIT Alliance for Research and TechnologySingapore
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA
| |
Collapse
|
26
|
Cohen C, Moreira ED, Nañez H, Nachiappan JP, Arvinder-Singh HS, Huoi C, Nealon J, Sarti E, Puentes-Rosas E, Moureau A, Khromava A. Incidence rates of neurotropic-like and viscerotropic-like disease in three dengue-endemic countries: Mexico, Brazil, and Malaysia. Vaccine 2019; 37:1868-1875. [PMID: 30826144 DOI: 10.1016/j.vaccine.2019.01.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND The background incidence of viscerotropic- (VLD) and neurotropic-like disease (NLD) unrelated to immunization in dengue-endemic countries is currently unknown. METHODS This retrospective population-based analysis estimated crude and standardized incidences of VLD and NLD in twelve hospitals in Brazil (n = 3), Mexico (n = 3), and Malaysia (n = 6) over a 1-year period before the introduction of the tetravalent dengue vaccine. Catchment areas were estimated using publicly available population census information and administrative data. The denominator population for incidence rates was calculated, and sensitivity analyses assessed the impact of important assumptions. RESULTS Total cases adjudicated as definite VLD were 5, 57, and 56 in Brazil, Mexico, and Malaysia, respectively. Total cases adjudicated as definite NLD were 103, 29, and 26 in Brazil, Mexico, and Malaysia, respectively. Crude incidence rates of cases adjudicated as definite VLD in Brazil, Mexico, and Malaysia were 1.17, 2.60, and 1.48 per 100,000 person-years, respectively. Crude incidence rates of cases adjudicated as definite NLD in Brazil, Mexico, and Malaysia were 4.45, 1.32, and 0.69 per 100,000 person-years, respectively. CONCLUSIONS Background incidence estimates of VLD and NLD obtained in Mexico, Brazil, and Malaysia could provide context for cases occurring after the introduction of the tetravalent dengue vaccine.
Collapse
Affiliation(s)
| | - Edson D Moreira
- Associação Obras Sociais Irmã Dulce and Oswaldo Cruz Foundation, Brazilian Ministry of Health, Bahia, Brazil.
| | - Homero Nañez
- University Hospital Dr. José E. González, Faculty of Medicine Universidad Autonoma de Nuevo León, Monterrey N.L., Mexico.
| | | | | | | | | | - Elsa Sarti
- Sanofi Pasteur LATAM, Coyoacán, CDMX, Mexico.
| | | | - Annick Moureau
- Clinical Development, Sanofi Pasteur, Marcy l'Etoile, Lyon, France.
| | | | | |
Collapse
|
27
|
Kum DB, Mishra N, Boudewijns R, Gladwyn-Ng I, Alfano C, Ma J, Schmid MA, Marques RE, Schols D, Kaptein S, Nguyen L, Neyts J, Dallmeier K. A yellow fever-Zika chimeric virus vaccine candidate protects against Zika infection and congenital malformations in mice. NPJ Vaccines 2018; 3:56. [PMID: 30564463 PMCID: PMC6292895 DOI: 10.1038/s41541-018-0092-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/05/2018] [Indexed: 12/27/2022] Open
Abstract
The recent Zika virus (ZIKV) epidemic in the Americas led to an intense search for therapeutics and vaccines. Here we report the engineering of a chimeric virus vaccine candidate (YF-ZIKprM/E) by replacing the antigenic surface glycoproteins and the capsid anchor of YFV-17D with those of a prototypic Asian lineage ZIKV isolate. By intracellular passaging, a variant with adaptive mutations in the E protein was obtained. Unlike YFV-17D, YF-ZIKprM/E replicates poorly in mosquito cells. Also, YF-ZIKprM/E does not cause disease nor mortality in interferon α/β, and γ receptor KO AG129 mice nor following intracranial inoculation of BALB/c pups. A single dose as low as 1 × 102 PFU results, as early as 7 days post vaccination, in seroconversion to neutralizing antibodies and confers full protection in AG129 mice against stringent challenge with a lethal inoculum (105 LD50) of either homologous or heterologous ZIKV strains. Induction of multi-functional CD4+ and CD8+ T cell responses against ZIKV structural and YFV-17D non-structural proteins indicates that cellular immunity may also contribute to protection. Vaccine immunogenicity and protection was confirmed in other mouse strains, including after temporal blockade of interferon-receptors in wild-type mice to facilitate ZIKV replication. Vaccination of wild-type NMRI dams with YF-ZIKprM/E results in complete protection of foetuses against brain infections and malformations following a stringent intraplacental challenge with an epidemic ZIKV strain. The particular characteristic of YF-ZIKprM/E in terms of efficacy and its marked attenuation in mice warrants further exploration as a vaccine candidate. Zika virus (ZIKV) infection generally results in mild symptoms but can cause serious developmental abnormalities in infants born to ZIKV infected mothers. Kai Dallmeier and colleagues at the KU Leuven in Belgium, engineered a chimeric live-attenuated vaccine (YF-ZIKprM/E) by swapping the glycoprotein from the Yellow Fever vaccine YFV-17D with that of a pre-epidemic ZIKV strain. YF-ZIKprM/E is very well tolerated with no adverse effects even following high dose intracranial infection. Mice highly susceptible to ZIKV infection—including AG129 and type I interferon receptor deficient strains—vaccinated with a single dose of YF-ZIKprM/E are fully protected from lethal ZIKV challenge. Protection can be achieved within 7 days and by low doses of YF-ZIKprM/E, is durable and generally results in sterilizing immunity. YF-ZIKprM/E elicits both neutralizing antibodies and robust cellular immunity. Finally, YF-ZIKprM/E can also prevent vertical transmission of ZIKV and achieve efficient protection of pups from neurological defects following intraplacental challenge.
Collapse
Affiliation(s)
- Dieudonné B Kum
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Niraj Mishra
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Robbert Boudewijns
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Ivan Gladwyn-Ng
- 2GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Christian Alfano
- 2GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Ji Ma
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Michael A Schmid
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Rafael E Marques
- 3Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Dominique Schols
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Suzanne Kaptein
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Laurent Nguyen
- 2GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| |
Collapse
|
28
|
Touret F, Gilles M, Klitting R, Aubry F, de Lamballerie X, Nougairède A. Live Zika virus chimeric vaccine candidate based on a yellow fever 17-D attenuated backbone. Emerg Microbes Infect 2018; 7:161. [PMID: 30254297 PMCID: PMC6156337 DOI: 10.1038/s41426-018-0161-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 01/07/2023]
Abstract
Zika virus (ZIKV) has recently become dispersed throughout the tropics and sub-tropics, causing epidemics associated with congenital disease and neurological complications. There is currently no commercial vaccine for ZIKV. In this study, we describe the initial development of a chimeric virus containing the prM/E proteins of a ZIKV epidemic strain incorporated into a yellow fever 17-D attenuated backbone. Using the versatile and rapid ISA (Infectious Subgenomic Amplicons) reverse genetics method, we compared different constructs and confirmed the need to modify the cleavage site between the pre-peptide and prM protein. Genotypic characterization of the chimeras indicated that the emergence of compensatory mutations in the E protein was required to restore viral replicative fitness. Using an immunocompromised mouse model, we demonstrated that mice infected with the chimeric virus produced levels of neutralizing antibodies that were close to those observed following infection with ZIKV. Furthermore, pre-immunized mice were protected against viscerotropic and neuroinvasive disease following challenge with a heterologous ZIKV strain. These data provide a sound basis for the future development of this ZIKV vaccine candidate.
Collapse
Affiliation(s)
- Franck Touret
- 0000 0001 2176 4817grid.5399.6Unité des Virus Émergents (UVE: Aix-Marseille Univ–IRD 190–Inserm 1207–IHU Méditerranée Infection), Marseille, France
| | - Magali Gilles
- 0000 0001 2176 4817grid.5399.6Unité des Virus Émergents (UVE: Aix-Marseille Univ–IRD 190–Inserm 1207–IHU Méditerranée Infection), Marseille, France
| | - Raphaelle Klitting
- 0000 0001 2176 4817grid.5399.6Unité des Virus Émergents (UVE: Aix-Marseille Univ–IRD 190–Inserm 1207–IHU Méditerranée Infection), Marseille, France
| | - Fabien Aubry
- 0000 0001 2176 4817grid.5399.6Unité des Virus Émergents (UVE: Aix-Marseille Univ–IRD 190–Inserm 1207–IHU Méditerranée Infection), Marseille, France
| | - Xavier de Lamballerie
- 0000 0001 2176 4817grid.5399.6Unité des Virus Émergents (UVE: Aix-Marseille Univ–IRD 190–Inserm 1207–IHU Méditerranée Infection), Marseille, France
| | - Antoine Nougairède
- 0000 0001 2176 4817grid.5399.6Unité des Virus Émergents (UVE: Aix-Marseille Univ–IRD 190–Inserm 1207–IHU Méditerranée Infection), Marseille, France
| |
Collapse
|
29
|
Development of a chimeric Zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone. Nat Commun 2018; 9:673. [PMID: 29445153 PMCID: PMC5813210 DOI: 10.1038/s41467-018-02975-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/10/2018] [Indexed: 01/07/2023] Open
Abstract
The global spread of Zika virus (ZIKV) and its unexpected association with congenital defects necessitates the rapid development of a safe and effective vaccine. Here we report the development and characterization of a recombinant chimeric ZIKV vaccine candidate (termed ChinZIKV) that expresses the prM-E proteins of ZIKV using the licensed Japanese encephalitis live-attenuated vaccine SA14-14-2 as the genetic backbone. ChinZIKV retains its replication activity and genetic stability in vitro, while exhibiting an attenuation phenotype in multiple animal models. Remarkably, immunization of mice and rhesus macaques with a single dose of ChinZIKV elicits robust and long-lasting immune responses, and confers complete protection against ZIKV challenge. Significantly, female mice immunized with ChinZIKV are protected against placental and fetal damage upon ZIKV challenge during pregnancy. Overall, our study provides an alternative vaccine platform in response to the ZIKV emergency, and the safety, immunogenicity, and protection profiles of ChinZIKV warrant further clinical development.
Collapse
|
30
|
Karthikeyan A, Shanmuganathan S, Pavulraj S, Prabakar G, Pavithra S, Porteen K, Elaiyaraja G, Malik YS. JAPANESE ENCEPHALITIS, RECENT PERSPECTIVES ON VIRUS GENOME, TRANSMISSION, EPIDEMIOLOGY, DIAGNOSIS AND PROPHYLACTIC INTERVENTIONS. ACTA ACUST UNITED AC 2017. [DOI: 10.18006/2017.5(6).730.748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Kassar TC, Magalhães T, S JVJ, Carvalho AGO, Silva ANMRDA, Queiroz SRA, Bertani GR, Gil LHVG. Construction and characterization of a recombinant yellow fever virus stably expressing Gaussia luciferase. AN ACAD BRAS CIENC 2017; 89:2119-2130. [PMID: 28746549 DOI: 10.1590/0001-3765201720160196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/20/2016] [Indexed: 11/22/2022] Open
Abstract
Yellow fever is an arthropod-borne viral disease that still poses high public health concerns, despite the availability of an effective vaccine. The development of recombinant viruses is of utmost importance for several types of studies, such as those aimed to dissect virus-host interactions and to search for novel antiviral strategies. Moreover, recombinant viruses expressing reporter genes may greatly facilitate these studies. Here, we report the construction of a recombinant yellow fever virus (YFV) expressing Gaussia luciferase (GLuc) (YFV-GLuc). We show, through RT-PCR, sequencing and measurement of GLuc activity, that stability of the heterologous gene was maintained after six passages. Furthermore, a direct association between GLuc expression and viral replication was observed (r2=0.9967), indicating that measurement of GLuc activity may be used to assess viral replication in different applications. In addition, we evaluated the use of the recombinant virus in an antiviral assay with recombinant human alfa-2b interferon. A 60% inhibition of GLuc expression was observed in cells infected with YFV-GLuc and incubated with IFN alfa-2b. Previously tested on YFV inhibition by plaque assays indicated a similar fold-decrease in viral replication. These results are valuable as they show the stability of YFV-GLuc and one of several possible applications of this construct.
Collapse
Affiliation(s)
- Telissa C Kassar
- Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães/CPqAM, Fundação Oswaldo Cruz/FIOCRUZ, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
| | - Tereza Magalhães
- Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães/CPqAM, Fundação Oswaldo Cruz/FIOCRUZ, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
| | - José V J S
- Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães/CPqAM, Fundação Oswaldo Cruz/FIOCRUZ, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
| | - Amanda G O Carvalho
- Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães/CPqAM, Fundação Oswaldo Cruz/FIOCRUZ, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
| | - Andréa N M R DA Silva
- Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães/CPqAM, Fundação Oswaldo Cruz/FIOCRUZ, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
| | - Sabrina R A Queiroz
- Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães/CPqAM, Fundação Oswaldo Cruz/FIOCRUZ, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
| | - Giovani R Bertani
- Departamento de Bioquímica, Universidade Federal de Pernambuco/UFPE, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-420 Recife, PE, Brazil
| | - Laura H V G Gil
- Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães/CPqAM, Fundação Oswaldo Cruz/FIOCRUZ, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
| |
Collapse
|
32
|
Adaptive immune responses to booster vaccination against yellow fever virus are much reduced compared to those after primary vaccination. Sci Rep 2017; 7:662. [PMID: 28386132 PMCID: PMC5429613 DOI: 10.1038/s41598-017-00798-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/13/2017] [Indexed: 12/05/2022] Open
Abstract
Outbreaks of Yellow Fever occur regularly in endemic areas of Africa and South America frequently leading to mass vaccination campaigns straining the availability of the attenuated Yellow Fever vaccine, YF-17D. The WHO has recently decided to discontinue regular booster-vaccinations since a single vaccination is deemed to confer life-long immune protection. Here, we have examined humoral (neutralizing antibody) and cellular (CD8 and CD4 T cell) immune responses in primary and booster vaccinees (the latter spanning 8 to 36 years after primary vaccination). After primary vaccination, we observed strong cellular immune responses with T cell activation peaking ≈2 weeks and subsiding to background levels ≈ 4 weeks post-vaccination. The number of antigen-specific CD8+ T cells declined over the following years. In >90% of vaccinees, in vitro expandable T cells could still be detected >10 years post-vaccination. Although most vaccinees responded to a booster vaccination, both the humoral and cellular immune responses observed following booster vaccination were strikingly reduced compared to primary responses. This suggests that pre-existing immunity efficiently controls booster inoculums of YF-17D. In a situation with epidemic outbreaks, one could argue that a more efficient use of a limited supply of the vaccine would be to focus on primary vaccinations.
Collapse
|
33
|
Clarke DK, Hendry RM, Singh V, Rose JK, Seligman SJ, Klug B, Kochhar S, Mac LM, Carbery B, Chen RT. Live virus vaccines based on a vesicular stomatitis virus (VSV) backbone: Standardized template with key considerations for a risk/benefit assessment. Vaccine 2016; 34:6597-6609. [PMID: 27395563 PMCID: PMC5220644 DOI: 10.1016/j.vaccine.2016.06.071] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/30/2022]
Abstract
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viral and other microbial pathogens in their genome (so-called "chimeric virus vaccines"). Many such viral vector vaccines are now at various stages of clinical evaluation. Here, we introduce an attenuated form of recombinant vesicular stomatitis virus (rVSV) as a potential chimeric virus vaccine for HIV-1, with implications for use as a vaccine vector for other pathogens. The rVSV/HIV-1 vaccine vector was attenuated by combining two major genome modifications. These modifications acted synergistically to greatly enhance vector attenuation and the resulting rVSV vector demonstrated safety in sensitive mouse and non-human primate neurovirulence models. This vector expressing HIV-1 gag protein has completed evaluation in two Phase I clinical trials. In one trial the rVSV/HIV-1 vector was administered in a homologous two-dose regimen, and in a second trial with pDNA in a heterologous prime boost regimen. No serious adverse events were reported nor was vector detected in blood, urine or saliva post vaccination in either trial. Gag specific immune responses were induced in both trials with highest frequency T cell responses detected in the prime boost regimen. The rVSV/HIV-1 vector also demonstrated safety in an ongoing Phase I trial in HIV-1 positive participants. Additionally, clinical trial material has been produced with the rVSV vector expressing HIV-1 env, and Phase I clinical evaluation will initiate in the beginning of 2016. In this paper, we use a standardized template describing key characteristics of the novel rVSV vaccine vectors, in comparison to wild type VSV. The template facilitates scientific discourse among key stakeholders by increasing transparency and comparability of information. The Brighton Collaboration V3SWG template may also be useful as a guide to the evaluation of other recombinant viral vector vaccines.
Collapse
MESH Headings
- AIDS Vaccines/adverse effects
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Clinical Trials, Phase I as Topic
- Drug Carriers
- Drug Evaluation, Preclinical
- Drug-Related Side Effects and Adverse Reactions/epidemiology
- Drug-Related Side Effects and Adverse Reactions/pathology
- Genetic Vectors
- Humans
- Primates
- Risk Assessment
- T-Lymphocytes/immunology
- Vaccines, Attenuated/adverse effects
- Vaccines, Attenuated/genetics
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vesiculovirus/genetics
- env Gene Products, Human Immunodeficiency Virus/genetics
- env Gene Products, Human Immunodeficiency Virus/immunology
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
| | - R Michael Hendry
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP), Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Vidisha Singh
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP), Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA.
| | - John K Rose
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephen J Seligman
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | | | | | - Lisa Marie Mac
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP), Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Baevin Carbery
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP), Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Robert T Chen
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP), Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| |
Collapse
|
34
|
Gailhardou S, Skipetrova A, Dayan GH, Jezorwski J, Saville M, Van der Vliet D, Wartel TA. Safety Overview of a Recombinant Live-Attenuated Tetravalent Dengue Vaccine: Pooled Analysis of Data from 18 Clinical Trials. PLoS Negl Trop Dis 2016; 10:e0004821. [PMID: 27414655 PMCID: PMC4945086 DOI: 10.1371/journal.pntd.0004821] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 06/12/2016] [Indexed: 11/19/2022] Open
Abstract
A recombinant live attenuated tetravalent dengue vaccine (CYD-TDV) has been shown to be efficacious in preventing virologically-confirmed dengue disease, severe dengue disease and dengue hospitalization in children aged 2-16 years in Asia and Latin America. We analyzed pooled safety data from 18 phase I, II and III clinical trials in which the dengue vaccine was administered to participants aged 2-60 years, including long-term safety follow-up in three efficacy trials. The participants were analyzed according to their age at enrollment. The percentage of participants aged 2-60 years reporting ≥1 solicited injection-site or systemic reactions was slightly higher in the CYD-TDV group than in the placebo group. The most common solicited injection-site reactions were pain. Headache and malaise were the most common solicited systemic reactions. In both groups 0.3% of participants discontinued for safety reasons. The most common unsolicited adverse events were injection-site reactions, gastrointestinal disorders, and infections. Reactogenicity did not increase with successive doses of CYD-TDV. The frequency and nature of SAEs occurring within 28 days of any dose were similar in the CYD-TDV and placebo groups and were common medical conditions that could be expected as a function of age. Baseline dengue virus serostatus did not appear to influence the safety profile. No vaccine-related anaphylactic reactions, neurotropic events or viscerotropic events were reported. In year 3 after dose 1, an imbalance for dengue hospitalization, including for severe dengue, observed in participants aged <9 years in the CYD-TDV group compared with the placebo group was not observed for participants aged ≥9 years. In Year 4, this imbalance in participants aged <9 years was less marked, giving an overall lower risk of dengue hospitalization or severe dengue from dose 1 to Year 4 in the CYD-TDV group. These results have contributed to the definition of the target population for vaccination (≥9 years old) for which CYD-TDV has a satisfactory safety profile. Long-term safety will continue to be monitored in the ongoing follow-up of efficacy trials. Safety and effectiveness in real-life settings will be assessed through post-licensure studies.
Collapse
Affiliation(s)
| | | | - Gustavo H. Dayan
- Sanofi Pasteur, Swiftwater, Pennsylvania, United States of America
| | - John Jezorwski
- Sanofi Pasteur, Swiftwater, Pennsylvania, United States of America
| | | | | | | |
Collapse
|
35
|
Zika: As an emergent epidemic. ASIAN PAC J TROP MED 2016; 9:723-9. [PMID: 27569879 DOI: 10.1016/j.apjtm.2016.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 11/20/2022] Open
Abstract
Zika virus is a new global threat for 2016 that has been swept to almost all Americas and is now posing serious threats to the entire globe. This deadly virus is playing havoc to unborn lives because of its reported association with upsurge of fetal deformation called microcephaly and neuropathic disorders including Guillain-Barré syndrome. Till today, there is no vaccine prospect, antiviral therapy or licensed medical countermeasures to curb the teratogenic outcomes of this destructive viral infection. Diagnosis, treatment, chronicity and pathogenesis are still vague and unsettled. Therefore, this review article addresses all the aspects related to this disease to mitigate the explosive rise in Zika virus infection.
Collapse
|
36
|
Unique safety issues associated with virus-vectored vaccines: Potential for and theoretical consequences of recombination with wild type virus strains. Vaccine 2016; 34:6610-6616. [PMID: 27346303 PMCID: PMC5204448 DOI: 10.1016/j.vaccine.2016.04.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/26/2022]
Abstract
In 2003 and 2013, the World Health Organization convened informal consultations on characterization and quality aspects of vaccines based on live virus vectors. In the resulting reports, one of several issues raised for future study was the potential for recombination of virus-vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of this issue formulated by the Brighton Collaboration. To provide an appropriate context for understanding the potential for recombination of virus-vectored vaccines, we review briefly the current status of virus-vectored vaccines, mechanisms of recombination between viruses, experience with recombination involving live attenuated vaccines in the field, and concerns raised previously in the literature regarding recombination of virus-vectored vaccines with wild type virus strains. We then present a discussion of the major variables that could influence recombination between a virus-vectored vaccine and circulating wild type virus and the consequences of such recombination, including intrinsic recombination properties of the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, pathogenesis and transmission; replication competency of vector in target host; mechanism of vector attenuation; additional factors potentially affecting virulence; and circulation of multiple recombinant vectors in the same target population. Finally, we present some guiding principles for vector design and testing intended to anticipate and mitigate the potential for and consequences of recombination of virus-vectored vaccines with wild type pathogenic virus strains.
Collapse
|
37
|
Ertl HC. Viral vectors as vaccine carriers. Curr Opin Virol 2016; 21:1-8. [PMID: 27327517 DOI: 10.1016/j.coviro.2016.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/25/2022]
Abstract
This chapter reviews the performance of viral vectors based on adenoviruses or adeno-associated virus as vaccine carriers for infectious diseases. Replication-defective adenovirus vectors based on multiple human or non-human serotypes have consistently induced potent transgene product-specific B and T cell responses and are increasingly being explored in human clinical trials. The immunogenicity of most vectors based on adeno-associated virus vectors has been poor with the exception of a recently described hybrid vector from rhesus macaques that due to its ability to induce potent responses in mice warrant further investigation.
Collapse
Affiliation(s)
- Hildegund Cj Ertl
- Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States.
| |
Collapse
|
38
|
Ye Q, Liu ZY, Han JF, Jiang T, Li XF, Qin CF. Genomic characterization and phylogenetic analysis of Zika virus circulating in the Americas. INFECTION GENETICS AND EVOLUTION 2016; 43:43-9. [PMID: 27156653 DOI: 10.1016/j.meegid.2016.05.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 02/04/2023]
Abstract
The rapid spread and potential link with birth defects have made Zika virus (ZIKV) a global public health problem. The virus was discovered 70years ago, yet the knowledge about its genomic structure and the genetic variations associated with current ZIKV explosive epidemics remains not fully understood. In this review, the genome organization, especially conserved terminal structures of ZIKV genome were characterized and compared with other mosquito-borne flaviviruses. It is suggested that major viral proteins of ZIKV share high structural and functional similarity with other known flaviviruses as shown by sequence comparison and prediction of functional motifs in viral proteins. Phylogenetic analysis demonstrated that all ZIKV strains circulating in the America form a unique clade within the Asian lineage. Furthermore, we identified a series of conserved amino acid residues that differentiate the Asian strains including the current circulating American strains from the ancient African strains. Overall, our findings provide an overview of ZIKV genome characterization and evolutionary dynamics in the Americas and point out critical clues for future virological and epidemiological studies.
Collapse
Affiliation(s)
- Qing Ye
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhong-Yu Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jian-Feng Han
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Tao Jiang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Xiao-Feng Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Cheng-Feng Qin
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China.
| |
Collapse
|
39
|
Julander JG. Animal models of yellow fever and their application in clinical research. Curr Opin Virol 2016; 18:64-9. [PMID: 27093699 DOI: 10.1016/j.coviro.2016.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/30/2016] [Indexed: 11/18/2022]
Abstract
Yellow fever virus (YFV) is an arbovirus that causes significant human morbidity and mortality. This virus has been studied intensively over the past century, although there are still no treatment options for those who become infected. Periodic and unpredictable yellow fever (YF) outbreaks in Africa and South America continue to occur and underscore the ongoing need to further understand this viral disease and to develop additional countermeasures to prevent or treat cases of illness. The use of animal models of YF is critical to accomplishing this goal. There are several animal models of YF that replicate various aspects of clinical disease and have provided insight into pathogenic mechanisms of the virus. These typically include mice, hamsters and non-human primates (NHP). The utilities and shortcomings of the available animal models of YF are discussed. Information on recent discoveries that have been made in the field of YFV research is also included as well as important future directions in further ameliorating the morbidity and mortality that occur as a result of YFV infection. It is anticipated that these model systems will help facilitate further improvements in the understanding of this virus and in furthering countermeasures to prevent or treat infections.
Collapse
Affiliation(s)
- Justin G Julander
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, United States.
| |
Collapse
|
40
|
Malone RW, Homan J, Callahan MV, Glasspool-Malone J, Damodaran L, Schneider ADB, Zimler R, Talton J, Cobb RR, Ruzic I, Smith-Gagen J, Janies D, Wilson J. Zika Virus: Medical Countermeasure Development Challenges. PLoS Negl Trop Dis 2016; 10:e0004530. [PMID: 26934531 PMCID: PMC4774925 DOI: 10.1371/journal.pntd.0004530] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Reports of high rates of primary microcephaly and Guillain-Barré syndrome associated with Zika virus infection in French Polynesia and Brazil have raised concerns that the virus circulating in these regions is a rapidly developing neuropathic, teratogenic, emerging infectious public health threat. There are no licensed medical countermeasures (vaccines, therapies or preventive drugs) available for Zika virus infection and disease. The Pan American Health Organization (PAHO) predicts that Zika virus will continue to spread and eventually reach all countries and territories in the Americas with endemic Aedes mosquitoes. This paper reviews the status of the Zika virus outbreak, including medical countermeasure options, with a focus on how the epidemiology, insect vectors, neuropathology, virology and immunology inform options and strategies available for medical countermeasure development and deployment. METHODS Multiple information sources were employed to support the review. These included publically available literature, patents, official communications, English and Lusophone lay press. Online surveys were distributed to physicians in the US, Mexico and Argentina and responses analyzed. Computational epitope analysis as well as infectious disease outbreak modeling and forecasting were implemented. Field observations in Brazil were compiled and interviews conducted with public health officials.
Collapse
Affiliation(s)
- Robert W. Malone
- RW Malone MD LLC, Scottsville, Virginia, United States of America
- Class of 2016, Harvard Medical School Global Clinical Scholars Research Training Program, Boston, Massachusetts, United States of America
| | - Jane Homan
- ioGenetics, Madison, Wisconsin, United States of America
| | - Michael V. Callahan
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jill Glasspool-Malone
- RW Malone MD LLC, Scottsville, Virginia, United States of America
- Class of 2016, Harvard Medical School Global Clinical Scholars Research Training Program, Boston, Massachusetts, United States of America
| | - Lambodhar Damodaran
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Adriano De Bernardi Schneider
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Rebecca Zimler
- University of Florida, Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Vero Beach, Florida, United States of America
| | - James Talton
- Nanotherapeutics, NANO-ADM Advanced Development and Manufacturing Center, Alachua, Florida, United States of America
| | - Ronald R. Cobb
- Nanotherapeutics, NANO-ADM Advanced Development and Manufacturing Center, Alachua, Florida, United States of America
| | - Ivan Ruzic
- Analytical Outcomes, Washington Crossing, Pennsylvania, United States of America
| | - Julie Smith-Gagen
- School of Community Health Sciences, University of Nevada, Reno, Nevada, United States of America
| | - Daniel Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - James Wilson
- Nevada Center for Infectious Disease Forecasting, University of Nevada, Reno, Nevada, United States of America
| | | |
Collapse
|
41
|
Wilder-Smith A, Massad E. Age specific differences in efficacy and safety for the CYD-tetravalent dengue vaccine. Expert Rev Vaccines 2016; 15:437-41. [PMID: 26775653 DOI: 10.1586/14760584.2016.1143366] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CYD-TDV is the first dengue vaccine to have completed Phase 3 efficacy trials. Efficacy was consistently higher in those aged 9 and above for all variables studied: efficacy against virologically confirmed dengue of any severity and serotype, serotype specific efficacy, efficacy dependent on baseline seropositivity, efficacy against hospitalizations and efficacy against severe disease. Because of the higher efficacy and the absence of a safety signal, the age group with the best benefit of the use of CYD-TDV is individuals aged 9 and above - the age group for which licensure is now being sought.
Collapse
Affiliation(s)
| | - Eduardo Massad
- b School of Medicine, University of Sao Paulo , Sao Paulo , Brazil
| |
Collapse
|
42
|
Guy B, Lang J, Saville M, Jackson N. Vaccination Against Dengue: Challenges and Current Developments. Annu Rev Med 2016; 67:387-404. [DOI: 10.1146/annurev-med-091014-090848] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bruno Guy
- Research and Development, Sanofi Pasteur, 69007 Lyon, France;
| | - Jean Lang
- Research and Development, Sanofi Pasteur, 69007 Lyon, France;
| | - Melanie Saville
- Research and Development, Sanofi Pasteur, 69007 Lyon, France;
| | | |
Collapse
|
43
|
A Single Amino Acid Substitution in the M Protein Attenuates Japanese Encephalitis Virus in Mammalian Hosts. J Virol 2015; 90:2676-89. [PMID: 26656690 DOI: 10.1128/jvi.01176-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/30/2015] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Japanese encephalitis virus (JEV) membrane (M) protein plays important structural roles in the processes of fusion and maturation of progeny virus during cellular infection. The M protein is anchored in the viral membrane, and its ectodomain is composed of a flexible N-terminal loop and a perimembrane helix. In this study, we performed site-directed mutagenesis on residue 36 of JEV M protein and showed that the resulting mutation had little or no effect on the entry process but greatly affected virus assembly in mammalian cells. Interestingly, this mutant virus had a host-dependent phenotype and could develop a wild-type infection in insect cells. Experiments performed on infectious virus as well as in a virus-like particle (VLP) system indicate that the JEV mutant expresses structural proteins but fails to form infectious particles in mammalian cells. Using a mouse model for JEV pathogenesis, we showed that the mutation conferred complete attenuation in vivo. The production of JEV neutralizing antibodies in challenged mice was indicative of the immunogenicity of the mutant virus in vivo. Together, our results indicate that the introduction of a single mutation in the M protein, while being tolerated in insect cells, strongly impacts JEV infection in mammalian hosts. IMPORTANCE JEV is a mosquito-transmitted flavivirus and is a medically important pathogen in Asia. The M protein is thought to be important for accommodating the structural rearrangements undergone by the virion during viral assembly and may play additional roles in the JEV infectious cycle. In the present study, we show that a sole mutation in the M protein impairs the JEV infection cycle in mammalian hosts but not in mosquito cells. This finding highlights differences in flavivirus assembly pathways among hosts. Moreover, infection of mice indicated that the mutant was completely attenuated and triggered a strong immune response to JEV, thus providing new insights for further development of JEV vaccines.
Collapse
|
44
|
Chen RT, Shimabukuro TT, Martin DB, Zuber PLF, Weibel DM, Sturkenboom M. Enhancing Vaccine Safety Capacity Globally: A Lifecycle Perspective. Am J Prev Med 2015; 49:S364-76. [PMID: 26590436 DOI: 10.1016/j.amepre.2015.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Major vaccine safety controversies have arisen in several countries beginning in the last decades of 20th century. Such periodic vaccine safety controversies are unlikely to go away in the near future as more national immunization programs mature with near elimination of target vaccine-preventable diseases that result in relative greater prominence of adverse events following immunizations, both true reactions and temporally coincidental events. There are several ways in which vaccine safety capacity can be improved to potentially mitigate the impact of future vaccine safety controversies. This paper aims to take a "lifecycle" approach, examining some potential pre- and post-licensure opportunities to improve vaccine safety, in both developed (specifically U.S. and Europe) and low- and middle-income countries.
Collapse
Affiliation(s)
- Robert T Chen
- Office of Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | - Tom T Shimabukuro
- Office of Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - David B Martin
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | | | | | | |
Collapse
|
45
|
Development of the Sanofi Pasteur tetravalent dengue vaccine: One more step forward. Vaccine 2015; 33:7100-11. [DOI: 10.1016/j.vaccine.2015.09.108] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 01/06/2023]
|
46
|
Chen RT, Shimabukuro TT, Martin DB, Zuber PLF, Weibel DM, Sturkenboom M. Enhancing vaccine safety capacity globally: A lifecycle perspective. Vaccine 2015; 33 Suppl 4:D46-54. [PMID: 26433922 PMCID: PMC4663114 DOI: 10.1016/j.vaccine.2015.06.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 12/22/2022]
Abstract
Major vaccine safety controversies have arisen in several countries beginning in the last decades of 20th century. Such periodic vaccine safety controversies are unlikely to go away in the near future as more national immunization programs mature with near elimination of target vaccine-preventable diseases that result in relative greater prominence of adverse events following immunizations, both true reactions and temporally coincidental events. There are several ways in which vaccine safety capacity can be improved to potentially mitigate the impact of future vaccine safety controversies. This paper aims to take a "lifecycle" approach, examining some potential pre- and post-licensure opportunities to improve vaccine safety, in both developed (specifically U.S. and Europe) and low- and middle-income countries.
Collapse
Affiliation(s)
- Robert T Chen
- Office of Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | - Tom T Shimabukuro
- Office of Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - David B Martin
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | | | | | | |
Collapse
|
47
|
Yamshchikov V. Development of a human live attenuated West Nile infectious DNA vaccine: conceptual design of the vaccine candidate. Virology 2015; 484:59-68. [PMID: 26071925 DOI: 10.1016/j.virol.2015.04.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/21/2015] [Accepted: 04/28/2015] [Indexed: 11/19/2022]
Abstract
West Nile virus has become an important epidemiological problem attracting significant attention of health authorities, mass media, and the public. Although there are promising advancements toward addressing the vaccine need, the perspectives of the commercial availability of the vaccine remain uncertain. To a large extent this is due to lack of a sustained interest for further commercial development of the vaccines already undergoing the preclinical and clinical development, and a predicted insignificant cost effectiveness of mass vaccination. There is a need for a safe, efficacious and cost effective vaccine, which can improve the feasibility of a targeted vaccination program. In the present report, we summarize the background, the rationale, and the choice of the development pathway that we selected for the design of a live attenuated human West Nile vaccine in a novel infectious DNA format.
Collapse
Affiliation(s)
- Vladimir Yamshchikov
- Southern Research, Division of Drug Discovery, Birmingham, Alabama, United States.
| |
Collapse
|
48
|
Ye Q, Xu YP, Zhang Y, Li XF, Wang HJ, Liu ZY, Li SH, Liu L, Zhao H, Nian QG, Deng YQ, Qin ED, Qin CF. Genotype-specific neutralization determinants in envelope protein: implications for the improvement of Japanese encephalitis vaccine. J Gen Virol 2015; 96:2165-2175. [PMID: 25908779 DOI: 10.1099/vir.0.000160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Japanese encephalitis remains the leading cause of viral encephalitis in children in Asia and is expanding its geographical range to larger areas in Asia and Australasia. Five genotypes of Japanese encephalitis virus (JEV) co-circulate in the geographically affected areas. In particular, the emergence of genotype I (GI) JEV has displaced genotype III (GIII) as the dominant circulating genotype in many Asian regions. However, all approved vaccine products are derived from GIII strains. In the present study, bioinformatic analysis revealed that GI and GIII JEV strains shared two distinct amino acid residues within the envelope (E) protein (E222 and E327). By using reverse genetics approaches, A222S and S327T mutations were demonstrated to decrease live-attenuated vaccine (LAV) SA14-14-2-induced neutralizing antibodies in humans, without altering viral replication. A222S or S327T mutations were then rationally engineered into the infectious clone of SA14-14-2, and the resulting mutant strains retained the same genetic stability and attenuation characteristics as the parent strain. More importantly, immunization of mice with LAV-A222S or LAV-S327T elicited increased neutralizing antibodies against GI strains. Together, these results demonstrated that E222 and E327 are potential genotype-related neutralization determinants and are critical in determining the protective efficacy of live Japanese encephalitis vaccine SA14-14-2 against circulating GI strains. Our findings will aid in the rational design of the next generation of Japanese encephalitis LAVs capable of providing broad protection against all JEV strains belonging to different genotypes.
Collapse
Affiliation(s)
- Qing Ye
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yan-Peng Xu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yu Zhang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Xiao-Feng Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China.,State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | - Hong-Jiang Wang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Zhong-Yu Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Shi-Hua Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Long Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China.,Graduate School, Anhui Medical University, Hefei 230032, PR China
| | - Hui Zhao
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China.,State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | - Qing-Gong Nian
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yong-Qiang Deng
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - E-De Qin
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Cheng-Feng Qin
- Graduate School, Anhui Medical University, Hefei 230032, PR China.,Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China.,State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| |
Collapse
|
49
|
Chen RT, Carbery B, Mac L, Berns KI, Chapman L, Condit RC, Excler JL, Gurwith M, Hendry M, Khan AS, Khuri-Bulos N, Klug B, Robertson JS, Seligman SJ, Sheets R, Williamson AL. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG). Vaccine 2014; 33:73-5. [PMID: 25305565 DOI: 10.1016/j.vaccine.2014.09.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 09/18/2014] [Indexed: 01/23/2023]
Abstract
Recombinant viral vectors provide an effective means for heterologous antigen expression in vivo and thus represent promising platforms for developing novel vaccines against human pathogens from Ebola to tuberculosis. An increasing number of candidate viral vector vaccines are entering human clinical trials. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to improve our ability to anticipate potential safety issues and meaningfully assess or interpret safety data, thereby facilitating greater public acceptance when licensed.
Collapse
Affiliation(s)
- Robert T Chen
- DHAP, NCHHSTP, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA.
| | - Baevin Carbery
- DHAP, NCHHSTP, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA; Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Lisa Mac
- DHAP, NCHHSTP, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Kenneth I Berns
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, P.O. Box 100266, Gainesville, FL 32610, USA
| | - Louisa Chapman
- DHAP, NCHHSTP, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, P.O. Box 100266, Gainesville, FL 32610, USA
| | - Jean-Louis Excler
- International AIDS Vaccine Initiative, New York, NY, USA; U.S. Military HIV Research Program (MHRP), Bethesda, MD 20817, USA
| | | | - Michael Hendry
- DHAP, NCHHSTP, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Arifa S Khan
- Laboratory of Retroviruses, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD 20892, USA
| | - Najwa Khuri-Bulos
- Division of Infectious Disease, Jordan University Hospital, Amman, Jordan
| | | | - James S Robertson
- Independent Adviser (formerly of National Institute for Biological Standards and Control, Potters Bar, EN6 3QG, UK)
| | - Stephen J Seligman
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Rebecca Sheets
- Division of AIDS, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | | |
Collapse
|