1
|
Cao T, Gnanagobal H, Dang M, Chakraborty S, Hossain A, Vasquez I, Valderrama K, O'Brien N, Boyce D, Santander J. Influence of Vibrio anguillarum culture conditions on the efficacy of bacterin-based vaccines in lumpfish (Cyclopterus lumpus). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110133. [PMID: 39892679 DOI: 10.1016/j.fsi.2025.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Lumpfish (Cyclopterus lumpus) is used as cleaner fish to control sea lice infestations in Atlantic salmon (Salmo salar) farms across the North Atlantic. Vibrio anguillarum, the causative agent of vibriosis, is a recurrent bacterial pathogen affecting lumpfish. Bacterin-based vaccines are frequently used to control vibriosis in finfish, but their efficacy is not always consistent. Culture conditions significantly influence synthesis of bacterial outer membrane and secreted proteins, which are critical antigens, and thus impact the immunogenicity of bacterin-based vaccines. In this study, we assessed the effect of V. anguillarum culture conditions on vaccine efficacy in lumpfish. V. anguillarum was cultured under iron-limited at 15 °C, and iron-rich or iron-limited conditions at 28 °C with 2 % NaCl, and these cultures were used to prepare bacterins. A commercial vaccine was used as positive control, while PBS and PBS adjuvant were negative controls. Lumpfish were intraperitoneally immunized and challenged 12 weeks post-immunization with 10-100 times the LD50 dose of V. anguillarum. Bacterins prepared from V. anguillarum grown under iron-limited conditions at 28 °C with 2 % NaCl and mixed with adjuvant conferred the highest protection compared to other preparations and commercial vaccines. In contrast, bacterins derived from V. anguillarum cultured under iron-limited conditions at 15 °C conferred the lowest protection. Reverse vaccinology and transcriptomic analyses of V. anguillarum grown under optimal immunogenic conditions revealed 323 upregulated genes, of which 211 were high-antigenicity proteins suitable for subunit vaccines. This study provides critical knowledge for effective vaccine formulation against V. anguillarum and identifies potential antigens for subunit vaccine development.
Collapse
Affiliation(s)
- Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - My Dang
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katherinne Valderrama
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Nicole O'Brien
- Newfoundland and Labrador Provincial Government, Aquatic Animal Health Division, NL, Canada
| | - Danny Boyce
- The Dr. Joe Brown Aquatic Research Building (JBARB). Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
2
|
Wan Q, Zhai S, Chen M, Xu M, Guo S. Δfur mutant as a potential live attenuated vaccine (LAV) candidate protects American eels (Anguilla rostrata) from Vibrio harveyi infection. Microb Pathog 2024; 189:106591. [PMID: 38401591 DOI: 10.1016/j.micpath.2024.106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/18/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The eel farming industry is highly susceptible to Vibriosis. Although various types of vaccines against Vibriosis have been investigated, there is limited research on decreasing the virulence of Vibrions through gene knockout and utilizing it as live attenuated vaccines (LAV). In this study, we aim to develop a LAV candidate against Vibrio harveyi infection in American eels (Anguilla rostrata) using a ferric uptake regulator (fur) gene mutant strain of V. harveyi (Δfur mutant). After the eels were administrated with the Δfur mutant at the dose of 4 × 102 cfu/g body weight, the phagocytic activity of the leucocytes, plasma IgM antibody titers, activity of lysozyme and Superoxide Dismutase (SOD) enzyme, and gene expression levels of 18 immune related proteins were detected to evaluate the protection effect of the LAV. Preliminary findings suggest that the LAV achieved over 60% relative percent survival (RPS) after the American eels were challenged by a wild-type strain of V. harveyi infection on 28 and 42 days post the immunization (dpi). The protection was mainly attributed to increased plasma IgM antibody titers, higher levels of lysozyme, enhanced activity of SOD and some regulated genes encoded immune related proteins. Together, the Δfur mutant strain of V. harveyi, as a novel LAV vaccine, demonstrates promising protective effects against V. harveyi infection in American eels, thus presenting a potential candidate vaccine for fish farming.
Collapse
Affiliation(s)
- Qijuan Wan
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Shaowei Zhai
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Minxia Chen
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Ming Xu
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Songlin Guo
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China.
| |
Collapse
|
3
|
He L, Kang J, Chen X, Qin P, Chen X. Evaluation of immunogenicity and protective efficacy of the outer membrane porin F (OprF) against Pseudomonas plecoglossicida in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2024; 146:109427. [PMID: 38316347 DOI: 10.1016/j.fsi.2024.109427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/07/2024]
Abstract
Large yellow croaker (Larimichthys crocea) farming dominates the marine aquaculture industry in China. However, the epidemic outbreaks of visceral white nodules disease (VWND), caused by bacterial pathogen Pseudomonas plecoglossicida, have emerged as a significant concern within the large yellow croaker industry. Although vaccination is considered to be an effective method for preventing and controlling P. plecoglossicida infection, there is currently no commercially available vaccine targeting this bacterium. In the present study, the outer membrane porin F (OprF) of P. plecoglossicida was characterized and revealed a high sequence similarity with that of other Pseudomonas species. The recombinant OprF protein (rOprF) produced in Escherichia coli was then evaluated for its immunogenicity and protective role against P. plecoglossicida in large yellow croaker. The rOprF was identified to have immunogenicity by Western blot using large yellow croaker anti-P. plecoglossicida sera. Additionally, the indirect immunofluorescence assay (IIFA) provided evidence indicating the surface exposure of OprF in P. plecoglossicida. Fish vaccinated twice via intraperitoneal (IP) injection with the purified rOprF combined with commercial adjuvant ISA 763A VG exhibited a relative percent survival (RPS) of 70.60% after challenge with virulent P. plecoglossicida strain through immersion. The administration of rOprF resulted in a notable increase in specific serum antibody levels and serum lysozyme activity compared to the control groups. The immune-related genes in the spleen and head kidney of rOprF-vaccinated fish were remarkably upregulated compared with the PBS-vaccinated sham group after the P. plecoglossicida challenge. In summary, the findings of this study suggest that rOprF exhibits considerable potential in inducing a robust immune response, making it a viable candidate for vaccination against P. plecoglossicida infection in large yellow croaker.
Collapse
Affiliation(s)
- Liangyin He
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Engineering Research Center of Mindong Aquatic Product Deep-Processing, College of Life Science, Ningde Normal University, Ningde, 352100, PR China
| | - Jiale Kang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xingfu Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Pan Qin
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.
| |
Collapse
|
4
|
Sepúlveda D, Hansen MJ, Dalsgaard I, Skov J, Lorenzen N. Antigenic variability of Vibrio anguillarum serotype O2a: A hurdle for vaccine efficacy against vibriosis in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2022; 131:300-311. [PMID: 36202204 DOI: 10.1016/j.fsi.2022.09.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Despite vaccination, outbreaks of vibriosis still occur in sea-reared rainbow trout in Denmark. Vibriosis outbreaks are caused mainly by V. anguillarum serotypes O1 and O2a, and bacterins of both serotypes are included in the commonly used vaccine against this disease in Danish aquaculture. However, while the strains belonging to serotype O1 are genetically similar, the strains belonging to serotype O2a are highly diverse. This work aimed first at examining how the antibody response and protection induced by bacterin-based vaccines were affected by the antigenic variability within V. anguillarum serotype O2a strains. Following vaccination of rainbow trout with either a commercial or an experimental vaccine, specific antibody reactivity in serum from vaccinated fish was examined by ELISA against 23 strains of V. anguillarum serotype O2a (VaO2a). The strains were divided into 4 distinct subgroups according to the observed detection pattern. Seven strains were strongly recognized only by sera from fish vaccinated with the experimental vaccine (EV-I antisera), while 13 other strains were primarily recognized by sera from fish vaccinated with the commercial vaccine (CV antisera). Two strains were recognized by both EV-I and CV antisera, but with intermediate reactivity, while one strain was not recognized at all. A partly similar recognition pattern was observed when purified lipopolysaccharide (LPS) was used as antigen in the examination of antibody reactivity in Western blotting. The level of protection was highly dependent on both the vaccine and the strain used for challenge and showed no consistent correlation with antibody reactivity. Secondly, we attempted to use a bacterin vaccine based on one of the V. anguillarum O2a strains intermediately recognized by both EV-I and CV antisera to investigate whether that could potentially provide protection across strain variability. The immunized fish did mount a cross-reactive antibody response, but protection still varied depending on the strain used for challenge. Interestingly, the grouping of strains according to antibody reactivity correlated not only with genotyping based on single nucleotides polymorphisms analysis (SNP) but also with variability in the accessory genome, indicating that presence or absence of protein antigens or proteins associated with the biosynthesis of antigenic epitopes may explain the observed distinct serological subgrouping within VaO2a strains by trout immune sera. In terms of vaccination against VaO2a, our results demonstrate that it is important to take (local) antigen variations into account when using bacterin-based vaccines but also that alternatives to traditional bacterin-based vaccines might be needed to induce protection against the highly virulent Vibrio anguillarum serotype O2a strains.
Collapse
Affiliation(s)
- Dagoberto Sepúlveda
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens, Lyngby, Denmark.
| | - Mie Johanne Hansen
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Inger Dalsgaard
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Jakob Skov
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Niels Lorenzen
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens, Lyngby, Denmark
| |
Collapse
|
5
|
Yang S, Mkingule I, Liu L, Chen W, Yuan X, Ma Z, Liang L, Qian S, Huang M, Fei H. Protective efficacy evaluation of immunogenic protein AHA_3793 of Aeromonas hydrophila as vaccine candidate for largemouth bass Micropterus salmoides. JOURNAL OF OCEANOLOGY AND LIMNOLOGY 2022; 41:392-400. [PMID: 36287822 PMCID: PMC9584254 DOI: 10.1007/s00343-022-1326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/13/2022] [Indexed: 06/16/2023]
Abstract
Aeromonas hydrophila is a Gram-negative pathogen that can infect various fish, including largemouth bass (Micropterus salmoides), which have caused huge economic losses. In present study, largemouth bass anti-A. hydrophila antibodies were produced, then a highly immunogenic outer membrane proteins, AHA_3793, was identified by combined western blotting and mass spectrometry analysis. Moreover, AHA_3793 was expressed, and its immunogenicity was further verified by western blotting. Subsequently, the protective efficacy of AHA_3793 were evaluated in largemouth bass. The results showed that rAHA_3793 could produce a relative percentage survival (RPS) of 61.76% for largemouth bass against A. hydrophila challenge. ELISA analysis showed the specific serum antibodies of largemouth bass against rAHA_3793 and A. hydrophila in vaccinated group in weeks 4 and 5 after immunization were significantly higher than those in control group, which suggested that rAHA_3793 induced production of specific serum antibodies against rAHA_3793 and A. hydrophila. The qRT-PCR analysis showed that expressions of CD4-2 and MHC IIα were also significantly up-regulated after immunization. These results collectively demonstrated that rAHA_3793 could induce a strong humoral immune response of largemouth bass, and then produce high immune protection effects against A. hydrophila infection.
Collapse
Affiliation(s)
- Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Idefonce Mkingule
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Long Liu
- Zhejiang Development & Planning Institute, Hangzhou, 310012 China
| | - Wenqi Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Xiangyu Yuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Zixuan Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Liang Liang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Shichao Qian
- Huzhou Baijiayu Biotech Co., Ltd., Huzhou, 313000 China
| | - Mengmeng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| |
Collapse
|
6
|
Wu X, Xing J, Tang X, Sheng X, Chi H, Zhan W. Protective cellular and humoral immune responses to Edwardsiella tarda in flounder (Paralichthys olivaceus) immunized by an inactivated vaccine. Mol Immunol 2022; 149:77-86. [DOI: 10.1016/j.molimm.2022.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/27/2022]
|
7
|
Liu W, Xing J, Tang X, Sheng X, Chi H, Zhan W. Characterization of Co-Stimulatory Ligand CD80/86 and Its Effect as a Molecular Adjuvant on DNA Vaccine Against Vibrio anguillarum in Flounder ( Paralichthys olivaceus). Front Immunol 2022; 13:881753. [PMID: 35619706 PMCID: PMC9127221 DOI: 10.3389/fimmu.2022.881753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/08/2022] [Indexed: 11/15/2022] Open
Abstract
The CD80/86 molecule is one of the important co-stimulatory ligands and involves antigen-specific immune responses by ligating with CD28 and then delivering the required second signal to T-cell activation. In this study, a CD80/86 homolog was identified, and its expression characteristics were studied in flounder (Paralichthys olivaceus). The open reading frame (ORF) of CD80/86 is 906 bp, encoding 301 aa, and the extracellular amino acid sequence encoded two IgV- and IgC-like structural domains; fCD80/86 is highly expressed in head kidney, peripheral blood leukocytes (PBLs), and spleen, and has relatively high expression in muscle. Antibodies specific for CD80/86 were produced, and CD80/86 was colocalized with MHCII+, CD40+, and CD83+ leukocytes but not with IgM+, CD3+, or CD4+ lymphocytes. The cloned CD80/86 in flounder shares conserved structural features with its mammalian counterparts and is mainly distributed on antigen-presenting cells. Based on these data, CD80/86 as an adjuvant to enhance the immune response of DNA vaccine was investigated. A bicistronic DNA vaccine expressing both CD80/86 and the outer membrane protein (OmpK) of Vibrio anguillarum (p-OmpK-CD80/86) was successfully constructed. After immunization, p-OmpK-CD80/86 could induce the upregulation of the proportion of IgM+ and CD4+ cells in flounder, compared to the p-OmpK- or p-CD80/86-immunized group; CD28 genes were significantly induced in the p-CD80/86 and p-OmpK-CD80/86 groups. Compared to the p-OmpK group, the higher expression of CD83, MHCI, CD4, CD8, and IL-2 was detected at the injection site. The relative percent survival (RPS) produced by p-OmpK-CD80/86 is 66.11% following the V. anguillarum challenge, while the RPS of p-OmpK or p-CD80/86 is 46.30% and 5.56%, respectively. The results revealed that CD80/86 is mainly found in antigen-presenting cells, and could help elicit humoral immune responses in teleost through the CD80/86-CD28 signaling pathway involving CD4+ lymphocytes.
Collapse
Affiliation(s)
- Wenjing Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Yang XD, Hou ZS, Liu MQ, Zeng C, Zhao HK, Xin YR, Xiang KW, Yang Q, Wen HS, Li JF. Identification and characterization of mkk genes and their expression profiles in rainbow trout (Oncorhynchus mykiss) symptomatically or asymptomatically infected with Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2022; 121:1-11. [PMID: 34974153 DOI: 10.1016/j.fsi.2021.12.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Mitogen-activated protein kinase kinases (MKKs) are intermediate kinases of mitogen-activated protein kinases (MAPKs) signaling pathways. MKKs are activated by mitogen-activated protein kinase kinase kinase (MKKK) and then the activated MKKs trigger the activation of downstream MAPKs. MAPK signaling pathways play an important role in regulating immune functions including apoptosis and inflammation. However, studies on identification and characterization of mkk repertoire in rainbow trout (Oncorhynchus mykiss) are still limited. Trout experienced 4 rounds (4R) of whole genome duplication (WGD), thus exhibiting increased paralogs of mkks with potentially functional diversity. In this study, we identified 17 mkk genes in trout and the following bacterial challenge (Vibrio anguillarum) studies showed functional diversity of different mkk subtypes. Vibrio anguillarum infection resulted in significantly up-regulated mkk2 subtypes in spleen and liver, and mkk4b3 in spleen, suggesting immunomodulation was regulated by activation of ERK, p38 and JNK pathways. Compared to other mkk subtypes, mkk6s were down-regulated in symptomatic group, rather than asymptomatic group. The organisms present negative feedback on MAPK activation, thus reducing extra damage to cells. We observed down-regulated mkk6s with up-regulated genes (dusp1 & dusp2) involved in negative feedback of MAPK activation. Based on these results, we might propose the distinct expression patterns of genes associated with MAPK pathways resulted in different phenotypes and symptoms of trout in response to bacterial challenge.
Collapse
Affiliation(s)
- Xiao-Dong Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Meng-Qun Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Chu Zeng
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hong-Kui Zhao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Yuan-Ru Xin
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Kai-Wen Xiang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Qian Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China.
| | - Ji-Fang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China.
| |
Collapse
|
9
|
Xing J, Jiang X, Xu H, Sheng X, Tang X, Chi H, Zhan W. Local immune responses to VAA DNA vaccine against Listonella anguillarum in flounder (Paralichthys olivaceus). Mol Immunol 2021; 134:141-149. [PMID: 33773157 DOI: 10.1016/j.molimm.2021.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/21/2023]
Abstract
The efficacy of DNA vaccine is associated closely with the expression of the antigen and the intensity of local immune responses. In our previous study, a recombinant DNA plasmid expressing the VAA protein (pVAA) of Listonella anguillarum has been proved to have a good protection against the infection of L. anguillarum. In the present study, the local immune responses eliciting by immunizing flounder with intramuscular (I.M.) injection of pVAA was investigated at the cellular and genetic level, the muscle at the injection site at 7th post vaccination day was sampled and analyzed by hematoxylin-eosin (H&E) staining, immunohistochemistry (IHC), flow cytometry (FCM), RNA sequencing (RNA-Seq)-based transcriptomics and RT-qPCR. Then variations on the specific antibodies in serum at 1st-6th post vaccination week and the relative percent survival rate (RPS) at following 14 days after challenge were measured. The H&E results showed that inflammatory cells and immune cells significantly increased at the injection site. The IHC using monoclonal antibody against T cell markers revealed that both CD4-1+ and CD4-2+ T lymphocytes were recruited to the injection site and FCM results showed that the proportion of CD4-1+ cells in pVAA immunized group was 28.6 %, in the control group was 8.7 %, and that of CD4-2+ cells in two groups was 21.2 % and 8.5 %, respectively. These results indicating that the proportion of CD4+ cells in the immune group was significantly increased compared with the control group. Moreover, there were 2551 genes differently expressed in pVAA immunized group, KEGG analysis showed the genes involved in the signal transduction and immune system, and surface markers for B-cells genes, T-cells and antigen presenting cells (APCs) genes were highly upregulated, suggesting the activation of the systemic immune responses. Antibody specific anti-L. anguillarum or anti-rVAA antibodies were significantly induced at 2nd post-immunization week, that reached a peak at 4-5th week. RPS in pVAA group was 53.85±3.64 %. In conclusion, pVAA induced effective local immune responses and then the systematic response. This probably is the main contribution of pVAA to effective protection against L. anguillarum.
Collapse
Affiliation(s)
- Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao 266071, China
| | - Xiaoyu Jiang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China
| | - Hongsen Xu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao 266071, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao 266071, China.
| |
Collapse
|
10
|
Hou ZS, Xin YR, Zeng C, Zhao HK, Tian Y, Li JF, Wen HS. GHRH-SST-GH-IGF axis regulates crosstalk between growth and immunity in rainbow trout (Oncorhynchus mykiss) infected with Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2020; 106:887-897. [PMID: 32866610 DOI: 10.1016/j.fsi.2020.08.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
An energy trade-off is existed between immunological competence and growth. The axis of growth hormone releasing hormone, somatostatin, growth hormone, insulin-like growth factor (GHRH-SST-GH-IGF axis) regulates growth performances and immune competences in rainbow trout (Oncorhynchus mykiss). The salmonid-specific whole genome duplication event is known to result in duplicated copies of several key genes in GHRH-SST-GH-IGF axis. In this study, we evaluated the physiological functions of GHRH-SST-GH-IGF axis in regulating crosstalk between growth and immunity. Based on principal components analysis (PCA), we observed the overall expression profiles of GHRH-SST-GH-IGF axis were significantly altered by Vibrio anguillarum infection. Trout challenged with Vibrio anguillarum showed down-regulated igf1s subtypes and up-regulated igfbp1a1. The brain sst genes (sst1a, sst1b, sst3b and sst5) and igfpbs genes (igfbp4s and igfbp5b2) were significantly affected by V. anguillarum infection, while the igfbp4s, igfbp5s, igfbp6s and igf2bps genes showed significant changes in peripheral immune tissues in response to V. anguillarum infection. Gene enrichment analyses showed functional and signaling pathways associated with apoptosis (such as p53, HIF-1 or FoxO signaling) were activated. We further proposed a possible model that describes the IGF and IGFBPs-regulated interaction between cell growth and programmed death. Our study provided new insights into the physiological functions and potentially regulatory mechanisms of the GHRH-SST-GH-IGF axis, indicating the pleiotropic effects of GHRH-SST-GH-IGF axis in regulating crosstalk between growth and immunity in trout.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China.
| | - Yuan-Ru Xin
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Chu Zeng
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Hong-Kui Zhao
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Yuan Tian
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Ji-Fang Li
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China.
| |
Collapse
|
11
|
Ji Q, Wang S, Ma J, Liu Q. A review: Progress in the development of fish Vibrio spp. vaccines. Immunol Lett 2020; 226:46-54. [DOI: 10.1016/j.imlet.2020.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/28/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
|
12
|
Zhao L, Tang X, Sheng X, Xing J, Chi H, Zhan W. Different immune responses of flounder (Paralichthys olivaceus) towards the full-length and N-terminal or C-terminal portion of hirame novirhabdovirus glycoprotein. FISH & SHELLFISH IMMUNOLOGY 2020; 104:279-288. [PMID: 32505718 DOI: 10.1016/j.fsi.2020.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Glycoprotein is an important immunogenic protein of Hirame novirhabdovirus (HIRRV). In this study, the full-length and N-/C-terminal portions of glycoprotein were recombinantly expressed (rG, rGn and rGc protein), and the induced immune responses were investigated in flounder (Paralichthys olivaceus) model. The results showed that compared to PBS control, rG, rGn and rGc proteins and inactivated HIRRV suspension (iVS) could all stimulate significant increases of flounder CD4-1+, CD4-2+ T lymphocytes and surface IgM positive (sIgM+) B lymphocytes in peripheral blood, spleen and head kidney (p < 0.05). However, no significant differences of the percentages of CD4-1+ or CD4-2+ T lymphocytes were observed among three protein vaccination groups (p > 0.05). iVS could induce the highest mean levels of CD4+ T lymphocytes in peripheral blood and spleen. For sIgM+ B lymphocytes, the average peak percentages in rG and rGc groups were higher than rGn group. Moreover, significant increases of specific serum IgM against HIRRV or rG protein were observed in iVS, rG, rGn and rGc groups, but rG group exhibited the highest mean level. Furthermore, rG protein induced the highest titer of neutralizing antibodies against HIRRV, followed by iVS. Meanwhile, the challenge test showed that the relative percent survival (RPS) of rG, rGn, rGc and iVS groups were 75.0%, 35.7%, 53.6% and 60.7%, respectively. These results revealed that the full-length G protein would be a more effective subunit vaccine candidate against HIRRV infection.
Collapse
Affiliation(s)
- Lining Zhao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
13
|
Xing J, Tian HF, Tang XQ, Sheng XZ, Zhan WB. Kinetics of T lymphocyte subsets and B lymphocytes in response to immunostimulants in flounder (Paralichthys olivaceus): implications for CD4 + T lymphocyte differentiation. Sci Rep 2020; 10:13827. [PMID: 32796864 PMCID: PMC7429840 DOI: 10.1038/s41598-020-69542-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/12/2020] [Indexed: 01/22/2023] Open
Abstract
CD4+ T lymphocytes play crucial roles in the adaptive immune system. CD4, as the most effective marker to delineate the T-helper subsets, was identified in many fish species. Two CD4 homologs, CD4-1 and CD4-2, have been reported in flounder (Paralichthys olivaceus). In this study, monoclonal antibodies (mAbs) against CD4-1 and CD4-2 of flounder were produced, CD4+ T lymphocytes were isolated and identified, and the variations in CD4+ and CD8+ T lymphocytes and IgM+ B lymphocytes after Poly I:C, PMA or β-glucan stimulation were investigated. Then, the expression of transcription factors and cytokines in sorted CD4+ T lymphocytes was analyzed. The results showed that the mAbs were specific to flounder CD4-1+ and CD4-2+ T cells. CD4-1+ and CD4-2+ cells responded to all three stimulants, while CD8+ T lymphocytes only give a strong response to Poly I:C, and the percentages of IgM+ B lymphocytes showed a tendency to increase. After stimulation, the expression of transcription factors and cytokines of Th1, Th2 and Th17 cells varied in CD4+ T cells. These results will provide crucial foundations for the differentiation and function of teleost CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, People's Republic of China
| | - Hong-Fei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Xiao-Qian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Xiu-Zhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Wen-Bin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, People's Republic of China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, People's Republic of China.
| |
Collapse
|
14
|
Interleukin 34 Serves as a Novel Molecular Adjuvant against Nocardia Seriolae Infection in Largemouth Bass ( Micropterus Salmoides). Vaccines (Basel) 2020; 8:vaccines8020151. [PMID: 32231137 PMCID: PMC7349345 DOI: 10.3390/vaccines8020151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
DNA vaccines have been widely employed in controlling viral and bacterial infections in mammals and teleost fish. Co-injection of molecular adjuvants, including chemokines, cytokines, and immune co-stimulatory molecules, is one of the potential strategies used to improve DNA vaccine efficacy. In mammals and teleost fish, interleukin-34 (IL-34) had been described as a multifunctional cytokine and its immunological role had been confirmed; however, the adjuvant capacity of IL-34 remains to be elucidated. In this study, IL-34 was identified in largemouth bass. A recombinant plasmid of IL-34 (pcIL-34) was constructed and co-administered with a DNA vaccine encoding hypoxic response protein 1 (Hrp1; pcHrp1) to evaluate the adjuvant capacity of pcIL-34 against Nocardia seriolae infection. Our results indicated that pcIL-34 co-injected with pcHrp1 not only triggered innate immunity and a specific antibody response, but also enhanced the mRNA expression level of immune-related genes encoding for cytokines, chemokines, and humoral and cell-mediated immunity. Moreover, pcIL-34 enhanced the protection of pcHrp1 against N. seriolae challenge and conferred the relative percent survival of 82.14%. Collectively, IL-34 is a promising adjuvant in a DNA vaccine against nocardiosis in fish.
Collapse
|
15
|
Xing J, Xu H, Tang X, Sheng X, Zhan W. A DNA Vaccine Encoding the VAA Gene of Vibrio anguillarum Induces a Protective Immune Response in Flounder. Front Immunol 2019; 10:499. [PMID: 30941134 PMCID: PMC6435001 DOI: 10.3389/fimmu.2019.00499] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/25/2019] [Indexed: 11/15/2022] Open
Abstract
Vibrio anguillarum is a pathogenic bacterium that infects flounder resulting in significant losses in the aquaculture industry. The VAA protein previously identified in flounder is associated with a role in immune protection within these fish. In the present study, a recombinant DNA plasmid encoding the VAA gene of V. anguillarum was constructed and its potential as a DNA vaccine, to prevent the infection of V. anguillarum in flounder fish, investigated. We verified the expression of the VAA protein both in vitro in cell lines and in vivo in flounder fish. The protective effects of pcDNA3.1-VAA (pVAA) were analyzed by determination of the percentage of sIgM+, CD4-1+, CD4-2+, CD8β+ lymphocytes, and the production of VAA-specific antibodies in flounder following their immunization with the DNA vaccine. Histopathological changes in immune related tissues, bacterial load, and relative percentage survival rates of flounder post-challenge with V. anguillarum, were all investigated to assess the efficacy of the pVAA DNA vaccine candidate. Fish intramuscularly immunized with pVAA showed a significant increase in CD4-1+, CD4-2+, and CD8β+ T lymphocytes at days 9, 11, and 14 post-vaccination, reaching peak T-cell levels at days 11 or 14 post-immunization. The percentage of sIgM+ lymphocytes reached peak levels at weeks 4–5 post-immunization. Specific anti-V. anguillarum or anti-rVAA antibodies were induced in inoculated fish at days 28–35 post-immunization. The liver of vaccinated flounder exhibited only slight histopathological changes compared with a significant pathology observed in control immunized fish. Additionally, a lower bacterial burden in the liver, spleen, and kidney were observed in pVAA protected fish in response to bacterial challenge, compared with pcDNA3.1 vector control injected fish. Moreover, the pVAA vaccine confers a relative percentage survival of 50.00% following V. anguillarum infection. In summary, this is the first study indicating an initial induction of the T lymphocyte response, followed by B lymphocyte induction of specific antibodies as a result of DNA immunization of flounder. This signifies the important potential of pVAA as a DNA vaccine candidate for the control of V. anguillarum infection.
Collapse
Affiliation(s)
- Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hongsen Xu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Zhou X, Xing J, Tang X, Zhan W. Evaluation of bivalent vaccines candidates among VAA, OmpK and OmpR from Vibrio anguillarum in flounder (Paralichthys olivaceus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:1-9. [PMID: 29559319 DOI: 10.1016/j.dci.2018.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Outer membrane protein (Omp) K, OmpR and VAA have been identified with good immunogenicity from Vibrio anguillarum, and their recombinant proteins showed variable relative percent survival (RPS) in previous study. In order to develop effective bivalent vaccine candidates, recombinant (r) VAA + rOmpK (AK), rVAA + rOmpR (AR), rOmpK + rOmpR (KR) among VAA, OmpK and OmpR, or formalin-killed cells (FKC) of V. anguillarum were immunized in flounder, respectively. Results revealed that AK, AR, KR and FKC could induce the proliferation of surface membrane immunoglobulin-positive B lymphocytes or CD3+ T lymphocytes in peripheral blood lymphocytes, and significantly enhance the total antibodies, specific antibodies and immune-related gene than those of control group. AK, AR, KR or FKC showed RPS of 74.92%, 78.49%, 82.09% and 56.99%, respectively. These results indicated that three bivalent vaccines AK, AR and KR could induce strong cellular and humoral immunity, and had high protection against V. anguillarum infection in flounders.
Collapse
Affiliation(s)
- Xiujuan Zhou
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China
| |
Collapse
|
17
|
Sheng X, Gao J, Liu H, Tang X, Xing J, Zhan W. Recombinant phosphoglucomutase and CAMP factor as potential subunit vaccine antigens induced high protection against Streptococcus iniae infection in flounder (Paralichthys olivaceus). J Appl Microbiol 2018; 125:997-1007. [PMID: 29877008 DOI: 10.1111/jam.13948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/17/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022]
Abstract
AIMS The aim of this study was to screen vaccine candidates from virulence factors of Streptococcus iniae in flounder model. METHODS AND RESULTS The immunogenicity of recombinant phosphoglucomutase (rPGM) and rCAMP factor was confirmed by Western blot. The percentage of surface membrane immunoglobulin-positive (sIg+ ) lymphocytes in peripheral blood leucocytes, the specific and total serum IgM and the activity of acid phosphatase (ACP) and peroxidase (POD) in flounder were determined with flow cytometry, ELISA and commercial enzyme activity kits, respectively, after intraperitoneal immunization with rPGM and rCAMP factor. The results showed that rPGM and rCAMP factor could induce significant rise in sIg+ lymphocytes, specific serum IgM and activities of ACP and POD. Additionally, the relative percent survival rate of the vaccinated flounder was 64 and 54% in challenge experiment using S. iniae, respectively. These results indicated that rPGM and rCAMP factor could evoke humoural and innate immune response in flounder and provide high-efficiency immunoprotection against S. iniae infection. CONCLUSIONS Phosphoglucomutase (PGM) and CAMP factor were promising vaccine candidates against S. iniae in flounder. SIGNIFICANCE AND IMPACT OF THE STUDY Phosphoglucomutase and CAMP factor have the potential to be vaccine candidates, which provide important information for us to develop the effective subunit vaccines, especially the multivaccine, against S .iniae in aquaculture.
Collapse
Affiliation(s)
- X Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - J Gao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - H Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - X Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - J Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - W Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
18
|
Sheng X, Liu M, Liu H, Tang X, Xing J, Zhan W. Identification of immunogenic proteins and evaluation of recombinant PDHA1 and GAPDH as potential vaccine candidates against Streptococcus iniae infection in flounder (Paralichthys olivaceus). PLoS One 2018; 13:e0195450. [PMID: 29847601 PMCID: PMC5976140 DOI: 10.1371/journal.pone.0195450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/22/2018] [Indexed: 11/30/2022] Open
Abstract
Streptococcus iniae is a major Gram-positive pathogen that causes invasive disease in fish worldwide. In this study, in order to identify immunogenic proteins for developing highly effective vaccine against S. iniae, whole-cell lysate proteins of S. iniae were analyzed by western blotting using flounder anti-S. iniae antibodies, and two positive protein bands of molecular weight 37 kDa and 40 kDa were screened, which were identified as pyruvate dehydrogenase E1 subunit alpha (PDHA1), BMP family ABC transporter substrate-binding protein (BMP) and L-lactate dehydrogenase (LDH), as well as ornithine carbamoyltransferase (OCT), lactate oxidas (LOx) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by mass spectrometry. Subsequently, the six recombinant proteins were produced and used to immunize healthy flounder, and the relative percent survival (RPS) value was 72.73%, 27.27%, 36.36%, 9.09%, 36.36% and 63.64% respectively after intraperitoneal challenge with live S. iniae, revealing that rPDHA1 and rGAPDH produced higher relative percent survival than formalin-killed S. iniae (36.36%). To further investigate the protective efficacy of rPDHA1 and rGAPDH, the proliferation of surface membrane immunoglobulin-positive (sIg+) lymphocytes in peripheral blood leucocytes, the total serum IgM, specific IgM against S. iniae and RPS were detected. The results showed that rPDHA1, rGAPDH and formalin-killed S. iniae significantly induced the proliferation of sIg+ lymphocytes, the production of total serum IgM and specific IgM as compared with the control group, and rGAPDH and rPDHA1 provide higher RPS (62.5% and 75%, respectively) again. These results demonstrated that rPDHA1 and rGAPDH are promising vaccine candidates against S. iniae infection in flounder.
Collapse
Affiliation(s)
- Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, P. R. China
| | - Min Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, P. R. China
| | - Haibo Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, P. R. China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, P. R. China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, P. R. China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, P. R. China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China
| |
Collapse
|
19
|
Xing J, Li P, Tang X, Zhan W. Recombinant Hsp33 and OmpC protein can serve as promising divalent vaccine with protection against Vibrio anguillarum and Edwardsiella tarda in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2018; 74:341-348. [PMID: 29309834 DOI: 10.1016/j.fsi.2017.12.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/05/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
Vibrio anguillarum and Edwardsiella tarda are severe aquaculture pathogens shared similar epidemiological characteristics and susceptible to flounder (Paralichthys olivaceus). In our previous studies, recombinant(r) protein heat shock protein 33 (rHsp33) from V. anguillarum and outer membrane protein C (rOmpC) from E. tarda were proved to have protection against V. anguillarum and E. tarda, respectively. In this paper, the cross protection of rHsp33 against E. tarda and rOmpC against V. anguillarum, and the protection of divalent vaccine candidate (rHsp33 + rOmpC, rHC) against both V. anguillarum and E. tarda were evaluated. RHC, rHsp33, and rOmpC were vaccinated to flounder, respectively, and the percentages of surface immunoglobulin-positive (sIg+) cells in peripheral blood lymphocytes (PBLs), serum IgM, specific antibodies against V. anguillarum or E. tarda, specific antibodies against rHsp33, rOmpC or rHC, the expression of immune-related genes and relative percent survival (RPS) against V. anguillarum or E. tarda were measured. The results showed that: RHC could induced the enhancement of sIg + cells and high levels of specific antibodies against both V. anguillarm and E. tarda; Also a significant increase of specific antibodies against rHsp33, rOmpC or rHC, and up-regulation of gene expression of CD3, CD4-1, CD4-2, CD8α, CD8β and IgM in spleen, head-kidney, and hindgut, RPS of 70 ± 3.45% against V. anguillarum and 60 ± 1.48% against E. tarda, respectively. In addition, rHsp33 induced specific antibodies against E. tarda and rOmpC, and had a RPS of 43.3 ± 3.73% against E. tarda; rOmpC could evoke specific antibodies against V. anguillarum and rHsp33, and had a RPS of 44 ± 1.27% against V. anguillarm; The results demonstrated that there was cross protection of rHsp33 against E. tarda and rOmpC against V. anguillarum, rHC as a divalent vaccine can induce significant immune response and efficient protection against both E. tarda and V. anguillarum in flounder.
Collapse
Affiliation(s)
- Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, PR China
| | - Pengwei Li
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, PR China.
| |
Collapse
|
20
|
Xing J, Zhou X, Tang X, Sheng X, Zhan W. FlaC supplemented with VAA, OmpK or OmpR as bivalent subunit vaccine candidates induce immune responses against Vibrio anguillarum in flounder ( Paralichthys olivaceus ). Vaccine 2018; 36:1316-1322. [DOI: 10.1016/j.vaccine.2017.11.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/21/2017] [Accepted: 11/26/2017] [Indexed: 10/18/2022]
|