1
|
Thong PM, Wong YH, Kornfeld H, Goletti D, Ong CWM. Immune dysregulation of diabetes in tuberculosis. Semin Immunol 2025; 78:101959. [PMID: 40267700 DOI: 10.1016/j.smim.2025.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/04/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
The rising prevalence of diabetes mellitus (DM) is undermining global efforts to eliminate tuberculosis (TB). Most studies found that patients with pulmonary TB and DM have more cavitary lung lesions, higher mycobacterial burden on the lungs, longer periods of infectiousness, and worse outcomes. Both human and animal studies indicate that TB-DM is associated with impaired innate and adaptive immune responses, resulting in delayed bacterial clearance. Similar observations have been noted in other infections, such as those caused by Klebsiella pneumoniae, where DM contributes to increased susceptibility and worse outcomes due to compromised immune functions including defective phagocytosis and impaired early immune cell recruitment. This review delves into the mechanisms of immune dysfunction in TB-DM, exploring how DM increases TB susceptibility and severity. By elucidating these complex interactions, this review aims to offer insights into more effective strategies for managing and improving outcomes for patients with this challenging comorbidity.
Collapse
Affiliation(s)
- Pei Min Thong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yi Hao Wong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology, National Institute for infectious diseases-IRCCS L. Spallanzani, Rome, Italy.
| | - Catherine W M Ong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore.
| |
Collapse
|
2
|
Valencia-Hernandez AM, Zhao G, Miranda-Hernandez S, Segura-Cerda CA, Pedroza-Roldan C, Seifert J, Aceves-Sanchez MDJ, Burciaga-Flores M, Gutierrez-Ortega A, Del Pozo-Ramos L, Flores-Valdez MA, Kupz A. A second-generation recombinant BCG strain combines protection against murine tuberculosis with an enhanced safety profile in immunocompromised hosts. Vaccine 2024; 42:126291. [PMID: 39241355 DOI: 10.1016/j.vaccine.2024.126291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Bacille Calmette-Guérin (BCG) remains the only licensed vaccine against tuberculosis (TB). While BCG protects against TB in children, its protection against pulmonary TB in adults is suboptimal, and the development of a better TB vaccine is a global health priority. Previously, we reported two recombinant BCG strains effective against murine TB with low virulence and lung pathology in immunocompromised mice and guinea pigs. We have recently combined these two recombinant BCG strains into one novel vaccine candidate (BCGΔBCG1419c::ESAT6-PE25SS) and evaluated its immunogenicity, efficacy and safety profile in mice. This new vaccine candidate is non-inferior to BCG in protection against TB, presents reduced pro-inflammatory immune responses and displays an enhanced safety profile.
Collapse
Affiliation(s)
- Ana Maria Valencia-Hernandez
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, Australia
| | - Guangzu Zhao
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, Australia
| | - Socorro Miranda-Hernandez
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, Australia
| | - Cristian Alfredo Segura-Cerda
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco (CIATEJ), A.C., Biotecnología Medica y Farmacéutica, Guadalajara, Mexico
| | - Cesar Pedroza-Roldan
- Departamento de Medicina Veterinaria, Centro Universitario de Ciencias Biologicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Julia Seifert
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, Australia
| | - Michel de Jesus Aceves-Sanchez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco (CIATEJ), A.C., Biotecnología Medica y Farmacéutica, Guadalajara, Mexico
| | - Mirna Burciaga-Flores
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco (CIATEJ), A.C., Biotecnología Medica y Farmacéutica, Guadalajara, Mexico
| | - Abel Gutierrez-Ortega
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco (CIATEJ), A.C., Biotecnología Medica y Farmacéutica, Guadalajara, Mexico
| | - Lidia Del Pozo-Ramos
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, Australia
| | - Mario Alberto Flores-Valdez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco (CIATEJ), A.C., Biotecnología Medica y Farmacéutica, Guadalajara, Mexico
| | - Andreas Kupz
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, Australia.
| |
Collapse
|
3
|
Assefa M, Girmay G. Mycobacterium tuberculosis Biofilms: Immune Responses, Role in TB Pathology, and Potential Treatment. Immunotargets Ther 2024; 13:335-342. [PMID: 38974843 PMCID: PMC11227863 DOI: 10.2147/itt.s455744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024] Open
Abstract
Tuberculosis (TB) is a major public health problem worldwide, and the burden of drug-resistant TB is rapidly increasing. Although there are literatures about the Mtb biofilms, their impact on immune responses has not yet been summarized. This review article provides recent knowledge on Mycobacterium tuberculosis (Mtb) biofilm-immunity interactions, their importance in pulmonary TB pathology, and immune-based therapy targeting Mtb biofilms. Pellicle/biofilm formation in Mtb contributes to drug resistance, persistence, chronicity, surface attachment, transfer of resistance genes, and modulation of the immune response, including reduced complement activation, changes in the expression of antigenic proteins, enhanced activation of T-lymphocytes, elevated local IFNγ+ T cells, and strong antibody production. The combination of anti-TB drugs and anti-biofilm agents has recently become an effective strategy to improve TB treatment. Additionally, immune-targeted therapy and biofilm-based vaccines are crucial for TB prevention.
Collapse
Affiliation(s)
- Muluneh Assefa
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Getu Girmay
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
4
|
Veerapandian R, Gadad SS, Jagannath C, Dhandayuthapani S. Live Attenuated Vaccines against Tuberculosis: Targeting the Disruption of Genes Encoding the Secretory Proteins of Mycobacteria. Vaccines (Basel) 2024; 12:530. [PMID: 38793781 PMCID: PMC11126151 DOI: 10.3390/vaccines12050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis (TB), a chronic infectious disease affecting humans, causes over 1.3 million deaths per year throughout the world. The current preventive vaccine BCG provides protection against childhood TB, but it fails to protect against pulmonary TB. Multiple candidates have been evaluated to either replace or boost the efficacy of the BCG vaccine, including subunit protein, DNA, virus vector-based vaccines, etc., most of which provide only short-term immunity. Several live attenuated vaccines derived from Mycobacterium tuberculosis (Mtb) and BCG have also been developed to induce long-term immunity. Since Mtb mediates its virulence through multiple secreted proteins, these proteins have been targeted to produce attenuated but immunogenic vaccines. In this review, we discuss the characteristics and prospects of live attenuated vaccines generated by targeting the disruption of the genes encoding secretory mycobacterial proteins.
Collapse
Affiliation(s)
- Raja Veerapandian
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX 77030, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
5
|
Flores-Valdez MA, Velázquez-Fernández JB, Pedroza-Roldán C, Aceves-Sánchez MDJ, Gutiérrez-Ortega A, López-Romero W, Barba-León J, Rodríguez-Campos J. Proteome and immunogenicity differences in BCG Pasteur ATCC 35734 and its derivative, the vaccine candidate BCGΔBCG1419c during planktonic growth in 7H9 and Proskauer Beck media. Tuberculosis (Edinb) 2024; 144:102432. [PMID: 38041962 DOI: 10.1016/j.tube.2023.102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
Bacillus Calmette-Guèrin (BCG) remains as the only vaccine employed to prevent tuberculosis (TB) during childhood. Among factors likely contributing to the variable efficacy of BCG is the modification in its antigenic repertoire that may arise from in vitro growth conditions. Our vaccine candidate, BCGΔBCG1419c, improved protection against TB in mice and guinea pigs with bacteria grown in either 7H9 OADC Tween 80 or in Proskauer Beck Tween 80 media in independent studies. Here, we compared the proteomes of planktonic cultures of BCG and BCGΔBCG1419c, grown in both media. Further to this, we compared systemic immunogenicity ex vivo elicited by both types of BCG strains and cultures when used to vaccinate BALB/c mice. Both the parental strain BCG Pasteur ATCC 35734, and its isogenic mutant BCGΔBCG1419c, had several medium-dependent changes. Moreover, ex vivo immune responses to a multiantigenic (PPD) or a single antigenic (Ag85A) stimulus were also medium-dependent. Then, not only the presence or absence of the BCG1419c gene in our strains under study affected the proteome produced in vitro but also that this was affected by culture medium, potentially leading to changes in the capacity to induce ex vivo immune responses.
Collapse
Affiliation(s)
- Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jalisco, 44270, Mexico.
| | | | - César Pedroza-Roldán
- Departamento de Medicina Veterinaria, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico.
| | - Michel de Jesús Aceves-Sánchez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jalisco, 44270, Mexico.
| | - Abel Gutiérrez-Ortega
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jalisco, 44270, Mexico.
| | - Wendy López-Romero
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jalisco, 44270, Mexico.
| | - Jeannette Barba-León
- Departamento de Salud Pública, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, 45200, Mexico.
| | - Jacobo Rodríguez-Campos
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco (CIATEJ), A. C., Unidad de Servicios Analíticos y Metrológicos, Av. Normalistas 800, Col. Colinas de la Normal, 44270, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
6
|
Aceves-Sánchez MDJ, Barrios-Payán JA, Segura-Cerda CA, Flores-Valdez MA, Mata-Espinosa D, Pedroza-Roldán C, Yadav R, Saini DK, de la Cruz MA, Ares MA, Bielefeldt-Ohmann H, Baay-Guzmán G, Vergne I, Velázquez-Fernández JB, Barba León J, Hernández-Pando R. BCG∆BCG1419c and BCG differ in induction of autophagy, c-di-GMP content, proteome, and progression of lung pathology in Mycobacterium tuberculosis HN878-infected male BALB/c mice. Vaccine 2023; 41:3824-3835. [PMID: 37164819 DOI: 10.1016/j.vaccine.2023.04.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
The efficacy of BCG vaccines against Mycobacterium tuberculosis (Mtb) strains of lineage 2 (Beijing) in preclinical models and humans has been questioned. We have developed BCG∆BCG1419c, by deletion of BCG1419c in BCG Pasteur, which improved control of tuberculosis (TB) in preclinical models. Here, we compared the capacity of BCG and BCG∆BCG1419c to induce autophagy in murine macrophages, modify c-di-GMP content and transcript levels of BCG1416c, encoding the enzyme responsible for c-di-GMP synthesis/degradation, and of BCG1419c, encoding the phosphodiesterase involved in c-di-GMP degradation. Furthermore, we evaluated proteomic differences in vitro and compared protection against TB produced by a low dose of the HN878-Beijing strain at 3- and 6-months post-infection. We found that BCG∆BCG1419c induced more autophagy and produced different levels of c-di-GMP as well as different transcription of BCG1416c with no expression of BCG1419c. BCG∆BCG1419c differentially produced several proteins, including some involved in interaction with host cells. Vaccination with either BCG strain led to control of bacillary burden in lungs and spleen at 3- but not 6-months post-infection, whereas it reduced pneumonic areas compared with unvaccinated controls at 6 months post-infection. Vaccination with BCG∆BCG1419c delayed progression of lung necrosis as this was observed only at 6 months post-infection. Taken together, compared with BCG, BCG∆BCG1419c increased autophagy, presented different levels of c-di-GMP and transcription of BCG1416c in vitro in a growth-phase dependent manner, modified its proteome and delayed progression of lung pathology produced by a highly virulent Beijing strain.
Collapse
Affiliation(s)
- Michel de Jesús Aceves-Sánchez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jalisco 44270, México
| | - Jorge Alberto Barrios-Payán
- Laboratorio de Patología Experimental. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez sección 16, Tlalpan, Ciudad de México, Mexico
| | - Cristian Alfredo Segura-Cerda
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jalisco 44270, México
| | - Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jalisco 44270, México.
| | - Dulce Mata-Espinosa
- Laboratorio de Patología Experimental. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez sección 16, Tlalpan, Ciudad de México, Mexico
| | - César Pedroza-Roldán
- Departamento de Medicina Veterinaria, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Rahul Yadav
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Miguel Angel de la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano de Seguro Social (IMSS), Ciudad de México, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano de Seguro Social (IMSS), Ciudad de México, Mexico
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, University of Queensland St. Lucia Campus, St Lucia, QLD 4072, Australia
| | - Guillermina Baay-Guzmán
- Unidad de Investigación de Enfermedades Hematooncológicas. Hospital Infantil de México Federico Gómez, Del. Cuauhtémoc, Ciudad de México, Mexico
| | - Isabelle Vergne
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France
| | | | - Jeannette Barba León
- Departamento de Salud Pública, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Km. 15.5 Carretera a Nogales, Zapopan, Jalisco 45110, Mexico
| | - Rogelio Hernández-Pando
- Laboratorio de Patología Experimental. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez sección 16, Tlalpan, Ciudad de México, Mexico.
| |
Collapse
|
7
|
Ali A, Waris A, Khan MA, Asim M, Khan AU, Khan S, Zeb J. Recent advancement, immune responses, and mechanism of action of various vaccines against intracellular bacterial infections. Life Sci 2023; 314:121332. [PMID: 36584914 DOI: 10.1016/j.lfs.2022.121332] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Emerging and re-emerging bacterial infections are a serious threat to human and animal health. Extracellular bacteria are free-living, while facultative intracellular bacteria replicate inside eukaryotic host cells. Many serious human illnesses are now known to be caused by intracellular bacteria such as Salmonella enterica, Escherichia coli, Staphylococcus aureus, Rickettsia massiliae, Chlamydia species, Brucella abortus, Mycobacterium tuberculosis and Listeria monocytogenes, which result in substantial morbidity and mortality. Pathogens like Mycobacterium, Brucella, MRSA, Shigella, Listeria, and Salmonella can infiltrate and persist in mammalian host cells, particularly macrophages, where they proliferate and establish a repository, resulting in chronic and recurrent infections. The current treatment for these bacteria involves the application of narrow-spectrum antibiotics. FDA-approved vaccines against obligate intracellular bacterial infections are lacking. The development of vaccines against intracellular pathogenic bacteria are more difficult because host defense against these bacteria requires the activation of the cell-mediated pathway of the immune system, such as CD8+ T and CD4+ T. However, different types of vaccines, including live, attenuated, subunit, killed whole cell, nano-based and DNA vaccines are currently in clinical trials. Substantial development has been made in various vaccine strategies against intracellular pathogenic bacteria. This review focuses on the mechanism of intracellular bacterial infection, host immune response, and recent advancements in vaccine development strategies against various obligate intracellular bacterial infections.
Collapse
Affiliation(s)
- Asmat Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong.
| | - Muhammad Ajmal Khan
- Division of Life Sciences, Center for Cancer Research and State Key Laboratory of Molecular Neurosciences, The Hong Kong University of Science and Technology, Hong Kong
| | - Muhammad Asim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Atta Ullah Khan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China
| | - Sahrish Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
8
|
BCGΔBCG1419c increased memory CD8 + T cell-associated immunogenicity and mitigated pulmonary inflammation compared with BCG in a model of chronic tuberculosis. Sci Rep 2022; 12:15824. [PMID: 36138053 PMCID: PMC9499934 DOI: 10.1038/s41598-022-20017-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/07/2022] [Indexed: 12/18/2022] Open
Abstract
Previously, we reported that a hygromycin resistant version of the BCGΔBCG1419c vaccine candidate reduced tuberculosis (TB) disease in BALB/c, C57BL/6, and B6D2F1 mice infected with Mycobacterium tuberculosis (Mtb) H37Rv. Here, the second-generation version of BCGΔBCG1419c (based on BCG Pasteur ATCC 35734, without antibiotic resistance markers, and a complete deletion of BCG1419c) was compared to its parental BCG for immunogenicity and protective efficacy against the Mtb clinical isolate M2 in C57BL/6 mice. Both BCG and BCGΔBCG1419c induced production of IFN-γ, TNF-α, and/or IL-2 by effector memory (CD44+CD62L-), PPD-specific, CD4+ T cells, and only BCGΔBCG1419c increased effector memory, PPD-specific CD8+ T cell responses in the lungs and spleens compared with unvaccinated mice before challenge. BCGΔBCG1419c increased levels of central memory (CD62L+CD44+) T CD4+ and CD8+ cells compared to those of BCG-vaccinated mice. Both BCG strains elicited Th1-biased antigen-specific polyfunctional effector memory CD4+/CD8+ T cell responses at 10 weeks post-infection, and both vaccines controlled Mtb M2 growth in the lung and spleen. Only BCGΔBCG1419c significantly ameliorated pulmonary inflammation and decreased neutrophil infiltration into the lung compared to BCG-vaccinated and unvaccinated mice. Both BCG strains reduced pulmonary TNF-α, IFN-γ, and IL-10 levels. Taken together, BCGΔBCG1419c increased memory CD8+T cell-associated immunogenicity and mitigated pulmonary inflammation compared with BCG.
Collapse
|
9
|
Evaluation of early innate and adaptive immune responses to the TB vaccine Mycobacterium bovis BCG and vaccine candidate BCGΔBCG1419c. Sci Rep 2022; 12:12377. [PMID: 35858977 PMCID: PMC9300728 DOI: 10.1038/s41598-022-14935-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/03/2022] [Indexed: 12/30/2022] Open
Abstract
The vaccine Mycobacterium bovis Bacillus Calmette-Guérin (BCG) elicits an immune response that is protective against certain forms of tuberculosis (TB); however, because BCG efficacy is limited it is important to identify alternative TB vaccine candidates. Recently, the BCG deletion mutant and vaccine candidate BCGΔBCG1419c was demonstrated to survive longer in intravenously infected BALB/c mice due to enhanced biofilm formation, and better protected both BALB/c and C57BL/6 mice against TB-induced lung pathology during chronic stages of infection, relative to BCG controls. BCGΔBCG1419c-elicited protection also associated with lower levels of proinflammatory cytokines (i.e. IL6, TNFα) at the site of infection in C57BL/6 mice. Given the distinct immune profiles of BCG- and BCGΔBCG1419c-immunized mice during chronic TB, we set out to determine if there are early immunological events which distinguish these two groups, using multi-dimensional flow cytometric analysis of the lungs and other tissues soon after immunization. Our results demonstrate a number of innate and adaptive response differences between BCG- and BCGΔBCG1419c-immunized mice which are consistent with the latter being longer lasting and potentially less inflammatory, including lower frequencies of exhausted CD4+ T helper (TH) cells and higher frequencies of IL10-producing T cells, respectively. These studies suggest the use of BCGΔBCG1419c may be advantageous as an alternative TB vaccine candidate.
Collapse
|
10
|
Korotetskaya M, Baikuzina P, Segura-Cerda CA, Aceves-Sánchez MDJ, Apt A, Flores-Valdez MA. BCG and BCGΔBCG1419c transiently protect hypersusceptible I/St mice and induce different influx of macrophages and neutrophils during pulmonary tuberculosis. J Med Microbiol 2022; 71. [PMID: 35037613 DOI: 10.1099/jmm.0.001485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background. Host genetic factors influence both susceptibility to Mycobacterium tuberculosis infection and immune responses generated by vaccination. Genetically susceptible mice help to study mechanisms of immune protection which may differ from those operating in more resistant models.Methods. In this work, we compared the efficacy of protection conferred by subcutaneous vaccination of hypersusceptible I/St mice with BCG and the first-generation, hygromycin resistant version of the vaccine candidate BCGΔBCG1419c, against tuberculosis (TB), measured as survival, weight loss and replication in lungs. We further characterized the relative presence of immune cells in lungs.Results. We found that in I/St mice, vaccination with BCG or BCGΔBCG1419c provided similar level of protection against TB-driven weight loss and M. tuberculosis replication in lungs, while prolonging median survival time compared with unvaccinated controls. Despite affording similar protection to parental BCG, BCGΔBCG1419c led to a reduced presence of macrophages in lungs during early TB and to an increased neutrophil recruitment to the lungs during chronic TB.Conclusions. BCGΔBCG1419c protects I/St mice in a different manner than wild-type BCG against pulmonary TB by promoting different influx of macrophages and neutrophils at distinct times post-infection. These findings prompt us to suggest that preclinical evaluation of novel TB vaccine candidates should include evaluation of efficacy not only in commonly used resistant inbred mice, but also in susceptible hosts, to further determine their potential application to populations varying in their genetic. This would likely impact their intended use depending on host resistance or susceptibility to TB.
Collapse
Affiliation(s)
- Maria Korotetskaya
- Central Institute for Tuberculosis, Department of Immunology, Laboratory of Immunogenetics, Moscow, Russia
| | - Polina Baikuzina
- Central Institute for Tuberculosis, Department of Immunology, Laboratory of Immunogenetics, Moscow, Russia
| | - Cristian Alfredo Segura-Cerda
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Guadalajara, Jalisco, Mexico
| | - Michel de Jesús Aceves-Sánchez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Guadalajara, Jalisco, Mexico
| | - Alexander Apt
- Central Institute for Tuberculosis, Department of Immunology, Laboratory of Immunogenetics, Moscow, Russia
| | - Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Guadalajara, Jalisco, Mexico
| |
Collapse
|
11
|
After 100 Years of BCG Immunization against Tuberculosis, What Is New and Still Outstanding for This Vaccine? Vaccines (Basel) 2021; 10:vaccines10010057. [PMID: 35062718 PMCID: PMC8778337 DOI: 10.3390/vaccines10010057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
In 2021, most of the world was reasonably still concerned about the COVID-19 pandemic, how cases were up and down in different countries, how the vaccination campaigns were ongoing, and most people were familiar with the speed with which vaccines against SARS-Co-V2 were developed, analyzed, and started to be applied in an attempt to curb the pandemic. Because of this, it may have somehow passed relatively inadvertently for people outside of the field that the vaccine used to control tuberculosis (TB), Mycobacterium bovis Bacille Calmette-Guérin (BCG), was first applied to humans a century ago. Over these years, BCG has been the vaccine applied to most human beings in the world, despite its known lack of efficacy to fully prevent respiratory TB. Several strategies have been employed in the last 20 years to produce a novel vaccine that would replace, or boost, immunity and protection elicited by BCG. In this work, to avoid potential redundancies with recently published reviews, I only aim to present my current thoughts about some of the latest findings and outstanding questions that I consider worth investigating to help develop a replacement or modified BCG in order to successfully fight TB, based on BCG itself.
Collapse
|
12
|
Yan H, Chen W. The Promise and Challenges of Cyclic Dinucleotides as Molecular Adjuvants for Vaccine Development. Vaccines (Basel) 2021; 9:917. [PMID: 34452042 PMCID: PMC8402453 DOI: 10.3390/vaccines9080917] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Cyclic dinucleotides (CDNs), originally discovered as bacterial second messengers, play critical roles in bacterial signal transduction, cellular processes, biofilm formation, and virulence. The finding that CDNs can trigger the innate immune response in eukaryotic cells through the stimulator of interferon genes (STING) signalling pathway has prompted the extensive research and development of CDNs as potential immunostimulators and novel molecular adjuvants for induction of systemic and mucosal innate and adaptive immune responses. In this review, we summarize the chemical structure, biosynthesis regulation, and the role of CDNs in enhancing the crosstalk between host innate and adaptive immune responses. We also discuss the strategies to improve the efficient delivery of CDNs and the recent advance and future challenges in the development of CDNs as potential adjuvants in prophylactic vaccines against infectious diseases and in therapeutic vaccines against cancers.
Collapse
Affiliation(s)
- Hongbin Yan
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Wangxue Chen
- Human Health and Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
13
|
Vaccination with BCGΔBCG1419c protects against pulmonary and extrapulmonary TB and is safer than BCG. Sci Rep 2021; 11:12417. [PMID: 34127755 PMCID: PMC8203684 DOI: 10.1038/s41598-021-91993-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
A single intradermal vaccination with an antibiotic-less version of BCGΔBCG1419c given to guinea pigs conferred a significant improvement in outcome following a low dose aerosol exposure to M. tuberculosis compared to that provided by a single dose of BCG Pasteur. BCGΔBCG1419c was more attenuated than BCG in murine macrophages, athymic, BALB/c, and C57BL/6 mice. In guinea pigs, BCGΔBCG1419c was at least as attenuated as BCG and induced similar dermal reactivity to that of BCG. Vaccination of guinea pigs with BCGΔBCG1419c resulted in increased anti-PPD IgG compared with those receiving BCG. Guinea pigs vaccinated with BCGΔBCG1419c showed a significant reduction of M. tuberculosis replication in lungs and spleens compared with BCG, as well as a significant reduction of pulmonary and extrapulmonary tuberculosis (TB) pathology measured using pathology scores recorded at necropsy. Evaluation of cytokines produced in lungs of infected guinea pigs showed that BCGΔBCG1419c significantly reduced TNF-α and IL-17 compared with BCG-vaccinated animals, with no changes in IL-10. This work demonstrates a significantly improved protection against pulmonary and extrapulmonary TB provided by BCGΔBCG1419c in susceptible guinea pigs together with an increased safety compared with BCG in several models. These results support the continued development of BCGΔBCG1419c as an effective vaccine for TB.
Collapse
|
14
|
Flores-Valdez MA, Segura-Cerda CA. Preclinical evaluation of tuberculosis vaccine candidates: Is it time to harmonize study design and readouts for prioritizing their development? Vaccine 2020; 39:173-175. [PMID: 33334615 DOI: 10.1016/j.vaccine.2020.11.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/23/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Mario Alberto Flores-Valdez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A. C., Biotecnología Médica y Farmacéutica, Av. Normalistas 800, Col. Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico.
| | - Cristian Alfredo Segura-Cerda
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Biotecnología Médica y Farmacéutica, Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jalisco 44270, Mexico
| |
Collapse
|
15
|
Velázquez-Fernández JB, Ferreira-Souza GHM, Rodríguez-Campos J, Aceves-Sánchez MDJ, Bravo-Madrigal J, Vallejo-Cardona AA, Flores-Valdez MA. Proteomic characterization of a second-generation version of the BCGΔBCG1419c vaccine candidate by means of electrospray-ionization quadrupole time-of-flight mass spectrometry. Pathog Dis 2020; 79:5986614. [PMID: 33201999 DOI: 10.1093/femspd/ftaa070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/13/2020] [Indexed: 01/11/2023] Open
Abstract
Tuberculosis (TB) is the most important infectious disease worldwide, based on the number of new cases and deaths reported by the World Health Organization. Several vaccine candidates against TB have been characterized at preclinical and clinical levels. The BCGΔBCG1419c vaccine candidate, which lacks the BCG1419c gene that encodes for a c-di-GMP phosphodiesterase, provides improved efficacy against chronic TB, reactivation from latent-like infection and against chronic TB in the presence of type 2 diabetes in murine models. We previously reported that compared with wild type BCG, BCGΔBCG1419c changed levels of several proteins. Here, using a label-free proteomic approach, we confirmed that a novel, second-generation version of BCGΔBCG1419c maintains changes in antigenic proteins already reported, and here we further found differences in secreted proteins, as well as that this new BCGΔBCG1419c version modifies its production of proteins involved in redox and nitrogen/protein metabolism compared with wild type BCG. This work contributes to the proteomic characterization of a novel vaccine candidate that is more effective against TB than parental BCG in diverse murine models.
Collapse
Affiliation(s)
| | - Gustavo Henrique Martins Ferreira-Souza
- Mass Spectrometry Research & Development Laboratory, SpectraMass Limited, Campinas, São Paulo, Brazil. Rua Monteiro Lobato, 255 - Cidade Universitária, Campinas - SP, 13083-862, Brazil
| | - Jacobo Rodríguez-Campos
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco (CIATEJ), A. C., Unidad de Servicios Analíticos y Metrológicos, Av. Normalistas 800, Col. Colinas de la Normal, 44270 Guadalajara, Jalisco, México
| | - Michel de Jesús Aceves-Sánchez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco (CIATEJ), A.C., Biotecnología Médica y Farmacéutica, Av. Normalistas 800, Col. Colinas de la Normal, 44270 Guadalajara, Jalisco, México
| | - Jorge Bravo-Madrigal
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco (CIATEJ), A.C., Biotecnología Médica y Farmacéutica, Av. Normalistas 800, Col. Colinas de la Normal, 44270 Guadalajara, Jalisco, México
| | - Alba Adriana Vallejo-Cardona
- CONACYT-CIATEJ, Biotecnología Médica y Farmacéutica, Av. Normalistas 800, Col. Colinas de la Normal, 44270 Guadalajara, Jalisco, México
| | - Mario Alberto Flores-Valdez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco (CIATEJ), A.C., Biotecnología Médica y Farmacéutica, Av. Normalistas 800, Col. Colinas de la Normal, 44270 Guadalajara, Jalisco, México
| |
Collapse
|
16
|
Vaca-González A, Flores-Valdez MA, Aceves-Sánchez MDJ, Camacho-Villegas TA, Pérez-Padilla NA, Burciaga-Flores M, De la Cruz MÁ, Ares MA, Mora-Montes HM, Bravo-Madrigal J, Gaona-Bernal J, Tamez-Castrellón AK. Overexpression of the celA1 gene in BCG modifies surface pellicle, glucosamine content in biofilms, and affects in vivo replication. Tuberculosis (Edinb) 2020; 125:102005. [PMID: 33032092 DOI: 10.1016/j.tube.2020.102005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 01/04/2023]
Abstract
Biofilm formed in vitro by mycobacteria has been associated with increased antibiotic tolerance as compared with planktonic cells. Cellulose has been identified as a component of DTT-exposed biofilms formed by M. tuberculosis. The celA1 gene of M. tuberculosis encodes a cellulase, which could affect the formation of biofilm by slow-growing mycobacteria. In this work, the celA1 gene of M. tuberculosis was cloned into the integrative pMV361 plasmid and then transformed into M. bovis BCG Pasteur to produce BCG:celA1, to have celA1 expressed from the strong promoter hsp60. We compared planktonic and biofilm growth, possible presence of CelA1 in whole protein extracts, quantitated biofilm, presence of monosaccharides, and bacillary burden in lungs after aerosol infection in BALB/c mice. Differences in the appearance of the surface pellicle and of the biofilm attached to the substrate were observed. In biofilms, we observed a significant decrease of glucosamine in BCG:celA1 compared with BCG:pMV361. Finally, BCG:celA1 had lower viable bacteria than the BCG:pMV361 strain after 24 h and 3 weeks post-infection, but no difference was found at 9 weeks post-infection.
Collapse
Affiliation(s)
- Alonso Vaca-González
- Maestría en Microbiología Médica, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico; Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C., Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, 44270, Mexico
| | - Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C., Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, 44270, Mexico.
| | - Michel de Jesús Aceves-Sánchez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C., Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, 44270, Mexico
| | - Tanya Amanda Camacho-Villegas
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C., Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, 44270, Mexico
| | - Nayeli Areli Pérez-Padilla
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C., Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, 44270, Mexico
| | - Mirna Burciaga-Flores
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C., Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, 44270, Mexico
| | - Miguel Ángel De la Cruz
- Unidad de Investigación en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano de Seguro Social (IMSS), Ciudad de México, Mexico
| | - Miguel A Ares
- Unidad de Investigación en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano de Seguro Social (IMSS), Ciudad de México, Mexico
| | - Héctor Manuel Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Jorge Bravo-Madrigal
- Maestría en Microbiología Médica, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jorge Gaona-Bernal
- Maestría en Microbiología Médica, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Alma Karina Tamez-Castrellón
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
17
|
Alvarez AH, Flores-Valdez MA. Can immunization with Bacillus Calmette-Guérin be improved for prevention or therapy and elimination of chronic Mycobacterium tuberculosis infection? Expert Rev Vaccines 2020; 18:1219-1227. [PMID: 31826664 DOI: 10.1080/14760584.2019.1704263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Tuberculosis (TB) is one of the most prevalent infectious diseases in the world. Current vaccination with BCG can prevent meningeal and disseminated TB in children. However, success against latent pulmonary TB infection (LTBI) or its reactivation is limited. Evidence suggests that there may be means to improve the efficacy of BCG raising the possibility of developing new vaccine candidates against LTBI.Areas covered: BCG improvements include the use of purified mycobacterial immunogenic proteins, either from an active or dormant state, as well as expressing those proteins from recombinant BCG strains that harvor those specific genes. It also includes boost protein mixtures with synthetic adjuvants or within liposomes, as a way to increase a protective immune response during chronic TB produced in laboratory animal models. References cited were chosen from PubMed searches.Expertopinion: Strategies aiming to improve or boost BCG have been receiving increased attention. With the advent of -omics, it has been possible to dissect several specific stages during mycobacterial infection. Recent experimental models of disease, diagnostic and immunological data obtained from individual M. tuberculosis antigens could introduce promising developments for more effective TB vaccines that may contribute to eliminating the hidden (latent) form of this infectious disease.
Collapse
Affiliation(s)
- A H Alvarez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| | - M A Flores-Valdez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| |
Collapse
|
18
|
la Cruz MAD, Ares MA, Rodríguez-Valverde D, Vallejo-Cardona AA, Flores-Valdez MA, Núñez IDC, Aceves-Sánchez MDJ, Lira-Chávez J, Rodríguez-Campos J, Bravo-Madrigal J. Transcriptional and Mycolic Acid Profiling in Mycobacterium bovis BCG In Vitro Show an Effect for c-di-GMP and Overlap between Dormancy and Biofilms. J Microbiol Biotechnol 2020; 30:811-821. [PMID: 32238759 PMCID: PMC9728378 DOI: 10.4014/jmb.1911.11043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/12/2020] [Indexed: 12/15/2022]
Abstract
Mycobacterium tuberculosis produces mycolic acids which are relevant for persistence, recalcitrance to antibiotics and defiance to host immunity. c-di-GMP is a second messenger involved in transition from planktonic cells to biofilms, whose levels are controlled by diguanylate cyclases (DGC) and phosphodiesterases (PDE). The transcriptional regulator dosR, is involved in response to low oxygen, a condition likely happening to a subset of cells within biofilms. Here, we found that in M. bovis BCG, expression of both BCG1416c and BCG1419c genes, which code for a DGC and a PDE, respectively, decreased in both stationary phase and during biofilm production. The kasA, kasB, and fas genes, which are involved in mycolic acid biosynthesis, were induced in biofilm cultures, as was dosR, therefore suggesting an inverse correlation in their expression compared with that of genes involved in c-di-GMP metabolism. The relative abundance within trehalose dimycolate (TDM) of α-mycolates decreased during biofilm maturation, with methoxy mycolates increasing over time, and keto species remaining practically stable. Moreover, addition of synthetic c-di-GMP to mid-log phase BCG cultures reduced methoxy mycolates, increased keto species and practically did not affect α-mycolates, showing a differential effect of c-di-GMP on keto- and methoxy-mycolic acid metabolism.
Collapse
Affiliation(s)
- Miguel A. De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano de Seguro Social (IMSS), Ciudad de México, México
| | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano de Seguro Social (IMSS), Ciudad de México, México
| | - Diana Rodríguez-Valverde
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano de Seguro Social (IMSS), Ciudad de México, México
| | - Alba Adriana Vallejo-Cardona
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco (CIATEJ) A.C., Biotecnología Médica y Farmacéutica, Av. Normalistas No. 800. Colinas de la Normal, C.P. 4470 Guadalajara, Jalisco, México,Alba Adriana Vallejo-Cardona Phone: +52-33-33-45-52-00 E-mail:
| | - Mario Alberto Flores-Valdez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco (CIATEJ) A.C., Biotecnología Médica y Farmacéutica, Av. Normalistas No. 800. Colinas de la Normal, C.P. 4470 Guadalajara, Jalisco, México,Corresponding authors Mario Alberto Flores-Valdez Phone: +52-33-33-45-52-00 E-mail:
| | - Iris Denisse Cota Núñez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco (CIATEJ) A.C., Biotecnología Médica y Farmacéutica, Av. Normalistas No. 800. Colinas de la Normal, C.P. 4470 Guadalajara, Jalisco, México
| | - Michel de Jesús Aceves-Sánchez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco (CIATEJ) A.C., Biotecnología Médica y Farmacéutica, Av. Normalistas No. 800. Colinas de la Normal, C.P. 4470 Guadalajara, Jalisco, México
| | - Jonahtan Lira-Chávez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco (CIATEJ) A.C., Biotecnología Médica y Farmacéutica, Av. Normalistas No. 800. Colinas de la Normal, C.P. 4470 Guadalajara, Jalisco, México
| | - Jacobo Rodríguez-Campos
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco (CIATEJ) A.C, Unidad de Servicios Analíticos y Metrológicos, Av. Normalistas No. 800. Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, México
| | - Jorge Bravo-Madrigal
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco (CIATEJ) A.C., Biotecnología Médica y Farmacéutica, Av. Normalistas No. 800. Colinas de la Normal, C.P. 4470 Guadalajara, Jalisco, México
| |
Collapse
|
19
|
BCG and BCGΔBCG1419c protect type 2 diabetic mice against tuberculosis via different participation of T and B lymphocytes, dendritic cells and pro-inflammatory cytokines. NPJ Vaccines 2020; 5:21. [PMID: 32194998 PMCID: PMC7067831 DOI: 10.1038/s41541-020-0169-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/20/2020] [Indexed: 02/08/2023] Open
Abstract
Comorbidity between Tuberculosis (TB) and type 2 diabetes (T2D) is one of the greatest contributors to the spread of Mycobacterium tuberculosis (M. tuberculosis) in low- and middle-income countries. T2D compromises key steps of immune responses against M. tuberculosis and it might affect the protection afforded by vaccine candidates against TB. We compared the protection and immune response afforded by the BCGΔBCG1419c vaccine candidate versus that of wild-type BCG in mice with T2D. Vaccination with both BCGΔBCG1419c, BCG or infection with M. tuberculosis reduced weight loss, hyperglycemia, and insulin resistance during T2D progression, suggesting that metabolic changes affecting these parameters were affected by mycobacteria. For control of acute TB, and compared with non-vaccinated controls, BCG showed a dominant T CD4+ response whereas BCGΔBCG1419c showed a dominant T CD8+/B lymphocyte response. Moreover, BCG maintained an increased response in lung cells via IFN-γ, TNF-α, and IL-4, while BCGΔBCG1419c increased IFN-γ but reduced IL-4 production. As for chronic TB, and compared with non-vaccinated controls, both BCG strains had a predominant presence of T CD4+ lymphocytes. In counterpart, BCGΔBCG1419c led to increased presence of dendritic cells and an increased production of IL-1 β. Overall, while BCG effectively reduced pneumonia in acute infection, it failed to reduce it in chronic infection, whereas we hypothesize that increased production of IL-1 β induced by BCGΔBCG1419c contributed to reduced pneumonia and alveolitis in chronic TB. Our results show that BCG and BCGΔBCG1419c protect T2D mice against TB via different participation of T and B lymphocytes, dendritic cells, and pro-inflammatory cytokines.
Collapse
|
20
|
Animal Models of Tuberculosis Vaccine Research: An Important Component in the Fight against Tuberculosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4263079. [PMID: 32025519 PMCID: PMC6984742 DOI: 10.1155/2020/4263079] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, is one of the top ten infectious diseases worldwide, and is the leading cause of morbidity from a single infectious agent. M. tuberculosis can cause infection in several species of animals in addition to humans as the natural hosts. Although animal models of TB disease cannot completely simulate the occurrence and development of human TB, they play an important role in studying the pathogenesis, immune responses, and pathological changes as well as for vaccine research. This review summarizes the commonly employed animal models, including mouse, guinea pig, rabbit, rat, goat, cattle, and nonhuman primates, and their characteristics as used in TB vaccine research, and provides a basis for selecting appropriate animal models according to specific research needs. Furthermore, some of the newest animal models used for TB vaccine research (such as humanized animal models, zebrafish, Drosophila, and amoeba) are introduced, and their characteristics and research progress are discussed.
Collapse
|
21
|
Sathkumara HD, Pai S, Aceves-Sánchez MDJ, Ketheesan N, Flores-Valdez MA, Kupz A. BCG Vaccination Prevents Reactivation of Latent Lymphatic Murine Tuberculosis Independently of CD4 + T Cells. Front Immunol 2019; 10:532. [PMID: 30949177 PMCID: PMC6437071 DOI: 10.3389/fimmu.2019.00532] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/27/2019] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) is a major global public health problem causing significant mortality and morbidity. In addition to ~10.4 million cases of active TB annually, it is estimated that about two billion people are latently infected with Mycobacterium tuberculosis (Mtb), the causative agent of TB. Reactivation of latent Mtb infection is the leading cause of death in patients with immunodeficiency virus (HIV) infection. The low efficiency of the only licensed anti-TB vaccine, Bacille Calmette–Guérin (BCG) to reduce pulmonary TB in adults contributes to this problem. Here we investigated if vaccination with conventional BCG or the genetically modified experimental BCGΔBCG1419c strain can prevent reactivation of latent lymphatic TB in a mouse model of induced reactivation, following the depletion of CD4+ T cells, as it occurs in HIV+ individuals. Vaccination with conventional BCG or BCGΔBCG1419c prevented reactivation of Mtb from the infected lymph node and the systemic spread of Mtb to spleen and lung. Prevention of reactivation was independent of vaccination route and was accompanied by reduced levels of circulating inflammatory cytokines and the absence of lung pathology. Our results demonstrate that vaccine-induced CD4+ T cells are not essential to prevent reactivation of latent lymphatic murine TB, and highlight the need to better understand how non-CD4+ immune cell populations participate in protective immune responses to control latent TB.
Collapse
Affiliation(s)
- Harindra D Sathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, Australia
| | - Saparna Pai
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, Australia
| | - Michel de Jesús Aceves-Sánchez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Biotecnología Médica y Farmacéutica, Guadalajara, Mexico
| | - Natkunam Ketheesan
- Science and Technology, University of New England, Armidale, NSW, Australia
| | - Mario Alberto Flores-Valdez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Biotecnología Médica y Farmacéutica, Guadalajara, Mexico
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, Australia
| |
Collapse
|
22
|
Macrophage infection with combinations of BCG mutants reduces induction of TNF-α, IL-6, IL-1β and increases IL-4. Tuberculosis (Edinb) 2019; 115:42-48. [DOI: 10.1016/j.tube.2019.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 01/11/2023]
|
23
|
Aceves-Sánchez MDJ, Flores-Valdez MA, Shanley C, Orme I, Bielefeldt-Ohmann H. Vaccination of guinea pigs with BCGΔBCG1419c transiently reduces hematogenous spread of M. tuberculosis to the spleen. Pathog Dis 2018; 76:5222634. [PMID: 30500936 DOI: 10.1093/femspd/fty088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/28/2018] [Indexed: 01/08/2023] Open
Abstract
The guinea pig has proven to be a reliable model for testing vaccine candidates against tuberculosis (TB) because of its capacity to produce human-like disease associated to primary TB, thus providing a more stringent test of the ability of a vaccine to prevent disease and deaths. Here, the BCGΔBCG1419c vaccine candidate, which previously has been shown to provide protection in mice, was tested in a guinea pig model. We found that this vaccine candidate was as effective as parental BCG in reducing M. tuberculosis H37Rv replication in lungs, and significantly reducing hematogenous spread to spleen at 60 days post-infection in comparison with BCG. Moreover, lung histopathological examination revealed comparable protection between the parental and mutant BCG strains, with some differences in prevention of primary lesions or necrosis at a single time point post-infection in a strain-dependent manner. Our results show that the BCGΔBCG1419c vaccine candidate is as effective as BCG in reducing M. tuberculosis H37Rv replication in lungs and reducing lung pathology, as well as significantly improving control of its dissemination to spleens up to 60 days post-infection.
Collapse
Affiliation(s)
- Michel de Jesús Aceves-Sánchez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C. Biotecnología Médica y Farmacéutica. Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jalisco, 44270, México
| | - Mario Alberto Flores-Valdez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C. Biotecnología Médica y Farmacéutica. Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jalisco, 44270, México
| | - Crystal Shanley
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523-1682, USA
| | - Ian Orme
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523-1682, USA
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, The University of Queensland Gatton Campus, Qld 4343, Australia
| |
Collapse
|
24
|
Pedroza-Roldán C, Flores-Valdez MA. Recent mouse models and vaccine candidates for preventing chronic/latent tuberculosis infection and its reactivation. Pathog Dis 2018; 75:3966715. [PMID: 29659820 DOI: 10.1093/femspd/ftx079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) remains a major challenge in public health worldwide. Until today, the only widely used and approved vaccine is the Mycobacterium bovis bacille Calmette-Guerin (BCG). This vaccine provides a highly variable level of protection against the active, pulmonary form of tuberculosis, and practically none against the latent form of TB infection. This disparity in protection has been extensively studied, and for this reason, several groups have focused their research on the quest for attenuated vaccines based on M. tuberculosis or on the identification of latency-associated antigens that can be incorporated into modified BCG, or that can be used as adjuvanted subunit vaccines. In order to seek new potential antigens relevant for infection, some researchers have performed experiments with highly sensitive techniques such as transcriptomic and proteomic analyses using sputum samples from humans or by using mouse models resembling several aspects of TB. In this review, we focus on reports of new mouse models or mycobacterial antigens recently tested for developing vaccine candidates against chronic/latent tuberculosis and its reactivation.
Collapse
Affiliation(s)
- César Pedroza-Roldán
- Departamento de Medicina Veterinaria, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Av. Prolongación Parres Arias No. 735, Col. Bosques Del Centinela II, CP 45187, Zapopan, Jalisco, México
| | - Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, AC, Av. Normalistas, Col. Colinas de la Normal, 44270 Guadalajara, Jalisco, México
| |
Collapse
|
25
|
Flores-Valdez MA, Pedroza-Roldán C, Aceves-Sánchez MDJ, Peterson EJR, Baliga NS, Hernández-Pando R, Troudt J, Creissen E, Izzo L, Bielefeldt-Ohmann H, Bickett T, Izzo AA. The BCGΔBCG1419c Vaccine Candidate Reduces Lung Pathology, IL-6, TNF-α, and IL-10 During Chronic TB Infection. Front Microbiol 2018; 9:1281. [PMID: 29946316 PMCID: PMC6005825 DOI: 10.3389/fmicb.2018.01281] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis), the causative agent of human tuberculosis (TB), is estimated to be harbored by up to 2 billion people in a latent TB infection (LTBI) state. The only TB vaccine approved for use in humans, BCG, does not confer protection against establishment of or reactivation from LTBI, so new vaccine candidates are needed to specifically address this need. Following the hypothesis that mycobacterial biofilms resemble aspects of LTBI, we modified BCG by deleting the BCG1419c gene to create the BCGΔBCG1419c vaccine strain. In this study, we compared cytokine profiles, bacterial burden, and lung lesions after immunization with BCG or BCGΔBCG1419c before and after 6 months of aerosol infection with M. tuberculosis H37Rv in the resistant C57BL/6 mouse model. Our results show that in infected mice, BCGΔBCG1419c significantly reduced lung lesions and IL-6 in comparison to the unmodified BCG strain, and was the only vaccine that decreased production of TNF-α and IL-10 compared to non-vaccinated mice, while vaccination with BCG or BCGΔBCG1419c significantly reduced IFN-γ production. Moreover, transcriptome profiling of BCGΔBCG1419c suggests that compared to BCG, it has decreased expression of genes involved in mycolic acids (MAs) metabolism, and antigenic chaperones, which might be involved in reduced pathology compared to BCG-vaccinated mice.
Collapse
Affiliation(s)
- Mario A Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - César Pedroza-Roldán
- Departamento de Medicina Veterinaria, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Michel de Jesús Aceves-Sánchez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | | | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA, United States
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - JoLynn Troudt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Elizabeth Creissen
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Linda Izzo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, The University of Queensland, Saint Lucia, QLD, Australia.,School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
| | - Thomas Bickett
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Angelo A Izzo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
26
|
Parasa VR, Rose J, Castillo-Diaz LA, Aceves-Sánchez MDJ, Vega-Domínguez PJ, Lerm M, Flores-Valdez MA. Evaluation of the immunogenic capability of the BCG strains BCGΔBCG1419c and BCGΔBCG1416c in a three-dimensional human lung tissue model. Vaccine 2018; 36:1811-1815. [PMID: 29475763 DOI: 10.1016/j.vaccine.2018.02.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/17/2022]
Abstract
Tuberculosis (TB) still remains as an unmet global threat. The current vaccine is not fully effective and novel alternatives are needed. Here, two vaccine candidate strains derived from BCG carrying deletions in the BCG1416c or BCG1419c genes were analysed for their capacity to modulate the cytokine/chemokine profile and granuloma formation in a human lung tissue model (LTM). We show that the clustering of monocytes, reminiscent of early granuloma formation, in LTMs infected with BCG strains was similar for all of them. However, BCGΔBCG1419c, like M. tuberculosis, was capable of inducing the production of IL-6 in contrast to the other BCG strains. This work suggests that LTM could be a useful ex vivo assay to evaluate the potential immunogenicity of novel TB vaccine candidates.
Collapse
Affiliation(s)
- Venkata Ramanarao Parasa
- Division of Microbiology and Molecular Medicine, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
| | - Jeronimo Rose
- Division of Microbiology and Molecular Medicine, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
| | - Luis Alberto Castillo-Diaz
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Av. Normalistas No. 800, Col. Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico.
| | - Michel de Jesús Aceves-Sánchez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Av. Normalistas No. 800, Col. Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico.
| | - Perla Jazmín Vega-Domínguez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Av. Normalistas No. 800, Col. Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico
| | - Maria Lerm
- Division of Microbiology and Molecular Medicine, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden.
| | - Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Av. Normalistas No. 800, Col. Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico.
| |
Collapse
|
27
|
Segura-Cerda CA, Aceves-Sánchez MDJ, Marquina-Castillo B, Mata-Espinoza D, Barrios-Payán J, Vega-Domínguez PJ, Pedroza-Roldán C, Bravo-Madrigal J, Vallejo-Cardona AA, Hernández-Pando R, Flores-Valdez MA. Immune response elicited by two rBCG strains devoid of genes involved in c-di-GMP metabolism affect protection versus challenge with M. tuberculosis strains of different virulence. Vaccine 2018; 36:2069-2078. [PMID: 29550192 DOI: 10.1016/j.vaccine.2018.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/22/2018] [Accepted: 03/07/2018] [Indexed: 12/20/2022]
Abstract
Pellicles, a type of biofilm, have gathered a renewed interest in the field of tuberculosis as a structure that mimics some characteristics occurring during M. tuberculosis infection, such as antibiotic recalcitrance and chronicity of infection, and as a source of antigens for humoral response in infected guinea pigs. In other bacteria, it has been well documented that the second messenger c-di-GMP modulates the transition from planktonic cells to biofilm formation. In this work, we used the live vaccine Mycobacterium bovis BCG to determine whether deletion of genes involved in c-di-GMP metabolism would affect interaction with macrophages, capacity to induce immune response in a murine cell line and mice, and how the protein profile was modified when grown as surface pellicles. We found that deletion of the BCG1419c (Delta c-di-GMP phosphodiesterase, ΔPDE) gene, or deletion of the BCG1416c (Delta c-di-GMP diguanylate cyclase, ΔDGC) gene, altered production of TNF-α, IL-6, and IL-1β, in murine macrophages, and resulted in attenuation in intra-macrophage replication. Moreover, in addition to the improved immunogenicity of the BCGΔBCG1419c mutant already reported, deletion of the BCG1416c gene leads to increased T CD4+ and T CD8+ activation. This correlated with protection versus lethality in mice infected with the highly virulent M. tuberculosis 5186 afforded by vaccination with all the tested BCG strains, and controlled the growth of the mildly virulent M. tuberculosis H37Rv in lungs by vaccination with BCGΔBCG1419c during chronic late infection from 4 to 6 months after challenge. Furthermore, when grown as surface pellicles, a condition used to manufacture BCG vaccine, in comparison to BCG wild type, both rBCGs changed expression of antigenic proteins such as DnaK, HbhA, PstS2, 35KDa antigen, GroEL2, as well as AcpM, a protein involved in synthesis of mycolic acids, molecules relevant to modulate inflammatory responses.
Collapse
Affiliation(s)
- Cristian Alfredo Segura-Cerda
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Guadalajara, Jalisco, Mexico
| | - Michel de Jesús Aceves-Sánchez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Guadalajara, Jalisco, Mexico
| | - Brenda Marquina-Castillo
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Dulce Mata-Espinoza
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Jorge Barrios-Payán
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Perla Jazmín Vega-Domínguez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Guadalajara, Jalisco, Mexico
| | - César Pedroza-Roldán
- Departamento de Medicina Veterinaria, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Jorge Bravo-Madrigal
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Guadalajara, Jalisco, Mexico
| | - Alba Adriana Vallejo-Cardona
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Guadalajara, Jalisco, Mexico
| | - Rogelio Hernández-Pando
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Guadalajara, Jalisco, Mexico.
| |
Collapse
|