1
|
Tong X, Barkema HW, Nobrega DB, Xu C, Han B, Zhang C, Yang J, Li X, Gao J. Virulence of Bacteria Causing Mastitis in Dairy Cows: A Literature Review. Microorganisms 2025; 13:167. [PMID: 39858935 PMCID: PMC11767654 DOI: 10.3390/microorganisms13010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025] Open
Abstract
Bovine mastitis, a prevalent disease in dairy farms, exerts a profound negative influence on both the health and productivity of dairy cattle, leading to substantial economic losses for the dairy industry. The disease is associated with different bacterial agents, primarily Gram-positive cocci (e.g., Staphylococcus spp., Streptococcus spp.) and Gram-negative bacilli (e.g., Escherichia coli, Klebsiella pneumoniae). These pathogens induce mastitis through diverse mechanisms, intricately linked to the virulence factors they carry. Despite previous research on the virulence factors of mastitis-causing bacteria in dairy cattle, there remains a significant gap in our comprehensive understanding of these factors. To bridge these gaps, this manuscript reviews and compiles research on the virulence factors of these pathogens, focusing on their roles in mammary tissue infection, immune evasion, adherence to mammary epithelial cells, and invasion and colonization of the mammary gland. These processes are analyzed in depth to provide a comprehensive framework to promote a deeper understanding of dairy pathogenic bacteria and their pathogenic mechanisms and to provide new insights into the control of mastitis in dairy cattle.
Collapse
Affiliation(s)
- Xiaofang Tong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (H.W.B.); (D.B.N.)
| | - Diego B. Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (H.W.B.); (D.B.N.)
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Chenyibo Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Jingyue Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Xiaoping Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Jian Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| |
Collapse
|
2
|
Saleem A, Saleem Bhat S, A. Omonijo F, A Ganai N, M. Ibeagha-Awemu E, Mudasir Ahmad S. Immunotherapy in mastitis: state of knowledge, research gaps and way forward. Vet Q 2024; 44:1-23. [PMID: 38973225 PMCID: PMC11232650 DOI: 10.1080/01652176.2024.2363626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Mastitis is an inflammatory condition that affects dairy cow's mammary glands. Traditional treatment approaches with antibiotics are increasingly leading to challenging scenarios such as antimicrobial resistance. In order to mitigate the unwanted side effects of antibiotics, alternative strategies such as those that harness the host immune system response, also known as immunotherapy, have been implemented. Immunotherapy approaches to treat bovine mastitis aims to enhance the cow's immune response against pathogens by promoting pathogen clearance, and facilitating tissue repair. Various studies have demonstrated the potential of immunotherapy for reducing the incidence, duration and severity of mastitis. Nevertheless, majority of reported therapies are lacking in specificity hampering their broad application to treat mastitis. Meanwhile, advancements in mastitis immunotherapy hold great promise for the dairy industry, with potential to provide effective and sustainable alternatives to traditional antibiotic-based approaches. This review synthesizes immunotherapy strategies, their current understanding and potential future perspectives. The future perspectives should focus on the development of precision immunotherapies tailored to address individual pathogens/group of pathogens, development of combination therapies to address antimicrobial resistance, and the integration of nano- and omics technologies. By addressing research gaps, the field of mastitis immunotherapy can make significant strides in the control, treatment and prevention of mastitis, ultimately benefiting both animal and human health/welfare, and environment health.
Collapse
Affiliation(s)
- Afnan Saleem
- Division of Animal Biotechnology, SKUAST-K, Srinagar, India
| | | | - Faith A. Omonijo
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | | | - Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | | |
Collapse
|
3
|
An R, Guo Y, Gao M, Wang J. Subcutaneous Streptococcus dysgalactiae GAPDH vaccine in mice induces a proficient innate immune response. J Vet Sci 2023; 24:e72. [PMID: 38031651 PMCID: PMC10556295 DOI: 10.4142/jvs.23103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the surface of Streptococcus dysgalactiae, coded with gapC, is a glycolytic enzyme that was reported to be a moonlighting protein and virulence factor. OBJECTIVE This study assessed GAPDH as a potential immunization candidate protein to prevent streptococcus infections. METHODS Mice were vaccinated subcutaneously with recombinant GAPDH and challenged with S. dysgalactiae in vivo. They were then evaluated using histological methods. rGAPDH of mouse bone marrow-derived dendritic cells (BMDCs) was evaluated using immunoblotting, reverse transcription quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay methods. RESULTS Vaccination with rGAPDH improved the survival rates and decreased the bacterial burdens in the mammary glands compared to the control group. The mechanism by which rGAPDH vaccination protects against S. dysgalactiae was investigated. In vitro experiments showed that rGAPDH boosted the generation of interleukin-10 and tumor necrosis factor-α. Treatment of BMDCs with TAK-242, a toll-like receptor 4 inhibitor, or C29, a toll-like receptor 2 inhibitor, reduced cytokines substantially, suggesting that rGAPDH may be a potential ligand for both TLR2 and TLR4. Subsequent investigations showed that rGAPDH may activate the phosphorylation of MAPKs and nuclear factor-κB. CONCLUSIONS GAPDH is a promising immunization candidate protein for targeting virulence and enhancing immune-mediated protection. Further investigations are warranted to understand the mechanisms underlying the activation of BMDCs by rGAPDH in a TLR2- and TLR4-dependent manner and the regulation of inflammatory cytokines contributing to mastitis pathogenesis.
Collapse
Affiliation(s)
- Ran An
- Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China
| | - Yongli Guo
- Department of Immunology, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Harbin 150000, China
| | - Mingchun Gao
- Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| | - Junwei Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| |
Collapse
|
4
|
Kour S, Sharma N, N B, Kumar P, Soodan JS, Santos MVD, Son YO. Advances in Diagnostic Approaches and Therapeutic Management in Bovine Mastitis. Vet Sci 2023; 10:449. [PMID: 37505854 PMCID: PMC10384116 DOI: 10.3390/vetsci10070449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Mastitis causes huge economic losses to dairy farmers worldwide, which largely negatively affects the quality and quantity of milk. Mastitis decreases overall milk production, degrades milk quality, increases milk losses because of milk being discarded, and increases overall production costs due to higher treatment and labour costs and premature culling. This review article discusses mastitis with respect to its clinical epidemiology, the pathogens involved, economic losses, and basic and advanced diagnostic tools that have been used in recent times to diagnose mastitis effectively. There is an increasing focus on the application of novel therapeutic approaches as an alternative to conventional antibiotic therapy because of the decreasing effectiveness of antibiotics, emergence of antibiotic-resistant bacteria, issue of antibiotic residues in the food chain, food safety issues, and environmental impacts. This article also discussed nanoparticles'/chitosan's roles in antibiotic-resistant strains and ethno-veterinary practices for mastitis treatment in dairy cattle.
Collapse
Affiliation(s)
- Savleen Kour
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Balaji N
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Pavan Kumar
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Jasvinder Singh Soodan
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Marcos Veiga Dos Santos
- Department of Animal Sciences, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 690756, Republic of Korea
| |
Collapse
|
5
|
Dobrut A, Wójcik-Grzybek D, Młodzińska A, Pietras-Ożga D, Michalak K, Tabacki A, Mroczkowska U, Brzychczy-Włoch M. Detection of immunoreactive proteins of Escherichia coli, Streptococcus uberis, and Streptococcus agalactiae isolated from cows with diagnosed mastitis. Front Cell Infect Microbiol 2023; 13:987842. [PMID: 36844415 PMCID: PMC9950269 DOI: 10.3389/fcimb.2023.987842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Mastitis is a widespread mammary gland disease of dairy cows that causes severe economic losses to dairy farms. Mastitis can be caused by bacteria, fungi, and algae. The most common species isolated from infected milk are, among others, Streptococcus spp., and Escherichia coli. The aim of our study was protein detection based on both in silico and in vitro methods, which allowed the identification of immunoreactive proteins representative of the following species: Streptococcus uberis, Streptococcus agalactiae, and Escherichia coli. Methods The study group included 22 milk samples and 13 serum samples obtained from cows with diagnosed mastitis, whereas the control group constituted 12 milk samples and 12 serum samples isolated from healthy animals. Detection of immunoreactive proteins was done by immunoblotting, while amino acid sequences from investigated proteins were determined by MALDI-TOF. Then, bioinformatic analyses were performed on detected species specific proteins in order to investigate their immunoreactivity. Results As a result, we identified 13 proteins: 3 (molybdenum cofactor biosynthesis protein B, aldehyde reductase YahK, outer membrane protein A) for E. coli, 4 (elongation factor Tu, tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG, GTPase Obg, glyceraldehyde-3-phosphate dehydrogenase) for S. uberis, and 6 (aspartate carbamoyltransferase, elongation factor Tu, 60 kDa chaperonin, elongation factor G, galactose-6-phosphate isomerase subunit LacA, adenosine deaminase) for S. agalactiae, which demonstrated immunoreactivity to antibodies present in serum from cows with diagnosed mastitis. Discussion Due to the confirmed immunoreactivity, specificity and localization in the bacterial cell, these proteins can be considered considered potential targets in innovative rapid immunodiagnostic assays for bovine mastitis, however due to the limited number of examined samples, further examination is needed.
Collapse
Affiliation(s)
- Anna Dobrut
- Department of Molecular Medical Microbiology, Chair of Microbiology, Jagiellonian University Medical College, Krakow, Poland,*Correspondence: Anna Dobrut,
| | - Dagmara Wójcik-Grzybek
- Department of Experimental Physiology, Chair of Physiology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Dorota Pietras-Ożga
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Lublin, Poland
| | | | | | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
6
|
Kober AKMH, Saha S, Islam MA, Rajoka MSR, Fukuyama K, Aso H, Villena J, Kitazawa H. Immunomodulatory Effects of Probiotics: A Novel Preventive Approach for the Control of Bovine Mastitis. Microorganisms 2022; 10:2255. [PMID: 36422325 PMCID: PMC9692641 DOI: 10.3390/microorganisms10112255] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 07/30/2023] Open
Abstract
Bovine mastitis (BM) is one of the most common diseases of dairy cattle, causing economic and welfare problems in dairy farming worldwide. Because of the predominant bacterial etiology, the treatment of BM is mostly based on antibiotics. However, the antimicrobial resistance (AMR), treatment effectiveness, and the cost of mastitis at farm level are linked to limitations in the antibiotic therapy. These scenarios have prompted the quest for new preventive options, probiotics being one interesting alternative. This review article sought to provide an overview of the recent advances in the use of probiotics for the prevention and treatment of BM. The cellular and molecular interactions of beneficial microbes with mammary gland (MG) cells and the impact of these interactions in the immune responses to infections are revised. While most research has demonstrated that some probiotics strains can suppress mammary pathogens by competitive exclusion or the production of antimicrobial compounds, recent evidence suggest that other probiotic strains have a remarkable ability to modulate the response of MG to Toll-like receptor (TLR)-mediated inflammation. Immunomodulatory probiotics or immunobiotics can modulate the expression of negative regulators of TLR signaling in the MG epithelium, regulating the expression of pro-inflammatory cytokines and chemokines induced upon pathogen challenge. The scientific evidence revised here indicates that immunobiotics can have a beneficial role in MG immunobiology and therefore they can be used as a preventive strategy for the management of BM and AMR, the enhancement of animal and human health, and the improvement of dairy cow milk production.
Collapse
Affiliation(s)
- A. K. M. Humayun Kober
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Dairy and Poultry Science, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh
| | - Sudeb Saha
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Dairy Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md. Aminul Islam
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Kohtaro Fukuyama
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hisashi Aso
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- The Cattle Museum, Maesawa, Oshu 029-4205, Japan
| | - Julio Villena
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman 4000, Argentina
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
7
|
Pathogen Moonlighting Proteins: From Ancestral Key Metabolic Enzymes to Virulence Factors. Microorganisms 2021; 9:microorganisms9061300. [PMID: 34203698 PMCID: PMC8232316 DOI: 10.3390/microorganisms9061300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022] Open
Abstract
Moonlighting and multitasking proteins refer to proteins with two or more functions performed by a single polypeptide chain. An amazing example of the Gain of Function (GoF) phenomenon of these proteins is that 25% of the moonlighting functions of our Multitasking Proteins Database (MultitaskProtDB-II) are related to pathogen virulence activity. Moreover, they usually have a canonical function belonging to highly conserved ancestral key functions, and their moonlighting functions are often involved in inducing extracellular matrix (ECM) protein remodeling. There are three main questions in the context of moonlighting proteins in pathogen virulence: (A) Why are a high percentage of pathogen moonlighting proteins involved in virulence? (B) Why do most of the canonical functions of these moonlighting proteins belong to primary metabolism? Moreover, why are they common in many pathogen species? (C) How are these different protein sequences and structures able to bind the same set of host ECM protein targets, mainly plasminogen (PLG), and colonize host tissues? By means of an extensive bioinformatics analysis, we suggest answers and approaches to these questions. There are three main ideas derived from the work: first, moonlighting proteins are not good candidates for vaccines. Second, several motifs that might be important in the adhesion to the ECM were identified. Third, an overrepresentation of GO codes related with virulence in moonlighting proteins were seen.
Collapse
|
8
|
Sharun K, Dhama K, Tiwari R, Gugjoo MB, Iqbal Yatoo M, Patel SK, Pathak M, Karthik K, Khurana SK, Singh R, Puvvala B, Amarpal, Singh R, Singh KP, Chaicumpa W. Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. Vet Q 2021; 41:107-136. [PMID: 33509059 PMCID: PMC7906113 DOI: 10.1080/01652176.2021.1882713] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mastitis (intramammary inflammation) caused by infectious pathogens is still considered a devastating condition of dairy animals affecting animal welfare as well as economically incurring huge losses to the dairy industry by means of decreased production performance and increased culling rates. Bovine mastitis is the inflammation of the mammary glands/udder of bovines, caused by bacterial pathogens, in most cases. Routine diagnosis is based on clinical and subclinical forms of the disease. This underlines the significance of early and rapid identification/detection of etiological agents at the farm level, for which several diagnostic techniques have been developed. Therapeutic regimens such as antibiotics, immunotherapy, bacteriocins, bacteriophages, antimicrobial peptides, probiotics, stem cell therapy, native secretory factors, nutritional, dry cow and lactation therapy, genetic selection, herbs, and nanoparticle technology-based therapy have been evaluated for their efficacy in the treatment of mastitis. Even though several strategies have been developed over the years for the purpose of managing both clinical and subclinical forms of mastitis, all of them lacked the efficacy to eliminate the associated etiological agent when used as a monotherapy. Further, research has to be directed towards the development of new therapeutic agents/techniques that can both replace conventional techniques and also solve the problem of emerging antibiotic resistance. The objective of the present review is to describe the etiological agents, pathogenesis, and diagnosis in brief along with an extensive discussion on the advances in the treatment and management of mastitis, which would help safeguard the health of dairy animals.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | | | - Rahul Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Bhavani Puvvala
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Potential factors involved in the early pathogenesis of Streptococcus uberis mastitis: a review. Folia Microbiol (Praha) 2021; 66:509-523. [PMID: 34085166 DOI: 10.1007/s12223-021-00879-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Bovine mastitis is an inflammation of the mammary gland, which could be the result of allergy, physical trauma, or invasion by pathogens as Streptococcus uberis. This pathogen is an environmental pathogen associated with subclinical and clinical intramammary infection (IMI) in both lactating and non-lactating cows, which can persist in the udder and cause a chronic infection in the mammary gland. In spite of the important economic losses and increased prevalence caused by S. uberis mastitis, virulence factors involved in bacterial colonization of mammary glands and the pathogenic mechanisms are not yet clear. In the last 30 years, several studies have defined adherence and internalization of S. uberis as the early stages in IMI. S. uberis adheres to and invades into mammary gland cells, and this ability has been observed in in vitro assays. Until now, these abilities have not been determined in vivo challenges since they have been difficult to study. Bacterial surface proteins are able to bind to extracellular matrix protein components such as fibronectin, collagen and laminin, as well as proteins in milk. These proteins play a role in adhesion to host cells and have been denominated microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). This article aims to summarize our current knowledge on the most relevant properties of the potential factors involved in the early pathogenesis of S. uberis mastitis.
Collapse
|
10
|
Pedersen RR, Krömker V, Bjarnsholt T, Dahl-Pedersen K, Buhl R, Jørgensen E. Biofilm Research in Bovine Mastitis. Front Vet Sci 2021; 8:656810. [PMID: 34026893 PMCID: PMC8138050 DOI: 10.3389/fvets.2021.656810] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
Bovine mastitis is one of the most important diseases in the dairy industry and has detrimental impact on the economy and welfare of the animals. Further, treatment failure results in increased antibiotic use in the dairy industry, as some of these mastitis cases for unknown reasons are not resolved despite standard antibiotic treatment. Chronic biofilm infections are notoriously known to be difficult to eradicate with antibiotics and biofilm formation could be a possible explanation for mastitis cases that are not resolved by standard treatment. This paper reviews the current literature on biofilm in bovine mastitis research to evaluate the status and methods used in the literature. Focus of the current research has been on isolates from milk samples and investigation of their biofilm forming properties in vitro. However, in vitro observations of biofilm formation are not easily comparable with the in vivo situation inside the udder. Only two papers investigate the location and distribution of bacterial biofilms inside udders of dairy cows with mastitis. Based on the current knowledge, the role of biofilm in bovine mastitis is still unclear and more in vivo investigations are needed to uncover the actual role of biofilm formation in the pathogenesis of bovine mastitis.
Collapse
Affiliation(s)
- Regitze Renee Pedersen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Volker Krömker
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kirstin Dahl-Pedersen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elin Jørgensen
- Department Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Loera-Muro A, Guerrero-Barrera A, Tremblay D N Y, Hathroubi S, Angulo C. Bacterial biofilm-derived antigens: a new strategy for vaccine development against infectious diseases. Expert Rev Vaccines 2021; 20:385-396. [PMID: 33606569 DOI: 10.1080/14760584.2021.1892492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Microorganisms can develop into a social organization known as biofilms and these communities can be found in virtually all types of environment on earth. In biofilms, cells grow as multicellular communities held together by a self-produced extracellular matrix. Living within a biofilm allows for the emergence of specific properties for these cells that their planktonic counterparts do not have. Furthermore, biofilms are the cause of several infectious diseases and are frequently inhabited by multi-species. These interactions between microbial species are often critical for the biofilm process. Despite the importance of biofilms in disease, vaccine antigens are typically prepared from bacteria grown as planktonic cells under laboratory conditions. Vaccines based on planktonic bacteria may not provide optimal protection against biofilm-driven infections. AREAS COVERED In this review, we will present an overview of biofilm formation, what controls this mode of growth, and recent vaccine development targeting biofilms. EXPERT OPINION Previous and ongoing research provides evidence that vaccine formulation with antigens derived from biofilms is a promising approach to prevent infectious diseases and can enhance the protective efficacy of existing vaccines. Therefore, research focusing on the identification of biofilm-derived antigens merits further investigations.
Collapse
Affiliation(s)
- Abraham Loera-Muro
- CONACYT-CIBNOR, Centro de Investigaciones Biológicas del Noroeste, SC. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, BCS, México
| | - Alma Guerrero-Barrera
- Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Colonia Ciudad Universitaria, Aguascalientes, AGS, México
| | - Yannick Tremblay D N
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Skander Hathroubi
- Cluster of Excellence "Matters of Activity.Image Space Material", Humboldt-Universität zu Berlin, Unter den Liden 6, 10099, Berlin, Germany.,Institüt Für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carlos Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, SC. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, BCS, México
| |
Collapse
|
12
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Rama JLR, Calo-Mata P, Sánchez-Pérez A, Villa TG. Proteomic Characterization of Antibiotic Resistance, and Production of Antimicrobial and Virulence Factors in Streptococcus Species Associated with Bovine Mastitis. Could Enzybiotics Represent Novel Therapeutic Agents Against These Pathogens? Antibiotics (Basel) 2020; 9:antibiotics9060302. [PMID: 32512932 PMCID: PMC7344566 DOI: 10.3390/antibiotics9060302] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 01/31/2023] Open
Abstract
Streptococcus spp. are major mastitis pathogens present in dairy products, which produce a variety of virulence factors that are involved in streptococcal pathogenicity. These include neuraminidase, pyrogenic exotoxin, and M protein, and in addition they might produce bacteriocins and antibiotic-resistance proteins. Unjustifiable misuse of antimicrobials has led to an increase in antibiotic-resistant bacteria present in foodstuffs. Identification of the mastitis-causing bacterial strain, as well as determining its antibiotic resistance and sensitivity is crucial for effective therapy. The present work focused on the LC–ESI–MS/MS (liquid chromatography–electrospray ionization tandem mass spectrometry) analysis of tryptic digestion peptides from mastitis-causing Streptococcus spp. isolated from milk. A total of 2706 non-redundant peptides belonging to 2510 proteins was identified and analyzed. Among them, 168 peptides were determined, representing proteins that act as virulence factors, toxins, anti-toxins, provide resistance to antibiotics that are associated with the production of lantibiotic-related compounds, or play a role in the resistance to toxic substances. Protein comparisons with the NCBI database allowed the identification of 134 peptides as specific to Streptococcus spp., while two peptides (EATGNQNISPNLTISNAQLNLEDKNK and DLWC*NM*IIAAK) were found to be species-specific to Streptococcus dysgalactiae. This proteomic repository might be useful for further studies and research work, as well as for the development of new therapeutics for the mastitis-causing Streptococcus strains.
Collapse
Affiliation(s)
- Ana G. Abril
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.)
| | - Mónica Carrera
- Marine Research Institute (IIM), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain;
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, Montirón 154, 27002 Lugo, Spain;
| | - Jorge Barros-Velázquez
- Departamento de Química Analítica, Nutrición y Bromatología, Area de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (J.B.-V.); (P.C.-M.)
| | - José-Luis R. Rama
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.)
| | - Pilar Calo-Mata
- Departamento de Química Analítica, Nutrición y Bromatología, Area de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (J.B.-V.); (P.C.-M.)
| | - Angeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Tomás G. Villa
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.)
- Correspondence:
| |
Collapse
|
13
|
Causes, types, etiological agents, prevalence, diagnosis, treatment, prevention, effects on human health and future aspects of bovine mastitis. Anim Health Res Rev 2020; 21:36-49. [PMID: 32051050 DOI: 10.1017/s1466252319000094] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mastitis is among the most common and challenging diseases of dairy animals. It is an inflammation of udder tissues due to physical damage, chemical irritation, or infection caused by certain pathogens. Bovine mastitis has been known for ages, but its complex etiology and multi-factorial nature make it difficult to control. Mastitis may have a negative impact on human health by inducing antibiotic-resistant pathogens that may spread, which is threatening. Researchers are continuously struggling to devise suitable methods for mastitis control. Management strategies are mainly focused on disease prevention by farm management which includes proper hygiene, trained staff to monitor minor changes in the udder or milk, and better diagnostic and treatment methods. New technologies which have the potential to unravel this complicated disease include improved diagnostic tools, based on advanced genomics or proteomics, prevention, based on vaccines and immune modulators, and metabolic products of probiotics such as bacteriocins and gene therapy.
Collapse
|
14
|
Fessia AS, Dieser SA, Raspanti CG, Odierno LM. Genotyping and study of adherence-related genes of Streptococcus uberis isolates from bovine mastitis. Microb Pathog 2019; 130:295-301. [PMID: 30914388 DOI: 10.1016/j.micpath.2019.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
Abstract
The aim of this study was to determine the presence, conservation, and distribution of 6 potential adherence genes and their relationship with diverse molecular types in 34 S. uberis isolated from bovine mastitis in Argentina. Pulsed-field gel electrophoresis (PFGE) typing with SmaI was performed. The PCR for the detection of each gene, scpA, acdA, fbp, lbp, lmb, and sua was standardized. Samples of the amplification products were purified and sequenced. The PFGE patterns revealed the high level of heterogeneity of S. uberis, with 26 types of PFGE patterns. A high prevalence of scpA, fbp, lbp, lmb and acdA genes (100%-97%) was detected, whereas 79.41% of S. uberis harbored the sua gene. A high degree of similarity in the nucleotide and amino acid sequences of the 6 genes was observed. Our results showed that all genes are conserved and are present in most S. uberis isolates despite the wide clonal heterogeneity detected. This is the first study reporting an analysis of prevalence, and nucleotides and amino acids sequences of the potential adherence genes scpA, acdA, fbp, lbp, and lmb from S. uberis strains versus reported GenBank sequences, S. uberis 0140J and S. uberis NZ01.
Collapse
Affiliation(s)
- Aluminé S Fessia
- Departamento Microbiología e Inmunología, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto, Córdoba, X5804ZAB, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Silvana A Dieser
- Departamento Microbiología e Inmunología, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto, Córdoba, X5804ZAB, Argentina
| | - Claudia G Raspanti
- Departamento Microbiología e Inmunología, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto, Córdoba, X5804ZAB, Argentina
| | - Liliana M Odierno
- Departamento Microbiología e Inmunología, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto, Córdoba, X5804ZAB, Argentina.
| |
Collapse
|
15
|
Misra N, Pu X, Holt DN, McGuire MA, Tinker JK. Immunoproteomics to identify Staphylococcus aureus antigens expressed in bovine milk during mastitis. J Dairy Sci 2018; 101:6296-6309. [PMID: 29729920 DOI: 10.3168/jds.2017-14040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/18/2018] [Indexed: 12/31/2022]
Abstract
Staphylococcus aureus is an opportunistic pathogen affecting both human and animal species. An effective vaccine to prevent S. aureus bovine disease and transmission would have positive effects on animal well-being, food production, and human health. The objective of this study was to identify multiple antigens that are immunoreactive during udder colonization and disease for exploration as vaccine antigens to prevent bovine mastitis. Staphylococcus aureus produces several cell wall-anchored and surface-associated virulence factors that play key roles in the pathogenesis of mastitis. Many of these proteins are conserved between different strains of S. aureus and represent promising vaccine candidates. We used an immunoproteomics approach to identify antigenic proteins from the surface of S. aureus. The expression of cell wall and surface proteins from S. aureus was induced under low iron conditions, followed by trypsin extraction and separation by 2-dimensional electrophoresis. The separated proteins were blotted with antibodies from mastitic bovine milk and identified by liquid chromatography-mass spectrometry. Thirty-eight unique proteins were identified, of which 8 were predicted to be surface exposed and involved in S. aureus virulence. Two surface proteins, iron-regulated surface determinant protein C (IsdC) and ESAT-6 secretion system extracellular protein (EsxA), were cloned, expressed, and purified from Escherichia coli for confirmation of immune reactivity by ELISA. A PCR of 37 bovine S. aureus isolates indicated that the presence of esxA and isdC is conserved, and amino acid alignments revealed that IsdC and EsxA sequences are highly conserved. The immunoproteomics technique used in this study generated reproducible results and identified surface exposed and reactive antigens for further characterization.
Collapse
Affiliation(s)
- N Misra
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725
| | - X Pu
- Biomolecular Research Center, Boise State University, Boise, ID 83725
| | - D N Holt
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725
| | - M A McGuire
- Department of Animal and Veterinary Science, University of Idaho, Moscow 83844
| | - J K Tinker
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725; Department of Biological Sciences, Boise State University, Boise, ID 83725.
| |
Collapse
|