1
|
Dai L, Wan J, Zhang R, Xie T, Jia Y, Lu Z, Zhang F, Ke W, Liu F, Lei L. Multi-epitope vaccines Xlc and Ddc against Glaesserella parasuis infection in mice. Vet Microbiol 2025; 304:110491. [PMID: 40154005 DOI: 10.1016/j.vetmic.2025.110491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Glaesserella parasuis (synonym Haemophilus parasuis) is the pathogenic agent of Glässer's disease and causes huge economic losses in the world's swine industry. Glaesserella parasuis (G. parasuis) can be divided into 15 serotypes, and the cross-protection effect of existing vaccines is not satisfactory. Therefore, the development of a vaccine to prevent multiple serotypes of G. parasuis infection is of great significance for the prevention and treatment of Glässer's disease, but still faces many difficulties. In this study, the B-cell, CTL and Th cell epitopes of CtdB, CtbC, OppA, TbpB, HxuC, D15, Omp2 and Omp5 proteins were predicted by bioinformatics method, and multi-epitope proteins Xlc and Ddc were obtained by concatenating epitopes through linkers. After immunization with Xlc and Ddc, the levels of antibodies, IL-4, and IFN-γ in mice were significantly increased. The protective rates of Xlc+Ddc immunized mice against G. parasuis serotypes 4, 5, and 10 were 62.5 %, 75 %, and 87.5 %, respectively, which were higher than those of Xlc (37.5 %, 62.5 %, and 87.5 %) and Ddc (75 %, 25 %, and 50 %). Overall, the combination of multi-epitope proteins Xlc and Ddc had good immunogenicity and strong cross-protection against G. parasuis serotypes 4, 5, and 10. These results indicated that multi-epitope proteins Xlc and Ddc can serve as candidate subunit vaccines against G. parasuis infection.
Collapse
Affiliation(s)
- Lu Dai
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Jiajia Wan
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Rui Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Tingting Xie
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Yizhen Jia
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Zhichao Lu
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Fuxian Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Wenting Ke
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Feng Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China.
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Lei T, Dai T, Zhuang L, Liu Y, Li X, Huang C, Zheng X. Enhanced Systemic and Mucosal Immune Responses to Haemophilus parasuis by Intranasal Administration of Lactic-Co-Glycolic Acid Microspheres. Vaccines (Basel) 2024; 12:1103. [PMID: 39460270 PMCID: PMC11511020 DOI: 10.3390/vaccines12101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Swine Glasser's disease, instigated by Haemophilus parasuis (H. parasuis), is a significant bacterial infection that causes substantial economic losses in pig farming operations. The role of mucosal immunity is pivotal in defending against H. parasuis. This study focused on the construction of PLGA microspheres that encapsulate the outer membrane protein OMP16 from H. parasuis (PLGA-OMP16) and evaluated their immunological effectiveness in a mouse model. After being intranasally immunized twice, the PLGA-OMP16 microspheres effectively induced IgAs in saliva and nasal and lung fluids. The PLGA-OMP16 microspheres also significantly increased the number of anti H. parasuis IgGs in serum. Furthermore, the PLGA-OMP16 microspheres triggered elevated levels of IL-2, IL-4, and IFN-γ. The mice vaccinated with PLGA-OMP16 showed a significant reduction in H. parasuis burden in the spleen and lungs following bacterial challenge. These results indicate that intranasal immunization using PLGA microspheres is a promising adjuvant delivery system for vaccines targeting H. parasuis.
Collapse
Affiliation(s)
- Tianyu Lei
- College of Life Sciences, Longyan University, Longyan 364000, China
| | - Tingting Dai
- College of Life Sciences, Longyan University, Longyan 364000, China
| | - Liyun Zhuang
- College of Life Sciences, Longyan University, Longyan 364000, China
| | - Yiting Liu
- College of Life Sciences, Longyan University, Longyan 364000, China
| | - Xiaohua Li
- College of Life Sciences, Longyan University, Longyan 364000, China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary Biotechnology, Longyan 364000, China
| | - Cuiqin Huang
- College of Life Sciences, Longyan University, Longyan 364000, China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary Biotechnology, Longyan 364000, China
| | - Xintian Zheng
- College of Life Sciences, Longyan University, Longyan 364000, China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary Biotechnology, Longyan 364000, China
| |
Collapse
|
3
|
Lei T, Liu R, Zhuang L, Dai T, Meng Q, Zhang X, Bao Y, Huang C, Lin W, Huang Y, Zheng X. Gp85 protein encapsulated by alginate-chitosan composite microspheres induced strong immunogenicity against avian leukosis virus in chicken. Front Vet Sci 2024; 11:1374923. [PMID: 38840641 PMCID: PMC11150705 DOI: 10.3389/fvets.2024.1374923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Avian leukosis, a viral disease affecting birds such as chickens, presents significant challenges in poultry farming due to tumor formation, decreased egg production, and increased mortality. Despite the absence of a commercial vaccine, avian leukosis virus (ALV) infections have been extensively documented, resulting in substantial economic losses in the poultry industry. This study aimed to develop alginate-chitosan composite microspheres loaded with ALV-J Gp85 protein (referred to as aCHP-gp85) as a potential vaccine candidate. Methods Sodium alginate and chitosan were utilized as encapsulating materials, with the ALV-J Gp85 protein serving as the active ingredient. The study involved 45 specific pathogen-free (SPF) chickens to evaluate the immunological effectiveness of aCHP-gp85 compared to a traditional Freund adjuvant-gp85 vaccine (Freund-gp85). Two rounds of vaccination were administered, and antibody levels, mRNA expression of immune markers, splenic lymphocyte proliferation, and immune response were assessed. An animal challenge experiment was conducted to evaluate the vaccine's efficacy in reducing ALV-J virus presence and improving clinical conditions. Results The results demonstrated that aCHP-gp85 induced a significant and sustained increase in antibody levels compared to Freund-gp85, with the elevated response lasting for 84 days. Furthermore, aCHP-gp85 significantly upregulated mRNA expression levels of key immune markers, notably TNF-α and IFN-γ. The application of ALV-J Gp85 protein within the aCHP-gp85 group led to a significant increase in splenic lymphocyte proliferation and immune response. In the animal challenge experiment, aCHP-gp85 effectively reduced ALV-J virus presence and improved clinical conditions compared to other groups, with no significant pathological changes observed. Discussion The findings suggest that aCHP-gp85 elicits a strong and prolonged immune response compared to Freund-gp85, indicating its potential as an innovative ALV-J vaccine candidate. These results provide valuable insights for addressing avian leukosis in the poultry industry, both academically and practically.
Collapse
Affiliation(s)
- Tianyu Lei
- College of Life Sciences, Longyan University, Longyan, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongchang Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Liyun Zhuang
- College of Life Sciences, Longyan University, Longyan, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tingting Dai
- College of Life Sciences, Longyan University, Longyan, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingfu Meng
- College of Life Sciences, Longyan University, Longyan, China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary Biotechnology, Longyan, China
| | - Xiaodong Zhang
- College of Life Sciences, Longyan University, Longyan, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yinli Bao
- College of Life Sciences, Longyan University, Longyan, China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary Biotechnology, Longyan, China
| | - Cuiqin Huang
- College of Life Sciences, Longyan University, Longyan, China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary Biotechnology, Longyan, China
| | - Weiming Lin
- College of Life Sciences, Longyan University, Longyan, China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary Biotechnology, Longyan, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xintian Zheng
- College of Life Sciences, Longyan University, Longyan, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary Biotechnology, Longyan, China
| |
Collapse
|
4
|
Silva LA, Souza MF, Carvalho TP, Santana CH, Guedes AC, Oliveira JBS, de Lima PA, Nogueira PRA, de Mello Brandão H, da Paixão TA, Santos RL. Comparative study on alginate/chitosan microcapsules and Montanide ISA 61 as vaccine adjuvants in mice. PLoS One 2024; 19:e0298117. [PMID: 38573916 PMCID: PMC10994407 DOI: 10.1371/journal.pone.0298117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/16/2024] [Indexed: 04/06/2024] Open
Abstract
Selection of adjuvant to be combined with the antigen is an extremely important point for formulating effective vaccines. The aim of this study was to evaluate reactogenicity, levels of IgM, IgG and subclasses (IgG1, IgG2b and IgG3), and protection elicited by vaccine formulations with association of chitosan coated alginate or Montanide ISA 61 with γ-irradiated Brucella ovis. The alginate/chitosan biopolymers as well as the Montanide ISA 61 emulsion elicited intense and long-lasting local response, especially when associated with the antigen. However, Montanide ISA 61 induced less intense reactogenicity when compared to alginate/chitosan. Furthermore, γ-irradiated B. ovis with Montanide ISA 61 induced higher levels of IgG2b an important marker of cellular immune response. In conclusion, Montanide ISA 61 resulted in milder reactogenicity when compared to the alginate/chitosan, while it induced a high IgG2b/IgG1 ratio compatible with a Th1 profile response.
Collapse
Affiliation(s)
- Laice A. Silva
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Monique F. Souza
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thaynara P. Carvalho
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clarissa H. Santana
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andressa C. Guedes
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jefferson Bruno S. Oliveira
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pâmela A. de Lima
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Roberto A. Nogueira
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Tatiane A. da Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renato Lima Santos
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Li YA, Sun Y, Zhang Y, Wang X, Dieye Y, Wang S, Shi H. Salmonella enterica serovar Choleraesuis vector outperforms alum as an adjuvant, increasing a cross-protective immune response against Glaesserella parasuis. Vet Microbiol 2023; 287:109915. [PMID: 38000209 DOI: 10.1016/j.vetmic.2023.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/28/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023]
Abstract
The adjuvant and/or vector significantly affect a vaccine's efficacy. Although traditional adjuvants such as alum have contributed to vaccine development, deficiencies in the induction of cellular and mucosal immunity have limited their further promotion. Salmonella vectors have unique advantages for establishing cellular and mucosal immunity due to mucosal pathways of invasion and intracellular parasitism. In addition, Salmonella vectors can activate multiple innate immune pathways, thereby promoting adaptive immune responses. In this work, the attenuated Salmonella enterica serovar Choleraesuis (S. Choleraesuis) vector rSC0016 was used to deliver the conserved protective antigen HPS_06257 of Glaesserella parasuis (G. parasuis), generating a novel recombinant strain rSC0016(pS-HPS_06257). The rSC0016(pS-HPS_06257) can express and deliver the HPS_06257 protein to the lymphatic system of the host. In comparison to HPS_06257 adjuvanted with alum, rSC0016(pS-HPS_06257) significantly increased TLR4 and TLR5 activation in mice as well as the levels of proinflammatory cytokines. In addition, rSC0016 promoted a greater degree of maturation in bone marrow-derived dendritic cells (BMDCs) than alum. The specific humoral, mucosal, and cellular immune responses against HPS_06257 in mice immunized with rSC0016(pS-HPS_06257) were significantly higher than those of HPS_06257 adjuvanted with alum. HPS_06257 delivered by the S. Choleraesuis vector induces a Th1-biased Th1/Th2 mixed immune response, while HPS adjuvanted with alum can only induce a Th2-biased immune response. HPS_06257 adjuvanted with alum only causes opsonophagocytic activity (OPA) responses against a homologous strain (G. parasuis serotype 5, GPS5), whereas rSC0016(pS-HPS_06257) could generate cross-OPA responses against a homologous strain and a heterologous strain (G. parasuis serotype 12, GPS12). Ultimately, HPS_06257 adjuvanted with alum protected mice against lethal doses of GPS5 challenge by 60 % but failed to protect mice against lethal doses of GPS12. In contrast, mice immunized with rSC0016(pS-HPS_06257) had 100 % or 80 % survival when challenged with lethal doses of GPS5 or GPS12, respectively. Altogether, the S. Choleraesuis vector rSC0016 could potentially generate an improved innate immune response and an improved adaptive immunological response compared to the traditional alum adjuvant, offering a novel concept for the development of a universal G. parasuis vaccine.
Collapse
Affiliation(s)
- Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yanni Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuqin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xiaobo Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yakhya Dieye
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
6
|
Xu FF, Jiang FY, Zhou GQ, Xia JY, Yang F, Zhu B. The recombinant subunit vaccine encapsulated by alginate-chitosan microsphere enhances the immune effect against Micropterus salmoides rhabdovirus. JOURNAL OF FISH DISEASES 2022; 45:1757-1765. [PMID: 35944110 DOI: 10.1111/jfd.13697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The disease caused by Micropterus salmoides rhabdovirus (MSRV) has brought substantial economic losses to the largemouth bass aquaculture industry in China. Vaccination was considered as a potential way to prevent and control this disease. As a kind of sustained and controlled release system, alginate and chitosan microspheres (SA-CS) are widely used in the development of oral vaccination for fish. Here, we prepared a king of alginate-chitosan composite microsphere to encapsulate the second segment of MSRV glycoprotein (G2 protein) and then evaluated the immune effect of the microsphere vaccine on largemouth bass. Largemouth bass were vaccinated via intragastric immunization by different treatments (PBS, SA-CS, G2 and SA-CS-G2). The results showed that a stronger immune response including serum antibody levels, immune-related physiological indexes (acid phosphatase, alkaline phosphatase, superoxide dismutase and total antioxidant capacity) and the expression of immune-related gene (IgM、IL-8、IL-1β、CD4、TGF-β、TNF-α) can be induced obviously with SA-CS-G2 groups compared with G2 groups when fish were vaccinated. Furthermore, fish were injected with a lethal dose of MSRV after immunization for 28 days, and the highest relative percentage survival (54.8%) was observed in SA-CS-G2 group (40 μg per fish), which is significantly higher than that of G2 group (25.8%). This study showed that alginate-chitosan microspheres as the vaccine carrier can effectively improve the immune effect of oral vaccination and induce better immune protection effect against MSRV infection.
Collapse
Affiliation(s)
- Fei-Fan Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fu-Yi Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guo-Qing Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jun-Yao Xia
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fei Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Carvalho LT, Vieira TA, Zhao Y, Celli A, Medeiros SF, Lacerda TM. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int J Biol Macromol 2021; 183:1514-1539. [PMID: 33989687 DOI: 10.1016/j.ijbiomac.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/10/2023]
Abstract
In recent years, growing attention has been devoted to naturally occurring biological macromolecules and their ensuing application in agriculture, cosmetics, food and pharmaceutical industries. They inherently have antigenicity, low immunogenicity, excellent biocompatibility and cytocompatibility, which are ideal properties for the design of biomedical devices, especially for the controlled delivery of active ingredients in the most diverse contexts. Furthermore, these properties can be modulated by chemical modification via the incorporation of other (macro)molecules in a random or controlled way, aiming at improving their functionality for each specific application. Among the wide variety of natural polymers, microbial polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS) are often considered for the development of original biomaterials due to their unique physicochemical and biological features. Here, we aim to fullfil a gap on the present associated literature, bringing an up-to-date overview of ongoing research strategies that make use of PHAs (poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxyoctanoate), poly(3-hydroxypropionate), poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate), and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)) and EPS (bacterial cellulose, alginates, curdlan, pullulan, xanthan gum, dextran, hyaluronan, and schizophyllan) as sources of interesting and versatile biomaterials. For the first time, a monograph addressing the properties, pros and cons, status, challenges, and recent progresses regarding the application of these two important classes of biopolymers in biomedicine is presented.
Collapse
Affiliation(s)
- Layde T Carvalho
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Thiago A Vieira
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery 449 and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simone F Medeiros
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil; Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| | - Talita M Lacerda
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| |
Collapse
|
8
|
Fabrication of alginate microspheres for drug delivery: A review. Int J Biol Macromol 2020; 153:1035-1046. [DOI: 10.1016/j.ijbiomac.2019.10.233] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/29/2022]
|
9
|
AbdelAllah NH, Gaber Y, Rashed ME, Azmy AF, Abou-Taleb HA, AbdelGhani S. Alginate-coated chitosan nanoparticles act as effective adjuvant for hepatitis A vaccine in mice. Int J Biol Macromol 2020; 152:904-912. [PMID: 32114177 DOI: 10.1016/j.ijbiomac.2020.02.287] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/28/2023]
Abstract
The numerous recent hepatitis A outbreaks emphasize the need for vaccination; despite the effectiveness of the current ones, developments are needed to overcome its high cost plus some immune response limitations. Our study aims to evaluate the use of chitosan and alginate-coated chitosan nanoparticles as an adjuvant/carrier for the hepatitis A vaccine (HAV) against the traditional adjuvant alum. Immune responses towards (HAV-Al) with alum, (HAV-Ch) with chitosan, and (HAV-aCNP) with alginate-coated chitosan nanoparticles, were assessed in mice. HAV-aCNP significantly improved the immunogenicity by increasing the seroconversion rate (100%), the hepatitis A antibodies level, and the splenocytes proliferation. Thus, the HAV-aCNP adjuvant was superior to other classes in IFN-γ and IL-10 development. Meanwhile, the solution formula of HAV with chitosan showed comparable humoral and cellular immune responses to alum-adjuvanted suspension with a balanced Th1/Th2 immune pathway. The current study showed the potential of alginate-coated chitosan nanoparticles as an effective carrier for HAV. Consequently, this would impact the cost of HAV production positively.
Collapse
Affiliation(s)
- Nourhan H AbdelAllah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt; Viral Control Unit, National Organization for Research and Control of Biologicals (NORCB), Cairo 12654, Egypt
| | - Yasser Gaber
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-karak 61710, Jordan
| | - Mohamed E Rashed
- Microbiology Department, National Organization for Research and Control of Biologicals (NORCB), Cairo 12654, Egypt
| | - Ahmed F Azmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Heba A Abou-Taleb
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Sameh AbdelGhani
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt; Department of Pathology and Medical Laboratory, University of Louisville, KY 40202, USA.
| |
Collapse
|
10
|
Costa-Hurtado M, Barba-Vidal E, Maldonado J, Aragon V. Update on Glässer's disease: How to control the disease under restrictive use of antimicrobials. Vet Microbiol 2020; 242:108595. [PMID: 32122599 DOI: 10.1016/j.vetmic.2020.108595] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 01/27/2023]
Abstract
Antimicrobials have been commonly used to control bacterial diseases in farm animals. The efficacy of these drugs deterred the development of other control measures, such as vaccines, which are currently getting more attention due to the increased concern about antimicrobial resistance. Glässer's disease is caused by Glaesserella (Haemophilus) parasuis and affects pork production around the world. Balance between colonization and immunity seems to be essential in disease control. Reduction in antimicrobial use in veterinary medicine requires the implementation of preventive measures, based on alternative tools such as vaccination and other strategies to guarantee a beneficial microbial colonization of the animals. The present review summarizes and discusses the current knowledge on diagnosis and control of Glässer's disease, including prospects on alternatives to antimicrobials.
Collapse
Affiliation(s)
- Mar Costa-Hurtado
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
| | | | | | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.
| |
Collapse
|
11
|
Dhamecha D, Movsas R, Sano U, Menon JU. Applications of alginate microspheres in therapeutics delivery and cell culture: Past, present and future. Int J Pharm 2019; 569:118627. [PMID: 31421199 PMCID: PMC7073469 DOI: 10.1016/j.ijpharm.2019.118627] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022]
Abstract
Polymers are the backbone of pharmaceutical drug delivery. There are several polymers with varying properties available today for use in different pharmaceutical applications. Alginate is widely used in biomedical research due to its attractive features such as biocompatibility, biodegradability, inertness, low cost, and ease of production and formulation. Encapsulation of therapeutic agents in alginate/alginate complex microspheres protects them from environmental stresses, including the acidic environment in the gastro-intestinal tract (GIT) and enzymatic degradation, and allows targeted and sustained delivery of the agents. Microencapsulation is playing an increasingly important role in drug delivery as evidenced by the recent surge in research articles on the use of alginate in the delivery of small molecules, cells, bacteria, proteins, vaccines, and for tissue engineering applications. Formulation of these alginate microspheres (AMS) are commonly achieved by conventional external gelation method using various instrumental manipulation such as vortexing, homogenization, ultrasonication or spray drying, and each method affects the overall particle characteristics. In this review, an inclusive summary of the currently available methods for the formulation of AMS, its recent use in the encapsulation and delivery of therapeutics, and future outlook will be discussed.
Collapse
Affiliation(s)
- Dinesh Dhamecha
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Rachel Movsas
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Ugene Sano
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
12
|
Guizzo JA, Chaudhuri S, Prigol SR, Yu RH, Dazzi CC, Balbinott N, Frandoloso GP, Kreutz LC, Frandoloso R, Schryvers AB. The amino acid selected for generating mutant TbpB antigens defective in binding transferrin can compromise the in vivo protective capacity. Sci Rep 2018; 8:7372. [PMID: 29743502 PMCID: PMC5943581 DOI: 10.1038/s41598-018-25685-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/26/2018] [Indexed: 02/08/2023] Open
Abstract
Haemophilus parasuis is the causative agent of the Glässer's disease (GD), one of the most important bacterial diseases that affect young pigs worldwide. GD prevention based on vaccination is a major concern due to the limited cross-protection conferred by the inactivated whole cell vaccines used currently. In this study, vaccines based on two mutant recombinant proteins derived from transferrin binding protein B of H. parasuis (Y167A-TbpB and W176A-TbpB) were formulated and evaluated in terms of protection against lethal challenge using a serovar 7 (SV7) H. parasuis in a high susceptibility pig model. Our results showed that H. parasuis strain 174 (SV7) is highly virulent in conventional and colostrum-deprived pigs. The Y167A-TbpB and W176A-TbpB antigens were immunogenic in pigs, however, differences in terms of antigenicity and functional immune response were observed. In regard to protection, animals immunized with Y167A-TbpB antigen displayed 80% survival whereas the W176A-TbpB protein was not protective. In conjunction with previous studies, our results demonstrate, (a) the importance of testing engineered antigens in an in vivo pig challenge model, and, (b) that the Y167A-TbpB antigen is a promising antigen for developing a broad-spectrum vaccine against H. parasuis infection.
Collapse
Affiliation(s)
- João Antônio Guizzo
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil
| | - Somshukla Chaudhuri
- Department of Microbiology & Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Simone Ramos Prigol
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil
| | - Rong-Hua Yu
- Department of Microbiology & Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Cláudia Cerutti Dazzi
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil
| | - Natalia Balbinott
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil
| | - Gabriela Paraboni Frandoloso
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil
| | - Luiz Carlos Kreutz
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil
| | - Rafael Frandoloso
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil.
| | - Anthony Bernard Schryvers
- Department of Microbiology & Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
13
|
Li G, Xie F, Li J, Liu J, Li D, Zhang Y, Langford PR, Li Y, Liu S, Wang C. Identification of novel Haemophilus parasuis serovar 5 vaccine candidates using an immunoproteomic approach. J Proteomics 2017; 163:111-117. [PMID: 28528009 DOI: 10.1016/j.jprot.2017.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/25/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
Abstract
Haemophilus parasuis is the aetiological agent of Glässer's disease, which is responsible for cases of fibrinous polyserositis, polyarthritis and meningitis. No vaccine is known that provides cross-protection against all serovars. The identification of novel immunoprotective antigens would undoubtedly contribute to the development of efficient subunit vaccines. In the present study, an immunoproteomic approach was used to analyze secreted proteins of H. parasuis and six proteins with high immunogenicity were identified. Five of them were successfully expressed, and their immunogenicity and protective efficacy were assessed in a mouse challenge model. All five proteins elicited strong humoral antibody and cellular immune responses in mice. They all effectively reduced the growth of H. parasuis in mouse organs and conferred different levels of protection (40-80%) against challenge. IgG subtype analysis revealed that the five proteins induce a bias toward a Th1-type immune response, and a significant increase was observed in the cytokine levels of IL-2, IFN-γ and Th2-specific IL-4 in the culture supernatants of splenocytes isolated from immunized mice. The results suggest that both Th1 and Th2 responses are involved in mediating protection. These data suggest that the five proteins could be potential subunit vaccine candidates for use to prevent H. parasuis infection. BIOLOGICAL SIGNIFICANCE Haemophilus parasuis can cause huge financial loss in the swine industry worldwide. There are still no vaccines which can provide cross-protection against all serovars. To address this need, we applied an immunoproteomic approach involving 2-DE, MALDI-TOF/TOF MS and Western-blot to identify the secreted proteins which may be able to provide immunoprotection to this disease. We identified six immunogenic proteins, and the immunogenicity and protective efficacy were validated. This result provides a foundation for developing novel subunit vaccines against Haemophilus parasuis.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Xie
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianjun Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiao Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dapeng Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanhe Zhang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Yanwen Li
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunlai Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|