1
|
Pal P, Sehgal H, Joshi M, Arora G, Simek M, Lamba RP, Maurya S, Pal UN. Advances in using non-thermal plasmas for healthier crop production: toward pesticide and chemical fertilizer-free agriculture. PLANTA 2025; 261:109. [PMID: 40221954 DOI: 10.1007/s00425-025-04682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025]
Abstract
MAIN CONCLUSION There is an urgent need for sustainable agriculture. Non-thermal plasma seed treatment offers a promising alternative by enhancing germination, nutrient uptake, and disease resistance, and reducing reliance on pesticides and fertilizers. There is an urgent need to transform agricultural practices to meet the challenges of sustainable food production amidst global population growth and environmental degradation. Traditional crop production methods heavily rely on pesticides and synthetic fertilizers, which pose significant risks to human health, disrupt ecosystems, and contribute to environmental pollution. Moreover, these methods are increasingly unsustainable due to rising costs and diminishing effectiveness, evolving pest resistance, and climate change impacts. Recently, non-thermal plasma (NTP) technology has emerged as a promising alternative for seed treatment in agriculture. NTP uses low-temperature plasma to modify seed surfaces, enhancing germination, vigor, and overall plant growth. Studies have demonstrated that NTP treatment improves nutrient uptake, increases disease resistance, and reduces the reliance on chemical inputs (pesticides and fertilizers), thereby promoting pesticide and chemical fertilizer-free agriculture. This paper explores recent research advancements in NTP seed treatment and its potential applications in sustainable agriculture. By exploring the mechanisms underlying the NTP effects on seed physiology, the paper provides a comprehensive understanding of how this technology can contribute to sustainable crop production. Furthermore, the paper discusses the strengths, weaknesses, opportunities, and challenges associated with the potential large-scale use of low-temperature plasmas in agriculture, aiming to accelerate the adoption of NTP and its commercialization in the agro-food industries. Overall, the goal of this paper is to highlight the transformative potential of NTP seed treatment in achieving healthier crop production that is environmentally friendly, economically viable, and capable of meeting the food demands of a growing global population.
Collapse
Affiliation(s)
- Priti Pal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- CSIR- Central Electronics Engineering Research Institute, Pilani, Rajasthan, 333031, India
| | - Hansa Sehgal
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Mukul Joshi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Garima Arora
- Institute of Plasma Physics of the Czech Academy of Sciences, U Slovanky 2525/1a, 18200, Prague, Czech Republic
| | - Milan Simek
- Institute of Plasma Physics of the Czech Academy of Sciences, U Slovanky 2525/1a, 18200, Prague, Czech Republic
| | - Ram Prakash Lamba
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- CSIR- Central Electronics Engineering Research Institute, Pilani, Rajasthan, 333031, India
| | - Shivendra Maurya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- CSIR- Central Electronics Engineering Research Institute, Pilani, Rajasthan, 333031, India
| | - Udit Narayan Pal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
- CSIR- Central Electronics Engineering Research Institute, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
2
|
Barjasteh A, Kaushik N, Choi EH, Kaushik NK. Cold Atmospheric Pressure Plasma Solutions for Sustainable Food Packaging. Int J Mol Sci 2024; 25:6638. [PMID: 38928343 PMCID: PMC11203612 DOI: 10.3390/ijms25126638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Increasing the number of resistant bacteria resistant to treatment is one of the leading causes of death worldwide. These bacteria are created in wounds and injuries and can be transferred through hospital equipment. Various attempts have been made to treat these bacteria in recent years, such as using different drugs and new sterilization methods. However, some bacteria resist drugs, and other traditional methods cannot destroy them. In the meantime, various studies have shown that cold atmospheric plasma can kill these bacteria through different mechanisms, making cold plasma a promising tool to deactivate bacteria. This new technology can be effectively used in the food industry because it has the potential to inactivate microorganisms such as spores and microbial toxins and increase the wettability and printability of polymers to pack fresh and dried food. It can also increase the shelf life of food without leaving any residue or chemical effluent. This paper investigates cold plasma's potential, advantages, and disadvantages in the food industry and sterilization.
Collapse
Affiliation(s)
- Azadeh Barjasteh
- Department of Physics, Lorestan University, Khorramabad 68151-44316, Iran;
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea;
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea;
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea;
| |
Collapse
|
3
|
Puca V, Marinacci B, Pinti M, Di Cintio F, Sinjari B, Di Marcantonio MC, Mincione G, Acharya TR, Kaushik NK, Choi EH, Sallese M, Guarnieri S, Grande R, Perrotti V. Antimicrobial efficacy of direct air gas soft jet plasma for the in vitro reduction of oral bacterial biofilms. Sci Rep 2024; 14:10882. [PMID: 38740792 DOI: 10.1038/s41598-024-61438-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
The aim of this study was to evaluate the antimicrobial efficacy of an air gas soft jet CAP for its potential use in removing oral biofilms, given that plasma-based technologies have emerged as promising methods in periodontology. Two types of biofilms were developed, one by Streptococcus mutans UA 159 bacterial strain and the other by a complex mixture of saliva microorganisms isolated from a patient with periodontitis. This latter biofilm was characterized via Next Generation Sequencing to determine the main bacterial phyla. The CAP source was applied at a distance of 6 mm for different time points. A statistically significant reduction of both CFU count and XTT was already detected after 60 s of CAP treatment. CLSM analysis supported CAP effectiveness in killing the microorganisms inside the biofilm and in reducing the thickness of the biofilm matrix. Cytotoxicity tests demonstrated the possible use of CAP without important side effects towards human gingival fibroblasts cell line. The current study showed that CAP treatment was able to significantly reduce preformed biofilms developed by both S. mutans and microorganisms isolated by a saliva sample. Further studies should be conducted on biofilms developed by additional saliva donors to support the potential of this innovative strategy to counteract oral pathogens responsible for periodontal diseases.
Collapse
Affiliation(s)
- Valentina Puca
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Beatrice Marinacci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Morena Pinti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Federica Di Cintio
- Department of Oral, Medical and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Bruna Sinjari
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Gabriella Mincione
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Tirtha Raj Acharya
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Michele Sallese
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Rossella Grande
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy.
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Vittoria Perrotti
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
- UdA-TechLab, Research Center, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| |
Collapse
|
4
|
Ouyang H, Wang L, Sapkota D, Yang M, Morán J, Li L, Olson BA, Schwartz M, Hogan CJ, Torremorell M. Control technologies to prevent aerosol-based disease transmission in animal agriculture production settings: a review of established and emerging approaches. Front Vet Sci 2023; 10:1291312. [PMID: 38033641 PMCID: PMC10682736 DOI: 10.3389/fvets.2023.1291312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Transmission of infectious agents via aerosols is an ever-present concern in animal agriculture production settings, as the aerosol route to disease transmission can lead to difficult-to-control and costly diseases, such as porcine respiratory and reproductive syndrome virus and influenza A virus. It is increasingly necessary to implement control technologies to mitigate aerosol-based disease transmission. Here, we review currently utilized and prospective future aerosol control technologies to collect and potentially inactivate pathogens in aerosols, with an emphasis on technologies that can be incorporated into mechanically driven (forced air) ventilation systems to prevent aerosol-based disease spread from facility to facility. Broadly, we find that control technologies can be grouped into three categories: (1) currently implemented technologies; (2) scaled technologies used in industrial and medical settings; and (3) emerging technologies. Category (1) solely consists of fibrous filter media, which have been demonstrated to reduce the spread of PRRSV between swine production facilities. We review the mechanisms by which filters function and are rated (minimum efficiency reporting values). Category (2) consists of electrostatic precipitators (ESPs), used industrially to collect aerosol particles in higher flow rate systems, and ultraviolet C (UV-C) systems, used in medical settings to inactivate pathogens. Finally, category (3) consists of a variety of technologies, including ionization-based systems, microwaves, and those generating reactive oxygen species, often with the goal of pathogen inactivation in aerosols. As such technologies are typically first tested through varied means at the laboratory scale, we additionally review control technology testing techniques at various stages of development, from laboratory studies to field demonstration, and in doing so, suggest uniform testing and report standards are needed. Testing standards should consider the cost-benefit of implementing the technologies applicable to the livestock species of interest. Finally, we examine economic models for implementing aerosol control technologies, defining the collected infectious particles per unit energy demand.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
- Department of Mechanical Engineering, University of Texas-Dallas, Richardson, TX, United States
| | - Lan Wang
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Deepak Sapkota
- Department of Mechanical Engineering, University of Texas-Dallas, Richardson, TX, United States
| | - My Yang
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - José Morán
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Li Li
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Bernard A. Olson
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Mark Schwartz
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
- Schwartz Farms, Sleepy Eye, MN, United States
| | - Christopher J. Hogan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
5
|
Wu Y, Yu S, Zhang X, Wang X, Zhang J. The Regulatory Mechanism of Cold Plasma in Relation to Cell Activity and Its Application in Biomedical and Animal Husbandry Practices. Int J Mol Sci 2023; 24:ijms24087160. [PMID: 37108320 PMCID: PMC10138629 DOI: 10.3390/ijms24087160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
As an innovative technology in biological applications, cold plasma is widely used in oral treatment, tissue regeneration, wound healing, and cancer therapy, etc., because of the adjustable composition and temperature which allow the plasma to react with bio-objects safely. Reactive oxygen species (ROS) produced by cold plasma regulate cell activity in an intensity- and time-dependent manner. A low level of ROS produced by cold plasma treatment within the appropriate intensities and times promotes proliferation of skin-related cells and increases angiogenesis, which aid in the acceleration of the wound healing process, while a high level of ROS produced by cold plasma treatment performed at a high intensity or over a long period of time inhibits the proliferation of endothelial cells, keratinocytes, fibroblasts, and cancer cells. Moreover, cold plasma can regulate stem cell proliferation by changing niche interface and producing nitric oxide directly. However, the molecular mechanism of cold plasma regulating cell activity and its potential application in the field of animal husbandry remain unclear in the literature. Therefore, this paper reviews the effects and possible regulatory mechanisms of cold plasma on the activities of endothelial cells, keratinocytes, fibroblasts, stem cells, and cancer cells to provide a theoretical basis for the application of cold plasma to skin-wound healing and cancer therapy. In addition, cold plasma exposure at a high intensity or an extended time shows excellent performances in killing various microorganisms existing in the environment or on the surface of animal food, and preparing inactivated vaccines, while cold plasma treatment within the appropriate conditions improves chicken growth and reproductive capacity. This paper introduces the potential applications of cold plasma treatment in relation to animal-breeding environments, animal health, their growth and reproduction, and animal food processing and preservation, which are all beneficial to the practice of animal husbandry and guarantee good animal food safety results.
Collapse
Affiliation(s)
- Yijiao Wu
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Shiyu Yu
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xiyin Zhang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xianzhong Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Jiaojiao Zhang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Li CC, Chi XJ, Wang J, Potter AL, Wang XJ, Yang CFJ. Small molecule RAF265 as an antiviral therapy acts against HSV-1 by regulating cytoskeleton rearrangement and cellular translation machinery. J Med Virol 2023; 95:e28226. [PMID: 36251738 DOI: 10.1002/jmv.28226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023]
Abstract
Host-targeting antivirals (HTAs) have received increasing attention for their potential as broad-spectrum antivirals that pose relatively low risk of developing drug resistance. The repurposing of pharmaceutical drugs for use as antivirals is emerging as a cost- and time- efficient approach to developing HTAs for the treatment of a variety of viral infections. In this study, we used a virus titer method to screen 30 small molecules for antiviral activity against Herpes simplex virus-1 (HSV-1). We found that the small molecule RAF265, an anticancer drug that has been shown to be a potent inhibitor of B-RAF V600E, reduced viral loads of HSV-1 by 4 orders of magnitude in Vero cells and reduced virus proliferation in vivo. RAF265 mediated cytoskeleton rearrangement and targeted the host cell's translation machinery, which suggests that the antiviral activity of RAF265 may be attributed to a dual inhibition strategy. This study offers a starting point for further advances toward clinical development of antivirals against HSV-1.
Collapse
Affiliation(s)
- Cui-Cui Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jing Chi
- Department of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Alexandra L Potter
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chi-Fu Jeffrey Yang
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Han I, Mumtaz S, Choi EH. Nonthermal Biocompatible Plasma Inactivation of Coronavirus SARS-CoV-2: Prospects for Future Antiviral Applications. Viruses 2022; 14:2685. [PMID: 36560689 PMCID: PMC9785490 DOI: 10.3390/v14122685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic has placed a massive impact on global civilization. Finding effective treatments and drugs for these viral diseases was crucial. This paper outlined and highlighted key elements of recent advances in nonthermal biocompatible plasma (NBP) technology for antiviral applications. We searched for papers on NBP virus inactivation in PubMed ePubs, Scopus, and Web of Science databases. The data and relevant information were gathered in order to establish a mechanism for NBP-based viral inactivation. NBP has been developed as a new, effective, and safe strategy for viral inactivation. NBP may be used to inactivate viruses in an ecologically friendly way as well as activate animal and plant viruses in a number of matrices. The reactive species have been shown to be the cause of viral inactivation. NBP-based disinfection techniques provide an interesting solution to many of the problems since they are simply deployable and do not require the resource-constrained consumables and reagents required for traditional decontamination treatments. Scientists are developing NBP technology solutions to assist the medical community in dealing with the present COVID-19 outbreak. NBP is predicted to be the most promising strategy for battling COVID-19 and other viruses in the future.
Collapse
Affiliation(s)
- Ihn Han
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Republic of Korea
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sohail Mumtaz
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eun Ha Choi
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Republic of Korea
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
8
|
Chen Z, Bai F, Jonas SJ, Wirz RE. Cold atmospheric plasma for addressing the COVID-19 pandemic. PLASMA PROCESSES AND POLYMERS (PRINT) 2022; 19:2200012. [PMID: 35574246 PMCID: PMC9088580 DOI: 10.1002/ppap.202200012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 05/16/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has greatly stressed the global community, exposing vulnerabilities in the supply chains for disinfection materials, personal protective equipment, and medical resources worldwide. Disinfection methods based on cold atmospheric plasma (CAP) technologies offer an intriguing solution to many of these challenges because they are easily deployable and do not require resource-constrained consumables or reagents needed for conventional decontamination practices. CAP technologies have shown great promise for a wide range of medical applications from wound healing and cancer treatment to sterilization methods to mitigate airborne and fomite transfer of viruses. This review engages the broader community of scientists and engineers that wish to help the medical community with the ongoing COVID-19 pandemic by establishing methods to utilize broadly applicable CAP technologies.
Collapse
Affiliation(s)
- Zhitong Chen
- Department of Mechanical and Aerospace EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Advanced Therapy CenterNational Innovation Center for Advanced Medical DevicesShenzhenPeople's Republic of China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenPeople's Republic of China
| | - Fan Bai
- Advanced Therapy CenterNational Innovation Center for Advanced Medical DevicesShenzhenPeople's Republic of China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenPeople's Republic of China
| | - Steven J. Jonas
- Department of Pediatrics, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Richard E. Wirz
- Department of Mechanical and Aerospace EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
9
|
Guesmi A, Cherif MM, Baaloudj O, Kenfoud H, Badawi AK, Elfalleh W, Hamadi NB, Khezami L, Assadi AA. Disinfection of corona and myriad viruses in water by non-thermal plasma: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55321-55335. [PMID: 35661305 PMCID: PMC9165927 DOI: 10.1007/s11356-022-21160-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/24/2022] [Indexed: 05/06/2023]
Abstract
Nowadays, in parallel to the appearance of the COVID-19 virus, the risk of viruses in water increases leading to the necessity of developing novel disinfection methods. This review focuses on the route of virus contamination in water and introduces non-thermal plasma technology as a promising method for the inactivation of viruses. Effects of essential parameters affecting the non-thermal discharge for viral inactivation have been exposed. The review has also illustrated a critical discussion of this technology with other advanced oxidation processes. Additionally, the inactivation mechanisms have also been detailed based on reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Ahlem Guesmi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh, 11432, Saudi Arabia
| | - Mohamed Majdi Cherif
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, 6072, Gabes, Tunisia
| | - Oussama Baaloudj
- Laboratory of Reaction Engineering, USTHB, BP 32, 16111, Algiers, Algeria
| | - Hamza Kenfoud
- Laboratory of Reaction Engineering, USTHB, BP 32, 16111, Algiers, Algeria
| | - Ahmad K Badawi
- Civil Engineering Department, El-Madina Higher Institute for Engineering and Technology, Giza, 12588, Egypt
| | - Walid Elfalleh
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, 6072, Gabes, Tunisia
| | - Naoufel Ben Hamadi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh, 11432, Saudi Arabia
| | - Lotfi Khezami
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh, 11432, Saudi Arabia.
| | | |
Collapse
|
10
|
Jenns K, Sassi HP, Zhou R, Cullen PJ, Carter D, Mai-Prochnow A. Inactivation of foodborne viruses: Opportunities for cold atmospheric plasma. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Modulating the Antioxidant Response for Better Oxidative Stress-Inducing Therapies: How to Take Advantage of Two Sides of the Same Medal? Biomedicines 2022; 10:biomedicines10040823. [PMID: 35453573 PMCID: PMC9029215 DOI: 10.3390/biomedicines10040823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress-inducing therapies are characterized as a specific treatment that involves the production of reactive oxygen and nitrogen species (RONS) by external or internal sources. To protect cells against oxidative stress, cells have evolved a strong antioxidant defense system to either prevent RONS formation or scavenge them. The maintenance of the redox balance ensures signal transduction, development, cell proliferation, regulation of the mechanisms of cell death, among others. Oxidative stress can beneficially be used to treat several diseases such as neurodegenerative disorders, heart disease, cancer, and other diseases by regulating the antioxidant system. Understanding the mechanisms of various endogenous antioxidant systems can increase the therapeutic efficacy of oxidative stress-based therapies, leading to clinical success in medical treatment. This review deals with the recent novel findings of various cellular endogenous antioxidant responses behind oxidative stress, highlighting their implication in various human diseases, such as ulcers, skin pathologies, oncology, and viral infections such as SARS-CoV-2.
Collapse
|
12
|
Assadi I, Guesmi A, Baaloudj O, Zeghioud H, Elfalleh W, Benhammadi N, Khezami L, Assadi AA. Review on inactivation of airborne viruses using non-thermal plasma technologies: from MS2 to coronavirus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4880-4892. [PMID: 34796437 PMCID: PMC8601095 DOI: 10.1007/s11356-021-17486-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/08/2021] [Indexed: 04/12/2023]
Abstract
Although several non-thermal plasmas (NTPs) technologies have been widely investigated in air treatment, very few studies have focused on the inactivation mechanism of viruses by NTPs. Due to its efficiency and environmental compatibility, non-thermal plasma could be considered a promising virus-inactivation technology. Plasma is a partly or fully ionized gas including some species (i.e., electrons, free radicals, ions, and neutral molecules) to oxidize pollutants or inactivate harmful organisms. Non-thermal plasmas are made using less energy and have an active electron at a much higher temperature than bulk gas molecules. This review describes NTPs for virus inactivation in indoor air. The different application processes of plasma for microorganism inactivation at both laboratory and pilot-scale was also reviewed This paper reports on recent advances in this exciting area of viral inactivation identifying applications and mechanisms of inactivation, and summarizing the results of the latest experiments in the literature. Moreover, special attention was paid to the mechanism of virus inactivation. Finally, the paper suggests research directions in the field of airborne virus inactivation using non-thermal plasma.
Collapse
Affiliation(s)
- Imen Assadi
- Laboratoire Energie, Eau, Environnement Et Procèdes, ENIG, Université de Gabès, LR18ES356072, Gabès, Tunisia
| | - Ahlem Guesmi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, 11432, Riyadh, Saudi Arabia
| | - Oussama Baaloudj
- Laboratory of Reaction Engineering, USTHB, BP 32, 16111, Algiers, Algeria
| | - Hichem Zeghioud
- Department of Process Engineering, Badji Mokhtar University, P.O. Box 12, 23000, Annaba, Algeria
| | - Walid Elfalleh
- Laboratoire Energie, Eau, Environnement Et Procèdes, ENIG, Université de Gabès, LR18ES356072, Gabès, Tunisia
| | - Naoufel Benhammadi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, 11432, Riyadh, Saudi Arabia
| | - Lotfi Khezami
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, 11432, Riyadh, Saudi Arabia
| | | |
Collapse
|
13
|
Misra N, Bhatt S, Arefi‐Khonsari F, Kumar V. State of the art in nonthermal plasma processing for biomedical applications: Can it help fight viral pandemics like COVID-19? PLASMA PROCESSES AND POLYMERS (PRINT) 2021; 18:2000215. [PMID: 34220401 PMCID: PMC8237024 DOI: 10.1002/ppap.202000215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/07/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Plasma processing finds widespread biomedical applications, such as the design of biosensors, antibiofouling surfaces, controlled drug delivery systems, and in plasma sterilizers. In the present coronavirus disease (COVID-19) situation, the prospect of applying plasma processes like surface activation, plasma grafting, plasma-enhanced chemical vapor deposition/plasma polymerization, surface etching, plasma immersion ion implantation, crosslinking, and plasma decontamination to provide timely solutions in the form of better antiviral alternatives, practical diagnostic tools, and reusable personal protective equipment is worth exploring. Herein, the role of nonthermal plasmas and their contributions toward healthcare are timely reviewed to engage different communities in assisting healthcare associates and clinicians, not only to combat the current COVID-19 pandemic but also to prevent similar kinds of future outbreaks.
Collapse
Affiliation(s)
- Nilanjal Misra
- Radiation Technology Development DivisionBhabha Atomic Research CentreTrombayMumbaiMaharashtraIndia
| | - Sudhir Bhatt
- Department of Engineering and Physical SciencesInstitute of Advanced ResearchGandhinagarGujaratIndia
| | | | - Virendra Kumar
- Radiation Technology Development DivisionBhabha Atomic Research CentreTrombayMumbaiMaharashtraIndia
- Department of Chemical SciencesHomi Bhabha National InstituteAnushaktinagarMumbaiMaharashtraIndia
| |
Collapse
|
14
|
Gao L, Shi X, Wu X. Applications and challenges of low temperature plasma in pharmaceutical field. J Pharm Anal 2021; 11:28-36. [PMID: 33717609 PMCID: PMC7930796 DOI: 10.1016/j.jpha.2020.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/13/2020] [Accepted: 05/06/2020] [Indexed: 01/20/2023] Open
Abstract
Low temperature plasma (LTP) technology has shown an outstanding application value in the pharmaceutical filed in recent ten years. This paper reviews the research advances in LTP, including its effects on enhancing or inhibiting drug activity, its combined use with drugs to treat cancers, its effects on the improvement of drug delivery system, its use in preparation of new inactivated virus vaccines, its use with mass spectrometry for rapid detection of drug quality, and the anti-tumor and sterilization effects of plasma-activated liquids. The paper also analyzes the challenges of LTP in the pharmaceutical filed, hoping to promote related research.
Collapse
Affiliation(s)
- Lingge Gao
- School of Public Health, Medical Science Center, Xi’an Jiaotong University, Xi’an, 710061, China
| | - Xingmin Shi
- School of Public Health, Medical Science Center, Xi’an Jiaotong University, Xi’an, 710061, China
| | - Xili Wu
- Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, 710004, China
| |
Collapse
|
15
|
Mohamed H, Esposito RA, Kutzler MA, Wigdahl B, Krebs FC, Miller V. Nonthermal plasma as part of a novel strategy for vaccination. PLASMA PROCESSES AND POLYMERS (PRINT) 2020; 17:2000051. [PMID: 32837491 PMCID: PMC7404442 DOI: 10.1002/ppap.202000051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/28/2020] [Accepted: 06/28/2020] [Indexed: 05/03/2023]
Abstract
Vaccination has been one of the most effective health intervention mechanisms to reduce morbidity and mortality associated with infectious diseases. Vaccines stimulate the body's protective immune responses through controlled exposure to modified versions of pathogens that establish immunological memory. However, only a few diseases have effective vaccines. The biological effects of nonthermal plasma on cells suggest that plasma could play an important role in improving efficacy of existing vaccines and overcoming some of the limitations and challenges with current vaccination strategies. This review summarizes the opportunities for nonthermal plasma for immunization and therapeutic purposes.
Collapse
Affiliation(s)
- Hager Mohamed
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious DiseaseDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Rita A. Esposito
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious DiseaseDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Michele A. Kutzler
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious DiseaseDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious DiseaseDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Fred C. Krebs
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious DiseaseDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Vandana Miller
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious DiseaseDrexel University College of MedicinePhiladelphiaPennsylvania
| |
Collapse
|
16
|
Bekeschus S, Kramer A, Suffredini E, von Woedtke T, Colombo V. Gas Plasma Technology-An Asset to Healthcare During Viral Pandemics Such as the COVID-19 Crisis? IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020; 4:391-399. [PMID: 34192214 PMCID: PMC8043491 DOI: 10.1109/trpms.2020.3002658] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022]
Abstract
The COVID-19 crisis profoundly disguised the vulnerability of human societies and healthcare systems in the situation of a pandemic. In many instances, it became evident that the quick and safe reduction of viral load and spread is the foremost principle in the successful management of such a pandemic. However, it became also clear that many of the established routines in healthcare are not always sufficient to cope with the increased demand for decontamination procedures of items, healthcare products, and even infected tissues. For the last 25 years, the use of gas plasma technology has sparked a tremendous amount of literature on its decontaminating properties, especially for heat-labile targets, such as polymers and tissues, where chemical decontamination often is not appropriate. However, while the majority of earlier work focused on bacteria, only relatively few reports are available on the inactivation of viruses. We here aim to provide a perspective for the general audience of the chances and opportunities of gas plasma technology for supporting healthcare during viral pandemics such as the COVID-19 crisis. This includes possible real-world plasma applications, appropriate laboratory viral test systems, and critical points on the technical and safety requirements of gas plasmas for virus inactivation.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP)17489GreifswaldGermany
- Leibniz Networks on Health Technologies and Immune-mediated Diseases
| | - Axel Kramer
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center17489GreifswaldGermany
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public HealthIstituto Superiore di Sanità00161RomeItaly
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP)17489GreifswaldGermany
- Leibniz Network on Health Technologies
| | - Vittorio Colombo
- Department of Industrial Engineering, Interdepartmental Center for Agri-food Industrial Research, Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials TechnologyAlma Mater Studiorum-Università di Bologna40136BolognaItaly
| |
Collapse
|
17
|
Filipić A, Gutierrez-Aguirre I, Primc G, Mozetič M, Dobnik D. Cold Plasma, a New Hope in the Field of Virus Inactivation. Trends Biotechnol 2020; 38:1278-1291. [PMID: 32418663 PMCID: PMC7164895 DOI: 10.1016/j.tibtech.2020.04.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
Viruses can infect all cell-based organisms, from bacteria to humans, animals, and plants. They are responsible for numerous cases of hospitalization, many deaths, and widespread crop destruction, all of which result in an enormous medical, economical, and biological burden. Each of the currently used decontamination methods has important drawbacks. Cold plasma (CP) has entered this field as a novel, efficient, and clean solution for virus inactivation. We present recent developments in this promising field of CP-mediated virus inactivation, and describe the applications and mechanisms of the inactivation. This is particularly relevant because viral pandemics, such as COVID-19, highlight the need for alternative virus inactivation methods to replace, complement, or upgrade existing procedures. Pathogenic viruses are becoming an increasing burden for health, agriculture, and the global economy. Classic disinfection methods have several drawbacks, and innovative solutions for virus inactivation are urgently needed. CP can be used as an environmentally friendly tool for virus inactivation. It can inactivate different human, animal, and plant viruses in various matrices. When using CP for virus inactivation it is important to set the correct parameters and to choose treatment durations that allow particles to interact with the contaminated material. Reactive oxygen and/or nitrogen species have been shown to be responsible for virus inactivation through effects on capsid proteins and/or nucleic acids. The development of more accurate methods will provide information on which plasma particles are crucial in each experiment, and how exactly they affect viruses.
Collapse
Affiliation(s)
- Arijana Filipić
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia.
| | - Ion Gutierrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Gregor Primc
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Miran Mozetič
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Hongzhuan Z, Ying T, Xia S, Jinsong G, Zhenhua Z, Beiyu J, Yanyan C, Lulu L, Jue Z, Bing Y, Jing F. Preparation of the inactivated Newcastle disease vaccine by plasma activated water and evaluation of its protection efficacy. Appl Microbiol Biotechnol 2020; 104:107-117. [PMID: 31734810 PMCID: PMC6942578 DOI: 10.1007/s00253-019-10106-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/06/2019] [Accepted: 08/26/2019] [Indexed: 11/21/2022]
Abstract
Vaccination has been regarded as the most effective way to reduce death and morbidity caused by infectious diseases in the livestock industry. In this study, plasma activated water (PAW) was introduced to prepare the inactivated Newcastle disease vaccine. Humoral immune response was tested by hemagglutination inhibition (HI) assay and enzyme-linked immunosorbent assay (ELISA). In addition, cell-mediated immune response was evaluated by lymphocyte proliferation assay and flow cytometry. The results demonstrated that the vaccine prepared by PAW at appropriate volume ratio could induce similar antibody titers in specific pathogen-free (SPF) chickens compared with the formaldehyde-inactivated vaccine. The challenge experiment further confirmed that the vaccine prepared by PAW conferred solid protection against virulent NDV. Moreover, it was found that the vaccine could promote the proliferation of lymphocytes and stimulate cell-mediated immunity of SPF chickens. Furthermore, analysis of electron spin resonance (ESR) spectroscopy and physicochemical properties of PAW suggested reactive oxygen and nitrogen species (RONS) played an essential role in the virus inactivation. Therefore, this study indicated that NDV treated by PAW in an appropriate ratio retained immunogenicity on the premise of virus inactivation. PAW as a promising strategy could be used to prepare inactivated vaccine for Newcastle disease.
Collapse
Affiliation(s)
- Zhou Hongzhuan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Tian Ying
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| | - Su Xia
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Guo Jinsong
- College of Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Zhang Zhenhua
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Jiang Beiyu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Chang Yanyan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Lin Lulu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Zhang Jue
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China.
- College of Engineering, Peking University, Beijing, 100871, People's Republic of China.
| | - Yang Bing
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| | - Fang Jing
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
- College of Engineering, Peking University, Beijing, 100871, People's Republic of China
| |
Collapse
|
19
|
Kwon T, Chandimali N, Lee DH, Son Y, Yoon SB, Lee JR, Lee S, Kim KJ, Lee SY, Kim SY, Jo YJ, Kim M, Park BJ, Lee JK, Jeong DK, Kim JS. Potential Applications of Non-thermal Plasma in Animal Husbandry to Improve Infrastructure. In Vivo 2019; 33:999-1010. [PMID: 31280188 PMCID: PMC6689345 DOI: 10.21873/invivo.11569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/28/2022]
Abstract
Infrastructure in animal husbandry refers to fundamental facilities and services necessary for better living conditions of animals and its economy to function through better productivity. Mainly, infrastructure can be divided into two categories: hard infrastructure and soft infrastructure. Physical infrastructure, such as buildings, roads, and water supplying systems, belongs to hard infrastructure. Soft infrastructure includes services which are required to maintain economic, health, cultural and social standards of animal husbandry. Therefore, the proper management of infrastructure in animal husbandry is necessary for animal welfare and its economy. Among various technologies to improve the quality of infrastructure, non-thermal plasma (NTP) technology is an effectively applicable technology in different stages of animal husbandry. NTP is mainly helpful in maintaining better health conditions of animals in several ways via decontamination from microorganisms present in air, water, food, instruments and surfaces of animal farming systems. Furthermore, NTP is used in the treatment of waste water, vaccine production, wound healing in animals, odor-free ventilation, and packaging of animal food or animal products. This review summarizes the recent studies of NTP which can be related to the infrastructure in animal husbandry.
Collapse
Affiliation(s)
- Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Nisansala Chandimali
- Immunotherapy Convergence Research Center,Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Dong-Ho Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Yeonghoon Son
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Seung-Bin Yoon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Ja-Rang Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Sangil Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Ki Jin Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Sang-Yong Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Se-Yong Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Yu-Jin Jo
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Minseong Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Byoung-Jin Park
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Jun-Ki Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| |
Collapse
|
20
|
Gavahian M, Chu Y, Jo C. Prospective Applications of Cold Plasma for Processing Poultry Products: Benefits, Effects on Quality Attributes, and Limitations. Compr Rev Food Sci Food Saf 2019; 18:1292-1309. [DOI: 10.1111/1541-4337.12460] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/07/2019] [Accepted: 05/12/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Mohsen Gavahian
- Product and Process Research CenterFood Industry Research and Development Inst. No. 331 Shih‐Pin Rd. Hsinchu 30062 Taiwan Republic of China
| | - Yan‐Hwa Chu
- Product and Process Research CenterFood Industry Research and Development Inst. No. 331 Shih‐Pin Rd. Hsinchu 30062 Taiwan Republic of China
| | - Cheorun Jo
- Dept. of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Inst. of Agriculture and Life ScienceSeoul National Univ. Seoul 08826 South Korea
| |
Collapse
|
21
|
Antibacterial Potency of Ozonated Water against Escherichia coli. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.73] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Dong HJ, Wang ZH, Meng W, Li CC, Hu YX, Zhou L, Wang XJ. The Natural Compound Homoharringtonine Presents Broad Antiviral Activity In Vitro and In Vivo. Viruses 2018; 10:E601. [PMID: 30388805 PMCID: PMC6266276 DOI: 10.3390/v10110601] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022] Open
Abstract
To complement traditional antivirals, natural compounds that act via host targets and present high barriers to resistance are of increasing interest. In the work reported here, we detected that homoharringtonine (HHT) presents effective antiviral activity. HHT completely inhibited infections of vesicular stomatitis virus (VSV), Newcastle disease virus (NDV), and porcine epidemic diarrhea virus (PEDV) at concentrations of 50, 100, and 500 nM in cell cultures, respectively. Treatment with HHT at doses of 0.05 or 0.2 mg/kg significantly reduced viral load and relieved severe symptoms in PEDV- or NDV-infected animals. HHT treatment, however, moderately inhibited avian influenza virus (AIV) infection, suggesting its potent antiviral action is restricted to a number of classes of RNA viruses. In this study, we also observed that HHT actively inhibited herpes simplex virus type 1 (HSV-1) replication with a 50% inhibitory concentration (IC50) of 139 nM; the treatment with HHT at 1000 nM led to reductions of three orders of magnitude. Moreover, HHT antagonized the phosphorylation level of endogenous and exogenous eukaryotic initiation factor 4E (p-eIF4E), which might regulate the selective translation of specific messenger RNA (mRNA). HHT provides a starting point for further progress toward the clinical development of broad-spectrum antivirals.
Collapse
Affiliation(s)
- Hui-Jun Dong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Zhao-Hua Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Wen Meng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Cui-Cui Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Yan-Xin Hu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Su X, Tian Y, Zhou H, Li Y, Zhang Z, Jiang B, Yang B, Zhang J, Fang J. Inactivation Efficacy of Nonthermal Plasma-Activated Solutions against Newcastle Disease Virus. Appl Environ Microbiol 2018. [PMID: 29475861 DOI: 10.1128/aem.02836-17,02836-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
In recent years, plasma-activated solutions (PASs) have made good progress in the disinfection of medical devices, tooth whitening, and fruit preservation. In this study, we investigated the inactivation efficacy of Newcastle disease virus by PASs. Water, 0.9% NaCl, and 0.3% H2O2 were excited by plasma to obtain the corresponding solutions PAS(H2O), PAS(NaCl), and PAS(H2O2). The complete inactivation of virus after PAS treatment for 30 min was confirmed by the embryo lethality assay (ELA) and hemagglutination (HA) test. Scanning electron microscopy (SEM) results showed that the morphology of the viral particle changed under PAS treatments. The total protein concentration of virus decreased as measured by a Bradford protein assay due to PAS treatment. The nucleic acid integrity assay demonstrated that viral RNA degraded into smaller fragments. Moreover, the physicochemical properties of PASs, including the oxidation-reduction potential (ORP), electrical conductivity, and H2O2 concentration, and electron spin resonance spectra analysis indicated that reactive oxygen and nitrogen species play a major role in the virus inactivation. Therefore, the application of PASs, as an environmentally friendly method, would be a promising alternative strategy in poultry industries.IMPORTANCE Newcastle disease (ND), as an infectious viral disease of avian species, caused significant economic losses to domestic animal and poultry industries. The traditional chemical sanitizers, such as chlorine-based products, are associated with risks of by-product formation with carcinogenic effects and environmental pollution. On the basis of this, plasma-activated water as a green disinfection product is a promising alternative for applications in stock farming and sterilization in hospitals and public places. In this study, we explored the inactivation efficacy of different plasma-activated solutions (PASs) against ND virus (NDV) and the possible underlying mechanisms. Our results demonstrated that reactive oxygen and nitrogen species detected in PASs, including short-lived OH˙ and NO˙ and long-lived H2O2, changed the morphology, destroyed the RNA structure, and degraded the protein of the virus, consequently resulting in virus inactivation. These lay a foundation for the application of PASs to resolve the issues of public health and environmental sanitation.
Collapse
Affiliation(s)
- Xia Su
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Ying Tian
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Hongzhuan Zhou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Yinglong Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Zhenhua Zhang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Beiyu Jiang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Bing Yang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
- College of Engineering, Peking University, Beijing, People's Republic of China
| | - Jing Fang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
- College of Engineering, Peking University, Beijing, People's Republic of China
| |
Collapse
|
24
|
Su X, Tian Y, Zhou H, Li Y, Zhang Z, Jiang B, Yang B, Zhang J, Fang J. Inactivation Efficacy of Nonthermal Plasma-Activated Solutions against Newcastle Disease Virus. Appl Environ Microbiol 2018; 84:e02836-17. [PMID: 29475861 PMCID: PMC5930319 DOI: 10.1128/aem.02836-17] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/07/2018] [Indexed: 12/29/2022] Open
Abstract
In recent years, plasma-activated solutions (PASs) have made good progress in the disinfection of medical devices, tooth whitening, and fruit preservation. In this study, we investigated the inactivation efficacy of Newcastle disease virus by PASs. Water, 0.9% NaCl, and 0.3% H2O2 were excited by plasma to obtain the corresponding solutions PAS(H2O), PAS(NaCl), and PAS(H2O2). The complete inactivation of virus after PAS treatment for 30 min was confirmed by the embryo lethality assay (ELA) and hemagglutination (HA) test. Scanning electron microscopy (SEM) results showed that the morphology of the viral particle changed under PAS treatments. The total protein concentration of virus decreased as measured by a Bradford protein assay due to PAS treatment. The nucleic acid integrity assay demonstrated that viral RNA degraded into smaller fragments. Moreover, the physicochemical properties of PASs, including the oxidation-reduction potential (ORP), electrical conductivity, and H2O2 concentration, and electron spin resonance spectra analysis indicated that reactive oxygen and nitrogen species play a major role in the virus inactivation. Therefore, the application of PASs, as an environmentally friendly method, would be a promising alternative strategy in poultry industries.IMPORTANCE Newcastle disease (ND), as an infectious viral disease of avian species, caused significant economic losses to domestic animal and poultry industries. The traditional chemical sanitizers, such as chlorine-based products, are associated with risks of by-product formation with carcinogenic effects and environmental pollution. On the basis of this, plasma-activated water as a green disinfection product is a promising alternative for applications in stock farming and sterilization in hospitals and public places. In this study, we explored the inactivation efficacy of different plasma-activated solutions (PASs) against ND virus (NDV) and the possible underlying mechanisms. Our results demonstrated that reactive oxygen and nitrogen species detected in PASs, including short-lived OH˙ and NO˙ and long-lived H2O2, changed the morphology, destroyed the RNA structure, and degraded the protein of the virus, consequently resulting in virus inactivation. These lay a foundation for the application of PASs to resolve the issues of public health and environmental sanitation.
Collapse
Affiliation(s)
- Xia Su
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Ying Tian
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Hongzhuan Zhou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Yinglong Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Zhenhua Zhang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Beiyu Jiang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Bing Yang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
- College of Engineering, Peking University, Beijing, People's Republic of China
| | - Jing Fang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
- College of Engineering, Peking University, Beijing, People's Republic of China
| |
Collapse
|
25
|
Li CC, Dong HJ, Wang P, Meng W, Chi XJ, Han SC, Ning S, Wang C, Wang XJ. Cellular protein GLTSCR2: A valuable target for the development of broad-spectrum antivirals. Antiviral Res 2017; 142:1-11. [PMID: 28286234 PMCID: PMC7113796 DOI: 10.1016/j.antiviral.2017.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/20/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022]
Abstract
Viral infection induces translocation of the nucleolar protein GLTSCR2 from the nucleus to the cytoplasm, resulting in attenuation of the type I interferon IFN-β. Addressing the role of GLTSCR2 in viral replication, we detect that knocking down GLTSCR2 by shRNAs results in significant suppression of viral replication in mammalian and chicken cells. Injection of chicken embryo with the GLTSCR2-specific shRNA-1370 simultaneously or 24 h prior to infection with Newcastle disease virus (NDV) substantially reduces viral replication in chicken embryo fibroblasts. Injection of shRNA-1370 into chicken embryo also reduces the replication of avian influenza virus (AIV). In contrast, GLTSCR2-derived protein G4-T, forming α-helical dimers, increases replication of seven various DNA and RNA viruses in cells. Our studies reveal that alteration of the function of cellular GLTSCR2 plays a role in supporting viral replication. GLTSCR2 should be seriously considered as a therapeutic target for developing broad spectrum antiviral agents to effectively control viral infection.
Collapse
Affiliation(s)
- Cui-Cui Li
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hui-Jun Dong
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Wang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wen Meng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jing Chi
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Shi-Chong Han
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuo Ning
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chuang Wang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jia Wang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
26
|
Zhao J, Yang H, Xu H, Ma Z, Zhang G. Efficacy of an inactivated bivalent vaccine against the prevalent strains of Newcastle disease and H9N2 avian influenza. Virol J 2017; 14:56. [PMID: 28302119 PMCID: PMC5356287 DOI: 10.1186/s12985-017-0723-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/07/2017] [Indexed: 11/22/2022] Open
Abstract
Background Newcastle disease (ND) and avian influenza subtype H9N2 (H9N2 AI) are two of the most important diseases of poultry, causing severe economic losses in the global poultry industry. Vaccination is an effective way to prevent and control the spread of ND virus (NDV) and H9N2 AI virus (AIV), but the antigenic differences between the current circulating strains and the vaccine strains might account for recent ND and H9N2 AI outbreaks in vaccinated poultry flocks. Methods We developed an inactivated bivalent H9N2 and NDV vaccine based on the current prevalent strains of H9N2 AIV and NDV in China and evaluated its efficacy in chickens in this study. Results The results indicated that the inactivated bivalent vaccine could induce a fast antibody response in vaccinated chickens. The hemagglutination inhibition (HI) titer in the sera increased rapidly, and the highest HI titer was observed at 4 weeks post-vaccination (wpv) with a mean titre of 8.6 log2 for NDV and 9.5 log2 for H9N2. Up until 15 wpv, HI titers were still detectable at a high level of over 6 log2. The immunized chickens showed no signs of disease after challenge at 3 wpv with the prevalent strains of NDV and H9N2 AIV isolated in 2012–2014. Moreover, viral shedding was completely inhibited in vaccinated chickens after challenge with H9N2 AIV and inhibited by at least 90% with NDV compared to the controls at 5dpc. Conclusions Our findings suggest that the inactivated NDV and H9N2 vaccine induces a fast and strong antibody response in vaccinated chickens and is efficacious in poultry against NDVs and H9N2 AIVs.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Animal Epidemiology and Zoonoses;, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Huiming Yang
- Key Laboratory of Animal Epidemiology and Zoonoses;, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Hongjun Xu
- Chengdu Tecbond Biological Products Co., Ltd, Sichuan, 610100, People's Republic of China
| | - Zengbin Ma
- Key Laboratory of Animal Epidemiology and Zoonoses;, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology and Zoonoses;, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|