1
|
Kiekens C, Morré SA, Vanrompay D. Advances in Chlamydia trachomatis Vaccination: Unveiling the Potential of Major Outer Membrane Protein Derivative Constructs. Microorganisms 2024; 12:1196. [PMID: 38930578 PMCID: PMC11205628 DOI: 10.3390/microorganisms12061196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Chlamydia (C.) trachomatis, a leading cause of sexually transmitted infections (STIs) worldwide, continues to be a significant public health concern. The majority of infections are asymptomatic and, when left untreated, severe sequelae such as infertility and chronic pelvic pain can occur. Despite decades of research, an effective vaccine remains elusive. This review focuses on the potential of Major Outer Membrane Protein (MOMP)-derived constructs as promising candidates for C. trachomatis vaccination. MOMP, the most abundant protein in the outer membrane of C. trachomatis, has been a focal point of vaccine research over the years due to its antigenic properties. To overcome issues associated with the use of full MOMP as a vaccine antigen, derivative constructs have been studied. As these constructs are often not sufficiently immunogenic, antigen delivery systems or accompanying adjuvants are required. Additionally, several immunization routes have been explored with these MOMP-derived vaccine antigens, and determining the optimal route remains an ongoing area of research. Future directions and challenges in the field of C. trachomatis vaccination are discussed.
Collapse
Affiliation(s)
- Celien Kiekens
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Servaas A. Morré
- Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
- Microbe&Lab BV, 1105 AG Amsterdam, The Netherlands
- Dutch Chlamydia trachomatis Reference Laboratory, Department of Medical Microbiology, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, Uttar Pradesh, India
| | - Daisy Vanrompay
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Armitage CW, Bryan ER, Trim L, Palframan E, Wager L, Beagley KW, Carey AJ. Haematopoietic innate interleukin 17A production drives immunopathology in female mouse genital Chlamydia muridarum infection. Scand J Immunol 2024; 99:e13359. [PMID: 38605527 DOI: 10.1111/sji.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 04/13/2024]
Abstract
Chlamydia trachomatis infection is the leading cause of bacterial urogenital infection and has been demonstrated to drive inflammation and scarring of the reproductive tract. Recent studies have identified key triggers of proinflammatory adaptive immune responses driven by innate leukocytes and epithelia driving immunopathology. Utilizing chimeric mouse models, we investigated the definitive source and role of IL17 and IL17 signalling receptors during early Chlamydia muridarum infection of the female urogenital tract. Bone marrow transplants from wild-type (WT) and IL17A-/- mice to recipients demonstrated equivocal infection kinetics in the reproductive tract, but interestingly, adoptive transfer of IL17A-/- immune cells to WT recipients resulted in no infertility, suggesting a haematopoietic (as opposed to tissue) source of IL17 driving immunopathology. To further delineate the role of IL17 in immunopathology, we infected WT and IL17 receptor A (IL17RA)-/- female mice and observed a significant reduction in immunopathology in IL17RA-/- mice. WT bone marrow transplants to IL17RA-/- recipient mice prevented hydrosalpinx, suggesting signalling through IL17RA drives immunopathology. Furthermore, early chemical inhibition of IL17 signalling significantly reduced hydrosalpinx, suggesting IL17 acts as an innate driver of disease. Early during the infection, IL17 was produced by γδ T cells in the cervico-vagina, but more importantly, by neutrophils at the site of infertility in the oviducts. Taken together, these data suggest innate production of IL17 by haematopoietic leukocytes drives immunopathology in the epithelia during early C. muridarum infection of the female reproductive tract.
Collapse
Affiliation(s)
- Charles W Armitage
- School of Biomedical Science and Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Peter Goher Department of Immunobiology, Kings College London, London, UK
| | - Emily R Bryan
- School of Biomedical Science and Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Logan Trim
- School of Biomedical Science and Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ella Palframan
- School of Biomedical Science and Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Lucas Wager
- School of Biomedical Science and Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kenneth W Beagley
- School of Biomedical Science and Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Alison J Carey
- School of Biomedical Science and Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Li Q, Chen S, Yan Z, Fang H, Wang Z, He C. A Novel Intranasal Vaccine With PmpGs + MOMP Induces Robust Protections Both in Respiratory Tract and Genital System Post Chlamydia psittaci Infection. Front Vet Sci 2022; 9:855447. [PMID: 35529835 PMCID: PMC9072866 DOI: 10.3389/fvets.2022.855447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia psittaci (C. psittaci) is a crucial zoonotic pathogen that causes severe respiratory and reproductive system disease in humans and animals. In our pioneer study, polymorphic membrane protein G (PmpG) mediated attachment to host cells as the adhesions and induced immunity against C. psittaci infection. We hypothesize that multiple PmpG antigens adjuvanted with Vibrio cholerae ghost (VCG) and chitosan gel might trigger full protection via the intranasal route (i.n). In the present study, 40 SPF chickens were randomly divided into four groups, including the PmpGs + MOMP group (i.n), major outer membrane protein (MOMP) group (i.n), PmpGs (Pmp17G + Pmp20G + Pmp21G) group (i.n), and control groups (VCG + chitosan gel) (i.n). Post twice immunizations, the PmpGs + MOMP group yielded highly level-specific IgG, IgA antibodies, and lymphocyte proliferation. As for cytokines, IFN-γ expression was upregulated significantly, while IL-10 concentration was downregulated in the PmpGs + MOMP group compared with other groups. Post challenge, exudate inflammations in air sacs, bacterial loads in lungs, and bacterial shedding in throat swabs were reduced significantly in the PmpGs + MOMP group. In the second experiment, 100 breeder ducks were divided into the PmpGs + MOMP group (i.n), the commercial MOMP group (via intramuscular injection, i.m), the inactivated EBs group (i.n), and the control group (i.n), 25 ducks per group. Post challenge, the reduced egg production recovered soon in the inactivated EBs group and the PmpGs + MOMP group. Moreover, the aforementioned two groups induced higher robust IgG antibodies, lymphocyte proliferation, and IFN-γ secretions than the commercial MOMP vaccine did. Postmortem, lower bacterial loads of spleens were determined in the PmpGs + MOMP group and the inactivated EBs group. However, bacterial clearance of follicular membranes and shedding from the vaginal tract were not significant differences among the three tested groups. Furthermore, the PmpGs + MOMP group induced lower inflammations in the follicles and oviducts. Based on the above evidence, the combination of PmpGs and MOMP adjuvanted with chitosan gel and VCG via intranasal route could induce full protection both in the respiratory system and genital tract post C. psittaci infection. More importantly, the combination antigens are superior to the inactivated EBs antigen due to no contamination to the environment and less genital inflammation. The combination of PmpGs + MOMP adjuvanted with VCG and chitosan gel might be a promising novel vaccine by blocking C. psittaci infection from animals to human beings.
Collapse
Affiliation(s)
- Qiang Li
- College of Life Science and Engineering, Foshan University, Foshan, China
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Siyu Chen
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhuanqiang Yan
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Yunfu, China
| | - Huanxin Fang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Yunfu, China
| | - Zhanxin Wang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Yunfu, China
- *Correspondence: Zhanxin Wang
| | - Cheng He
- College of Life Science and Engineering, Foshan University, Foshan, China
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Cheng He
| |
Collapse
|
4
|
Webster E, Seiger KW, Core SB, Collar AL, Knapp-Broas H, Graham J, Shrestha M, Afzaal S, Geisler WM, Wheeler CM, Chackerian B, Frietze KM, Lijek RS. Immunogenicity and Protective Capacity of a Virus-like Particle Vaccine against Chlamydia trachomatis Type 3 Secretion System Tip Protein, CT584. Vaccines (Basel) 2022; 10:vaccines10010111. [PMID: 35062772 PMCID: PMC8779370 DOI: 10.3390/vaccines10010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 10/28/2022] Open
Abstract
An effective vaccine against Chlamydia trachomatis is urgently needed as infection rates continue to rise and C. trachomatis causes reproductive morbidity. An obligate intracellular pathogen, C. trachomatis employs a type 3 secretion system (T3SS) for host cell entry. The tip of the injectosome is composed of the protein CT584, which represents a potential target for neutralization with vaccine-induced antibody. Here, we investigate the immunogenicity and efficacy of a vaccine made of CT584 epitopes coupled to a bacteriophage virus-like particle (VLP), a novel platform for Chlamydia vaccines modeled on the success of HPV vaccines. Female mice were immunized intramuscularly, challenged transcervically with C. trachomatis, and assessed for systemic and local antibody responses and bacterial burden in the upper genital tract. Immunization resulted in a 3-log increase in epitope-specific IgG in serum and uterine homogenates and in the detection of epitope-specific IgG in uterine lavage at low levels. By contrast, sera from women infected with C. trachomatis and virgin controls had similarly low titers to CT584 epitopes, suggesting these epitopes are not systemically immunogenic during natural infection but can be rendered immunogenic by the VLP platform. C. trachomatis burden in the upper genital tract of mice varied after active immunization, yet passive protection was achieved when immune sera were pre-incubated with C. trachomatis prior to inoculation into the genital tract. These data demonstrate the potential for antibody against the T3SS to contribute to protection against C. trachomatis and the value of VLPs as a novel platform for C. trachomatis vaccines.
Collapse
Affiliation(s)
- Everett Webster
- Department of Biological Sciences, Mount Holyoke College, 50 College St., South Hadley, MA 01075, USA; (E.W.); (K.W.S.); (H.K.-B.); (J.G.); (M.S.); (S.A.)
| | - Kyra W. Seiger
- Department of Biological Sciences, Mount Holyoke College, 50 College St., South Hadley, MA 01075, USA; (E.W.); (K.W.S.); (H.K.-B.); (J.G.); (M.S.); (S.A.)
| | - Susan B. Core
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, MSC 08-4660, 1 University of New Mexico, Albuquerque, NM 87131, USA; (S.B.C.); (A.L.C.); (B.C.); (K.M.F.)
| | - Amanda L. Collar
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, MSC 08-4660, 1 University of New Mexico, Albuquerque, NM 87131, USA; (S.B.C.); (A.L.C.); (B.C.); (K.M.F.)
| | - Hannah Knapp-Broas
- Department of Biological Sciences, Mount Holyoke College, 50 College St., South Hadley, MA 01075, USA; (E.W.); (K.W.S.); (H.K.-B.); (J.G.); (M.S.); (S.A.)
| | - June Graham
- Department of Biological Sciences, Mount Holyoke College, 50 College St., South Hadley, MA 01075, USA; (E.W.); (K.W.S.); (H.K.-B.); (J.G.); (M.S.); (S.A.)
| | - Muskan Shrestha
- Department of Biological Sciences, Mount Holyoke College, 50 College St., South Hadley, MA 01075, USA; (E.W.); (K.W.S.); (H.K.-B.); (J.G.); (M.S.); (S.A.)
| | - Sarah Afzaal
- Department of Biological Sciences, Mount Holyoke College, 50 College St., South Hadley, MA 01075, USA; (E.W.); (K.W.S.); (H.K.-B.); (J.G.); (M.S.); (S.A.)
| | - William M. Geisler
- Department of Medicine, University of Alabama at Birmingham, 703 19th St. S, ZRB 242, Birmingham, AL 35294, USA;
| | - Cosette M. Wheeler
- Center for HPV Prevention, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, MSC 08-4640, 1 University of New Mexico, Albuquerque, NM 87131, USA;
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, MSC 08-4660, 1 University of New Mexico, Albuquerque, NM 87131, USA; (S.B.C.); (A.L.C.); (B.C.); (K.M.F.)
| | - Kathryn M. Frietze
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, MSC 08-4660, 1 University of New Mexico, Albuquerque, NM 87131, USA; (S.B.C.); (A.L.C.); (B.C.); (K.M.F.)
- Clinical and Translational Science Center, University of New Mexico Health Sciences, MSC 08-4635, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Rebeccah S. Lijek
- Department of Biological Sciences, Mount Holyoke College, 50 College St., South Hadley, MA 01075, USA; (E.W.); (K.W.S.); (H.K.-B.); (J.G.); (M.S.); (S.A.)
- Correspondence: ; Tel.: +1-(413)-538-2487
| |
Collapse
|
5
|
Sahu R, Dixit S, Verma R, Duncan SA, Smith L, Giambartolomei GH, Singh SR, Dennis VA. Encapsulation of Recombinant MOMP in Extended-Releasing PLGA 85:15 Nanoparticles Confer Protective Immunity Against a Chlamydia muridarum Genital Challenge and Re-Challenge. Front Immunol 2021; 12:660932. [PMID: 33936096 PMCID: PMC8081181 DOI: 10.3389/fimmu.2021.660932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/24/2021] [Indexed: 01/12/2023] Open
Abstract
Recently we reported the immune-potentiating capacity of a Chlamydia nanovaccine (PLGA-rMOMP) comprising rMOMP (recombinant major outer membrane protein) encapsulated in extended-releasing PLGA [poly (D, L-lactide-co-glycolide) (85:15)] nanoparticles. Here we hypothesized that PLGA-rMOMP would bolster immune-effector mechanisms to confer protective efficacy in mice against a Chlamydia muridarum genital challenge and re-challenge. Female BALB/c mice received three immunizations, either subcutaneously (SC) or intranasally (IN), before receiving an intravaginal challenge with C. muridarum on day 49 and a re-challenge on day 170. Both the SC and IN immunization routes protected mice against genital challenge with enhanced protection after a re-challenge, especially in the SC mice. The nanovaccine induced robust antigen-specific Th1 (IFN-γ, IL-2) and IL-17 cytokines plus CD4+ proliferating T-cells and memory (CD44high CD62Lhigh) and effector (CD44high CD62Llow) phenotypes in immunized mice. Parallel induction of antigen-specific systemic and mucosal Th1 (IgG2a, IgG2b), Th2 (IgG1), and IgA antibodies were also noted. Importantly, immunized mice produced highly functional Th1 avidity and serum antibodies that neutralized C. muridarum infectivity of McCoy fibroblasts in-vitro that correlated with their respective protection levels. The SC, rather than the IN immunization route, triggered higher cellular and humoral immune effectors that improved mice protection against genital C. muridarum. We report for the first time that the extended-releasing PLGA 85:15 encapsulated rMOMP nanovaccine confers protective immunity in mice against genital Chlamydia and advances the potential towards acquiring a nano-based Chlamydia vaccine.
Collapse
Affiliation(s)
- Rajnish Sahu
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Saurabh Dixit
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Richa Verma
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Skyla A. Duncan
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Lula Smith
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Guillermo H. Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shree R. Singh
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Vida A. Dennis
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
6
|
Cui L, Qu G, Chen Y, Wu Y, Wang C, Cheng H, Chen J. Polymorphic membrane protein 20G: A promising diagnostic biomarker for specific detection of Chlamydia psittaci infection. Microb Pathog 2021; 155:104882. [PMID: 33848596 DOI: 10.1016/j.micpath.2021.104882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
Psittacosis is a zoonotic disease caused by Chlamydia psittaci (C. psittaci), leading to high risk for animal industry and human health. Lack of reliable commercial kits and effective vaccines is hampering control of C. psittaci infection. Polymorphic outer membrane protein Gs (PmpGs) are enriched in diverse C. psittaci, and its role are unclear during C. psittaci infection. In the present study, pmp20G gene was cloned into pET-28a vector and then the constructed plasmid was transferred into Escherichia coli Rossetta (DE3). After denaturation and renaturation, the recombinant Pmp20G-N was identified by SDS-PAGE and Western blot. Afterwards Pmp20G-N was used as the coating antigen to develop an indirect ELISA (I-ELISA) assay. Both the specificity and sensitivity of Pmp20G-N ELISA were 100%, while the MOMP-ELISA had 93.65% sensitivity and 98.94% specificity, respectively. The concordance between MOMP-ELISA and Pmp20G-N ELISA assay was 98.1%. Hence, Pmp20G-N ELISA has the potential to be a diagnostic antigen for detection C. psittaci antibody. However, further studies are needed to be done for differentiating C. psittaci from Chlamydia spp. and other C.psittaci-specific serovars using Pmp20G-N ELISA.
Collapse
Affiliation(s)
- Lei Cui
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guanggang Qu
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou, Shandong, China
| | - Yi Chen
- Key Lab of Animal Epidemiology and Zoonosis of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuexing Wu
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou, Shandong, China
| | - Changjiang Wang
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou, Shandong, China
| | - He Cheng
- Key Lab of Animal Epidemiology and Zoonosis of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Jianlin Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Marschall MT, Simnacher U, Walther P, Essig A, Hagemann JB. The Putative Type III Secreted Chlamydia abortus Virulence-Associated Protein CAB063 Targets Lamin and Induces Apoptosis. Front Microbiol 2020; 11:1059. [PMID: 32523581 PMCID: PMC7261910 DOI: 10.3389/fmicb.2020.01059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/29/2020] [Indexed: 01/15/2023] Open
Abstract
Since intracellular survival of all chlamydiae depends on the manipulation of the host cell through type III secreted effector proteins, their characterization is crucial for the understanding of chlamydial pathogenesis. We functionally characterized the putative type III secreted Chlamydia abortus protein CAB063, describe its intracellular localization and identified pro- and eukaryotic binding partners. Based on an experimental infection model and plasmid transfections, we investigated the subcellular localization of CAB063 by immunofluorescence microscopy, immunoelectron microscopy, and Western blot analysis. Pro- and eukaryotic targets were identified by co-immunofluorescence, co-immunoprecipitation, and mass spectrometry. Transmission electron microscopy and flow cytometry were used for morphological and functional investigations on host cell apoptosis. CAB063 localized in the nuclear membrane of the host cell nucleus and we identified the chaperone HSP70 and lamin A/C as pro- and eukaryotic targets, respectively. CAB063-dependent morphological alterations of the host cell nucleus correlated with increased apoptosis rates of infected and CAB063-transfected cells. We provide evidence that CAB063 is a chaperone-folded type III secreted C. abortus virulence factor that targets lamin thereby altering the host cell nuclear membrane structure. This process may be responsible for an increased apoptosis rate at the end of the chlamydial developmental cycle, at which CAB063 is physiologically expressed.
Collapse
Affiliation(s)
| | - Ulrike Simnacher
- Institute of Medical Microbiology and Hygiene, Ulm University Hospital, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Andreas Essig
- Institute of Medical Microbiology and Hygiene, Ulm University Hospital, Ulm, Germany
| | | |
Collapse
|
8
|
Zhou Z, Liu N, Wang Y, Emmanuel AW, You X, Liu J, Li Z, Wu Y, Zhong G. A primary study on genes with selected mutations by in vitro passage of Chlamydia muridarum strains. Pathog Dis 2020; 77:5518358. [PMID: 31197357 DOI: 10.1093/femspd/ftz017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/04/2019] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE This study is to investigate the functions of newly discovered genes in Chlamydia muridarum (C. muridarum) strains with single gene differences. METHODS Using whole genome sequencing and plaque formation assays, C. muridarum parental and passaging strains were established, and the isogenic clones expressing certain genotypes were isolated. Strains with single gene differences were obtained. Based on prediction, the valuable strains with single gene differences of tc0412, tc0668 or tc0237 were subjected to the in vitro and in vivo experiments for biological characterization and virulence analysis. RESULTS Insertional -472840T mutation of the tc0412 gene (T28T/B3 type) matching with the nonmutant tc0668 gene and tc0237 gene with point mutations G797659T (Q117E) might slow the growth of Chlamydia due to the lack of a plasmid. The nonmutant tc0668 in the strain might induce a high incidence of hydrosalpinx in mice, while tc0668 with a G797659T point mutation was significantly attenuated. Compared with the nonmutant tc0237, the strains containing mutant tc0237 were characterized by reduced centrifugation dependence during infection. CONCLUSION The identification and characterization of these genes might contribute to the comprehensive understanding of the pathogenic mechanism of Chlamydia.
Collapse
Affiliation(s)
- Zhou Zhou
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, Hunan, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, Hunan, China
| | - Na Liu
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, Hunan, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, Hunan, China
| | - Yingzi Wang
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, Hunan, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, Hunan, China
| | - Arthur Wirekoh Emmanuel
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, Hunan, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, Hunan, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, Hunan, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, Hunan, China
| | - Jiulin Liu
- Outstanding Physician Class in Grade 2016, Medical College, University of South China, Hengyang 421001, Hunan, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, Hunan, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, Hunan, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, Hunan, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, Hunan, China
| | - Guangming Zhong
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, Hunan, China.,Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
9
|
Habenstein B, El Mammeri N, Tolchard J, Lamon G, Tawani A, Berbon M, Loquet A. Structures of Type III Secretion System Needle Filaments. Curr Top Microbiol Immunol 2019; 427:109-131. [PMID: 31974760 DOI: 10.1007/82_2019_192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Among the Gram-negative bacterial secretion systems, type III secretion systems (T3SS) possess a unique extracellular molecular apparatus called the needle. This macromolecular protein assembly is a nanometre-size filament formed by the helical arrangement of hundreds of copies of a single, small protein, which is highly conserved between T3SSs from animal to plant bacterial pathogens. The needle filament forms a hollow tube with a channel ~20 Å in diameter that serves as a conduit for proteins secreted into the targeted host cell. In the past ten years, technical breakthroughs in biophysical techniques such as cryo-electron microscopy (cryo-EM) and solid-state NMR (SSNMR) spectroscopy have uncovered atomic resolution details about the T3SS needle assembly. Several high-resolution structures of Salmonella typhimurium and Shigella flexneri T3SS needles have been reported demonstrating a common structural fold. These structural models have been used to explain the active role of the needle in transmitting the host-cell contact signal from the tip to the base of the T3SS through conformational changes as well as during the injection of effector proteins. In this chapter, we summarize the current knowledge about the structure and the role of the T3SS needle during T3SS assembly and effector secretion.
Collapse
Affiliation(s)
- Birgit Habenstein
- University of Bordeaux, CNRS, UMR 5248, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, Pessac, 33607, France.
| | - Nadia El Mammeri
- University of Bordeaux, CNRS, UMR 5248, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, Pessac, 33607, France
| | - James Tolchard
- University of Bordeaux, CNRS, UMR 5248, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, Pessac, 33607, France
| | - Gaëlle Lamon
- University of Bordeaux, CNRS, UMR 5248, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, Pessac, 33607, France
| | - Arpita Tawani
- University of Bordeaux, CNRS, UMR 5248, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, Pessac, 33607, France
| | - Mélanie Berbon
- University of Bordeaux, CNRS, UMR 5248, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, Pessac, 33607, France
| | - Antoine Loquet
- University of Bordeaux, CNRS, UMR 5248, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, Pessac, 33607, France.
| |
Collapse
|
10
|
Verma R, Sahu R, Dixit S, Duncan SA, Giambartolomei GH, Singh SR, Dennis VA. The Chlamydia M278 Major Outer Membrane Peptide Encapsulated in the Poly(lactic acid)-Poly(ethylene glycol) Nanoparticulate Self-Adjuvanting Delivery System Protects Mice Against a Chlamydia muridarum Genital Tract Challenge by Stimulating Robust Systemic and Local Mucosal Immune Responses. Front Immunol 2018; 9:2369. [PMID: 30374357 PMCID: PMC6196261 DOI: 10.3389/fimmu.2018.02369] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022] Open
Abstract
Recently, we reported that our PPM chlamydial nanovaccine [a biodegradable co-polymeric PLA-PEG (poly(lactic acid)-poly(ethylene glycol))-encapsulated M278 peptide (derived from the major outer membrane protein (MOMP) of Chlamydia)] exploits the caveolin-mediated endocytosis pathway for endosomal processing and MHC class II presentation to immune-potentiate Chlamydia-specific CD4+ T-cell immune effector responses. In the present study, we employed the Chlamydia muridarum mouse infection model to evaluate the protective efficacy of PPM against a genital tract challenge. Our results show that mice immunized with PPM were significantly protected against a homologous genital tract challenge evidently by reduced vaginal bacterial loads. Protection of mice correlated with enhanced Chlamydia-specific adaptive immune responses predominated by IFN-γ along with CD4+ T-cells proliferation and their differentiation to CD4+ memory (CD44high CD62Lhigh) and effector (CD44high CD62Llow) T-cell phenotypes. We observed the elevation of M278- and MOMP-specific serum antibodies with high avidity in the ascending order IgG1 > IgG2b > IgG2a. A key finding was the elevated mucosal IgG1 and IgA antibody titers followed by an increase in MOMP-specific IgA after the challenge. The Th1/Th2 antibody titer ratios (IgG2a/IgG1 and IgG2b/IgG1) revealed that PPM evoked a Th2-directed response, which skewed to a Th1-dominated antibody response after the bacterial challenge of mice. In addition, PPM immune sera neutralized the infectivity of C. muridarum in McCoy cells, suggesting the triggering of functional neutralizing antibodies. Herein, we reveal for the first time that subcutaneous immunization with the self-adjuvanting biodegradable co-polymeric PPM nanovaccine immune-potentiated robust CD4+ T cell-mediated immune effector responses; a mixed Th1 and Th2 antibody response and local mucosal IgA to protect mice against a chlamydial genital tract challenge.
Collapse
Affiliation(s)
- Richa Verma
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Rajnish Sahu
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Saurabh Dixit
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Skyla A Duncan
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shree R Singh
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Vida A Dennis
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
11
|
Hafner LM, Timms P. Development of a Chlamydia trachomatis vaccine for urogenital infections: novel tools and new strategies point to bright future prospects. Expert Rev Vaccines 2017; 17:57-69. [PMID: 29264970 DOI: 10.1080/14760584.2018.1417044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The "cloaked" bacterial pathogen that is Chlamydia trachomatis continues to cause sexually transmitted infections (STIs) that adversely affect the health and well-being of children, adolescents and adults globally. The reproductive disease sequelae follow unresolved or untreated chronic or recurrent asymptomatic C.trachomatis infections of the lower female genital tract (FGT) and can include pelvic pain, pelvic inflammatory disease (PID) and ectopic pregnancy. Tubal Factor Infertility (TFI) can also occur since protective and long-term natural immunity to chlamydial infection is incomplete, allowing for ascension of the organism to the upper FGT. Developing countries including the WHO African (8.3 million cases) and South-East Asian regions (7.2 million cases) bear the highest burden of chlamydial STIs. AREAS COVERED Genetic advances for Chlamydia have provided tools for transformation (including dendrimer-enabled transformation), lateral gene transfer and chemical mutagenesis. Recent progress in these areas is reviewed with a focus on vaccine development for Chlamydia infections of the female genital tract. EXPERT COMMENTARY A vaccine that can elicit immuno-protective responses whilst avoiding adverse immuno-pathologic host responses is required. The current technological advances in chlamydial genetics and proteomics, as well as novel and improved adjuvants and delivery systems, provide new hope that the elusive chlamydial vaccine is an imminent and realistic goal.
Collapse
Affiliation(s)
- Louise M Hafner
- a School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| | - Peter Timms
- b Faculty of Science, Health, Education and Engineering , University of the Sunshine Coast , Maroochydore DC , Australia
| |
Collapse
|