1
|
Wang F, Yan W, Liu L, Shu D, Yang X, Xu W. The GI-19 dominant genotype of infectious bronchitis virus in chickens from 2021 to 2023 in Sichuan province is frequently involved in recombination events. Virology 2025; 608:110543. [PMID: 40286468 DOI: 10.1016/j.virol.2025.110543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Infectious bronchitis virus (IBV), the etiological agent of infectious bronchitis (IB) in chickens, is a highly contagious respiratory disease that poses significant economic burdens on the global poultry industry. Comprehensive knowledge of the epidemiological patterns and genetic variations of IBV is crucial for effective prevention and control strategies. In this study, we collected 684 suspected samples from Sichuan province between 2021 and 2023. PCR testing revealed a total positivity rate of 26.9 %, with the Guangyuan region exhibiting the highest positivity rate at 37.2 %. Subsequently, we obtained 21 complete IBV S1 gene sequences and the phylogenetic analysis identified the GI-19 type as the predominant strain. Comparing nucleic acid similarity among the 21 isolated strains, we observed a range of 66.48 %-99.69 % nucleotide similarity (56.22 %-99.45 % in amino acids). The QXL87 vaccine strain exhibited higher similarity to the isolated strains. Amino acid variations in the three hypervariable regions (HVRs) showed the highest variability in HVR I. The GVI type strain differed in amino acid composition from QXL87 in HVR I, resulting in reduced N-glycosylation sites on the S1 gene. Furthermore, all isolated strains displayed varying reductions in N-glycosylation sites on the S1 gene compared to the QXL87 vaccine strain. Ultimately, recombination analysis revealed frequent involvement of the GI-19 and GI-22 strains in gene recombination. The majority of recombined strains were derived from partial segments of the GI-19 strain, with no recombination observed in any of the isolated GI-19 strains. In summary, our findings elucidate the prevalence of IBV in Sichuan province and highlight the pivotal role of the GI-19 strain in IBV recombination, thereby offering valuable data support for IBV control.
Collapse
Affiliation(s)
- Fuyan Wang
- Phoenix Food Group Gorporation.,LTD, Mianyang, 621600, China
| | - Wenjun Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Lijia Liu
- Phoenix Food Group Gorporation.,LTD, Mianyang, 621600, China
| | - Dongli Shu
- Phoenix Food Group Gorporation.,LTD, Mianyang, 621600, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Wenlong Xu
- Phoenix Food Group Gorporation.,LTD, Mianyang, 621600, China.
| |
Collapse
|
2
|
Keep S, Foldes K, Dowgier G, Freimanis G, Tennakoon C, Chowdhury S, Rayment A, Kirk J, Bakshi T, Stevenson-Leggett P, Chen Y, Britton P, Bickerton E. Recombinant infectious bronchitis virus containing mutations in non-structural proteins 10, 14, 15, and 16 and within the macrodomain provides complete protection against homologous challenge. J Virol 2025; 99:e0166324. [PMID: 40013770 PMCID: PMC11998542 DOI: 10.1128/jvi.01663-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/26/2025] [Indexed: 02/28/2025] Open
Abstract
Infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute highly contagious economically important disease of chickens. Vaccination uses live attenuated vaccines (LAVs) that are generated via serial passage of a virulent field isolate through embryonated hens' eggs, typically 80-100 times. The molecular basis of attenuation is unknown and varies with each attenuation procedure. To investigate specifically targeted attenuation, we utilized reverse genetics to target the macrodomain 1 (Mac1) domain within non-structural protein 3 of the virulent M41 strain. Macrodomains are found in a variety of viruses, including coronaviruses, and have been associated with the modulation of the host's innate response. Two recombinant IBVs (rIBVs) were generated with specific single point mutations, either Asn42Ala (N42A) or Gly49Ser (G49S), within the Mac1 domain generating rIBVs M41K-N42A and M41K-G49S, respectively. Replication in vitro was unaffected, and the mutations were stably maintained during passaging in vitro and in ovo. While M41K-N42A exhibited an attenuated phenotype in vivo, M41K-G49S was only partially attenuated. The attenuated in vivo phenotypes observed do not appear to be linked to a reduction in viral replication and additionally M41K-N42A highlighted the N42A mutation as a method of rational attenuation. Vaccination of chickens with either rIBV M41K-N42A or a rIBV containing the Mac1 N42A mutation and our previously identified attenuating Nsp10 and 14 mutations, Pro85Leu and Val393Leu respectively, offered complete protection from homologous challenge. The presence of multiple attenuating mutations did not appear to negatively impact vaccine efficacy. IMPORTANCE Infection of chickens with the Gammacoronavirus infectious bronchitis virus (IBV) causes an acute respiratory disease, resulting in reduced weight gain and reductions in egg laying making it a global concern for poultry industries and food security. Vaccination against IBV uses live attenuated viruses (LAVs), generated by multiple passages of a virulent virus through embryonated hens' eggs. The molecular basis of attenuation is unknown and unpredictable requiring a fine balance between loss of virulence and vaccine efficacy. In this study, we targeted the macrodomain of IBV for rational attenuation demonstrating a single point mutation can result in loss of pathogenicity. An IBV vaccine candidate was subsequently generated containing three specific attenuating mutations, to reduce the risk of reversion, which completely protected chickens. The targets in this study are conserved among IBV strains and the coronavirus family offering a potential method of rational attenuation that can be universally applied for vaccine development.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | | | | | | | - Adam Rayment
- The Pirbright Institute, Pirbright, United Kingdom
| | - James Kirk
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | - Yana Chen
- The Pirbright Institute, Pirbright, United Kingdom
| | - Paul Britton
- The Pirbright Institute, Pirbright, United Kingdom
| | | |
Collapse
|
3
|
Finger A, Ashash U, Goldenberg D, Raviv Z. Lessons learnt on infectious bronchitis virus lineage GI-23. Avian Pathol 2025; 54:27-39. [PMID: 39190026 DOI: 10.1080/03079457.2024.2398030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Infectious bronchitis virus (IBV) is the first coronavirus discovered in the world in the early 1930s and despite decades of extensive immunoprophylaxis efforts, it remains a major health concern to poultry producers worldwide. Rapid evolution due to large poultry population sizes coupled with high mutation and recombination events and the reliance of the antiviral immune response on specific antibodies against the epitopes of the S1 glycoprotein, render the control of IBV extremely challenging. The numerous and rapidly evolving genetic and antigenic IBV types are currently classified based on the whole S1 gene sequence, into 36 lineages clustered in eight genotypes. Most lineages (29) are grouped in genotype I (GI). "Variant 2" (Israel/Variant 2/1998) is the prototype strain of lineage GI-23 and, since this lineage emerged during the mid-1990s in the Middle East, it has evolved into numerous genetically related strains and disseminated to five continents. The hallmarks of IBV Variant 2-like strain infections are high virulence and remarkable nephrotropism and nephropathogenicity; however, the molecular mechanisms of these traits remain to be elucidated. Limited protection from previously utilized vaccine strains and accumulated losses to poultry producers have urged the development and implementation of homologous Variant 2-like vaccine strains. The latest avian coronavirus biology with specific emphasis on the cumulative knowledge about IBV "Variant 2" and emergence of related strains, characteristics and control are reviewed.
Collapse
Affiliation(s)
- Avner Finger
- Phibro Animal Health Corporation, Airport City, Israel
| | - Udi Ashash
- Phibro Animal Health Corporation, Airport City, Israel
| | | | - Ziv Raviv
- Poultry PathoScience Solutions, Inc., Plantation, FL, USA
| |
Collapse
|
4
|
Tan L, Qiu X, Liang L, Liao X, Wang F, Sun Y, Song C, Liao Y, Ding C. Safety evaluation of recombinant Newcastle disease virus expressing IBV multi-epitope chimeric live vaccine. Front Microbiol 2024; 15:1458252. [PMID: 39144228 PMCID: PMC11322052 DOI: 10.3389/fmicb.2024.1458252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Newcastle Disease (ND) and Infectious Bronchitis (IB) are two significant diseases that pose threats to the poultry industry, caused by Newcastle disease virus (NDV) and Infectious bronchitis virus (IBV), respectively. Currently, the control and prevention of these diseases primarily rely on vaccination. However, commercial ND and IB vaccines face challenges such as poor cross-protection of inactivated IBV strains and interference from live vaccines when used together, leading to immunization failures. Previously, we reported the successful rescue of a recombinant NDV expressing multiple epitopes of IBV, named rNDV-IBV-T/B, which showed promising immunoprotective efficacy against both NDV and IBV. This study focuses on the biosafety of the genetically modified recombinant vaccine candidate rNDV-IBV-T/B. Immunization was performed on day-old chicks, ducklings, goslings, and ICR mice. Observations were recorded on clinical symptoms, body weight changes, and post-mortem examination of organs, as well as histopathological preparations of tissue samples. The results indicated that the rNDV-IBV-T/B vaccine candidate had no adverse effects on the growth of targeted animals (chickens) and non-target species (ducks, geese) as well as in mammals (mice). Additionally, histopathological slides confirmed that the vaccine is safe for all tested species. Further studies evaluated the potential of rNDV-IBV-T/B to spread horizontally and vertically post-immunization, and its environmental safety. The findings revealed that the vaccine candidate lacks the capability for both horizontal and vertical transmission and does not survive in the environment. In conclusion, the rNDV-IBV-T/B strain is safe and holds potential as a new chimeric live vaccine for ND and IB.
Collapse
Affiliation(s)
- Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | | | | | | | | | | | | | | | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
5
|
Sun WY, Cao XL, Wang YX, Guo XC, Liu JM, Xue ZQ, Li HJ, Wang W, Zhang TT, Li Q, Qin RH, Jin YH, Li YN, Ren GP. Development and evaluation of a bivalent vaccine based on recombinant newcastle disease virus expressing infectious bursal disease virus VP2L-CH3-CH4 in SPF chickens. Vet Microbiol 2024; 288:109950. [PMID: 38101079 DOI: 10.1016/j.vetmic.2023.109950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Newcastle disease (ND) and infectious bursal disease (IBD) are two viral infectious diseases that are extremely damaging to the poultry industry and are widespread throughout the world. It is necessary to develop a safe and effective vaccine against IBD and ND because vaccination is an effective preventive measure. It has been discovered that recombinant proteins expressed by an expression system in which a fragment of mammalian Immunoglobulin G (IgG) Fragment crystallizable (Fc) is linked to a segment of a gene have antibody-like properties that increase the exogenous protein's serum half-life. Heavy chain constant region 3 and heavy chain constant region 4 (CH3-CH4) of Avian Immunoglobulin Y (IgY) is structurally very similar to mammalian Ig G Fc. In this study, a bivalent vaccine rClone30-VP2L-CH3-CH4-GMCSF was developed by using NDV rClone30-chGM-CSF vector to produce VP2L-CH3-CH4 fusion protein. The vaccine has been given to 14-day-old specific pathogen free (SPF) free chickens to test whether it has the potential to prevent IBD and ND. Anti-IBDV and anti-NDV antibody levels in serum were evaluated using ELISA and HI, respectively, and the contents of CD4+ T, CD8+ T, and B cells in leukocytes were determined via flow cytometry. The contents and mRNA transcription levels of four inflammatory factors, IL-1β, IL-4, IFN-γ and chGM-CSF, were detected by ELISA and real-time PCR respectively. The results showed that after vaccination with the rClone30-VP2L-CH3-CH4-GMCSF vaccine, the levels of anti NDV and anti IBDV antibodies in chickens were significantly higher than those of the rClone30 vaccine and commercial vaccines. Meanwhile, the contents and transcription levels of inflammatory factors in chickens inoculated with rClone30-VP2L-CH3-CH4-GMCSF were significantly increased, and the proliferation response of B cells, CD4+ and CD8+ T cells was also stronger. However, the rClone30-VP2L-CH3-CH4-GMCSF vaccine had no significant advantage over the rClone30-VP2L-GMCSF vaccine in any of the above-mentioned features. In summary, rClone30-VP2L-CH3-CH4-GMCSF can stimulate the body to produce a stronger immune response, showing its potential to be considered as vaccine against IBD and ND, but the addition of CH3-CH4 did not improve the vaccine's immune effect as expected. The research lays the foundation for developing vaccines for other infectious viral diseases and avoids a unrealistic vaccine optimization method.
Collapse
Affiliation(s)
- Wen Ying Sun
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiao Lin Cao
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yi Xuan Wang
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiao Chen Guo
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jin Miao Liu
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhi Qiang Xue
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hui Juan Li
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Wei Wang
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ting Ting Zhang
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qianhui Li
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Rui Han Qin
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Han Jin
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ya Nan Li
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Gui Ping Ren
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China; Research Center of Genetic Engineering of Pharmaceuticals of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Murr M, Mettenleiter T. Negative-Strand RNA Virus-Vectored Vaccines. Methods Mol Biol 2024; 2786:51-87. [PMID: 38814390 DOI: 10.1007/978-1-0716-3770-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Vectored RNA vaccines offer a variety of possibilities to engineer targeted vaccines. They are cost-effective and safe, but replication competent, activating the humoral as well as the cellular immune system.This chapter focuses on RNA vaccines derived from negative-strand RNA viruses from the order Mononegavirales with special attention to Newcastle disease virus-based vaccines and their generation. It shall provide an overview on the advantages and disadvantages of certain vector platforms as well as their scopes of application, including an additional section on experimental COVID-19 vaccines.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| | - Thomas Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
7
|
Abozeid HH. Global Emergence of Infectious Bronchitis Virus Variants: Evolution, Immunity, and Vaccination Challenges. Transbound Emerg Dis 2023; 2023:1144924. [PMID: 40303661 PMCID: PMC12017171 DOI: 10.1155/2023/1144924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/19/2023] [Accepted: 10/26/2023] [Indexed: 05/02/2025]
Abstract
Infectious bronchitis is an acute, extremely contagious viral disease affecting chickens of all ages, leading to devastating economic losses in the poultry industry worldwide. Affected chickens show respiratory distress and/or nephritis, in addition to decrease of egg production and quality in layers. The avian coronavirus, infectious bronchitis virus (IBV), is a rapidly evolving virus due to the high frequency of mutations and recombination events that are common in coronaviruses. This leads to the continual emergence of novel genotypes that show variable or poor crossprotection. The immune response against IBV is complex. Passive, innate and adaptive humoral and cellular immunity play distinct roles in protection against IBV. Despite intensive vaccination using the currently available live-attenuated and inactivated IBV vaccines, IBV continues to circulate, evolve, and trigger outbreaks worldwide, indicating the urgent need to update the current vaccines to control the emerging variants. Different approaches for preparation of IBV vaccines, including DNA, subunit, peptides, virus-like particles, vectored and recombinant vaccines, have been tested in many studies to combat the disease. This review focuses on several key aspects related to IBV, including its clinical significance, the functional structure of the virus, the factors that contribute to its evolution and diversity, the types of immune responses against IBV, and the characteristics of both current and emerging IBV vaccines. The goal is to provide a comprehensive understanding of IBV and explore the emergence of variants, their dissemination around the world, and the challenges to define the efficient vaccination strategies.
Collapse
Affiliation(s)
- Hassanein H. Abozeid
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
8
|
Yang CY, Peng P, Liu X, Cao Y, Zhang Y. Effect of monovalent and bivalent live attenuated vaccines against QX-like IBV infection in young chickens. Poult Sci 2023; 102:102501. [PMID: 36736138 PMCID: PMC9898446 DOI: 10.1016/j.psj.2023.102501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Since 1999, QX-like (GI-19) avian infectious bronchitis viruses have been the predominant strains in China till now. Vaccination is the most effective way to control the disease, while live attenuated vaccine is widely used. In the current research, we evaluated the effect of several monovalent and bivalent live IBV vaccines in young chickens against the QX-like (GI-19) IBV infection. The results showed that monovalent 4/91 and bivalent Ma5+LDT3 vaccines could provide efficient protection in day-old chickens that reduced morbidity and mortality, ameliorated histopathology lesions, and reduced viral loads were observed. These data suggest that vaccination through nasal route with monovalent 4/91 or bivalent Ma5+LDT3 in day-old chickens could serve a safe and effective vaccination strategy for controlling QX-like (GI-19) infectious bronchitis virus.
Collapse
Affiliation(s)
- Chen-Yu Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peng Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xing Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yun Zhang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China,Corresponding author:
| |
Collapse
|
9
|
A Temperature-Sensitive Recombinant of Avian Coronavirus Infectious Bronchitis Virus Provides Complete Protection against Homologous Challenge. J Virol 2022; 96:e0110022. [PMID: 35972294 PMCID: PMC9472628 DOI: 10.1128/jvi.01100-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Avian coronavirus infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute highly contagious economically relevant respiratory disease of poultry. Vaccination is used to control IBV infections, with live-attenuated vaccines generated via serial passage of a virulent field isolate through embryonated hens' eggs. A fine balance must be achieved between attenuation and the retention of immunogenicity. The exact molecular mechanism of attenuation is unknown, and vaccines produced in this manner present a risk of reversion to virulence as few consensus level changes are acquired. Our previous research resulted in the generation of a recombinant IBV (rIBV) known as M41-R, based on a pathogenic strain M41-CK. M41-R was attenuated in vivo by two amino acid changes, Nsp10-Pro85Leu and Nsp14-Val393Leu; however, the mechanism of attenuation was not determined. Pro85 and Val393 were found to be conserved among not only IBV strains but members of the wider coronavirus family. This study demonstrates that the same changes are associated with a temperature-sensitive (ts) replication phenotype at 41°C in vitro, suggesting that the two phenotypes may be linked. Vaccination of specific-pathogen-free chickens with M41-R induced 100% protection against clinical disease, tracheal ciliary damage, and challenge virus replication following homologous challenge with virulent M41-CK. Temperature sensitivity has been used to rationally attenuate other viral pathogens, including influenza, and the identification of amino acid changes that impart both a ts and an attenuated phenotype may therefore offer an avenue for future coronavirus vaccine development. IMPORTANCE Infectious bronchitis virus is a pathogen of economic and welfare concern for the global poultry industry. Live-attenuated vaccines against are generated by serial passage of a virulent isolate in embryonated eggs until attenuation is achieved. The exact mechanisms of attenuation are unknown, and vaccines produced have a risk of reversion to virulence. Reverse genetics provides a method to generate vaccines that are rationally attenuated and are more stable with respect to back selection due to their clonal origin. Genetic populations resulting from molecular clones are more homogeneous and lack the presence of parental pathogenic viruses, which generation by multiple passage does not. In this study, we identified two amino acids that impart a temperature-sensitive replication phenotype. Immunogenicity is retained and vaccination results in 100% protection against homologous challenge. Temperature sensitivity, used for the development of vaccines against other viruses, presents a method for the development of coronavirus vaccines.
Collapse
|
10
|
Fulber JPC, Kamen AA. Development and Scalable Production of Newcastle Disease Virus-Vectored Vaccines for Human and Veterinary Use. Viruses 2022; 14:975. [PMID: 35632717 PMCID: PMC9143368 DOI: 10.3390/v14050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
The COVID-19 pandemic has highlighted the need for efficient vaccine platforms that can rapidly be developed and manufactured on a large scale to immunize the population against emerging viruses. Viral-vectored vaccines are prominent vaccine platforms that have been approved for use against the Ebola virus and SARS-CoV-2. The Newcastle Disease Virus is a promising viral vector, as an avian paramyxovirus that infects poultry but is safe for use in humans and other animals. NDV has been extensively studied not only as an oncolytic virus but also a vector for human and veterinary vaccines, with currently ongoing clinical trials for use against SARS-CoV-2. However, there is a gap in NDV research when it comes to process development and scalable manufacturing, which are critical for future approved vaccines. In this review, we summarize the advantages of NDV as a viral vector, describe the steps and limitations to generating recombinant NDV constructs, review the advances in human and veterinary vaccine candidates in pre-clinical and clinical tests, and elaborate on production in embryonated chicken eggs and cell culture. Mainly, we discuss the existing data on NDV propagation from a process development perspective and provide prospects for the next steps necessary to potentially achieve large-scale NDV-vectored vaccine manufacturing.
Collapse
Affiliation(s)
| | - Amine A. Kamen
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada;
| |
Collapse
|
11
|
Surveillance of Class I Newcastle Disease Virus at Live Bird Markets in China and Identification of Variants with Increased Virulence and Replication Capacity. J Virol 2022; 96:e0024122. [PMID: 35510864 DOI: 10.1128/jvi.00241-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, 232 class I Newcastle disease viruses (NDVs) were identified from multiple bird species at nationwide live bird markets (LBMs) from 2017 to 2019 in China. Phylogenetic analysis indicated that all 232 isolates were clustered into genotype 1.1.2 of class I on the basis of the fusion (F) gene sequences, which were distinct from the genotypes identified in other countries. Most of the isolates (212/232) were shown to have the typical F gene molecular characteristics of class I NDVs, while a few (20/232) contained mutations at the site of the conventional start codon of the F gene, which resulted in open reading frames (ORFs) altered in length. The isolates with ACG, CTA, and ATA mutations showed different levels of increased virulence and replication capacity, suggesting that these viruses may be transitional types during the evolution of class I NDVs from avirulent to virulent. Further evaluation of biological characteristics with recombinant viruses obtained by reverse genetics demonstrated that the ATG located at genomic positions 4523 to 4525 was the authentic start codon in the F gene of class I NDV, and the specific ATA mutations which contributed to the expression of F protein on the surface of infected cells were the key determinants of increased replication capacity and virulence. Interestingly, the mutation at the corresponding site of genotype II LaSota of class II had no effects on the virulence and replication capacity in chickens. Our results suggest that the alteration of virulence and replication capacity caused by specific mutations in the F gene could be a specific characteristic of class I NDVs and indicate the possibility of the emergence of virulent NDVs due to the persistent circulation of class I NDVs. IMPORTANCE The available information on the distribution, genetic diversity, evolution, and biological characteristics of class I Newcastle disease viruses (NDVs) in domestic poultry is currently very limited. Here, identification of class I NDVs at nationwide live bird markets (LBMs) in China was performed and representative isolates were characterized. A widespread distribution of genotype 1.1.2 of class I NDVs was found in multiple bird species at LBMs in China. Though most isolates demonstrated typical molecular characteristics of class I NDVs, a few that contained specific mutations at the site of the conventional start codon of the fusion gene with increased virulence and replication capacity were identified for the first time. Our findings indicate that the virulence of class I NDVs could have evolved, and the widespread transmission and circulation of class I NDVs may represent a potential threat for disease outbreaks in poultry.
Collapse
|
12
|
Identification of Amino Acids within Nonstructural Proteins 10 and 14 of the Avian Coronavirus Infectious Bronchitis Virus That Result in Attenuation In Vivo and In Ovo. J Virol 2022; 96:e0205921. [PMID: 35044208 PMCID: PMC8941869 DOI: 10.1128/jvi.02059-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gammacoronavirus infectious bronchitis virus (IBV) is a highly contagious global pathogen prevalent in all types of poultry flocks. IBV is responsible for economic losses and welfare issues in domestic poultry, resulting in a significant risk to food security. IBV vaccines are currently generated by serial passage of virulent IBV field isolates through embryonated hens' eggs. The different patterns of genomic variation accumulated during this process means that the exact mechanism of attenuation is unknown and presents a risk of reversion to virulence. Additionally, the passaging process adapts the virus to replicate in chicken embryos, increasing embryo lethality. Vaccines produced in this manner are therefore unsuitable for in ovo application. We have developed a reverse genetics system, based on the pathogenic IBV strain M41, to identify genes which can be targeted for rational attenuation. During the development of this reverse genetics system, we identified four amino acids, located in nonstructural proteins (nsps) 10, 14, 15, and 16, which resulted in attenuation both in vivo and in ovo. Further investigation highlighted a role of amino acid changes, Pro85Leu in nsp 10 and Val393Leu in nsp 14, in the attenuated in vivo phenotype observed. This study provides evidence that mutations in nsps offer a promising mechanism for the development of rationally attenuated live vaccines against IBV, which have the potential for in ovo application. IMPORTANCE The Gammacoronavirus infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute, highly contagious, economically important disease of poultry. Vaccination is achieved using a mixture of live attenuated vaccines for young chicks and inactivated vaccines as boosters for laying hens. Live attenuated vaccines are generated through serial passage in embryonated hens' eggs, an empirical process which achieves attenuation but retains immunogenicity. However, these vaccines have a risk of reversion to virulence, and they are lethal to the embryo. In this study, we identified amino acids in the replicase gene which attenuated IBV strain M41, both in vivo and in ovo. Stability assays indicate that the attenuating amino acids are stable and unlikely to revert. The data in this study provide evidence that specific modifications in the replicase gene offer a promising direction for IBV live attenuated vaccine development, with the potential for in ovo application.
Collapse
|
13
|
Vilela J, Rohaim MA, Munir M. Avian Orthoavulavirus Type-1 as Vaccine Vector against Respiratory Viral Pathogens in Animal and Human. Vaccines (Basel) 2022; 10:259. [PMID: 35214716 PMCID: PMC8876055 DOI: 10.3390/vaccines10020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Avian orthoavulaviruses type-1 (AOaV-1) have recently transitioned from animal vaccine vector to a bona fide vaccine delivery vehicle in human. Owing to induction of robust innate and adaptive immune responses in mucus membranes in both birds and mammals, AOaVs offer an attractive vaccine against respiratory pathogens. The unique features of AOaVs include over 50 years of safety profile, stable expression of foreign genes, high infectivity rates in avian and mammalian hosts, broad host spectrum, limited possibility of recombination and lack of pre-existing immunity in humans. Additionally, AOaVs vectors allow the production of economical and high quantities of vaccine antigen in chicken embryonated eggs and several GMP-grade mammalian cell lines. In this review, we describe the biology of AOaVs and define protocols to manipulate AOaVs genomes in effectively designing vaccine vectors. We highlighted the potential and established portfolio of AOaV-based vaccines for multiple respiratory and non-respiratory viruses of veterinary and medical importance. We comment on the limitations of AOaV-based vaccines and propose mitigations strategies. The exploitation of AOaVs vectors is expanding at an exciting pace; thus, we have limited the scope to their use as vaccines against viral pathogens in both animals and humans.
Collapse
Affiliation(s)
- Julianne Vilela
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
| | - Mohammed A. Rohaim
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
| |
Collapse
|
14
|
Fakri FZ, Bamouh Z, Elmejdoub S, Elkarhat Z, Tadlaoui K, Chen W, Bu Z, Elharrak M. Long term immunity against Peste Des Petits Ruminants mediated by a recombinant Newcastle disease virus vaccine. Vet Microbiol 2021; 261:109201. [PMID: 34399299 DOI: 10.1016/j.vetmic.2021.109201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022]
Abstract
Peste des Petits Ruminants (PPR) is a highly contagious and often fatal disease of sheep and goats. Conventional live vaccines have been successfully used in endemic countries however, there are not completely safe and not allowing differentiation between vaccinated and infected animals (DIVA). In this study, a recombinant Newcastle disease virus (NDV) expressing the hemagglutinin of PPRV (NDV-PPRVH) was evaluated on small ruminants by serology response in sheep and goats, experimental infection in goats and immunity duration in sheep. The NDV-PPRVH vaccine injected twice at 28 days' interval, provided full protection against challenge with a virulent PPR strain in the most sensitive species and induced significant neutralizing antibodies. Immunological response in goats was slightly higher than sheep and the vaccine injected at 108.0 50 % egg infective dose/mL allowed anti-PPRV antibodies that lasted at least 12 months as shown by antibody response monitoring in sheep. The NDV vector presented a limited replication in the host and vaccinated animals remained negative when tested by cELISA based on PPRV nucleoprotein allowing DIVA. This recombinant vaccine appears to be a promising candidate in a free at risk countries and may be an important component of the global strategy for PPR eradication.
Collapse
Affiliation(s)
- F Z Fakri
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - Z Bamouh
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - S Elmejdoub
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - Z Elkarhat
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - K Tadlaoui
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - W Chen
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture and State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Z Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture and State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - M Elharrak
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| |
Collapse
|
15
|
Design and Characterization of a DNA Vaccine Based on Spike with Consensus Nucleotide Sequence against Infectious Bronchitis Virus. Vaccines (Basel) 2021; 9:vaccines9010050. [PMID: 33466810 PMCID: PMC7830736 DOI: 10.3390/vaccines9010050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/18/2022] Open
Abstract
Avian coronavirus infectious bronchitis virus (IBV) causes severe economic losses in the poultry industry, but its control is hampered by the continuous emergence of new genotypes and the lack of cross-protection among different IBV genotypes. We designed a new immunogen based on a spike with the consensus nucleotide sequence (S_con) that may overcome the extraordinary genetic diversity of IBV. S_con was cloned into a pVAX1 vector to form a new IBV DNA vaccine, pV-S_con. pV-S_con could be correctly expressed in HD11 cells with corresponding post-translational modification, and induced a neutralizing antibody response to the Vero-cell-adapted IBV strain Beaudette (p65) in mice. To further evaluate its immunogenicity, specific-pathogen-free (SPF) chickens were immunized with the pV-S_con plasmid and compared with the control pVAX1 vector and the H120 vaccine. Detection of IBV-specific antibodies and cell cytokines (IL-4 and IFN-γ) indicated that vaccination with pV-S_con efficiently induced both humoral and cellular immune responses. After challenge with the heterologous strain M41, virus shedding and virus loading in tissues was significantly reduced both by pV-S_con and its homologous vaccine H120. Thus, pV-S_con is a promising vaccine candidate for IBV, and the consensus approach is an appealing method for vaccine design in viruses with high variability.
Collapse
|
16
|
Towards Improved Use of Vaccination in the Control of Infectious Bronchitis and Newcastle Disease in Poultry: Understanding the Immunological Mechanisms. Vaccines (Basel) 2021; 9:vaccines9010020. [PMID: 33406695 PMCID: PMC7823560 DOI: 10.3390/vaccines9010020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Infectious bronchitis (IB) and Newcastle disease (ND) are two important diseases of poultry and have remained a threat to the development of the poultry industry in many parts of the world. The immunology of avian has been well studied and numerous vaccines have been developed against the two viruses. Most of these vaccines are either inactivated vaccines or live attenuated vaccines. Inactivated vaccines induce weak cellular immune responses and require priming with live or other types of vaccines. Advanced technology has been used to produce several types of vaccines that can initiate prime immune responses. However, as a result of rapid genetic variations, the control of these two viral infections through vaccination has remained a challenge. Using various strategies such as combination of live attenuated and inactivated vaccines, development of IB/ND vaccines, use of DNA vaccines and transgenic plant vaccines, the problem is being surmounted. It is hoped that with increasing understanding of the immunological mechanisms in birds that are used in fighting these viruses, a more successful control of the diseases will be achieved. This will go a long way in contributing to global food security and the economic development of many developing countries, given the role of poultry in the attainment of these goals.
Collapse
|
17
|
Zhao Y, Han Z, Zhang X, Zhang X, Sun J, Ma D, Liu S. Construction and immune protection evaluation of recombinant virus expressing Newcastle disease virus F protein by the largest intergenic region of fowlpox virus NX10. Virus Genes 2020; 56:734-748. [PMID: 33009986 DOI: 10.1007/s11262-020-01799-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/26/2020] [Indexed: 01/27/2023]
Abstract
Fowlpox virus (FPV) is used as a vaccine vector to prevent diseases in poultry and mammals. The insertion site is considered as one of the main factors influencing foreign gene expression. Therefore, the identification of insertion sites that can stably and efficiently express foreign genes is crucial for the construction of recombinant vaccines. In this study, we found that the insertion of foreign genes into ORF054 and the ORF161/ORF162 intergenic region of the FPV genome did not affect replication, and that the foreign genes inserted into the intergenic region were more efficiently expressed than when they were inserted into a gene. Based on these results, the recombinant virus rFPVNX10-NDV F-E was constructed and immune protection against virulent FPV and Newcastle disease virus (NDV) was evaluated. Tests for anti-FPV antibodies in the vaccinated chickens were positive within 14 days post-vaccination. After challenge with FPV102, no clinical signs of FP were observed in vaccinated chickens, as compared to that in the control group (unvaccinated), which showed 100% morbidity. Low levels of NDV-specific neutralizing antibodies were detected in vaccinated chickens before challenge. After challenge with NDV ck/CH/LHLJ/01/06, all control chickens died within 4 days post-challenge, whereas 5/15 vaccinated chickens died between 4 and 12 days post-challenge. Vaccination provided an immune protection rate of 66.7%, whereas the control group showed 100% mortality. These results indicate that the ORF161/ORF162 intergenic region of FPVNX10 can be used as a recombination site for foreign gene expression in vivo and in vitro.
Collapse
Affiliation(s)
- Yan Zhao
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.,Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Xiaocai Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Xuemei Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Deying Ma
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China.
| |
Collapse
|
18
|
Tan L, Wen G, Yuan Y, Huang M, Sun Y, Liao Y, Song C, Liu W, Shi Y, Shao H, Qiu X, Ding C. Development of a Recombinant Thermostable Newcastle Disease Virus (NDV) Vaccine Express Infectious Bronchitis Virus (IBV) Multiple Epitopes for Protecting against IBV and NDV Challenges. Vaccines (Basel) 2020; 8:vaccines8040564. [PMID: 33019497 PMCID: PMC7712034 DOI: 10.3390/vaccines8040564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Newcastle disease (ND) and infectious bronchitis (IB) are two highly contagious diseases that severely threaten the poultry industry. The goal of this study is to prevent these two diseases and reduce the vaccine costs during storage and transportation. In this study, we design a thermostable recombinant Newcastle disease virus (NDV) candidate live vaccine strain designated as rLS-T-HN-T/B, which expresses the multiple epitope cassette of the identified infectious bronchitis virus (IBV) (S-T/B). The rLS-T-HN-T/B strain was found to possess similar growth kinetics, passage stability, morphological characteristics, and virulence to the parental LaSota strain. After incubation at 56 °C at the indicated time points, the rLS-T-HN-T/B strain was determined by the hemagglutination (HA), and 50% embryo infectious dose (EID50) assays demonstrated that it accords with the criteria for thermostability. The thermostable rLS-T-HN-T/B and parental LaSota vaccines were stored at 25 °C for 16 days prior to immunizing the one-day-old specific pathogen-free (SPF) chicks. Three weeks postimmunization, the virus challenge results suggested that the chicks vaccinated with the rLS-T-HN-T/B vaccine were protected by 100% and 90% against a lethal dose of NDV and IBV, respectively. Furthermore, the trachea ciliary activity assay indicated that the mean ciliostasis score of the chicks vaccinated with thermostable rLS-T-HN-T/B vaccine was significantly superior to that of the LaSota and PBS groups (p < 0.05). The rLS-T-HN-T/B vaccine stored at 25 °C for 16 days remained capable of eliciting the immune responses and protecting against IBV and NDV challenges. However, the same storage conditions had a great impact on the parental LaSota strain vaccinated chicks, and the NDV challenge protection ratio was only 20%. We conclude that the thermostable rLS-T-HN-T/B strain is a hopeful bivalent candidate vaccine to control both IB and ND and provides an alternative strategy for the development of cost-effective vaccines for village chickens, especially in the rural areas of developing countries.
Collapse
Affiliation(s)
- Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (G.W.); (H.S.)
| | - Yanmei Yuan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Meizhen Huang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Weiwei Liu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Yonghong Shi
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Huabin Shao
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (G.W.); (H.S.)
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-21-34293508
| |
Collapse
|
19
|
Sun J, Han Z, Zhao R, Ai H, Chen L, Li L, Liu S. Protection of chicks from Newcastle disease by combined vaccination with a plasmid DNA and the pre-fusion protein of the virulent genotype VII of Newcastle disease virus. Vaccine 2020; 38:7337-7349. [PMID: 32981778 DOI: 10.1016/j.vaccine.2020.09.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/07/2020] [Accepted: 09/13/2020] [Indexed: 01/03/2023]
Abstract
In this study, four codon optimized plasmids (designated as pCAG-optiF-1, 2, -3, and -4) containing modified F genes from the epidemic and virulent NDV genotype VII strain isolated in China that is expected to express the pre-fusion conformation of the F protein were constructed. The expression of these F variants in chicken-derived cells was detected by an indirect immunofluorescence assay and western blot analysis. Two soluble F variants (roptiF-1 and 2) potentially with the pre-fusion conformation were expressed and purified from suspended cells. Vaccination with each of the plasmids as a DNA vaccine conferred partial clinical protection to chicks against NDV. Comparatively, the plasmid pCAG-optiF-2 encoded a soluble protein with a mutant cleavage site and the potential pre-fusion conformation provided better protection than the other plasmids. Further investigation of the combined vaccinations with the plasmid DNA pCAG-optiF-2 prime + protein roptiF-2 boost vaccination strategy elicited more robust immunity, as confirmed by the detection of antibodies against NDV using enzyme-linked immunosorbent assay and virus neutralization assay, as compared to those vaccinated with only the plasmid pCAG-optiF-2 or protein roptiF-2. More importantly, the DNA prime + protein boost vaccination provided more efficacious protection against virulent NDV challenge, as evidenced by the complete clinical protection, reduced viral shedding, and limited virus replication in tissues of the challenge chicks. These results indicated that the pre-fusion conformation of the F protein could be considered as the target immunogen for the development of novel NDV vaccines.
Collapse
Affiliation(s)
- Junfeng Sun
- Division of Avian Infectious Diseases, The State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Zongxi Han
- Division of Avian Infectious Diseases, The State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Ran Zhao
- Division of Avian Infectious Diseases, The State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Hui Ai
- Division of Avian Infectious Diseases, The State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Linna Chen
- Division of Avian Infectious Diseases, The State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Le Li
- Division of Avian Infectious Diseases, The State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, The State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China.
| |
Collapse
|
20
|
Wei X, Shao Y, Han Z, Sun J, Liu S. Glycoprotein-C-gene-deleted recombinant infectious laryngotracheitis virus expressing a genotype VII Newcastle disease virus fusion protein protects against virulent infectious laryngotracheitis virus and Newcastle disease virus. Vet Microbiol 2020; 250:108835. [PMID: 33011664 DOI: 10.1016/j.vetmic.2020.108835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/24/2020] [Indexed: 01/04/2023]
Abstract
To develop an alternative vectored vaccine against both Newcastle disease virus (NDV) and infectious laryngotracheitis virus (ILTV), the glycoprotein C (gC) gene was first deleted from an avirulent ILTV. Based on this gC-deleted ILTV mutant, a recombinant ILTV expressing the fusion protein (F) of a genotype VII NDV (designated ILTV-ΔgC-F) was then constructed. Expression of the NDV F protein in ILTV-ΔgC-F-infected LMH cells was examined with an immunofluorescence assay and western blotting. The F gene was stably maintained in the genome of ILTV-ΔgC-F and the F protein was stably expressed. Compared with the parental virus, ILTV-ΔgC-F demonstrated an increased penetration capacity in vitro, and an increased replication rate in vitro and in vivo. Both the parental virus and ILTV-ΔgC-F were avirulent in chickens. Vaccination of specific-pathogen-free chickens with ILTV-ΔgC-F induced ILTV-specific antibodies, detected with an enzyme-linked immunosorbent assay (ELISA), and provided complete clinical protection against virulent ILTV, although viral shedding and replication were detected in the respiratory tract in the early stage of infection in a very small number of birds. Vaccination with ILTV-ΔgC-F also provided significant protection against challenge with a virulent genotype VII NDV, although the level of NDV-specific antibodies detected with an ELISA was low. Notably, the numbers of birds that were positive for the virulent genotype VII NDV and the replication of the challenge virus NDV in selected target tissues were significantly lower in the ILTV-ΔgC-F-vaccinated chickens than in the control birds. Our results indicate that ILTV-ΔgC-F has potential utility as a bivalent candidate vaccine against both infectious laryngotracheitis and Newcastle disease.
Collapse
Affiliation(s)
- Xiao Wei
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Yuhao Shao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China.
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China.
| |
Collapse
|
21
|
Comparative Protective Efficacies of Novel Avian Paramyxovirus-Vectored Vaccines against Virulent Infectious Bronchitis Virus in Chickens. Viruses 2020; 12:v12070697. [PMID: 32605292 PMCID: PMC7411825 DOI: 10.3390/v12070697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/02/2022] Open
Abstract
Viral vectored vaccines are desirable alternatives for conventional infectious bronchitis virus (IBV) vaccines. We have recently shown that a recombinant Newcastle disease virus (rNDV) strain LaSota expressing the spike (S) protein of IBV strain Mass-41 (rLaSota/IBV-S) was a promising vaccine candidate for IBV. Here we evaluated a novel chimeric rNDV/avian paramyxovirus serotype 2 (rNDV/APMV-2) as a vaccine vector against IBV. The rNDV/APMV-2 vector was chosen because it is much safer than the rNDV strain LaSota vector, particularly for young chicks and chicken embryos. In order to determine the effectiveness of this vector, a recombinant rNDV/APMV-2 expressing the S protein of IBV strain Mass-41 (rNDV/APMV-2/IBV-S) was constructed. The protective efficacy of this vector vaccine was compared to that of the rNDV vector vaccine. In one study, groups of one-day-old specific-pathogenic-free (SPF) chickens were immunized with rLaSota/IBV-S and rNDV/APMV-2/IBV-S and challenged four weeks later with the homologous highly virulent IBV strain Mass-41. In another study, groups of broiler chickens were single (at day one or three weeks of age) or prime-boost (prime at day one and boost at three weeks of age) immunized with rLaSota/IBV-S and/or rNDV-APMV-2/IBV-S. At weeks six of age, chickens were challenged with a highly virulent IBV strain Mass-41. Our challenge study showed that novel rNDV/APMV-2/IBV-S provided similar protection as rLaSota/IBV-S in SPF chickens. However, compared to prime-boost immunization of chickens with chimeric rNDV/APMV-2, rLaSota/IBV-S and/or a live IBV vaccine, single immunization of chickens with rLaSota/IBV-S, or live IBV vaccine provided better protection against IBV. In conclusion, we have developed the novel rNDV/APMV-2 vector expressing S protein of IBV that can be a safer vaccine against IB in chickens. Our results also suggest a single immunization with a LaSota vectored IBV vaccine candidate provides better protection than prime-boost immunization regimens.
Collapse
|
22
|
Keep S, Sives S, Stevenson-Leggett P, Britton P, Vervelde L, Bickerton E. Limited Cross-Protection against Infectious Bronchitis Provided by Recombinant Infectious Bronchitis Viruses Expressing Heterologous Spike Glycoproteins. Vaccines (Basel) 2020; 8:E330. [PMID: 32580371 PMCID: PMC7350270 DOI: 10.3390/vaccines8020330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/19/2022] Open
Abstract
Gammacoronavirus infectious bronchitis virus (IBV) causes an economically important respiratory disease of poultry. Protective immunity is associated with the major structural protein, spike (S) glycoprotein, which induces neutralising antibodies and defines the serotype. Cross-protective immunity between serotypes is limited and can be difficult to predict. In this study, the ability of two recombinant IBV vaccine candidates, BeauR-M41(S) and BeauR-4/91(S), to induce cross-protection against a third serotype, QX, was assessed. Both rIBVs are genetically based on the Beaudette genome with only the S gene derived from either M41 or 4/91, two unrelated serotypes. The use of these rIBVs allowed for the assessment of the potential of M41 and 4/91 S glycoproteins to induce cross-protective immunity against a heterologous QX challenge. The impact of the order of vaccination was also assessed. Homologous primary and secondary vaccination with BeauR-M41(S) or BeauR-4/91(S) resulted in a significant reduction of infectious QX load in the trachea at four days post-challenge, whereas heterologous primary and secondary vaccination with BeauR-M41(S) and BeauR-4/91(S) reduced viral RNA load in the conjunctiva-associated lymphoid tissue (CALT). Both homologous and heterologous vaccination regimes reduced clinical signs and birds recovered more rapidly as compared with an unvaccinated/challenge control group. Despite both rIBV BeauR-M41(S) and BeauR-4/91(S) displaying limited replication in vivo, serum titres in these vaccinated groups were higher as compared with the unvaccinated/challenge control group. This suggests that vaccination with rIBV primed the birds for a boosted humoral response to heterologous QX challenge. Collectively, vaccination with the rIBV elicited limited protection against challenge, with failure to protect against tracheal ciliostasis, clinical manifestations, and viral replication. The use of a less attenuated recombinant vector that replicates throughout the respiratory tract could be required to elicit a stronger and prolonged protective immune response.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (P.B.)
| | - Samantha Sives
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Easter Bush EH25 9RG, UK; (S.S.); (L.V.)
| | | | - Paul Britton
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (P.B.)
| | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Easter Bush EH25 9RG, UK; (S.S.); (L.V.)
| | - Erica Bickerton
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (P.B.)
| |
Collapse
|
23
|
Hu Z, Ni J, Cao Y, Liu X. Newcastle Disease Virus as a Vaccine Vector for 20 Years: A Focus on Maternally Derived Antibody Interference. Vaccines (Basel) 2020; 8:vaccines8020222. [PMID: 32422944 PMCID: PMC7349365 DOI: 10.3390/vaccines8020222] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
It has been 20 years since Newcastle disease virus (NDV) was first used as a vector. The past two decades have witnessed remarkable progress in vaccine generation based on the NDV vector and optimization of the vector. Protective antigens of a variety of pathogens have been expressed in the NDV vector to generate novel vaccines for animals and humans, highlighting a great potential of NDV as a vaccine vector. More importantly, the research work also unveils a major problem restraining the NDV vector vaccines in poultry, i.e., the interference from maternally derived antibody (MDA). Although many efforts have been taken to overcome MDA interference, a lack of understanding of the mechanism of vaccination inhibition by MDA in poultry still hinders vaccine improvement. In this review, we outline the history of NDV as a vaccine vector by highlighting some milestones. The recent advances in the development of NDV-vectored vaccines or therapeutics for animals and humans are discussed. Particularly, we focus on the mechanisms and hypotheses of vaccination inhibition by MDA and the efforts to circumvent MDA interference with the NDV vector vaccines. Perspectives to fill the gap of understanding concerning the mechanism of MDA interference in poultry and to improve the NDV vector vaccines are also proposed.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jie Ni
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
24
|
Bello MB, Yusoff K, Ideris A, Hair-Bejo M, Jibril AH, Peeters BPH, Omar AR. Exploring the Prospects of Engineered Newcastle Disease Virus in Modern Vaccinology. Viruses 2020; 12:v12040451. [PMID: 32316317 PMCID: PMC7232247 DOI: 10.3390/v12040451] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022] Open
Abstract
Many traditional vaccines have proven to be incapable of controlling newly emerging infectious diseases. They have also achieved limited success in the fight against a variety of human cancers. Thus, innovative vaccine strategies are highly needed to overcome the global burden of these diseases. Advances in molecular biology and reverse genetics have completely restructured the concept of vaccinology, leading to the emergence of state-of-the-art technologies for vaccine design, development and delivery. Among these modern vaccine technologies are the recombinant viral vectored vaccines, which are known for their incredible specificity in antigen delivery as well as the induction of robust immune responses in the vaccinated hosts. Although a number of viruses have been used as vaccine vectors, genetically engineered Newcastle disease virus (NDV) possesses some useful attributes that make it a preferable candidate for vectoring vaccine antigens. Here, we review the molecular biology of NDV and discuss the reverse genetics approaches used to engineer the virus into an efficient vaccine vector. We then discuss the prospects of the engineered virus as an efficient vehicle of vaccines against cancer and several infectious diseases of man and animals.
Collapse
Affiliation(s)
- Muhammad Bashir Bello
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University PMB, Sokoto 2346, Nigeria;
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (K.Y.); (A.I.); (M.H.-B.)
| | - Khatijah Yusoff
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (K.Y.); (A.I.); (M.H.-B.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Aini Ideris
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (K.Y.); (A.I.); (M.H.-B.)
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia Serdang, Selangor 43400, Malaysia
| | - Mohd Hair-Bejo
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (K.Y.); (A.I.); (M.H.-B.)
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia Serdang, Selangor 43400, Malaysia
| | - Abdurrahman Hassan Jibril
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University PMB, Sokoto 2346, Nigeria;
| | - Ben P. H. Peeters
- Department of Virology, Wageningen Bioveterinary Research, POB 65, NL8200 Lelystad, The Netherlands;
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (K.Y.); (A.I.); (M.H.-B.)
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia Serdang, Selangor 43400, Malaysia
- Correspondence: ; Tel.:+603-89472111
| |
Collapse
|
25
|
Tian KY, Guo HF, Li N, Zhang YH, Wang Z, Wang B, Yang X, Li YT, Zhao J. Protection of chickens against hepatitis-hydropericardium syndrome and Newcastle disease with a recombinant Newcastle disease virus vaccine expressing the fowl adenovirus serotype 4 fiber-2 protein. Vaccine 2020; 38:1989-1997. [PMID: 31948818 DOI: 10.1016/j.vaccine.2020.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/26/2019] [Accepted: 01/04/2020] [Indexed: 01/01/2023]
Abstract
Newcastle disease (ND) is one of the most important and devastating avian diseases with considerable threat to the global poultry industry. Hepatitis-hydropericardium syndrome (HHS), caused by virulent fowl adenovirus serotype 4 (FAdV-4), is another highly infectious disease in chickens with severe economic impact. The effective way to combat ND and HHS is by vaccinating the poultry. In the present study, a recombinant NDV LaSota vaccine strain expressing full length fiber-2 gene of FAdV-4 (rLaSota-fiber2) was generated using reverse genetics. The FAdV-4 fiber-2 protein was expressed as a soluble form rather than NDV membrane-anchored form. The rLaSota-fiber2 was genetically stable, and it showed growth patterns in embryonated eggs comparable to that of parental rLaSota virus. Since our unpublished data demonstrated that delivery of live rLaSota-fiber2 in drinking water or ocular delivery of the vaccine didn't produce protection against hypervirulent FAdV-4 challenge, even though the vaccine provide full protection against NDV challenge, the efficacy of the rLaSota-fiber2 was evaluated by delivering the vaccine intramuscularly in this study. Single-dose intramuscular vaccination of 2-week-old SPF White Leghorn chicks with the live or inactivated rLaSota-fiber2 provided complete protection against virulent NDV challenge. However, single-dose intramuscular vaccination with the live rLaSota-fiber2 vaccine provided better protection against virulent FAdV-4 challenge and significantly reduced faecal viral shedding comparing to the inactivated vaccine. These results indicate that the NDV-vectored FAdV-4 vaccine is a promising bivalent vaccine candidate to control both HHS and ND.
Collapse
Affiliation(s)
- Kai-Yue Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hui-Fang Guo
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Ning Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yu-Han Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zeng Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Baiyu Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xia Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yong-Tao Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jun Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.
| |
Collapse
|
26
|
Xu L, Qin Z, Qiao L, Wen J, Shao H, Wen G, Pan Z. Characterization of thermostable Newcastle disease virus recombinants expressing the hemagglutinin of H5N1 avian influenza virus as bivalent vaccine candidates. Vaccine 2020; 38:1690-1699. [PMID: 31937412 DOI: 10.1016/j.vaccine.2019.12.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 01/11/2023]
Abstract
Newcastle disease virus (NDV) has been used as a vector in the development of vaccines and gene delivery. In the present study, we generated the thermostable recombinant NDV (rNDV) expressing the different forms of hemagglutinin (HA) of highly pathogenic avian influenza virus (HPAIV) H5N1 based on the full-length cDNA clone of thermostable TS09-C strain. The recombinant thermostable Newcastle disease viruses, rTS-HA, rTS-HA1 and rTS-tPAs/HA1, expressed the HA, HA1 or modified HA1 protein with the tissue plasminogen activator signal sequence (tPAs), respectively. The rNDVs displayed similar thermostability, growth kinetics and pathogenicity compared with the parental TS09-C virus. The tPAs facilitated the expression and secretion of HA1 protein in cells infected with rNDV. Animal studies demonstrated that immunization with rNDVs elicited effective H5N1- and NDV-specific antibody responses and conferred immune protection against lethal H5N1 and NDV challenges in chickens and mice. Importantly, vaccination of rTS-tPAs/HA1 resulted in enhanced protective immunity in chickens and mice. Our study thus provides a novel thermostable NDV-vectored vaccine candidate expressing a soluble form of a heterologous viral protein, which will greatly aid the poultry industry in developing countries.
Collapse
Affiliation(s)
- Lulai Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhenqiao Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Qiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Wen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
27
|
Kumar R, Kumar V, Kekungu P, Barman NN, Kumar S. Evaluation of surface glycoproteins of classical swine fever virus as immunogens and reagents for serological diagnosis of infections in pigs: a recombinant Newcastle disease virus approach. Arch Virol 2019; 164:3007-3017. [PMID: 31598846 DOI: 10.1007/s00705-019-04425-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022]
Abstract
Classical swine fever (CSF) is an important viral disease of domestic pigs and wild boar. The structural proteins E2 and Erns of classical swine fever virus (CSFV), which participate in the attachment of the virion to the host cell surface and its subsequent entry, are immunogenic. The E2 and Erns proteins are used for diagnosis and the development of vaccines against CSFV infection in swine. Newcastle disease virus (NDV) has been successfully used as a viral vector to express heterologous proteins. In the present study, the E2 and Erns proteins of CSFV were expressed in cell culture as well as embryonated chicken eggs, using recombinant NDV (rNDV). Rescued rNDV expressing the E2 and Erns proteins induced the production of CSFV-neutralizing antibodies upon intranasal vaccination of pigs. Serum samples from vaccinated animals were found to neutralize both homologous and heterologous CSFV strains. Furthermore, rNDV expressing the E2 and Erns proteins of CSFV was used to develop an indirect ELISA, which was used to measure the the antibody titers of randomly collected serum samples. The results suggested that the ELISA based on rNDV-expressed E2 and Erns proteins could be used to screen for CSFV infections. This study shows that rNDV-based expression of CSFV antigens is potentially applicable for development of vaccines and diagnostic tests for CSFV infection. This approach could be an economically favorable alternative to the existing vaccine and diagnostics for CSFV in pigs.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Vishnu Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Puro Kekungu
- ICAR Research Complex for North East Hill Region, Shillong, Meghalaya, India
| | - Nagendra N Barman
- Department of Veterinary Microbiology, College of Veterinary Sciences, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
28
|
Construction and Immunogenicity of Novel Chimeric Virus-Like Particles Bearing Antigens of Infectious Bronchitis Virus and Newcastle Disease Virus. Viruses 2019; 11:v11030254. [PMID: 30871190 PMCID: PMC6465995 DOI: 10.3390/v11030254] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022] Open
Abstract
Infectious bronchitis virus (IBV) and Newcastle disease virus (NDV) are two poultry pathogens seriously affecting the poultry industry. Here, IBV S1 and the ectodomain of NDV F proteins were separately linked with the trans-membrane and carboxy-terminal domain of IBV S protein (STMCT), composing rS and rF; thus, a novel chimeric infectious bronchitis-Newcastle disease (IB-ND) virus-like particles (VLPs) vaccine containing the rS, rF, and IBV M protein was constructed. Under the transmission electron microscope (TEM), VLPs possessing similar morphology to natural IBV were observed. To evaluate the immunogenicity of chimeric IB-ND VLPs, specific pathogen-free (SPF) chickens were immunized with three increasing doses (50, 75, and 100 μg protein of VLPs). Results of ELISAs detecting IBV and NDV specific antibodies and IL-4 and IFN-γ T cell cytokines indicated that vaccination with chimeric IB-ND VLPs could efficiently induce humoral and cellular immune responses. In the challenge study, chimeric IB-ND VLPs (100 μg protein) provided 100% protection against IBV or NDV virulent challenge from death, and viral RNA levels in tissues and swabs were greatly reduced. Collectively, chimeric IB-ND VLPs are highly immunogenic and could provide complete protection from an IBV or NDV virulent challenge. Chimeric IB-ND VLPs are an appealing vaccine candidate and a promising vaccine platform bearing multivalent antigens.
Collapse
|
29
|
Abozeid HH, Paldurai A, Varghese BP, Khattar SK, Afifi MA, Zouelfakkar S, El-Deeb AH, El-Kady MF, Samal SK. Development of a recombinant Newcastle disease virus-vectored vaccine for infectious bronchitis virus variant strains circulating in Egypt. Vet Res 2019; 50:12. [PMID: 30744668 PMCID: PMC6371441 DOI: 10.1186/s13567-019-0631-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/31/2019] [Indexed: 12/21/2022] Open
Abstract
Infectious bronchitis virus (IBV) causes a major disease problem for the poultry industry worldwide. The currently used live-attenuated vaccines have the tendency to mutate and/or recombine with circulating field strains resulting in the emergence of vaccine-derived variant viruses. In order to circumvent these issues, and to develop a vaccine that is more relevant to Egypt and its neighboring countries, a recombinant avirulent Newcastle disease virus (rNDV) strain LaSota was constructed to express the codon-optimized S glycoprotein of the Egyptian IBV variant strain IBV/Ck/EG/CU/4/2014 belonging to GI-23 lineage, that is prevalent in Egypt and in the Middle East. A wild type and two modified versions of the IBV S protein were expressed individually by rNDV. A high level of S protein expression was detected in vitro by Western blot and immunofluorescence analyses. All rNDV-vectored IBV vaccine candidates were genetically stable, slightly attenuated and showed growth patterns comparable to that of parental rLaSota virus. Single-dose vaccination of 1-day-old SPF White Leghorn chicks with the rNDVs expressing IBV S protein provided significant protection against clinical disease after IBV challenge but did not show reduction in tracheal viral shedding. Single-dose vaccination also provided complete protection against virulent NDV challenge. However, prime-boost vaccination using rNDV expressing the wild type IBV S protein provided better protection, after IBV challenge, against clinical signs and significantly reduced tracheal viral shedding. These results indicate that the NDV-vectored IBV vaccines are promising bivalent vaccine candidates to control both infectious bronchitis and Newcastle disease in Egypt.
Collapse
Affiliation(s)
- Hassanein H Abozeid
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA.,Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Anandan Paldurai
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Berin P Varghese
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Sunil K Khattar
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Manal A Afifi
- Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Ayman H El-Deeb
- Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Magdy F El-Kady
- Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
30
|
Ellis S, Keep S, Britton P, de Wit S, Bickerton E, Vervelde L. Recombinant Infectious Bronchitis Viruses Expressing Chimeric Spike Glycoproteins Induce Partial Protective Immunity against Homologous Challenge despite Limited Replication In Vivo. J Virol 2018; 92:e01473-18. [PMID: 30209177 PMCID: PMC6232476 DOI: 10.1128/jvi.01473-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022] Open
Abstract
Vaccination regimes against Infectious bronchitis virus (IBV), which are based on a single virus serotype, often induce insufficient levels of cross-protection against serotypes and two or more antigenically diverse vaccines are used in attempt to provide broader protection. Amino acid differences in the surface protein, spike (S), in particular the S1 subunit, are associated with poor cross-protection. Here, homologous vaccination trials with recombinant IBVs (rIBVs), based on the apathogenic strain, BeauR, were conducted to elucidate the role of S1 in protection. A single vaccination of specific-pathogen-free chickens with rIBV expressing S1 of virulent strains M41 or QX, BeauR-M41(S1) and BeauR-QX(S1), gave incomplete protection against homologous challenge, based on ciliary activity and clinical signs. There could be conformational issues with the spike if heterologous S1 and S2 are linked, suggesting a homologous S2 might be essential. To address this, a homologous vaccination-challenge trial incorporating rIBVs expressing full spike from M41, BeauR-M41(S), and S2 subunit from M41, BeauR-M41(S2) was conducted. All chimeric viruses grew to similar titers in vitro, induced virus-specific partial protective immunity, evident by cellular infiltrations, reductions in viral RNA load in the trachea and conjunctiva and higher serum anti-IBV titers. Collectively, these findings show that vaccination with rIBVs primed the birds for challenge but the viruses were cleared rapidly from the mucosal tissues in the head. Chimeric S1 and S2 viruses did not protect as effectively as BeauR-M41(S) based on ciliary activity and clinical signs. Booster vaccinations and an rIBV with improved in vivo replication may improve the levels of protection.IMPORTANCE Infectious bronchitis virus causes an acute, highly contagious respiratory disease, responsible for significant economic losses to the poultry industry. Amino acid differences in the surface protein, spike (S), in particular the S1 subunit, have been associated with poor cross-protection. Available vaccines give poor cross-protection and rationally designed live attenuated vaccines, based on apathogenic BeauR, could address these. Here, to determine the role of S1 in protection, a series of homologous vaccination trials with rIBVs were conducted. Single vaccinations with chimeric rIBVs induced virus-specific partial protective immunity, characterized by reduction in viral load and serum antibody titers. However, BeauR-M41(S) was the only vaccination to improve the level of protection against clinical signs and the loss of tracheal ciliary activity. Growth characteristics show that all of the rIBVs replicated in vitro to similar levels. Booster vaccinations and an rIBV with improved in vivo replication may improve the levels of protection.
Collapse
Affiliation(s)
- Samantha Ellis
- Infection and Immunity, The Roslin Institute, University of Edinburgh, Penicuik, Midlothian, United Kingdom
| | - Sarah Keep
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Paul Britton
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | | | | | - Lonneke Vervelde
- Infection and Immunity, The Roslin Institute, University of Edinburgh, Penicuik, Midlothian, United Kingdom
| |
Collapse
|
31
|
Shao Y, Sun J, Han Z, Liu S. Recombinant infectious laryngotracheitis virus expressing Newcastle disease virus F protein protects chickens against infectious laryngotracheitis virus and Newcastle disease virus challenge. Vaccine 2018; 36:7975-7986. [PMID: 30448332 DOI: 10.1016/j.vaccine.2018.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 01/17/2023]
Abstract
In this study, we isolated and identified an infectious laryngotracheitis virus (ILTV) that was naturally avirulent in specific pathogen-free (SPF) chickens, with the aim of developing a more efficacious vaccine against ILTV and Newcastle disease virus (NDV). We constructed a US9-deleted ILTV mutant based on this avirulent ILTV, and then constructed a recombinant ILTV (designated ILTV-ΔUS9-F) expressing the fusion protein (F) of the genotype VII NDV based on the US9-deleted ILTV mutant. Expression of the F protein in ILTV-ΔUS9-F-infected cells was confirmed by indirect immunofluorescence assay and western blotting. The inserted F gene was stably expressed in ILTV-ΔUS9-F. The growth kinetics of ILTV-ΔUS9-F were comparable to those of the wild-type ILTV strain. Vaccination of SPF chickens with ILTV-ΔUS9-F produced no clinical signs but did induce low levels of NDV-specific enzyme-linked immunosorbent assay and neutralizing antibodies. A single vaccination with 104 plaque-forming units (PFU) of ILTV-ΔUS9-F provided good protection against both genotype VII and IX NDVs based on clinical signs, similar to the protection provided by the commercial live La Sota vaccine. Notably, ILTV-ΔUS9-F limited the replication and shedding of genotype VII NDV from oropharyngeal swabs more efficiently than the La Sota vaccine. In addition, vaccination with lower doses (103 and 102 PFU) of ILTV-ΔUS9-F also provided sufficient clinical protection. These results indicated that ILTV-ΔUS9-F may be a bivalent vaccine candidate against both ILTV and NDV.
Collapse
Affiliation(s)
- Yuhao Shao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China.
| |
Collapse
|
32
|
Li J, Helal ZH, Karch CP, Mishra N, Girshick T, Garmendia A, Burkhard P, Khan MI. A self-adjuvanted nanoparticle based vaccine against infectious bronchitis virus. PLoS One 2018; 13:e0203771. [PMID: 30216376 PMCID: PMC6138407 DOI: 10.1371/journal.pone.0203771] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022] Open
Abstract
Infectious bronchitis virus (IBV) affects poultry respiratory, renal and reproductive systems. Currently the efficacy of available live attenuated or killed vaccines against IBV has been challenged. We designed a novel IBV vaccine alternative using a highly innovative platform called Self-Assembling Protein Nanoparticle (SAPN). In this vaccine, B cell epitopes derived from the second heptad repeat (HR2) region of IBV spike proteins were repetitively presented in its native trimeric conformation. In addition, flagellin was co-displayed in the SAPN to achieve a self-adjuvanted effect. Three groups of chickens were immunized at four weeks of age with the vaccine prototype, IBV-Flagellin-SAPN, a negative-control construct Flagellin-SAPN or a buffer control. The immunized chickens were challenged with 5x104.7 EID50 IBV M41 strain. High antibody responses were detected in chickens immunized with IBV-Flagellin-SAPN. In ex vivo proliferation tests, peripheral mononuclear cells (PBMCs) derived from IBV-Flagellin-SAPN immunized chickens had a significantly higher stimulation index than that of PBMCs from chickens receiving Flagellin-SAPN. Chickens immunized with IBV-Flagellin-SAPN had a significant reduction of tracheal virus shedding and lesser tracheal lesion scores than did negative control chickens. The data demonstrated that the IBV-Flagellin-SAPN holds promise as a vaccine for IBV.
Collapse
Affiliation(s)
- Jianping Li
- Department of Pathobiology and Veterinary Science University of Connecticut, Storrs, CT, United States of America
| | - Zeinab H. Helal
- Department of Pathobiology and Veterinary Science University of Connecticut, Storrs, CT, United States of America
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Christopher P. Karch
- The Institute of Material Sciences, University of Connecticut, Storrs, CT, United States of America
| | - Neha Mishra
- Department of Pathobiology and Veterinary Science University of Connecticut, Storrs, CT, United States of America
| | - Theodore Girshick
- Charles River Laboratories, Avian vaccine services, North Franklin, CT, United States of America
| | - Antonio Garmendia
- Department of Pathobiology and Veterinary Science University of Connecticut, Storrs, CT, United States of America
| | - Peter Burkhard
- The Institute of Material Sciences, University of Connecticut, Storrs, CT, United States of America
- Department of Molecular Cell Biology, University of Connecticut, Storrs, CT, United States of America
- Alpha-O-Peptides AG, Riehen, Switzerland
| | - Mazhar I. Khan
- Department of Pathobiology and Veterinary Science University of Connecticut, Storrs, CT, United States of America
- * E-mail:
| |
Collapse
|
33
|
Shirvani E, Paldurai A, Manoharan VK, Varghese BP, Samal SK. A Recombinant Newcastle Disease Virus (NDV) Expressing S Protein of Infectious Bronchitis Virus (IBV) Protects Chickens against IBV and NDV. Sci Rep 2018; 8:11951. [PMID: 30097608 PMCID: PMC6086832 DOI: 10.1038/s41598-018-30356-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/27/2018] [Indexed: 12/03/2022] Open
Abstract
Infectious bronchitis virus (IBV) causes a highly contagious respiratory, reproductive and urogenital tract disease in chickens worldwide, resulting in substantial economic losses for the poultry industry. Currently, live-attenuated IBV vaccines are used to control the disease. However, safety, attenuation and immunization outcomes of current vaccines are not guaranteed. Several studies indicate that attenuated IBV vaccine strains contribute to the emergence of variant viruses in the field due to mutations and recombination. Therefore, there is a need to develop a stable and safe IBV vaccine that will not create variant viruses. In this study, we generated recombinant Newcastle disease viruses (rNDVs) expressing the S1, S2 and S proteins of IBV using reverse genetics technology. Our results showed that the rNDV expressing the S protein of IBV provided better protection than the rNDV expressing S1 or S2 protein of IBV, indicating that the S protein is the best protective antigen of IBV. Immunization of 4-week-old SPF chickens with the rNDV expressing S protein elicited IBV-specific neutralizing antibodies and provided complete protection against virulent IBV and virulent NDV challenges. These results suggest that the rNDV expressing the S protein of IBV is a safe and effective bivalent vaccine candidate for both IBV and NDV.
Collapse
Affiliation(s)
- Edris Shirvani
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Anandan Paldurai
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Vinoth K Manoharan
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Berin P Varghese
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Siba K Samal
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
34
|
Effects of hypervariable regions in spike protein on pathogenicity, tropism, and serotypes of infectious bronchitis virus. Virus Res 2018; 250:104-113. [PMID: 29684409 PMCID: PMC7114591 DOI: 10.1016/j.virusres.2018.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 11/23/2022]
Abstract
For the first time using reverse genetics to reveal the roles of HVRs in coronavirus. The HVRs exchange from IBV S1 subunit weakened the adsorption during IBV infection in vitro. The HVRs exchange in IBV S1 reduced ARV with Beaudette, but not sufficiently change serotypes. The recombinant IBVs provided insights into reverse genetic vaccines.
To study the roles of hypervariable regions (HVRs) in receptor-binding subunit S1 of the spike protein, we manipulated the genome of the IBV Beaudette strain using a reverse genetics system to construct seven recombinant strains by separately or simultaneously replacing the three HVRs of the Beaudette strain with the corresponding fragments from a QX-like nephropathogenic isolate ck/CH/LDL/091022 from China. We characterized the growth properties of these recombinant IBVs in Vero cells and embryonated eggs, and their pathogenicity, tropism, and serotypes in specific pathogen-free (SPF) chickens. All seven recombinant IBVs proliferated in Vero cells, but the heterogenous HVRs could reduce their capacity for adsorption during in vitro infection. The recombinant IBVs did not significantly increase the pathogenicity compared with the Beaudette strain in SPF chickens, and they still shared the same serotype as the Beaudette strain, but the antigenic relatedness values between the recombinant strain and Beaudette strain generally decreased with the increase in the number of the HVRs exchanged. The results of this study demonstrate the functions of HVRs and they may help to develop a vaccine candidate, as well as providing insights into the prevention and control of IBV.
Collapse
|
35
|
Liu H, Yang X, Zhang Z, Li J, Zou W, Zeng F, Wang H. Comparative transcriptome analysis reveals induction of apoptosis in chicken kidney cells associated with the virulence of nephropathogenic infectious bronchitis virus. Microb Pathog 2017; 113:451-459. [PMID: 29174688 PMCID: PMC7126322 DOI: 10.1016/j.micpath.2017.11.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/18/2017] [Accepted: 11/19/2017] [Indexed: 01/04/2023]
Abstract
Avian infectious bronchitis virus (IBV) that causes respiratory and nephritic diseases in chicken is a major poultry pathogen leading to serious economic loss worldwide. The nephropathogenic IBV strains cause nephritis and kidney lesions intrinsically and the pathogenic mechanism is still unclear. In the present study, SPF chicks were infected with three nephropathogenic IBVs of different virulence and their gene expression profiles in chicken kidney were compared at transcriptome level. As a result, 1279 differentially expressed (DE) genes were found in very virulent SCDY2 inoculated group, 145 in virulent SCK2 group and 74 in non-virulent LDT3-A group when compared to mock infected group. Gene Ontology (GO) and KEGG pathway enrichment analysis on SCDY2 group displayed that the up-regulated DE genes were mainly involved in cell apoptosis, and the down-regulated genes were involved in metabolic processes and DNA replication. Protein-Protein Interaction (PPI) analysis showed that DE genes in SCDY2 group formed a network, and the core of the network was composed by cell apoptosis and immune response proteins. The clustering of gene expression profile among the three virus inoculated groups indicated that the majority of up-regulated DE genes on apoptosis in very virulent SCDY2 group were up-regulated more or less in virulent SCK2 group and those down-regulated on innate immune response in SCDY2 group were also down-regulated differently in SCK2 group. In addition, the number of apoptotic cells detected experimentally in kidney tissue were very different among the three virus inoculated groups and were positively accordant with the viral titer, kidney lesions and viral virulence of each group. Taken all together, the present study revealed that virulent nephropathogenic IBV infection modified a number of gene expression and induction of apoptosis in kidney cells may be a major pathogenic determinant for virulent nephropathogenic IBV. Genes expression in chicken kidney cells post inoculation of three nephro IBVs was studied by transcriptome analysis. DE genes post challenge mainly involved in the pathways of apoptosis, immune response, metabolic and DNA replication. Activation of apoptosis and suppression of innate immune response were accordant with the virulence of inoculated IBVs. Induction of apoptosis is triggered by suppression of immune response and productive replication of virus post infection.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xin Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Zhikun Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jianan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Wencheng Zou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Fanya Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
36
|
Hu Z, Liu X, Jiao X, Liu X. Newcastle disease virus (NDV) recombinant expressing the hemagglutinin of H7N9 avian influenza virus protects chickens against NDV and highly pathogenic avian influenza A (H7N9) virus challenges. Vaccine 2017; 35:6585-6590. [PMID: 29042201 DOI: 10.1016/j.vaccine.2017.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/13/2017] [Accepted: 10/03/2017] [Indexed: 01/11/2023]
Abstract
The emerged highly pathogenic avian influenza A (H7N9) (HPAI) viruses in China pose a dual challenge to public health and poultry industry. Thus H7N9 vaccines are in an urgent need. In this study, we constructed a Newcastle disease virus (NDV)-vectored vaccine (rLXHAF) expressing the hemagglutinin (HA) of H7N9 virus fused with the transmembrane/cytoplasmic tail domain of the NDV fusion protein. rLXHAF stably expressed the HA protein, exhibited similar growth kinetics and pathogenicity as the parental virus. rLXHAF induced positive NDV-specific hemagglutination inhibition (HI), virus neutralization (VN) and total IgY antibodies and completely protected chickens from NDV challenge. Unexpectedly, rLXHAF elicited undetectable HI and VN titers but high overall IgY antibody titers against H7N9 measured by ELISA. The vaccine provided 80% protection against HPAI H7N9 challenge. Virus shedding of NDV and H7N9 challenge strains was reduced. Our results suggest that rLXHAF is immunogenic and efficacious against HPAI H7N9 virus in chickens.
Collapse
Affiliation(s)
- Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xinan Jiao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|