1
|
Zou H, Yin W, Geng P, Lin L, Nie X, Tao Z, Chen G, Chen B, Feng H, Xu K, Zhang Z. A comprehensive analysis of the major specificities of anti-human T lymphocyte porcine immunoglobulin (p-ATG). Ann Hematol 2025; 104:761-771. [PMID: 39402313 PMCID: PMC11868322 DOI: 10.1007/s00277-024-06028-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/25/2024] [Indexed: 02/28/2025]
Abstract
BACKGROUND Anti-human T lymphocyte porcine immunoglobulin (p-ATG) is a potent immunosuppressive agent derived from porcine sources used in various immunotherapy applications. It is compared with similar products derived from other species, such as rabbit anti-thymocyte globulin (r-ATG) and ATG-Fresenius (ATG-F), which have distinct biological and therapeutic properties. This study aims to elucidate the mechanisms of action and comparative efficacy of p-ATG in relation to r-ATG and ATG-F through a comprehensive in vitro analysis. METHODS A comparative analysis of p-ATG, r-ATG and ATG-F was performed, focusing on E rosette inhibitory potency, lymphocyte toxic potency, blocking activities of 24 CD molecules, and flow quantitative potency. Flow cytometric analysis was used to quantify these characteristics and assess the potency of the immunoglobulins. RESULTS p-ATG exhibited lower E rosette inhibitory and lymphocyte toxic potencies compared to r-ATG but was significantly more potent than ATG-F at equivalent concentrations. At protein concentrations above 12.5 µg/mL, p-ATG showed slightly lower potency than r-ATG and much higher potency than ATG-F in flow cytometry assays. Both p-ATG and r-ATG exhibited similar killing effects on lymphocytes within the peripheral blood mononuclear cells (PBMCs), including CD3 + T cells, with a dose-dependent response. Notably, p-ATG displayed more pronounced blocking activities against CD8, CD99, and TCR α/β compared to r-ATG. CONCLUSION p-ATG offers certain advantages over r-ATG and ATG-F, particularly in its ability to inhibit specific CD molecules and its overall potency in immunosuppressive assays, providing valuable insights for assisting clinical decision-making regarding the selection of ATG types based on patient-specific needs and treatment objectives.
Collapse
Affiliation(s)
- Haoyong Zou
- YuJin Biological Basic research laboratory, Wuhan Institute of Biological Products, Wuhan, 430207, Hubei, China
| | - Wenqu Yin
- YuJin Biological Basic research laboratory, Wuhan Institute of Biological Products, Wuhan, 430207, Hubei, China
| | - Peng Geng
- YuJin Biological Basic research laboratory, Wuhan Institute of Biological Products, Wuhan, 430207, Hubei, China
| | - Li Lin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xilin Nie
- YuJin Biological Basic research laboratory, Wuhan Institute of Biological Products, Wuhan, 430207, Hubei, China
| | - Zui Tao
- YuJin Biological Basic research laboratory, Wuhan Institute of Biological Products, Wuhan, 430207, Hubei, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Bin Chen
- YuJin Biological Basic research laboratory, Wuhan Institute of Biological Products, Wuhan, 430207, Hubei, China
| | - Hao Feng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Kuanhong Xu
- YuJin Biological Basic research laboratory, Wuhan Institute of Biological Products, Wuhan, 430207, Hubei, China
| | - Zhi Zhang
- YuJin Biological Basic research laboratory, Wuhan Institute of Biological Products, Wuhan, 430207, Hubei, China.
| |
Collapse
|
2
|
Martinez EJ, Chang WC, Chen WH, Hajduczki A, Thomas PV, Jensen JL, Choe M, Sankhala RS, Peterson CE, Rees PA, Kimner J, Soman S, Kuklis C, Mendez-Rivera L, Dussupt V, King J, Corbett C, Mayer SV, Fernandes A, Murzello K, Cookenham T, Hvizdos J, Kummer L, Hart T, Lanzer K, Gambacurta J, Reagan M, Duso D, Vasan S, Collins ND, Michael NL, Krebs SJ, Gromowski GD, Modjarrad K, Kaundinya J, Joyce MG. SARS-CoV-2 ferritin nanoparticle vaccines produce hyperimmune equine sera with broad sarbecovirus activity. iScience 2024; 27:110624. [PMID: 39351195 PMCID: PMC11440237 DOI: 10.1016/j.isci.2024.110624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/23/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
The rapid emergence of SARS-CoV-2 variants of concern (VoC) and the threat of future zoonotic sarbecovirus spillover emphasizes the need for broadly protective next-generation vaccines and therapeutics. We utilized SARS-CoV-2 spike ferritin nanoparticle (SpFN), and SARS-CoV-2 receptor binding domain ferritin nanoparticle (RFN) immunogens, in an equine model to elicit hyperimmune sera and evaluated its sarbecovirus neutralization and protection capacity. Immunized animals rapidly elicited sera with the potent neutralization of SARS-CoV-2 VoC, and SARS-CoV-1 pseudoviruses, and potent binding against receptor binding domains from sarbecovirus clades 1b, 1a, 2, 3, and 4. Purified equine polyclonal IgG provided protection against Omicron XBB.1.5 virus in the K18-hACE2 transgenic mouse model. These results suggest that SARS-CoV-2-based nanoparticle vaccines can rapidly produce a broad and protective sarbecovirus response in the equine model and that equine serum has therapeutic potential against emerging SARS-CoV-2 VoC and diverse sarbecoviruses, presenting a possible alternative or supplement to monoclonal antibody immunotherapies.
Collapse
Affiliation(s)
- Elizabeth J Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Paul V Thomas
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jaime L Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Phyllis A Rees
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jordan Kimner
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandrine Soman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Caitlin Kuklis
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Letzibeth Mendez-Rivera
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Vincent Dussupt
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jocelyn King
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Courtney Corbett
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Sandra V Mayer
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | - Sandhya Vasan
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Natalie D Collins
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| |
Collapse
|
3
|
Ranjbaran H, Ehteshaminia Y, Nadernezhad M, Jalali SF, Jadidi-Niaragh F, Pagheh AS, Enderami SE, Kenari SA, Hassannia H. Comparison of neutralization potency across passive immunotherapy approaches as potential treatments for emerging infectious diseases. Heliyon 2024; 10:e23478. [PMID: 38226283 PMCID: PMC10788261 DOI: 10.1016/j.heliyon.2023.e23478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
The use of passive immunotherapy, either as plasma or purified antibodies, has been recommended to treat the emerging infectious diseases (EIDs) in the absence of alternative therapeutic options. Here, we compare the neutralization potency of various passive immunotherapy approaches designed to provide the immediate neutralizing antibodies as potential EID treatments. To prepare human plasma and purified IgG, we screened and classified individuals into healthy, convalescent, and vaccinated groups against SARS-CoV-2 using qRT-PCR, anti-nucleocapsid, and anti-spike tests. Moreover, we prepared purified IgG from non-immunized and hyperimmunized rabbits against SARS-CoV-2 spike protein. Human and rabbit samples were used to evaluate the neutralization potency by sVNT. All vaccinated and convalescent human plasma and purified IgG groups, as well as purified IgG from hyperimmunized rabbits, had significantly greater levels of spike-specific antibodies than the control groups. Furthermore, when compared to the other groups, the purified IgG from hyperimmunized rabbits exhibited superior levels of neutralizing antibodies, with an IC50 value of 2.08 μg/ml. Additionally, our results indicated a statistically significant positive correlation between the neutralization IC50 value and the positive endpoint concentration of spike-specific antibodies. In conclusion, our study revealed that purified IgG from hyperimmunized animals has greater neutralization potency than other passive immunotherapy methods and may be the most suitable treatment of critically ill patients in EIDs.
Collapse
Affiliation(s)
- Hossein Ranjbaran
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yahya Ehteshaminia
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Nadernezhad
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Farzaneh Jalali
- Department of Hematology, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Abdol Sattar Pagheh
- Infectious Diseases Research Center, Birjand University of Medical Science, Birjand, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abedian Kenari
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Hassannia
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Aggarwal S, Selvaraj S, Subramanian JN, Vijayalakshmi MA, Patankar S, Srivastava S. Polyclonal Antibody Generation against PvTRAg for the Development of a Diagnostic Assay for Plasmodium vivax. Diagnostics (Basel) 2023; 13:diagnostics13050835. [PMID: 36899977 PMCID: PMC10001162 DOI: 10.3390/diagnostics13050835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/15/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
The World Health Organization (WHO) has set forth a global call for eradicating malaria, caused majorly by the protozoan parasites Plasmodium falciparum and Plasmodium vivax. The lack of diagnostic biomarkers for P. vivax, especially those that differentiate the parasite from P. falciparum, significantly hinders P. vivax elimination. Here, we show that P. vivax tryptophan-rich antigen (PvTRAg) can be a diagnostic biomarker for diagnosing P. vivax in malaria patients. We report that polyclonal antibodies against purified PvTRAg protein show interactions with purified PvTRAg and native PvTRAg using Western blots and indirect enzyme-linked immunosorbent assay (ELISA). We also developed an antibody-antigen-based qualitative assay using biolayer interferometry (BLI) to detect vivax infection using plasma samples from patients with different febrile diseases and healthy controls. The polyclonal anti-PvTRAg antibodies were used to capture free native PvTRAg from the patient plasma samples using BLI, providing a new expansion range to make the assay quick, accurate, sensitive, and high-throughput. The data presented in this report provides a proof of concept for PvTRAg, a new antigen, for developing a diagnostic assay for P. vivax identification and differentiation from the rest of the Plasmodium species and, at a later stage, translating the BLI assay into affordable, point-of-care formats to make it more accessible.
Collapse
Affiliation(s)
- Shalini Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610010, Israel
| | - Selvamano Selvaraj
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, India
| | | | | | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- Correspondence: ; Tel.: +91-(22)-2576-7779
| |
Collapse
|
5
|
Liu Y, Thaker H, Wang C, Xu Z, Dong M. Diagnosis and Treatment for Shiga Toxin-Producing Escherichia coli Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2022; 15:10. [PMID: 36668830 PMCID: PMC9862836 DOI: 10.3390/toxins15010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC)-associated hemolytic uremic syndrome (STEC-HUS) is a clinical syndrome involving hemolytic anemia (with fragmented red blood cells), low levels of platelets in the blood (thrombocytopenia), and acute kidney injury (AKI). It is the major infectious cause of AKI in children. In severe cases, neurological complications and even death may occur. Treating STEC-HUS is challenging, as patients often already have organ injuries when they seek medical treatment. Early diagnosis is of great significance for improving prognosis and reducing mortality and sequelae. In this review, we first briefly summarize the diagnostics for STEC-HUS, including history taking, clinical manifestations, fecal and serological detection methods for STEC, and complement activation monitoring. We also summarize preventive and therapeutic strategies for STEC-HUS, such as vaccines, volume expansion, renal replacement therapy (RRT), antibiotics, plasma exchange, antibodies and inhibitors that interfere with receptor binding, and the intracellular trafficking of the Shiga toxin.
Collapse
Affiliation(s)
- Yang Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Hatim Thaker
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Chunyan Wang
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Luczkowiak J, Radreau P, Nguyen L, Labiod N, Lasala F, Veas F, Herbreteau CH, Delgado R. Potent Neutralizing Activity of Polyclonal Equine Antibodies Against Severe Acute Respiratory Syndrome Coronavirus 2 Variants of Concern. J Infect Dis 2022; 227:35-39. [PMID: 35921532 PMCID: PMC9384681 DOI: 10.1093/infdis/jiac331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/19/2023] Open
Abstract
Several anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibodies (mAbs) have received emergency authorization for coronavirus disease 2019 (COVID-19) treatment. However, most of these mAbs are not active against the highly mutated Omicron SARS-CoV-2 subvariants. We have tested a polyclonal approach of equine anti-SARS-CoV-2 F(ab')2 antibodies that achieved a high level of neutralizing potency against all SARS-CoV-2 variants of concern tested including Omicron BA.1, BA.2, BA.2.12 and BA.4/5. A repertoire of antibodies targeting conserved epitopes in different regions of the spike protein could plausibly account for this remarkable breadth of neutralization. These results warrant the clinical investigation of equine polyclonal F(ab')2 antibodies as a novel therapeutic strategy against COVID-19.
Collapse
Affiliation(s)
| | | | | | - Nuria Labiod
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Fátima Lasala
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Francisco Veas
- UMR5151, Health Branch Montpellier, Institut de Recherche pour le Développement, Montpellier, France,Faculté de Pharmacie, CISBR, Université de Montpellier, Montpellier, France
| | | | - Rafael Delgado
- Correspondence: Rafael Delgado, Instituto de Investigación Hospital 12 de Octubre, Avenida de Córdoba sn, 28041, Madrid, Spain ()
| |
Collapse
|
7
|
Dixit R, Webster F, Booy R, Menzies R. The role of chronic disease in the disparity of influenza incidence and severity between indigenous and non-indigenous Australian peoples during the 2009 influenza pandemic. BMC Public Health 2022; 22:1295. [PMID: 35790928 PMCID: PMC9254512 DOI: 10.1186/s12889-022-12841-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
Background The 2009 H1N1 influenza pandemic (influenza A(H1N1)pdm09) disproportionately impacted Indigenous peoples. Indigenous Australians are also affected by a health gap in chronic disease prevalence. We hypothesised that the disparity in influenza incidence and severity was accounted for by higher chronic disease prevalence. Methods We analysed influenza data from Western Australia, South Australia, the Northern Territory, and Queensland. We calculated population prevalence of chronic diseases in Indigenous and non-Indigenous Australian populations using nationally-collected health survey data. We compared influenza case notifications, hospitalisations, intensive care admissions, and deaths reported amongst the total population of Indigenous and non-Indigenous Australians ≥ 15 years. We accessed age-specific influenza data reported to the Australian Department of Health during the 2009 ‘swine flu’ pandemic, stratified by Indigenous status and the presence of one of five chronic conditions: chronic lower respiratory conditions, diabetes mellitus, obesity, renal disease, and cardiac disease. We calculated age-standardised Indigenous: non-Indigenous rate ratios and confidence intervals. Findings Chronic diseases were more prevalent in Indigenous Australians. Rates of influenza diagnoses were higher in Indigenous Australians and more frequent across all indices of severity. In those with chronic conditions, Indigenous: non-Indigenous influenza notification rate ratios were no lower than in the total population; in many instances they were higher. Rate ratios remained above 1·0 at all levels of severity. However, once infected (reflected in notifications), there was no evidence of a further increase in risk of severe outcomes (hospitalisations, ICU admissions, deaths) amongst Indigenous Australians compared to non-Indigenous Australians with a chronic disease. Interpretation Higher rates of influenza infection was observed amongst those Indigenous compared to non-Indigenous Australians, and this difference was preserved amongst those with a chronic condition. However, there was no further increase in prevalence of more severe influenza outcomes amongst Indigenous Australians with a chronic condition. This suggests that the prevalence of chronic disease, rather than Indigenous status, affected influenza severity. Other factors may be important, including presence of multiple morbidities, as well as social and cultural determinants of health. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-12841-6.
Collapse
|
8
|
Tharmalingam T, Han X, Wozniak A, Saward L. Polyclonal hyper immunoglobulin: A proven treatment and prophylaxis platform for passive immunization to address existing and emerging diseases. Hum Vaccin Immunother 2022; 18:1886560. [PMID: 34010089 PMCID: PMC9090292 DOI: 10.1080/21645515.2021.1886560] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Passive immunization with polyclonal hyper immunoglobulin (HIG) therapy represents a proven strategy by transferring immunoglobulins to patients to confer immediate protection against a range of pathogens including infectious agents and toxins. Distinct from active immunization, the protection is passive and the immunoglobulins will clear from the system; therefore, administration of an effective dose must be maintained for prophylaxis or treatment until a natural adaptive immune response is mounted or the pathogen/agent is cleared. The current review provides an overview of this technology, key considerations to address different pathogens, and suggested improvements. The review will reflect on key learnings from development of HIGs in the response to public health threats due to Zika, influenza, and severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Tharmala Tharmalingam
- Therapeutics Business Unit, Emergent BioSolutions Incorporated, Winnipeg, MB, Canada
| | - Xiaobing Han
- Therapeutics Business Unit, Emergent BioSolutions Incorporated, Winnipeg, MB, Canada
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ashley Wozniak
- Therapeutics Business Unit, Emergent BioSolutions Incorporated, Winnipeg, MB, Canada
| | - Laura Saward
- Therapeutics Business Unit, Emergent BioSolutions Incorporated, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
9
|
Saied AA, Metwally AA, Alobo M, Shah J, Sharun K, Dhama K. Bovine-derived antibodies and camelid-derived nanobodies as biotherapeutic weapons against SARS-CoV-2 and its variants: A review article. Int J Surg 2022; 98:106233. [PMID: 35065260 PMCID: PMC8768012 DOI: 10.1016/j.ijsu.2022.106233] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected 305 million individuals worldwide and killed about 5.5 million people as of January 10, 2022. SARS-CoV-2 is the third major outbreak caused by a new coronavirus in the previous two decades, following SARS-CoV and MERS-CoV. Even though vaccination against SARS-CoV-2 is considered a critical strategy for preventing virus spread in the population and limiting COVID-19 clinical manifestations, new therapeutic drugs, and management strategies are urgently needed, particularly in light of the growing number of SARS-CoV-2 variants (such as Delta and Omicron variants). However, the use of conventional antibodies has faced many challenges, such as viral escape mutants, increased instability, weak binding, large sizes, the need for large amounts of plasma, and high-cost manufacturing. Furthermore, the emergence of new SARS-CoV-2 variants in the human population and recurrent coronavirus spillovers highlight the need for broadly neutralizing antibodies that are not affected by an antigenic drift that could limit future zoonotic infection. Bovine-derived antibodies and camelid-derived nanobodies are more potent and protective than conventional human antibodies, thanks to their inbuilt characteristics, and can be produced in large quantities. In addition, it was reported that these biotherapeutics are effective against a broad spectrum of epitopes, reducing the opportunity of viral pathogens to develop mutational escape. In this review, we focus on the potential benefits behind our rationale for using bovine-derived antibodies and camelid-derived nanobodies in countering SARS-CoV-2 and its emerging variants and mutants.
Collapse
Affiliation(s)
- AbdulRahman A. Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt,Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan, 81511, Egypt,Corresponding author. Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt
| | - Asmaa A. Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81511, Egypt,Corresponding author. Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Moses Alobo
- Grand Challenges Africa, Science for Africa Foundation, Nairobi, Kenya
| | - Jaffer Shah
- Medical Research Center, Kateb University, Kabul, Afghanistan
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
10
|
Cunha LER, Stolet AA, Strauch MA, Pereira VA, Dumard CH, Gomes AM, Monteiro FL, Higa LM, Souza PN, Fonseca JG, Pontes FE, Meirelles LG, Albuquerque JW, Sacramento CQ, Fintelman-Rodrigues N, Lima TM, Alvim RG, Marsili FF, Caldeira MM, Zingali RB, de Oliveira GA, Souza TM, Silva AS, Muller R, Rodrigues DDRF, Jesus da Costa L, Alves ADR, Pinto MA, Oliveira AC, Guedes HL, Tanuri A, Castilho LR, Silva JL. Polyclonal F(ab') 2 fragments of equine antibodies raised against the spike protein neutralize SARS-CoV-2 variants with high potency. iScience 2021; 24:103315. [PMID: 34723156 PMCID: PMC8539203 DOI: 10.1016/j.isci.2021.103315] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/24/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022] Open
Abstract
We used the recombinant trimeric spike (S) glycoprotein in the prefusion conformation to immunize horses for the production of hyperimmune globulins against SARS-CoV-2. Serum antibody titers measured by ELISA were above 1:106, and the neutralizing antibody titer against authentic virus (WT) was 1:14,604 (average PRNT90). Plasma from immunized animals was pepsin digested to remove the Fc portion and purified, yielding an F(ab')2 preparation with PRNT90 titers 150-fold higher than the neutralizing titers in human convalescent plasma. Challenge studies were carried out in hamsters and showed the in vivo ability of equine F(ab')2 to reduce viral load in the pulmonary tissues and significant clinical improvement determined by weight gain. The neutralization curve by F(ab')2 was similar against the WT and P.2 variants, but displaced to higher concentrations by 0.39 log units against the P.1 (Gamma) variant. These results support the possibility of using equine F(ab')2 preparation for the clinical treatment of COVID patients.
Collapse
Affiliation(s)
| | | | | | - Victor A.R. Pereira
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Carlos H. Dumard
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Andre M.O. Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Fábio L. Monteiro
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Luiza M. Higa
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | | | | | | | | | | | - Carolina Q. Sacramento
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Natalia Fintelman-Rodrigues
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Tulio M. Lima
- Cell Culture Engineering Laboratory, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Renata G.F. Alvim
- Cell Culture Engineering Laboratory, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Federico F. Marsili
- Cell Culture Engineering Laboratory, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Marcella Moreira Caldeira
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Russolina B. Zingali
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Guilherme A.P. de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Thiago M.L. Souza
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Alexandre S. Silva
- Laboratory of Technological Development in Virology (LADTV), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Rodrigo Muller
- Animal Experimentation Laboratory (LAEAN), Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Daniela del Rosário Flores Rodrigues
- Laboratory of Technological Development in Virology (LADTV), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Luciana Jesus da Costa
- Department of Virology, Laboratory of Genetics and Immunology of Viral Infections, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ CEP 21941902 , Brazil
| | - Arthur Daniel R. Alves
- Laboratory of Technological Development in Virology (LADTV), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Marcelo Alves Pinto
- Laboratory of Technological Development in Virology (LADTV), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Andréa C. Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Herbert L.M. Guedes
- Immunopharmacology Laboratory, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
- Immunobiotechnology Laboratory, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
- Interdisciplinary Medical Research Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Amilcar Tanuri
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Leda R. Castilho
- Cell Culture Engineering Laboratory, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Jerson L. Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| |
Collapse
|
11
|
Weng NP, Pawelec G. Validation of the effectiveness of SARS-CoV-2 vaccines in older adults in "real-world" settings. Immun Ageing 2021; 18:36. [PMID: 34551812 PMCID: PMC8455805 DOI: 10.1186/s12979-021-00248-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/10/2021] [Indexed: 01/06/2023]
Abstract
The rapidity of SARS-CoV-2 vaccination around the world has substantially reduced the number of new cases of COVID-19 and their severity in highly vaccinated countries. The unanticipated efficacy of SARS-CoV-2 vaccines in older adults has been very encouraging but the longevity of vaccine immunity is currently unknown and protection against emerging variants may be lower. Adoptive immunotherapy with neutralizing mAb may offer an alternative for poor vaccine responders, while the mechanisms underlying failure to respond are still unclear. Further studies of B and T cell responses and their regulation particularly in older populations will provide a more solid foundation to develop suitable approaches to optimize vaccine responses of older adults who fail to mount a durable response.
Collapse
Affiliation(s)
- Nan-Ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA.
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, Tübingen, Germany.
- Health Sciences North Research Institute, Sudbury, ON, Canada.
| |
Collapse
|
12
|
Recommendations for Ensuring Good Welfare of Horses Used for Industrial Blood, Serum, or Urine Production. Animals (Basel) 2021; 11:ani11051466. [PMID: 34065236 PMCID: PMC8161321 DOI: 10.3390/ani11051466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Because of their large size, blood, serum, or other substances are often collected from horses for production of biologics and therapeutics used in humans and other animals. There are few international guidelines that provide recommendations for caring for horses kept for these purposes. In this paper, general guidelines are provided to ensure well-being of horses kept for production of biologics. Abstract Various pharmaceutical products have been derived from horse blood and urine for over a century. Production of biologics and therapeutics from these samples is a niche industry and often occurs in regions with little regulation or veterinary oversight. To ensure good welfare of horses maintained for these purposes, guidance has been developed to support the industry.
Collapse
|
13
|
Leiva CL, Geoghegan P, Lammer M, Cangelosi A, Mariconda V, Celi AB, Brero ML, Chacana P. In vivo neutralization of bee venom lethality by IgY antibodies. Mol Immunol 2021; 135:183-190. [PMID: 33930713 DOI: 10.1016/j.molimm.2021.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Bee venom is a complex mixture of molecules, among which melittin and phospholipase A2 (PLA2) are the toxic components involved in envenoming accidents with multiple honeybee stings. Traditionally, the treatment of envenomings has been based on the administration of specific antibodies to neutralize the deleterious effects of toxins. An alternative to mammalian polyclonal antibodies is the use of egg yolk immunoglobulins (IgY) due to their advantages regarding animal welfare and lower costs of production as compared to the conventional production methods. In this work, a novel composition containing specific IgY antibodies was developed. After four immunizations, IgY extracted from the egg yolks was able to recognize several components of the bee venom, including melittin and PLA2. The performance of IgY to neutralize the lethal activity was evaluated in a mouse model by using one median lethal dose (LD50) of the bee venom. The effective dose of the IgY extract was determined as 30.66 μg/mg. These results demonstrate the feasibility to produce IgY-based antivenoms to treat envenomings by multiple bee stings.
Collapse
Affiliation(s)
- Carlos Leónidas Leiva
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina; Instituto de Patobiología Veterinaria, UEDD INTA-CONICET, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina.
| | - Patricia Geoghegan
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Mónica Lammer
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Adriana Cangelosi
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Virginia Mariconda
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Ana Beatriz Celi
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina; Instituto de Patobiología Veterinaria, UEDD INTA-CONICET, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina.
| | - María Luisa Brero
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Pablo Chacana
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina; Instituto de Patobiología Veterinaria, UEDD INTA-CONICET, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Chouchane L, Grivel JC, Farag EABA, Pavlovski I, Maacha S, Sathappan A, Al-Romaihi HE, Abuaqel SW, Ata MMA, Chouchane AI, Remadi S, Halabi N, Rafii A, Al-Thani MH, Marr N, Subramanian M, Shan J. Dromedary camels as a natural source of neutralizing nanobodies against SARS-CoV-2. JCI Insight 2021; 6:145785. [PMID: 33529170 PMCID: PMC8021111 DOI: 10.1172/jci.insight.145785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
The development of prophylactic and therapeutic agents for coronavirus disease 2019 (COVID-19) is a current global health priority. Here, we investigated the presence of cross-neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in dromedary camels that were Middle East respiratory syndrome coronavirus (MERS-CoV) seropositive but MERS-CoV free. The tested 229 dromedaries had anti–MERS-CoV camel antibodies with variable cross-reactivity patterns against SARS-CoV-2 proteins, including the S trimer and M, N, and E proteins. Using SARS-CoV-2 competitive immunofluorescence immunoassays and pseudovirus neutralization assays, we found medium-to-high titers of cross-neutralizing antibodies against SARS-CoV-2 in these animals. Through linear B cell epitope mapping using phage immunoprecipitation sequencing and a SARS-CoV-2 peptide/proteome microarray, we identified a large repertoire of Betacoronavirus cross-reactive antibody specificities in these dromedaries and demonstrated that the SARS-CoV-2–specific VHH antibody repertoire is qualitatively diverse. This analysis revealed not only several SARS-CoV-2 epitopes that are highly immunogenic in humans, including a neutralizing epitope, but also epitopes exclusively targeted by camel antibodies. The identified SARS-CoV-2 cross-neutralizing camel antibodies are not proposed as a potential treatment for COVID-19. Rather, their presence in nonimmunized camels supports the development of SARS-CoV-2 hyperimmune camels, which could be a prominent source of therapeutic agents for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Lotfi Chouchane
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA.,Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | | - Igor Pavlovski
- Deep Phenotyping Core, Research Branch, Sidra Medicine, Doha, Qatar
| | - Selma Maacha
- Deep Phenotyping Core, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Hamad Eid Al-Romaihi
- Department of Communicable Diseases Control, Ministry of Public Health, Doha, Qatar
| | - Sirin Wj Abuaqel
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA.,Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | | | | - Najeeb Halabi
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Arash Rafii
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | - Nico Marr
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Murugan Subramanian
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA.,Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Jingxuan Shan
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
15
|
Vanhove B, Duvaux O, Rousse J, Royer PJ, Evanno G, Ciron C, Lheriteau E, Vacher L, Gervois N, Oger R, Jacques Y, Conchon S, Salama A, Duchi R, Lagutina I, Perota A, Delahaut P, Ledure M, Paulus M, So RT, Mok CKP, Bruzzone R, Bouillet M, Brouard S, Cozzi E, Galli C, Blanchard D, Bach JM, Soulillou JP. High neutralizing potency of swine glyco-humanized polyclonal antibodies against SARS-CoV-2. Eur J Immunol 2021; 51:1412-1422. [PMID: 33576494 PMCID: PMC8014652 DOI: 10.1002/eji.202049072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/20/2021] [Accepted: 02/10/2021] [Indexed: 12/23/2022]
Abstract
Heterologous polyclonal antibodies might represent an alternative to the use of convalescent plasma or monoclonal antibodies (mAbs) in coronavirus disease (COVID‐19) by targeting multiple antigen epitopes. However, heterologous antibodies trigger human natural xenogeneic antibody responses particularly directed against animal‐type carbohydrates, mainly the N‐glycolyl form of the neuraminic acid (Neu5Gc) and the α1,3‐galactose, potentially leading to serum sickness or allergy. Here, we immunized cytidine monophosphate‐N‐acetylneuraminic acid hydroxylase and α1,3‐galactosyl‐transferase (GGTA1) double KO pigs with the Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) spike receptor binding domain to produce glyco‐humanized polyclonal neutralizing antibodies lacking Neu5Gc and α1,3‐galactose epitopes. Animals rapidly developed a hyperimmune response with anti‐SARS‐CoV‐2 end‐titers binding dilutions over one to a million and end‐titers neutralizing dilutions of 1:10 000. The IgG fraction purified and formulated following clinical Good Manufacturing Practices, named XAV‐19, neutralized spike/angiotensin converting enzyme‐2 interaction at a concentration <1 μg/mL, and inhibited infection of human cells by SARS‐CoV‐2 in cytopathic assays. We also found that pig GH‐pAb Fc domains fail to interact with human Fc receptors, thereby avoiding macrophage‐dependent exacerbated inflammatory responses and a possible antibody‐dependent enhancement. These data and the accumulating safety advantages of using GH‐pAbs in humans warrant clinical assessment of XAV‐19 against COVID‐19.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Romain Oger
- Inserm, CRCINA, Université de Nantes, Nantes, France
| | | | - Sophie Conchon
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Nantes, France
| | | | - Roberto Duchi
- Avantea, Laboratorio di Tecnologie della Riproduzione, Cremona, Italy
| | - Irina Lagutina
- Avantea, Laboratorio di Tecnologie della Riproduzione, Cremona, Italy
| | - Andrea Perota
- Avantea, Laboratorio di Tecnologie della Riproduzione, Cremona, Italy
| | | | | | | | - Ray T So
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R. China
| | - Chris Ka-Pun Mok
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R. China
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R. China.,Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | | | - Sophie Brouard
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Nantes, France
| | - Emanuele Cozzi
- Transplantation Immunology Unit, Padua University Hospital, Padova, Italy
| | - Cesare Galli
- Avantea, Laboratorio di Tecnologie della Riproduzione, Cremona, Italy
| | | | - Jean-Marie Bach
- IECM, Immuno-endocrinology, USC1383, Oniris, INRAE, Nantes, France
| | - Jean-Paul Soulillou
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Nantes, France
| |
Collapse
|
16
|
da Costa CBP, Martins FJ, da Cunha LER, Ratcliffe NA, Cisne de Paula R, Castro HC. COVID-19 and Hyperimmune sera: A feasible plan B to fight against coronavirus. Int Immunopharmacol 2021; 90:107220. [PMID: 33302034 PMCID: PMC7678452 DOI: 10.1016/j.intimp.2020.107220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Since the very beginning of the COVID-19 pandemic, different treatment strategies have been explored. These mainly involve the development of antimicrobial, antiviral, and/or anti-inflammatory agents as well as vaccine production. However, other potential options should be more avidly investigated since vaccine production on a worldwide level, and the anti-vaccination movement, also known as anti-vax or vaccine hesitancy by many communities, are still real obstacles without a ready solution. This review presents recent findings on the potential therapeutic advantages of heterologous serotherapy for the treatment of COVID-19. We present not only the effective use in animal models of hyperimmune sera against this coronavirus but also strategies, and protocols for the production of anti-SARS-CoV-2 sera. Promising antigens are also indicated such as the receptor-binding domain (RBD) in SARS-CoV-2 S protein, which is already in phase 2/3 clinical trial, and the trimeric protein S, which was shown to be up to 150 times more potent than the serum from convalescent donors. Due to the high death rate, the treatment for those currently infected with coronavirus cannot be ignored. Therefore, the potential use of anti-SARS-CoV-2 hyperimmune sera should be carefully but urgently evaluated in phase 2/3 clinical studies.
Collapse
Affiliation(s)
- Camila B P da Costa
- Instituto Vital Brazil, Niterói, RJ 24230-410, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, RJ 24210-130, Brazil
| | - Francislene J Martins
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, RJ 24210-130, Brazil
| | | | - Norman A Ratcliffe
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, RJ 24210-130, Brazil; Department of Biosciences, Swansea University, Singleton Park, Swansea SA28PP, UK
| | - Rafael Cisne de Paula
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, RJ 24210-130, Brazil.
| | - Helena C Castro
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, RJ 24210-130, Brazil; Programa de Pós-Graduação em Patologia, HUAP, UFF, RJ 24210-130, Brazil.
| |
Collapse
|
17
|
Vanhove B, Duvaux O, Rousse J, Royer PJ, Evanno G, Ciron C, Lheriteau E, Vacher L, Gervois N, Oger R, Jacques Y, Conchon S, Salama A, Duchi R, Lagutina I, Perota A, Delahaut P, Ledure M, Paulus M, So RT, Mok CKP, Bruzzone R, Bouillet M, Brouard S, Cozzi E, Galli C, Blanchard D, Bach JM, Soulillou JP. High neutralizing potency of swine glyco-humanized polyclonal antibodies against SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 34013271 DOI: 10.1101/2020.07.25.217158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Perfusion of convalescent plasma (CP) has demonstrated a potential to improve the pneumonia induced by SARS-CoV-2, but procurement and standardization of CP are barriers to its wide usage. Many monoclonal antibodies (mAbs) have been developed but appear insufficient to neutralize SARS-CoV-2 unless two or three of them are being combined. Therefore, heterologous polyclonal antibodies of animal origin, that have been used for decades to fight against infectious agents might represent a highly efficient alternative to the use of CP or mAbs in COVID-19 by targeting multiple antigen epitopes. However, conventional heterologous polyclonal antibodies trigger human natural xenogeneic antibody responses particularly directed against animal-type carbohydrate epitopes, mainly the N-glycolyl form of the neuraminic acid (Neu5Gc) and the Gal α1,3-galactose (αGal), ultimately forming immune complexes and potentially leading to serum sickness or allergy. To circumvent these drawbacks, we engineered animals lacking the genes coding for the cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) and α1,3-galactosyl-transferase (GGTA1) enzymes to produce glyco-humanized polyclonal antibodies (GH-pAb) lacking Neu5Gc and α-Gal epitopes. We found that pig IgG Fc domains fail to interact with human Fc receptors and thereby should confer the safety advantage to avoiding macrophage dependent exacerbated inflammatory responses, a drawback possibly associated with antibody responses against SARS-CoV-2 or to avoiding a possible antibody-dependent enhancement (ADE). Therefore, we immunized CMAH/GGTA1 double knockout (DKO) pigs with the SARS-CoV-2 spike receptor-binding domain (RBD) to elicit neutralizing antibodies. Animals rapidly developed a hyperimmune response with anti-SARS-CoV-2 end-titers binding dilutions over one to a million and end-titers neutralizing dilutions of 1:10,000. The IgG fraction purified and formulated following clinical Good Manufacturing Practices, named XAV-19, neutralized Spike/angiotensin converting enzyme-2 (ACE-2) interaction at a concentration < 1μg/mL and inhibited infection of human cells by SARS-CoV-2 in cytopathic assays. These data and the accumulating safety advantages of using glyco-humanized swine antibodies in humans warranted clinical assessment of XAV-19 to fight against COVID-19.
Collapse
|
18
|
Pérez de la Lastra JM, Baca-González V, Asensio-Calavia P, González-Acosta S, Morales-delaNuez A. Can Immunization of Hens Provide Oral-Based Therapeutics against COVID-19? Vaccines (Basel) 2020; 8:E486. [PMID: 32872186 PMCID: PMC7565424 DOI: 10.3390/vaccines8030486] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
In the current worldwide pandemic situation caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and the newest coronavirus disease (COVID-19), therapeutics and prophylactics are urgently needed for a large population. Some of the prophylaxis strategies are based on the development of antibodies targeting viral proteins. IgY antibodies are a type of immunoglobulin present in birds, amphibians, and reptiles. They are usually obtained from egg yolk of hyper-immunized hens and represent a relatively inexpensive source of antibodies. Specific IgY can be produced by immunizing chickens with the target antigen and then purifying from the egg yolk. Chicken IgY has been widely explored as a clinical anti-infective material for prophylaxis, preventive medicine, and therapy of infectious diseases. Administered non-systemically, IgY antibodies are safe and effective drugs. Moreover, passive immunization with avian antibodies could become an effective alternative therapy, as these can be obtained relatively simply, cost-efficiently, and produced on a large scale. Here, we highlight the potential use of polyclonal avian IgY antibodies as an oral prophylactic treatment for respiratory viral diseases, such as COVID-19, for which no vaccine is yet available.
Collapse
Affiliation(s)
- José M. Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain; (V.B.-G.); (S.G.-A.); (A.M.-d.)
| | - Victoria Baca-González
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain; (V.B.-G.); (S.G.-A.); (A.M.-d.)
| | - Patricia Asensio-Calavia
- Biological Activity Service, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain;
| | - Sergio González-Acosta
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain; (V.B.-G.); (S.G.-A.); (A.M.-d.)
| | - Antonio Morales-delaNuez
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain; (V.B.-G.); (S.G.-A.); (A.M.-d.)
| |
Collapse
|
19
|
Cunha LER, Stolet AA, Strauch MA, Pereira VAR, Dumard CH, Gomes AMO, Souza PNC, Fonseca JG, Pontes FE, Meirelles LGR, Albuquerque JWM, Sacramento CQ, Fintelman-rodrigues N, Lima TM, Alvim RGF, Marsili FF, Caldeira MM, Higa LM, Monteiro FL, Zingali RB, de Oliveira GAP, Souza TML, Tanuri A, Oliveira AC, Guedes HLM, Castilho LR, Silva JL. Potent neutralizing equine antibodies raised against recombinant SARS-CoV-2 spike protein for COVID-19 passive immunization therapy.. [PMID: 0 DOI: 10.1101/2020.08.17.254375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
AbstractWe used the trimeric spike (S) glycoprotein (residues 1-1208) in the prefusion conformation to immunize horses for production of hyperimmune globulins against SARS-CoV-2. Serum antibody titers measured by anti-spike ELISA were above 1:1,000,000, and neutralizing antibody titer was 1:14,604 (average PRNT90), which is 140-fold higher than the average neutralizing titer of plasma from three convalescent COVID-19 patients analyzed for comparison. Using the same technology routinely used for industrial production of other horse hyperimmune products, plasma from immunized animals was pepsin digested to remove the Fc portion and purified, yielding a F(ab’)2 preparation with PRNT90 titers 150-fold higher than the neutralizing titers in human convalescent plasma. Repeating the hyperimmunization in a second group of horses confirmed the very high neutralizing titers in serum and in a GMP clinical F(ab’)2 lot. Virus-neutralizing activity in samples from mice that received the F(ab’)2 preparation was detected even three days after injection, indicating an appropriate half-life for therapeutic intervention. These results supported the design of a clinical trial (identifier NCT04573855) to evaluate safety and efficacy of this horse F(ab’)2 preparation.
Collapse
|
20
|
Parray HA, Shukla S, Samal S, Shrivastava T, Ahmed S, Sharma C, Kumar R. Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int Immunopharmacol 2020; 85:106639. [PMID: 32473573 PMCID: PMC7255167 DOI: 10.1016/j.intimp.2020.106639] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/06/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
The advancements in technology and manufacturing processes have allowed the development of new derivatives, biosimilar or advanced improved versions for approved antibodies each year for treatment regimen. There are more than 700 antibody-based molecules that are in different stages of phase I/II/ III clinical trials targeting new unique targets. To date, approximately more than 80 monoclonal antibodies (mAbs) have been approved. A total of 7 novel antibody therapeutics had been granted the first approval either in the United States or European Union in the year 2019, representing approximately 20% of the total number of approved drugs. Most of these licenced mAbs or their derivatives are either of hybridoma origin or their improvised engineered versions. Even with the recent development of high throughput mAb generation technologies, hybridoma is the most favoured method due to its indigenous nature to preserve natural cognate antibody pairing information and preserves innate functions of immune cells. The recent advent of antibody engineering technology has superseded the species level barriers and has shown success in isolation of hybridoma across phylogenetically distinct species. This has led to the isolation of monoclonal antibodies against human targets that are conserved and non-immunogenic in the rodent. In this review, we have discussed in detail about hybridoma technology, its expansion towards different animal species, the importance of antibodies isolated from different animal sources that are useful in biological applications, advantages, and limitations. This review also summarizes the challenges and recent progress associated with hybridoma development, and how it has been overcome in these years to provide new insights for the isolation of mAbs.
Collapse
Affiliation(s)
- Hilal Ahmed Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shivangi Shukla
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Chandresh Sharma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| |
Collapse
|
21
|
Lopes RL, Pinto JR, Silva Junior GBD, Santos AKT, Souza MTO, Daher EDF. Kidney involvement in yellow fever: a review. Rev Inst Med Trop Sao Paulo 2019; 61:e35. [PMID: 31340247 PMCID: PMC6648004 DOI: 10.1590/s1678-9946201961035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
Yellow fever is one of the most important mosquito-borne diseases, which still affects a significant number of people every year, mainly in tropical countries. Mortality can be high, even with intensive treatment due to multiple organ failure, including acute kidney injury (AKI). This disease can also be a burden on the health care system in developing countries, without mentioning the number of lives that could be spared with an early diagnosis and adequate monitoring and treatment. The pathophysiology of yellow fever-induced acute kidney injury (AKI) is still to be completely understood, and the best clinical approach has not yet been determined. This manuscript presents the most recent scientific evidence of kidney involvement in yellow fever, since AKI plays an important role in the mortality rate. Recent outbreaks have occurred in Brazil and further studies are required to provide a better clinical control for patients with yellow fever.
Collapse
Affiliation(s)
- Renata Lima Lopes
- Canadian College of Microbiologists. Vancouver, British Columbia, Canada
| | | | - Geraldo Bezerra da Silva Junior
- Universidade de Fortaleza, Curso de Medicina, Programas de Pós-Graduação em Saúde Coletiva e Ciências Médicas, Fortaleza, Ceará, Brazil
| | | | | | - Elizabeth De Francesco Daher
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Medicina Clínica, Programa de Pós-Graduação em Ciências Médicas, Fortaleza, Ceará, Brazil
| |
Collapse
|
22
|
Wu X, Demarest SJ. Building blocks for bispecific and trispecific antibodies. Methods 2018; 154:3-9. [PMID: 30172007 DOI: 10.1016/j.ymeth.2018.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 01/07/2023] Open
Abstract
Bispecific antibodies (BsAbs), which target two antigens or epitopes, incorporate the specificities and properties of two distinct monoclonal antibodies (mAbs) into a single molecule. As such, BsAbs can elicit synergistic activities and provide the capacity for enhanced therapeutic efficacy and/or safety compared to what can be achieved with conventional monospecific IgGs. There are many building block formats to generate BsAbs and Trispecific antibodies (TsAbs) based on combining the antigen recognition domains of monoclonal antibodies (mAbs). This review describes the many and varied antibody-based building blocks used to achieve multivalency and multispecificity. These diverse building blocks provide opportunities to tailor the design of BsAbs and TsAbs to match the desired applications.
Collapse
Affiliation(s)
- Xiufeng Wu
- Lilly Biotechnology Center, 10290 Campus Point Dr., San Diego, CA 92121, United States.
| | - Stephen J Demarest
- Lilly Biotechnology Center, 10290 Campus Point Dr., San Diego, CA 92121, United States
| |
Collapse
|
23
|
Fan HW, Monteiro WM. History and perspectives on how to ensure antivenom accessibility in the most remote areas in Brazil. Toxicon 2018; 151:15-23. [PMID: 29908262 DOI: 10.1016/j.toxicon.2018.06.070] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/30/2018] [Accepted: 06/12/2018] [Indexed: 10/14/2022]
Abstract
A plan to achieve self-sufficiency in manufacturing biologicals for public health has been structured for the last 40 years in Brazil, in the context of a reform in the health system. Industrial plants of the national public laboratories have been modernized, and a program for reducing morbidity and mortality of venomous snakebite has been created, as part of the National Epidemiological Surveillance System. The epidemiological data are essential to plan for the antivenom production of 400,000 vials of snake antivenoms per year, and the acquisition by the Ministry of Health, which is the exclusive purchaser in the country. Distribution is decentralized to reach hospitals in almost 3000 municipalities, and to provide free of charge antivenom treatment. The National Sanitary Surveillance Agency organized the regulatory environment to implement rules and supervise compliance of GMP procedures, elevating the quality of the biologicals that are produced, as well as reducing the costs in production. Despite all the advances in the health system, antivenom availability and accessibility is not uniform in regards to the most vulnerable parts of the populations, which inhabit remote areas in the Brazilian Amazon region. Better logistics and transportation of liquid form antivenoms is an issue to be addressed and realistic and comprehensive health programs for indigenous groups should be effectively structured, in order to reduce the high morbidity and mortality rates associated with snakebite envenoming.
Collapse
Affiliation(s)
- Hui Wen Fan
- Divisão Bioindustrial, Instituto Butantan, São Paulo, Brazil.
| | - Wuelton Marcelo Monteiro
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil; Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil; Pró-Reitoria de Pós-Graduação e Pesquisa, Universidade Nilton Lins, Manaus, Brazil
| |
Collapse
|
24
|
Wu X, Yuan R, Bacica M, Demarest SJ. Generation of orthogonal Fab-based trispecific antibody formats. Protein Eng Des Sel 2018; 31:249-256. [DOI: 10.1093/protein/gzy007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/18/2018] [Indexed: 01/22/2023] Open
Affiliation(s)
- Xiufeng Wu
- Lilly Biotechnology Center, 10290 Campus Point Dr., San Diego, CA, USA
| | - Richard Yuan
- Lilly Biotechnology Center, 10290 Campus Point Dr., San Diego, CA, USA
| | - Michael Bacica
- Lilly Biotechnology Center, 10290 Campus Point Dr., San Diego, CA, USA
| | | |
Collapse
|
25
|
Smith AM, Huber VC. The Unexpected Impact of Vaccines on Secondary Bacterial Infections Following Influenza. Viral Immunol 2017; 31:159-173. [PMID: 29148920 DOI: 10.1089/vim.2017.0138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Influenza virus infections remain a significant health burden worldwide, despite available vaccines. Factors that contribute to this include a lack of broad coverage by current vaccines and continual emergence of novel virus strains. Further complicating matters, when influenza viruses infect a host, severe infections can develop when bacterial pathogens invade. Secondary bacterial infections (SBIs) contribute to a significant proportion of influenza-related mortality, with Streptococcus pneumoniae, Staphylococcus aureus, Streptococcus pyogenes, and Haemophilus influenzae as major coinfecting pathogens. Vaccines against bacterial pathogens can reduce coinfection incidence and severity, but few vaccines are available and those that are, may have decreased efficacy in influenza virus-infected hosts. While some studies indicate a benefit of vaccine-induced immunity in providing protection against SBIs, a comprehensive understanding is lacking. In this review, we discuss the current knowledge of viral and bacterial vaccine availability, the generation of protective immunity from these vaccines, and the effectiveness in limiting influenza-associated bacterial infections.
Collapse
Affiliation(s)
- Amber M Smith
- 1 Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Victor C Huber
- 2 Division of Basic Biomedical Sciences, University of South Dakota , Vermillion, South Dakota
| |
Collapse
|
26
|
Antibody Preparations from Human Transchromosomic Cows Exhibit Prophylactic and Therapeutic Efficacy against Venezuelan Equine Encephalitis Virus. J Virol 2017; 91:JVI.00226-17. [PMID: 28468884 DOI: 10.1128/jvi.00226-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne RNA virus that causes low mortality but high morbidity rates in humans. In addition to natural outbreaks, there is the potential for exposure to VEEV via aerosolized virus particles. There are currently no FDA-licensed vaccines or antiviral therapies for VEEV. Passive immunotherapy is an approved method used to protect individuals against several pathogens and toxins. Human polyclonal antibodies (PAbs) are ideal, but this is dependent upon serum from convalescent human donors, which is in limited supply. Non-human-derived PAbs can have serious immunoreactivity complications, and when "humanized," these antibodies may exhibit reduced neutralization efficiency. To address these issues, transchromosomic (Tc) bovines have been created, which can produce potent neutralizing human antibodies in response to hyperimmunization. In these studies, we have immunized these bovines with different VEEV immunogens and evaluated the protective efficacy of purified preparations of the resultant human polyclonal antisera against low- and high-dose VEEV challenges. These studies demonstrate that prophylactic or therapeutic administration of the polyclonal antibody preparations (TcPAbs) can protect mice against lethal subcutaneous or aerosol challenge with VEEV. Furthermore, significant protection against unrelated coinfecting viral pathogens can be conferred by combining individual virus-specific TcPAb preparations.IMPORTANCE With the globalization and spread or potential aerosol release of emerging infectious diseases, it will be critical to develop platforms that are able to produce therapeutics in a short time frame. By using a transchromosomic (Tc) bovine platform, it is theoretically possible to produce antigen-specific highly neutralizing therapeutic polyclonal human antibody (TcPAb) preparations in 6 months or less. In this study, we demonstrate that Tc bovine-derived Venezuelan equine encephalitis virus (VEEV)-specific TcPAbs are highly effective against VEEV infection that mimics not only the natural route of infection but also infection via aerosol exposure. Additionally, we show that combinatorial TcPAb preparations can be used to treat coinfections with divergent pathogens, demonstrating that the Tc bovine platform could be beneficial in areas where multiple infectious diseases occur contemporaneously or in the case of multipathogen release.
Collapse
|
27
|
Wahid B, Ali A, Idrees M, Rafique S. Immunotherapeutic strategies for sexually transmitted viral infections: HIV, HSV and HPV. Cell Immunol 2016; 310:1-13. [PMID: 27514252 PMCID: PMC7124316 DOI: 10.1016/j.cellimm.2016.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Abstract
More than 1 million sexually transmitted infections (STIs) are acquired each day globally. Etiotropic drugs cannot effectively control infectious diseases therefore, there is a dire need to explore alternative strategies especially those based on the regulation of immune system. The review discusses all rational approaches to develop better understanding towards immunotherapeutic strategies based on modulation of immune system in an attempt to curb the elevating risk of infectious diseases such as HIV, HPV and HSV because of their high prevalence. Development of monoclonal antibodies, vaccines and several other immune based treatments are promising alternative strategies that are offering new opportunities to eradicate pathogens.
Collapse
Affiliation(s)
- Braira Wahid
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Amjad Ali
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Muhammad Idrees
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan; Vice Chancellor Hazara University Mansehra, Pakistan.
| | - Shazia Rafique
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
28
|
Jin X, Zhang W, Ding Z, Wang H, Wu D, Xie X, Lin T, Fu Y, Zhang N, Cao Y. Efficacy of the Rabbit Polyclonal Anti-leptospira Antibody against Homotype or Heterotype Leptospira Infection in Hamster. PLoS Negl Trop Dis 2016; 10:e0005191. [PMID: 28027297 PMCID: PMC5189943 DOI: 10.1371/journal.pntd.0005191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/17/2016] [Indexed: 01/09/2023] Open
Abstract
Leptospirosis, caused by Leptospira, is one of the most important of neglected emerging zoonotic diseases that has important impacts on public health worldwide. Polyclonal antibody (pcAb) therapy is a potential method to process a series of pathogens for which there are limited determination of treatment, such as leptospirosis. First, we evaluated the efficacy of pcAb, derived from the sera of rabbits inoculated with Leptospira, against homotype (Leptospira interrogans serovar Lai) or heterotype (Leptospira interrogans serovar Autumnalis) Leptospira infection in a lethal hamster model. The pcAb treatment improved survival compared to the controls. The histopathology's of the infected kidney, liver and lung were also examined by hematoxylin and eosin staining. Using real-time quantitative PCR, we determined that most of the leptospires in the primary organs were almost completely removed by pcAb. In the second experiment, treatments, including antibiotic, pcAb, and combination, were started immediately after occurrence of the first serious sickness mouse in any group. No significant difference in survival rate between pcAb group and antibiotic group was found, but the combination therapy group significantly improved survival rate compared to the others (P<0.05). We conclude that the rabbit pcAb treatment may cure both the homotype and the heterotype lethal Leptospira infections in hamster, and combination therapy improved survival compared to antibiotic group in the late treatment of homotype leptospirosis.
Collapse
Affiliation(s)
- Xuemin Jin
- Department of Clinical Science, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China, China
| | - Wenlong Zhang
- Department of Clinical Science, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China, China
| | - Zhuang Ding
- Department of Infectious Disease, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China, China
| | - Hai Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China, China
| | - Dianjun Wu
- Department of Clinical Science, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China, China
| | - Xufeng Xie
- Department of Clinical Science, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China, China
| | - Tao Lin
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
| | - Yunhe Fu
- Department of Clinical Science, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China, China
| | - Naisheng Zhang
- Department of Clinical Science, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China, China
| | - Yongguo Cao
- Department of Clinical Science, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China, China
- Key Laboratory for Zoonosis Research, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China, China
| |
Collapse
|
29
|
Morais V. An Old Solution for a New Problem: Antiserum against Emerging Infectious Diseases. Front Public Health 2016; 4:178. [PMID: 27617259 PMCID: PMC5000394 DOI: 10.3389/fpubh.2016.00178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/11/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Victor Morais
- Department of Biotechnology, Faculty of Medicine, Institute of Hygiene, University of the Republic, Montevideo, Uruguay
| |
Collapse
|
30
|
Palacios R, Poland GA, Kalil J. Another emerging arbovirus, another emerging vaccine: Targeting Zika virus. Vaccine 2016; 34:2291-3. [PMID: 27015734 DOI: 10.1016/j.vaccine.2016.03.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2016] [Indexed: 12/27/2022]
Affiliation(s)
| | - Gregory A Poland
- Mayo Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jorge Kalil
- Instituto Butantan, São Paulo, Brazil; Clinical Immunology and Allergy Division, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|